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Abstract

In this paper, we study the fluctuations of the extreme eigenvalues of a spiked finite rank
deformation of a Hermitian (resp. symmetric) Wigner matrix when these eigenvalues separate
from the bulk. We exhibit quite general situations that will give rise to universality or non
universality of the fluctuations, according to the delocalization or localization of the eigenvectors
of the perturbation. Dealing with the particular case of a spike with multiplicity one, we also
establish a necessary and sufficient condition on the associated normalized eigenvector so that the
fluctuations of the corresponding eigenvalue of the deformed model are universal.

1 Introduction

Adding a finite rank perturbation to a GUE matrix, S. Péché [Pe] pointed out a sharp phase transition
phenomenon : according to the largest eigenvalue of the perturbation, the largest eigenvalue of the
perturbed matrix should either stick to the bulk and fluctuate according to the Tracy-Widom (or
generalized Tracy-Widom ) law or should be extracted away from the bulk and have then fluctuations of
Gaussian nature. In the lineage of this work, in a previous paper [C-D-F], we have studied the limiting
behavior of extremal eigenvalues of finite rank deformations of Wigner matrices. We established their
almost sure convergence. The limiting values depend only on the spectrum of the deformation AN
and on the variance of the distribution of the entries of the Wigner matrix. On the contrary the
fluctuations of these eigenvalues strongly depend on the eigenvectors of AN . Indeed, in the particular
case of a rank one diagonal deformation whose non-null eigenvalue is large enough, we established
a central limit theorem for the largest eigenvalue which deviates from the rest of the spectrum and
proved that the fluctuations of the largest eigenvalue vary with the particular distribution of the
entries of the Wigner matrix. Thus, this fluctuations result differs from that of the full rank one
deformation case investigated in [Fu-K] and [Fe-Pe1] since this latter case exhibited universal limiting
distributions.
Let us recall these results in the complex setting, having in mind that similar results hold in the real
symmetric case. In the following, given an arbitrary Hermitian matrix M of size N , we will denote by
λ1(M) ≥ · · · ≥ λN (M) its N ordered eigenvalues; we will denote the centered gaussian distribution
with variance v by N (0, v).
The random matrices under study are complex Hermitian matrices (MN )N defined on a probability
space (Ω,F ,P) such that

MN =
WN√
N

+ AN . (1.1)

AN is a N × N deterministic Hermitian matrix of fixed finite rank and whose spectrum does not
depend on N . The matrix WN is a N × N Wigner Hermitian matrix such that the N2 random
variables (WN )ii,

√
2<e((WN )ij)i<j ,

√
2=m((WN )ij)i<j are independent identically distributed with

a centered distribution µ of variance σ2.
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As the rank of the AN ’s is assumed to be finite, the Wigner Theorem is still satisfied for the Deformed
Wigner model (MN )N (cf. Lemma 2.2 of [B]): the spectral measure 1

N

∑N
i=1 δλi(MN ) of MN converges

a.s. towards the semicircle law µsc whose density is given by

dµsc
dx

(x) =
1

2πσ2

√
4σ2 − x2 11[−2σ,2σ](x). (1.2)

When AN ≡ 0, it is well-known that once µ has a finite fourth moment, the first largest (resp. last
smallest) eigenvalues of the rescaled Wigner matrix WN/

√
N tend almost surely to the right (resp.

left)-endpoint 2σ (resp. −2σ) of the semicircle support (cf. [B]). The corresponding fluctuations,
which have been first obtained by Tracy and Widom [T-W] in the Gaussian case and then extended
by Soshnikov [So] for any symmetric probability measure µ having subgaussian moments, are gov-
erned by the so-called Tracy-Widom distributions. Note that the exponential decay condition (with
symmetry assumption) has been replaced by a finite number of moments in [R], [K]. Under the
subexponential decay assumption, the symmetry assumption on µ in [So] was replaced in [T-V] by
the vanishing third moment condition and very recently, Erdös, Yau and Yin [E-Y-Y] proved the edge
universality under the subexponential decay assumption alone.
Let us describe how the asymptotic behavior of the extremal eigenvalues of the perturbed Wigner
matrix may be affected by the perturbation by considering the particular case of a rank one pertur-
bation AN with non-null eigenvalue θ. For a large class of probability measures µ, it turns out that
the largest eigenvalue λ1(MN ) still tends to the right-endpoint 2σ if θ ≤ σ whereas λ1(MN ) jumps
above the bulk to ρθ = θ + σ2

θ if θ > σ. This was proved by Péché in her pionnering work [Pe] when
µ is gaussian, extended in [Fe-Pe1] when µ is symmetric and has subgaussian moments but in the
particular case of the full rank one deformation AN given by

(AN )ij = θ/N for all 1 ≤ i, j ≤ N (1.3)

and finally established in [C-D-F] for general AN when µ is symmetric and satisfies a Poincaré in-
equality.
Moreover, considering the perturbation matrix defined by (1.3), Féral and Péché [Fe-Pe1] proved that
the fluctuations of λ1(MN ) are the same as in the gaussian setting investigated in [Pe] and in this
sense are universal. Here is their result when θ > σ:

Proposition 1.1. If µ is symmetric and has subgaussian moments

√
N(λ1(MN )− ρθ)

L−→ N (0, σ2
θ)

where σθ = σ
√

1− σ2

θ2 .

The proof of this result relies on the computations of moments of MN of high order (depending on
N) and the knowledge of the fluctuations in the Gaussian case, established by Péché [Pe].
On the other hand, for the strongly localized perturbation matrix of rank 1 given by

AN = diag(θ, 0, · · · , 0)

with θ > σ, we proved in [C-D-F] that the fluctuations of λ1(MN ) vary with the particular distribution
of the entries of the Wigner matrix so that this phenomenon can be seen as an example of a non
universal behavior :

Proposition 1.2. Let µ be symmetric and satisfy a Poincaré inequality. Define

cθ =
θ2

θ2 − σ2
and vθ =

1
2

(m4 − 3σ4

θ2

)
+

σ4

θ2 − σ2
(1.4)

where m4 :=
∫
x4dµ(x). Then

cθ
√
N
(
λ1(MN )− ρθ

)
L−→
{
µ ∗ N (0, vθ)

}
. (1.5)
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In the present paper, we consider perturbations AN of higher rank of Wigner matrices associated
to some symmetric probability measure µ satisfying a Poincaré inequality. The a.s. convergence of
the extreme eigenvalues has already been described in [C-D-F] (see Theorem 3.1 below). Whenever
the largest eigenvalues of MN are extracted away from the bulk, we describe their fluctuations which
depend on the localization of the eigenvectors of AN , as already seen in the above rank 1 examples.
We investigate two quite general situations for which we exhibit a phenomenon of different nature.
To explain this, let us focus on the largest eigenvalue θ1 of AN . We assume that θ1 > σ so that the
largest eigenvalues of MN converges a.s towards ρθ1 = θ1 + σ2

θ1
> 2σ .

First, when the eigenvectors associated to the largest eigenvalue θ1 of AN are localized, we establish
that the limiting distribution in the fluctuations of λi(MN ), 1 ≤ i ≤ k1, around ρθ1 is not universal
and we give it explicitely in terms of these eigenvectors and of the distribution of the entries of the
Wigner matrix, see Theorem 3.2.
Secondly, if the eigenvectors are sufficiently delocalized, we establish the universality of the fluctuations
of λi(MN ), 1 ≤ i ≤ k1, see Theorem 3.3 .
Actually, in the rank one case, this study allows us to exibit a necessary and sufficient condition
on a normalized eigenvector of AN associated to the largest eigenvalue θ1 for the universality of the
fluctuations (see Theorem 3.4 below). Moreover if such an eigenvector of AN is not localized but
does not satisfy the criteria of universality, the largest eigenvalue of MN may fluctuate according to a
mixture of µ and normal distributions generalizing (1.5). We will describe some of such intermediate
situations.
We detail the definition of localization/delocalization and these results in the Section 3.
Our approach is close to the proof of (1.5), with more involved computations and are in the spirit
of the works of [P] and [B-B-P]. It is valid in both real and complex settings. Actually, we assume
that the eigenvectors associated to the largest eigenvalues of AN belong to a subspace generated by
k(= k(N)) canonical vectors of CN and the method requires that N − k−→∞ (and even k√

N
−→ 0).

In particular, this approach does not cover the case of Proposition 1.1 studied by [Fe-Pe1] where k = N .

The Deformed Wigner matrix model may be seen as the additive analogue of the spiked population
models. These are random sample covariance matrices (SN )N defined by SN = 1

N Y
∗
NYN where YN

is a p × N complex (resp. real) matrix (with N and p = pN of the same order as N → ∞) whose
entries satisfy first four moments conditions; the sample column vectors are assumed to be i.i.d, cen-
tered and of covariance matrix a deterministic Hermitian (resp. symmetric) matrix Σp having all but
finitely many eigenvalues equal to one. In their pioneering article on that topic [Bk-B-P], Baik-Ben
Arous-Péché pointed out a phase transition phenomenon for the fluctuations of the largest eigenvalue
of SN according to the largest eigenvalue of Σp, in the complex Gaussian setting; their results were
extended in [P] to the real case when the largest eigenvalue of Σp is simple and sufficiently larger than
1 and in [O] to singular Wishart matrices. In the non Gaussian case, the fluctuations of the extreme
eigenvalues have been recently studied by Bai-Yao [B-Ya2] and Féral-Péché [Fe-Pe2].

The paper is organized as follows. In Section 2, we present the matricial models under study and
the notations that will be used throughout the paper. In Section 3, we present the main results of
this paper. We give a summary of our approach in Section 4. Section 5 is devoted to the proof of
Theorem 3.2, Theorem 3.3 and Theorem 3.4. Finally, we recall some basic facts on matrices, a CLT
for random sesquilinear forms and prove some technical results in an Appendix.

2 Model and notations

The random matrices under study are complex Hermitian (or real symmetric) matrices (MN )N defined
on a probability space (Ω,F ,P) such that

MN =
WN√
N

+ AN (2.1)

where the matrices WN and AN are defined as follows:
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(i) WN is a N×N Wigner Hermitian (resp. symmetric) matrix such that the N2 random variables
(WN )ii,

√
2<e((WN )ij)i<j ,

√
2=m((WN )ij)i<j (resp. the N(N+1)

2 random variables 1√
2
(WN )ii,

(WN )ij , i < j) are independent identically distributed with a symmetric distribution µ of vari-
ance σ2 and satisfying a Poincaré inequality; the latter condition means that there exists a
positive constant C such that for any C1 function f : R→ C such that f and f ′ are in L2(µ),

V(f) ≤ C
∫
|f ′|2dµ,

with V(f) = E(|f − E(f)|2).
Note that when µ is Gaussian, WN is a GU(O)E(N ×N, σ2) matrix.

(ii) AN is a deterministic Hermitian (resp. symmetric) matrix of fixed finite rank r and built
from a family of J fixed real numbers θ1 > · · · > θJ independent of N with some j0 such
that θj0 = 0. We assume that the non-null eigenvalues θj of AN are of fixed multiplicity
kj (with

∑
j 6=j0 kj = r). Let J+σ be the number of j’s such that θj > σ. We denote by

k+σ := k1+· · ·+kJ+σ . We introduce k ≥ k+σ as the minimal number of canonical vectors among
the canonical basis (ei; i = 1, . . . , N) of CN needed to express all the eigenvectors associated to
the largest eigenvalues θ1, . . . , θJ+σ of AN . Without loss of generality (using the invariance of
the distribution of the Wigner matrix WN by conjugation by a permutation matrix), we can
assume that these k+σ eigenvectors belong to Vect(e1, . . . , ek).
All along the paper we assume that k �

√
N .

Let us now fix j such that 1 ≤ j ≤ J+σ and let Uk be a unitary matrix of size k such that

diag(U∗k , IN−k)ANdiag(Uk, IN−k) = diag(θjIkj , (θlIkl)l≤J+σ,l 6=j , ZN−k+σ ) (2.2)

where ZN−k+σ is an Hermitian matrix with eigenvalues strictly smaller than θJ+σ .

Define Kj = Kj(N) as the minimal number of canonical vectors among (e1, . . . , ek) needed to express
all the orthonormal eigenvectors vji , 1 ≤ i ≤ kj , of AN associated to θj . Without loss of generality,
we can assume that the vji , 1 ≤ i ≤ kj , belong to Vect(e1, . . . , eKj ). Considering now the vectors vij
as vectors in CKj , we define the Kj × kj matrix

UKj×kj :=
(
vj1, . . . , v

j
kj

)
(2.3)

namely UKj×kj is the upper left corner of Uk of size Kj × kj . It satisfies

U∗Kj×kjUKj×kj = Ikj . (2.4)

All along the paper, the parameter t is such that t = 4 (resp. t = 2) in the real (resp. complex)
setting and we let m4 :=

∫
x4dµ(x).

Given an arbitrary Hermitian or symmetric matrix M of size N , we will denote by λ1(M) ≥ · · · ≥
λN (M) its N ordered eigenvalues.

3 Main results

We first recall the a.s. convergence of the extreme eigenvalues. Define

ρθj = θj +
σ2

θj
. (3.1)

Observe that ρθj > 2σ (resp. < −2σ) when θj > σ (resp. < −σ) (and ρθj = ±2σ if θj = ±σ).
For definiteness, we set k1 + · · · + kj−1 := 0 if j = 1. In [C-D-F], we have established the following
universal convergence result.
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Theorem 3.1. (a.s. behaviour) Let J+σ (resp. J−σ) be the number of j’s such that θj > σ (resp.
θj < −σ).

(1) ∀1 ≤ j ≤ J+σ, ∀1 ≤ i ≤ kj , λk1+···+kj−1+i(MN ) −→ ρθj a.s.

(2) λk1+···+kJ+σ+1(MN ) −→ 2σ a.s.

(3) λk1+···+kJ−J−σ (MN ) −→ −2σ a.s.

(4) ∀j ≥ J − J−σ + 1, ∀1 ≤ i ≤ kj , λk1+···+kj−1+i(MN ) −→ ρθj a.s.

3.1 Fluctuations around ρθj

From Theorem 3.1, for all 1 ≤ i ≤ kj , λk1+···+kj−1+i(MN ) converges to ρθj a.s.. We shall describe
their fluctuations in the extreme two cases:

Case a) localization of the eigenvectors associated to θj: The sequence Kj(N) is bounded,

sup
N
Kj(N) = K̃j

and the the upper left corner UK̃j×kj of Uk of size K̃j × kj converges towards some matrix ŨK̃j×kj
when N goes to infinity;

Case b) delocalization of the eigenvectors associated to θj: Kj = Kj(N)→∞ when N →∞
and Uk satisfies

kj
max
p=1

Kj
max
i=1
|(Uk)ip| −→ 0 as N →∞. (3.2)

The main results of our paper are the following two theorems. Let cθj be defined by

cθj =
θ2
j

θ2
j − σ2

. (3.3)

In Case a) (which includes the particular setting of Proposition 1.2), the fluctuations of the corre-
sponding rescaled largest eigenvalues of MN are not universal.

Theorem 3.2. In Case a): the kj-dimensional vector(
cθj
√
N(λk1+...+kj−1+i(MN )− ρθj ); i = 1, . . . , kj

)
converges in distribution to (λi(Vkj×kj ); i = 1, . . . kj) where λi(Vkj×kj ) are the ordered eigenvalues of
the matrix Vkj×kj of size kj defined in the following way. Let WK̃j

be a Wigner matrix of size K̃j

with distribution given by µ (cf (i)) and HK̃j
be a centered Hermitian Gaussian matrix of size K̃j

independent of WK̃j
with independent entries Hpl, p ≤ l with variance
vpp = E(H2

pp) =
t

4

(m4 − 3σ4

θ2
j

)
+
t

2
σ4

θ2
j − σ2

, p = 1, . . . , K̃j ,

vpl = E(|Hpl|2) =
σ4

θ2
j − σ2

, 1 ≤ p < l ≤ K̃j .
(3.4)

Then, Vkj×kj is the kj × kj matrix defined by

Vkj×kj = Ũ∗
K̃j×kj

(WK̃j
+HK̃j

)ŨK̃j×kj . (3.5)

Case b) exhibits universal fluctuations.
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Theorem 3.3. In Case b): the kj-dimensional vector(
cθj
√
N(λk1+...+kj−1+i(MN )− ρθj ); i = 1, . . . , kj

)
converges in distribution to (λi(Vkj×kj ); i = 1, . . . kj) where the matrix Vkj×kj is distributed as the

GU(O)E(kj × kj ,
θ2jσ

2

θ2j−σ2 ).

Remark 3.1. Note that since µ is symmetric, analogue results can be deduced from Theorem 3.2 and
Theorem 3.3 dealing with the lowest eigenvalues of MN and the θj such that θj < −σ.

Example:
AN = diag(Ap(θ1), θ2Ik2 , 0N−p−k2)

where Ap(θ1) is a matrix of size p defined by Ap(θ1)ij = θ1/p, with θ1, θ2 > σ, p �
√
N . Then

k = p+ k2, k1 = 1, K1 = p, K2 = k2. For j = 1, we are in Case a) if p is bounded and in Case b) if
p = p(N)→ +∞. For j = 2, we are in Case a).

3.2 Further result for a spike θj > σ of multiplicity 1

Dealing with a spike θj > σ with multiplicity 1, it turns out that case b) is actually the unique
situation where universality holds since we establish the following.

Theorem 3.4. If kj = 1, θj > σ, then the fluctuations of λk1+···+kj−1+1(MN ) are universal, namely

√
N(λk1+···+kj−1+1(MN )− ρθj )

L−→ N (0,
t

2
σ2
θj ) where σθj = σ

√
1− σ2

θ2
j

,

if and only if
max
l≤Kj

|(Uk)l1| → 0 when N →∞. (3.6)

Moreover, our approach allows us to describe the fluctuations of λk1+···+kj−1+1(MN ) for some
particular situations where the corresponding eigenvector of AN is not localized but does not satisfy
the criteria of universality maxl≤Kj |(Uk)l1| → 0 (that is somehow for intermediate situations between
Case a) and Case b)). Let m be a fixed integer number. Assume that for any l = 1, . . . ,m, (Uk)l1 is
independent of N , whereas maxm<l≤Kj |(Uk)l1| → 0 when N goes to infinity. We will prove at the end
of Section 5 that cθj

√
N(λk1+···+kj−1+1(MN )− ρθj ) converges in distribution towards the mixture of

µ-distributed or gaussian random variables
∑m
i,l=1 ailξil+N in the complex case,

∑
1≤l≤i≤m ailξil+N

in the real case, where ξil, (i, l) ∈ {1, . . . ,m}2, N are independent random variables such that

• for any (i, l) ∈ {1, . . . ,m}2, the distribution of ξil is µ;

• ail =


√

2=((Uk)l1(Uk)i1) if i < l√
t<((Uk)l1(Uk)i1) if i > l√
t
2 |(Uk)l1|2 if i = l;

• N is a centered gaussian variable with variance

t

4

[
m4 − 3σ4

]∑m
l=1 |(Uk)l1|4

θ2
j

+
t

2
σ4

θ2
j − σ2

+
t

2

1−

(
m∑
l=1

|(Uk)l1|2
)2
σ2.

4 Sketch of the approach

Before we proceed to the proof of Theorems 3.2 and 3.3, let us give the sketch of our approach which
are similar in both cases. To this aim, we define for any random variable λ,

ξN (λ) = cθj
√
N(λ− ρθj ) (4.1)
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with cθj given by (3.3). We also set k̂j−1 := k1 + . . .+ kj−1 with the convention that k̂0 = 0.
The reasoning made in the setting of Proposition 1.2 (for which k = k+σ = 1) relies (following ideas
previously developed in [P] and [B-B-P]) on the writing of the rescaled eigenvalue ξN (λ1(MN )) in
terms of the resolvent of an underlying non-Deformed Wigner matrix. The conclusion then essentially
follows from a CLT on random sesquilinear forms established by J. Baik and J. Silverstein in the
Appendix of [C-D-F] (which corresponds to the following Theorem 6.2 in the scalar case). In the
general case, to prove the convergence in distribution of the vector

(
ξN (λk̂j−1+i(MN )); i = 1, . . . , kj

)
,

we will extend, as [B-Ya2], the previous approach in the following sense. We will show that each of
these rescaled eigenvalues is an eigenvalue of a kj × kj random matrix which may be expressed in
terms of the resolvent of a N − k ×N − k Deformed Wigner matrix whose eigenvalues do not jump
asymptotically outside [−2σ; 2σ]; then, the matrix Vkj×kj will arise from a multidimensional CLT on
random sesquilinear forms. Nevertheless, due to the multidimensional situation to be considered now,
additional considerations are required. Let us give more details.
Consider an arbitrary random variable λ which converges in probability towards ρθj . Then, applying
factorizations of type (6.1), we prove that λ is an eigenvalue of MN iff ξN (λ) is (on some event having
probability going to 1 as N →∞) an eigenvalue of a kj × kj matrix X̌kj ,N (λ) of the form

X̌kj ,N (λ) = Vkj ,N +Rkj ,N (λ) (4.2)

where Vkj ,N converges in distribution towards Vkj×kj and the remaining term Rkj ,N (λ) turns out to
be negligible. Now, when kj > 1, since the matrix X̌kj ,N (λ) (in (4.2)) depends on λ, the previous
reasoning with λ = λk̂j−1+i(MN ) for any 1 ≤ i ≤ kj does not allow us to readily deduce that the kj
normalized eigenvalues ξN (λk̂j−1+i(MN )), 1 ≤ i ≤ kj are eigenvalues of a same matrix of the form
Vkj ,N + oP(1) and then that

(ξN (λk̂j−1+i(MN )); 1 ≤ i ≤ kj) = (λi(Vkj ,N ); 1 ≤ i ≤ kj) + oP(1). (4.3)

Note that the authors do not develop this difficulty in [B-Ya2] (pp. 464-465). Hence, in the last step
of the proof (Step 4 in Section 5), we detail the additional arguments which are needed to get (4.3)
when kj > 1.

Our approach will cover Cases a) and b) and we will handle both cases once this will be possible.
In fact, the main difference appears in the proof of the convergence in distribution of the matrix Vkj ,N
which gives rise to the ”occurrence or non-occurrence” of the distribution µ in the limiting fluctuations
and then justifies the non-universality (resp. universality) in Case a) (resp. b)).

The proof is organized in four steps as follows. In Steps 1 and 2, we explain how to obtain
(4.2): we exhibit the matrix X̌kj ,N and bring its leading term Vkj ,N to light in Step 2. We establish
the convergence in distribution of the matrix Vkj ,N in Step 3. Step 4 is devoted to the concluding
arguments of the proof.

5 Proofs of Theorem 3.2, Theorem 3.3 and Theorem 3.4

As far as possible, we handle both the proofs of Theorem 3.2 and Theorem 3.3. We will proceed in
four steps. First, let us introduce a few notations.
For any matrix M ∈MN (C), we denote by Tr (resp. trN ) the classical (resp. normalized) trace. For
a rectangular matrix, ||M || is the operator norm of M and ||M ||HS := (Tr(MM∗))1/2 the Hilbert-
Schmidt norm.
For an Hermitian matrix, we denote by Spect(M) the spectrum of M . For z ∈ C\Spect(M),
GM (z) = (zIN −M)−1 denotes the resolvent of M (we suppress the index M when there is no
confusion). We have the following :

For x > λ1(M); ‖G(x)‖ ≤ 1
x− λ1(M)

. (5.1)

For a m× q matrix B (or B) and some integers 1 ≤ p ≤ m and 1 ≤ l ≤ q, we denote respectively by
[B]↖p×l, [B]↗p×l, [B]↙p×l and [B]↘p×l the upper left, upper right, lower left and lower right corner of size
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p× l of the matrix B. If p = l, we will often replace the indices p× l by p for convenience. Moreover
if p = m , we may replace ↗ or ↘ by → and ↙ or ↖ by ←. Similarly if l = q, we may replace ↗ or
↖ by ↑ and ↙ or ↘ by ↓.
For simplicity in the writing we will define the k × k, resp. N − k ×N − k, resp. k ×N − k matrix
Wk, resp. WN−k, resp. Y , by setting

WN =
(
Wk Y
Y ∗ WN−k

)
. (5.2)

Given B ∈MN (C), we will denote by B̃ the N ×N matrix given by

B̃ := diag(U∗k , IN−k) B diag(Uk, IN−k) =
(
B̃k B̃k×N−k
B̃N−k×k B̃N−k

)
.

One obviously has that B̃N−k = BN−k.
In this way, we define the matrices M̃N , W̃N and ÃN . In particular, we notice from (2.2) that

ÃN = diag(θjIkj , (θlIkl)l≤J+σ,l 6=j , ZN−k+σ ) =
(
Ãk Ãk×N−k
ÃN−k×k AN−k

)
. (5.3)

Note also that since AN−k is a submatrix of ZN−k+σ , all its eigenvalues are strictly smaller than σ.
Let 0 < δ < (ρθj − 2σ)/2. For any random variable λ, define the events

Ω(1)
N (λ) =

{
λ1

(
WN√
N

+ diag(Uk, IN−k) diag(0k+σ , ZN−k+σ ) diag(U∗k , IN−k)
)
< 2σ + δ;λ > ρθj − δ

}
,

Ω(2)
N =

{
λ1

(
WN−k√

N
+AN−k

)
≤ 2σ + δ

}
,

and
ΩN (λ) = Ω(1)

N (λ)
⋂

Ω(2)
N . (5.4)

On ΩN (λ), neither λ nor ρθj are eigenvalues of MN−k := WN−k√
N

+ AN−k, thus the resolvent Ĝ(x) of
MN−k is well defined at x = λ and x = ρθj . Note that from Theorem 3.1, for any random sequence
ΛN converging towards ρθj in probability, limN −→∞ P(ΩN (ΛN )) = 1.

Let us now introduce on ΩN (λ) some auxiliary matrices that will be of basic use to the proofs.

Bk,N = Wk +
1√
N

(
Y Ĝ(ρθj )Y

∗ − (N − k)
σ2

θj
Ik

)
. (5.5)

Vk+σ,N := [U∗kBk,NUk]↖k+σ . (5.6)

τN (λ) =
1
N

(λ− ρθj )Y Ĝ(λ)Ĝ(ρθj )
2Y ∗, (5.7)

φN = − 1
N

(
Y Ĝ(ρθj )

2Y ∗ − σ2 Tr Ĝ(ρθj )
2Ik

)
, (5.8)

ψN = −σ2N − k
N

(
trN−k Ĝ(ρθj )

2 − 1
θ2
j − σ2

)
Ik, (5.9)

cθjDk,N (λ) = τN (λ) + φN + ψN . (5.10)

TN (λ) =
[
U∗k (Wk +

1√
N
Y Ĝ(λ)Y ∗)Uk

]↗
k+σ×(k−k+σ)

, (5.11)

∆N (λ) =
[
U∗kY Ĝ(λ)ÃN−k×k

]↗
k+σ×(k−k+σ)

, (5.12)

Γk+σ×k−k+σ (λ) = TN (λ) + ∆N (λ). (5.13)
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Qk,N (λ) := M̃k + M̃k×N−kĜ(λ)M̃N−k×k, (5.14)

Σk−k+σ (λ) =
(

[Qk,N (λ)]↘k−k+σ − λIk−k+σ
)−1

. (5.15)

Note that we will justify that Σk−k+σ (λ) is well defined in the course of the proof of Proposition 5.1
below. Finally, set

Xk+σ,N (λ) = [U∗kBk,NUk]↖k+σ +
√
Ndiag

(
0kj , (θl − θj)Ikl , l = 1, . . . , J+σ, l 6= j

)
+ξN (λ) [U∗kDk,N (λ)Uk]↖k+σ

+

(
σ2

θ2
j − σ2

ξN (λ)
cθj

k

N
− k√

N

σ2

θj

)
Ik+σ

− 1√
N

Γk+σ×k−k+σ (λ)Σk−k+σ (λ)Γk+σ×k−k+σ (λ)∗. (5.16)

STEP 1: We show that an eigenvalue of MN is an eigenvalue of a matrix of size k+σ. More, precisely,
we have:

Proposition 5.1. For any random variable λ and any k+σ × k+σ random matrix ∆k+σ , on ΩN (λ),
λ is an eigenvalue of M̃N + diag(∆k+σ , 0) iff ξN (λ) is an eigenvalue of Xk+σ,N (λ) +

√
N∆k+σ where

Xk+σ,N (λ) is defined by (5.16). Moreover, the k− k+σ × k− k+σ matrix Σk−k+σ (λ) defined by (5.15)
is such that

‖Σk−k+σ (λ)‖ ≤ 1/(ρθj − 2σ − 2δ).

Proof: Let λ be a random variable. On ΩN (λ),

det(MN − λIN ) = det(M̃N − λIN )

= det
(
M̃k − λIk M̃k×N−k
MN−k×k MN−k − λIN−k

)
= det(MN−k − λIN−k) det

(
M̃k − λIk + M̃k×N−kĜ(λ)M̃N−k×k

)
.

The last equality in the above equation follows from (6.1). Since on ΩN (λ), λ is not an eigenvalue of
MN−k, we can deduce that λ is an eigenvalue of M̃N if and only if it is an eigenvalue of

Qk,N (λ) = M̃k + M̃k×N−kĜ(λ)M̃N−k×k.

Now, note that we have also from (6.1) that

det

[W̃N√
N

]↘
N−k+σ

+ ZN−k+σ − λIN−k+σ


= det

(
WN−k√

N
+
[
ZN−k+σ

]↘
N−k − λIN−k

)
× det

(
[Qk,N (λ)]↘k−k+σ − λIk−k+σ

)
.

The matrix
[
W̃N√
N

]↘
N−k+σ

+ZN−k+σ is a submatrix of W̃N√
N

+diag(0k+σ , ZN−k+σ ) whose eigenvalues are

(on ΩN (λ)) smaller than 2σ+δ. So, since on ΩN (λ), λ is greater than ρθj−δ > 2σ+δ, we can conclude

that λ cannot be an eigenvalue of
[
W̃N√
N

]↘
N−k+σ

+ZN−k+σ , and then neither of [Qk,N (λ)]↘k−k+σ . Thus,

we can define

Σk−k+σ (λ) =
(

[Qk,N (λ)]↘k−k+σ − λIk−k+σ
)−1

.

Moreover on ΩN (λ), one can see using (6.1) that if λ0 is an eigenvalue of [Qk,N (λ)]↘k−k+σ − λIk−k+σ
then λ is an eigenvalue of[W̃N√

N

]↘
N−k+σ

+ ZN−k+σ − diag(λ0Ik−k+σ , 0N−k).
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Hence,

λ ≤ λ1

([W̃N√
N

]↘
N−k+σ

+ ZN−k+σ

)
+ |λ0|

and then
|λ0| ≥ ρθj − δ − 2σ − δ,

so that finally

‖Σk−k+σ (λ)‖ ≤ 1
ρθj − 2σ − 2δ

. (5.17)

Using oncemore (6.1), we get that on ΩN (λ), λ is an eigenvalue of Qk,N (λ) if and only if it is
an eigenvalue of [Qk,N (λ)]↖k+σ − [Qk,N (λ)]↗k+σ×k−k+σ Σk−k+σ (λ) [Qk,N (λ)]↙k−k+σ×k+σ or equivalently if
and only if ξN (λ) is an eigenvalue of

cθj
√
N
(

[Qk,N (λ)]↖k+σ − ρθjIk+σ − [Qk,N (λ)]↗k+σ×k−k+σ Σk−k+σ (λ) [Qk,N (λ)]↙k−k+σ×k+σ

)
.

Now using
Ĝ(λ)− Ĝ(ρθj ) = −(λ− ρθj )Ĝ(ρθj )Ĝ(λ),

one can replace Ĝ(λ) by Ĝ(ρθj ) +
[
−(λ− ρθj )Ĝ(ρθj )

(
Ĝ(ρθj )− (λ− ρθj )Ĝ(ρθj )Ĝ(λ)

)]
and get the

following writing

1√
N
Y Ĝ(λ)Y ∗ =

1√
N
Y Ĝ(ρθj )Y

∗ + ξN (λ)Dk,N (λ)− ξN (λ)
N − k
N

σ2

cθj (θ2
j − σ2)

Ik (5.18)

where

cθjDk,N (λ) =
1
N

(λ− ρθj )Y Ĝ(λ)Ĝ(ρθj )
2Y ∗ − 1

N

(
Y Ĝ(ρθj )

2Y ∗ − σ2 Tr Ĝ(ρθj )
2Ik

)
−σ2N − k

N

(
trN−k Ĝ(ρθj )

2 − 1
θ2
j − σ2

)
Ik.

Then

cθj
√
N
(

[Qk,N (λ)]↖k+σ − ρθjIk+σ
)

= cθj

{[
U∗k

(
Wk +

1√
N

(
Y Ĝ(ρθj )Y

∗ − (N − k)
σ2

θj
Ik

))
Uk

]↖
k+σ

+
√
Ndiag

(
0kj , (θl − θj)Ikl , l = 1, . . . , J+σ, l 6= j

)
+ξN (λ) [U∗kDk,N (λ)Uk]↖k+σ −

k√
N

σ2

θj
Ik+σ +

σ2

θ2
j − σ2

ξN (λ)
cθj

k

N
Ik+σ

}

− σ2

θ2
j − σ2

ξN (λ)Ik+σ .

The proposition (adding an extra matrix ∆k+σ for future computations) readily follows. 2

Throughout Steps 2 and 3, ΛN denotes any random sequence converging in probability towards
ρθj . The aim of these two steps is to study the limiting behavior of the matrix Xk+σ,N (ΛN ) (defined
by (5.16)) as N goes to infinity.

STEP 2: We first focus on the negligible terms in Xk+σ,N (ΛN ) and establish the following.

Proposition 5.2. Assume that k �
√
N . For any random sequence ΛN converging in probability

towards ρθj , on ΩN (ΛN ),

Xk+σ,N (ΛN ) = Vk+σ,N +
√
Ndiag

(
0kj , (θl − θj)Ikl , l = 1, . . . , J+σ, l 6= j

)
+ (1 + |ξN (ΛN )|)2oP(1),

(5.19)
with Vk+σ,N defined by (5.6)
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The proof of this proposition is quite long and is divided in several lemmas. Although our final
result in the case k infinite holds only for k �

√
N , we will give some estimates for k � N once this

is possible.

Lemma 5.1. Let k � N . Then, on ΩN (ΛN ),

[U∗kDk,N (ΛN )Uk]↖k+σ = oP(1). (5.20)

Proof of Lemma 5.1: Dk,N (ΛN ), τN , φN and ψN are respectively defined by (5.10), (5.7), (5.8)
and (5.9) .
Since Y is a submatrix of WN , lim supN

‖Y ‖√
N
≤ 2 and ‖Y ‖√

N
= OP(1). Thus,

‖τN‖ = OP(ΛN − ρθj ) = oP(1). (5.21)

where we used that ‖Ĝ(λ)‖ ≤ 1
(ρθj−2σ−2δ) for λ = ρθj or λ = ΛN . Therefore,

‖ [U∗k τNUk]↖k+σ ‖ = oP(1).

It follows from Lemma 6.3 in the Appendix that

[U∗kψNUk]↖k+σ := −σ2N − k
N

[
trN−k Ĝ(ρθj )

2 − 1
θ2
j − σ2

]
Ik+σ = oP(1).

Now, we have

E
(
‖ [U∗kφNUk]↖k+σ 1IΩN (ΛN )‖2HS

)
≤ E

(
‖ [U∗kφNUk]↖k+σ 1I

Ω
(2)
N

‖2HS
)

≤
k+σ∑
p,q=1

1
N2

E
(
|U(p)∗Ĝ(ρθj )

2U(q)− σ2 Tr Ĝ(ρθj )
2δp,q|21I

Ω
(2)
N

)
,

where for any p = 1, . . . , k+σ, we let U(p) = t[(Y ∗Uk)1,p, . . . , (Y ∗Uk)N−k,p]. We first state some
properties of the vectors U(p).

Lemma 5.2. Let U denote the N − k × k+σ matrix [Y ∗Uk]←k+σ . Then, the rows (Ui.; i ≤ N − k)
are centered i.i.d vectors in Ck+σ , with a distribution depending on N . Moreover, we have for all
1 ≤ p, q ≤ k+σ:

E(U1pŪ1q) = δp,qσ
2 with E(U1pU1q) = 0 in the complex case,

E[|Uip|2|Uiq|2] = (1 +
t

2
δp,q)σ4 + [E(|W12|4)− (1 +

t

2
)σ4]

k∑
l=1

|(Uk)l,p|2|(Uk)l,q|2. (5.22)

Since
∑k
l=1 |(Uk)l,p|4 ≤ 1, the fourth moment of U1p is uniformly bounded.

We skip the proof of this lemma which follows from straightforward computations using the indepen-
dence of the entries of Y and the fact that Uk is unitary.
Then, according to Theorem 6.1 and using (5.1),

1
N2

E
(
|U(p)∗Ĝ(ρθj )

2U(p)− σ2 Tr Ĝ(ρθj )
2|21IΩN (ΛN )

)
≤ K

N
E
(

trN Ĝ(ρθj )
41I

Ω
(2)
N

)
≤ K

N
E
(
‖Ĝ(ρθj )‖41I

Ω
(2)
N

)
≤ K

N

1
(ρθj − 2σ − δ)4

.

Besides for p 6= q, using the independence between (U(p),U(q)) and Ĝ(ρθj ), we have:

E
(
|U(p)∗Ĝ(ρθj )

2U(q)|21I
Ω

(2)
N

)
=

N−k∑
i,j,l,m

E[Ūip(G2)ijUjqUlp(G2)lmŪmq1IΩ(2)
N

]

=
N−k∑
i,j,l,m

E[ŪipUjqUlpŪmq]E[(G2)ij(G2)lm1I
Ω

(2)
N

]
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where we denote by G the matrix Ĝ(ρθj ) for simplicity. From Lemma 5.2, for p 6= q, the only terms
giving a non null expectation in the above equation are those for which:

1) i = l, j = m and i 6= j. In this case,

E[ŪipUjqUipŪjq] = E[ŪipUip]E[UjqŪjq] = σ4

and
N−k∑
i,j,i 6=j

E[(G2)ij(G2)ij1IΩ(2)
N

] ≤ E Tr(G41I
Ω

(2)
N

).

2) i = j = k = l. In this case, using (5.22), there is a constant C > 0 such that

E[ŪipUiqUipŪiq] = E[|Uip|2|Uiq|2] ≤ C.

Moreover
N−k∑
i=1

E[G2
iiḠ

2
ii1IΩ(2)

N

] ≤ E Tr(G41I
Ω

(2)
N

),

Therefore,
E
(
|U(p)∗Ĝ(ρθj )

2U(q)|21I
Ω

(2)
N

)
≤ (C + σ4) E Tr(Ĝ(ρθj )

41I
Ω

(2)
N

). (5.23)

Hence,

1
N2

E
(
|U(p)∗Ĝ(ρθj )

2U(q)|21I
Ω

(2)
N

)
≤ C + σ4

N
E
(
‖Ĝ(ρθj )‖41I

Ω
(2)
N

)
≤ C + σ4

N

1
(ρθj − 2σ − δ)4

.

Thus

E
(
‖ [U∗kφNUk]↖k+σ ‖

21IΩN (ΛN )

)
≤ (C + σ4)

k2
+σ

N

1
(ρθj − 2σ − δ)4

.

The convergence in probability of [U∗kφNUk]↖k+σ towards zero readily follows by Tchebychev inequality.
Lemma 5.1 is established. 2

For simplicity, we now write
Σ(ΛN ) = Σk−k+σ (ΛN ).

Let us define

Rk,N (ΛN ) := − k√
N

σ2

θj
Ik+σ+

σ2

θ2
j − σ2

ξN (ΛN )
cθj

k

N
Ik+σ−

1√
N

Γk+σ×k−k+σ (ΛN )Σ(ΛN )Γk+σ×k−k+σ (ΛN )∗.

(5.24)
To get Proposition 5.2, it remains to prove that if k �

√
N ,

Rk,N (ΛN ) = (1 + |ξN (ΛN )|)2oP(1). (5.25)

Once k �
√
N , we readily have that

− k√
N

σ2

θj
Ik+σ +

σ2

θ2
j − σ2

ξN (ΛN )
cθj

k

N
Ik+σ = (1 + |ξN (ΛN )|)2oP(1).

Hence, (5.25) will follow if we prove

Lemma 5.3. Assume that k �
√
N . Let Γk+σ×k−k+σ (λ) and Σ(λ) be defined as (5.13) and (5.15).

On ΩN (ΛN ),

1√
N

Γk+σ×k−k+σ (ΛN )Σ(ΛN )Γk+σ×k−k+σ (ΛN )∗ = (1 + |ξN (ΛN )|)2oP(1). (5.26)
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For the proof, we use the following decomposition (TN (λ) and ∆N (λ) being defined by (5.11) and
(5.12)):

Γk+σ×k−k+σ (ΛN )Σ(ΛN )Γk+σ×k−k+σ (ΛN )∗

= TNΣT ∗N + TNΣ∆N (ΛN )∗ + ∆N (ΛN )Σ∆N (ΛN )∗ + ∆N (ΛN )ΣT ∗N (5.27)

where (using (5.18))

TN := TN (ΛN ) =
[
U∗k (Wk +

1√
N
Y Ĝ(ΛN )Y ∗)Uk

]↗
k+σ×(k−k+σ)

= [U∗kBk,NUk]↗k+σ×k−k+σ + ξN (ΛN ) [U∗kDk,N (ΛN )Uk]↗k+σ×k−k+σ

and we replaced Σ(ΛN ) by Σ. We will prove the following lemma on TN .

Lemma 5.4. If k � N ,
‖ [U∗kDk,N (ΛN )Uk]↗k+σ×k−k+σ ‖ = oP(1). (5.28)

If k �
√
N ,

‖ [U∗kBk,N (ΛN )Uk]↗k+σ×k−k+σ ‖HS = oP(N
1
4 ). (5.29)

and therefore, for k �
√
N ,

‖TN‖ = oP(N
1
4 )(1 + |ξN (ΛN )|).

Proof of Lemma 5.4: To prove (5.28), we use the decomposition

cθj [U∗kDk,N (ΛN )Uk]↗k+σ×k−k+σ = [U∗k τNUk]↗k+σ×k−k+σ + [U∗kφNUk]↗k+σ×k−k+σ .

As in the proof of Lemma 5.1, we have

E
(
‖ [U∗kφNUk]↗k+σ×k−k+σ ‖

2
HS1IΩN (ΛN )

)
≤ (C + σ4)

kk+σ

N

1
(ρθj − 2σ − δ)4

,

so that, for k � N and using Tchebychev inequality, we can deduce that

‖ [U∗kφNUk]↗k+σ×k−k+σ ‖HS1IΩN (ΛN ) = oP(1).

From (5.21),
‖ [U∗k τNUk]↗k+σ×k−k+σ ‖ = oP(1).

and therefore
‖ [U∗kDk,N (ΛN )Uk]↗k+σ×k−k+σ ‖ = oP(1).

Thus, (5.28) is established.
For (5.29), recall that [U∗kBk,NUk]↗k+σ×k−k+σ = [U∗kWkUk]↗k+σ×k−k+σ+ 1√

N
[U∗kY Ĝ(ρθj )Y

∗Uk]↗k+σ×k−k+σ .

Since ‖Wk‖ = OP(
√
k), we have ‖[U∗kWkUk]↗k+σ×k−k+σ‖

2 = OP(
√
k). Hence, as k �

√
N , we can de-

duce that ‖[U∗kWkUk]↗k+σ×k−k+σ‖HS = oP(N
1
4 ).

Now, let us prove the same estimate for the remaining term. Using the same proof as in (5.23), one
can get that for p 6= q, for some constant C > 0,

E
(
|U(p)∗Ĝ(ρθj )U(q)|21I

Ω
(2)
N

)
≤ CE Tr(Ĝ(ρθj )

21I
Ω

(2)
N

)

and then that for some constant C > 0,

E[‖ 1√
N

[U∗kY Ĝ(ρθj )Y
∗Uk]↗k+σ×k−k+σ‖

2
HS1I

Ω
(2)
N

] ≤ Ckk+σ
1

(ρθj − 2σ − δ)2
.

Then using that

P
(
‖ 1√

N
[U∗kY Ĝ(ρθj )Y

∗Uk]↗k+σ×k−k+σ‖HS1I
Ω

(2)
N

> εN
1
4

)
≤ 1
ε2
√
N

E[‖ 1√
N

[U∗kY Ĝ(ρθj )Y
∗Uk]↗k+σ×k−k+σ‖

2
HS ]
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we deduce since k �
√
N that

‖ 1√
N

[U∗kY Ĝ(ρθj )Y
∗Uk]↗k+σ×k−k+σ‖HS1I

Ω
(2)
N

= oP(N
1
4 ).

Thus (5.29) and Lemma 5.4 are proved. 2

Using that

‖Σ‖ ≤ 1
ρθj − 2σ − 2δ

, (5.30)

one can readily notice that Lemma 5.4 leads to

1√
N
TNΣT ∗N = (1 + |ξN (ΛN )|)2oP(1). (5.31)

We now consider the remaining terms in the r.h.s of (5.27). We first show the following result where
we recall that ∆N (ρθj ) = [U∗kY Ĝ(ρθj )ÃN−k×k]↗k+σ×k−k+σ .

Lemma 5.5. 1√
N
TNΣ∆N (ρθj )

∗, 1√
N

∆N (ρθj )Σ∆N (ρθj )
∗ and 1√

N
∆N (ρθj )ΣT

∗
N are all equal to some

(1 + |ξN (ΛN )|)oP(1).

Proof of Lemma 5.5 : We will show that, on ΩN (ΛN ), for any u > 0,

∆N (ρθj ) = oP(Nu). (5.32)

One can readily see that this leads to the announced result combining Lemma 5.4, (5.30) and (5.32).
First, using the fact that U∗kY is independent of 1I

Ω
(2)
N

Ĝ(ρθj ) and that for any p, the random vector

U(p) =t [(Y ∗Uk)1,p, . . . , (Y ∗Uk)N−k,p] has independent centered entries with variance σ2, one has that

E(1IΩN (ΛN ) Tr ∆N (ρθj )∆N (ρθj )
∗) ≤ E(1I

Ω
(2)
N

Tr ∆N (ρθj )∆N (ρθj )
∗)

= k+σσ
2E
{

1I
Ω

(2)
N

Tr[Ĝ2(ρθj )ÃN−k×k−k+σ Ã
∗
N−k×k−k+σ ]

}
≤ k+σσ

2E
{

1I
Ω

(2)
N

‖Ĝ(ρθj )‖2 Tr ÃN−k×k−k+σ Ã
∗
N−k×k−k+σ

}
≤ k+σσ

2

(ρθj − 2σ − δ)2
TrA2

N

=
k+σσ

2

(ρθj − 2σ − δ)2

J∑
l=1

klθ
2
l .

Therefore, P(1IΩN (ΛN )‖∆N (ρθj )‖HS ≥ εNu) ≤ ε−2N−2uE(1IΩN (ΛN )‖∆N (ρθj )‖2HS) goes to zero as N
tends to infinity. Hence (5.32) holds true on ΩN (ΛN ) and the proof of Lemma 5.5 is complete. 2

Let us now prove that

Lemma 5.6. ∆N (ΛN ) = ∆N (ρθj ) +OP(|ξN (ΛN )|).

Proof of Lemma 5.6: We have

∆N (ΛN )−∆N (ρθj ) = −(ΛN − ρθj )[U∗kY Ĝ(ρθj )Ĝ(ΛN )ÃN−k×k]↗k+σ×k−k+σ .

Let us define ∇k+σ = [U∗kY Ĝ(ρθj )Ĝ(ΛN )ÃN−k×k]↗k+σ×k−k+σ . Then for some constant C > 0 depend-
ing on the matrix ÃN−k×k,

Tr(∇k+σ∇∗k+σ ) ≤ C‖Ĝ(ρθj )‖2‖Ĝ(ΛN )‖2 Tr(U∗U)

≤ C

(ρθj − 2σ − 2δ)4
Tr(U∗U)
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where we denote as before U = [Y ∗Uk]←k+σ . Thus letting C ′ := C c−2
θj

,

‖∆N (ΛN )−∆N (ρθj )‖2HS ≤ C ′(ξN (ΛN ))2 1
(ρθj − 2σ − 2δ)4

1
N

Tr(U∗U).

From Lemma 5.2, it follows that
1
N

Tr(U∗U) P→ k+σσ
2

implying that ‖∆N (ΛN )−∆N (ρθj )‖HS = OP(|ξN (ΛN )|). 2

We are now in position to conclude the proof of Lemma 5.3. Indeed, writing

∆N (ΛN )ΣT ∗N =
(
∆N (∆N )−∆N (ρθj )

)
ΣT ∗N + ∆N (ρθj )ΣT

∗
N

and

∆N (ΛN )Σ∆N (ΛN ) = ∆N (ρθj )Σ∆N (ρθj )
∗

+
(
∆N (ΛN )−∆N (ρθj )

)
Σ∆N (ρθj )

∗

+
(
∆N (ΛN )−∆N (ρθj )

)
Σ
(
∆N (ΛN )−∆N (ρθj )

)∗
+∆N (ρθj )Σ

(
∆N (ΛN )−∆N (ρθj )

)∗
,

we deduce from Lemmas 5.4, 5.6 and (5.30), (5.32) that 1√
N

∆N (ΛN )ΣT ∗N and 1√
N

∆N (ΛN )Σ∆N (ΛN )∗

are both equal to some (1 + |ξN (ΛN )|)oP(1). Using also (5.31), we can deduce that

1√
N

Γk+σ×k−k+σ (ΛN )ΣΓk+σ×k−k+σ (ΛN )∗ = (1 + |ξN (ΛN )|)2oP(1) (5.33)

which gives (5.26) and completes the proof of Lemma 5.3. 2

Combining all the preceding, we have established Proposition 5.2. We now prove that provided it
converges in distribution, with a probability going to one as N goes to infinity, ξN (ΛN ) is actually an
eigenvalue of a matrix of size kj .

Lemma 5.7. For all u > 0,
‖Vk+σ,N‖HS

Nu
= oP(1).

Proof: Straightforward computations lead to the existence of some constant C such that

E
(
‖ [U∗kWkUk]k+σ ‖HS

)
≤ C.

The convergence of ‖ [U∗kWkUk]k+σ ‖/N
u in probability towards zero readily follows by Tchebychev

inequality. Following the proof in Lemma 5.1 of the convergence in probability of [U∗kΦNUk]k+σ
towards zero, one can get that

E

(
‖
[
U∗k

1√
N

1I
Ω

(2)
N

(
Y Ĝ(ρθj )Y

∗ − σ2 Tr Ĝ(ρθj )Ik
)
Uk

]↖
k+σ

‖21IΩN (ΛN )

)
≤

(C + σ4)k2
+σ

(ρθj − 2σ − δ)2
,

and the convergence in probability towards zero of the term inside the above expectation follows by
Tchebychev inequality. Since moreover according to Lemma 6.3,

1√
N

1I
Ω

(2)
N

(
Tr Ĝ(ρθj )− (N − k)

1
θj

)
= oP(1),

we can deduce that

N−u‖
[
U∗k

1√
N

1I
Ω

(2)
N

(
Y Ĝ(ρθj )Y

∗ − (N − k)
σ2

θ
Ik

)
Uk

]↖
k+σ

‖1I
Ω

(2)
N

= oP(1).

The proof of Lemma 5.7 is complete. 2
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Proposition 5.3. Let ∆kj be an arbitrary kj×kj random matrix. If ξN (ΛN ) converges in distribution,
then, with a probability going to one as N goes to infinity, it is an eigenvalue of Xk+σ,N (ΛN ) +
diag(∆kj , 0) iff ξN (ΛN ) is an eigenvalue of a matrix X̌kj ,N (ΛN ) + ∆kj of size kj, satisfying

X̌kj ,N (ΛN ) = Vkj ,N + oP(1) (5.34)

where Vkj ,N is the kj × kj element in the block decomposition of Vk+σ,N defined by (5.6); namely

Vkj ,N = U∗Kj×kj [Bk,N ]↖KjUKj×kj

with UKj×kj and Bk,N defined respectively by (2.3) and (5.5).

Proof of Proposition 5.3: Since ξN (ΛN ) converges in distribution, we can write the matrix
Xk+σ,N (ΛN ) given by (5.19) as

Xk+σ,N (ΛN ) =
√
Ndiag(0kj , ((θl − θj)Ikl)l 6=j) + Řk+σ,N (ΛN )

where Řk+σ,N (ΛN ) := Vk+σ,N + oP(1). Let us decompose Xk+σ,N (ΛN ) in blocks as

Xk+σ,N (ΛN ) =
(
Xkj ,N Xkj×k+σ−kj ,N
Xk+σ−kj×kj ,N Xk+σ−kj ,N

)
.

We first show that ξN (ΛN ) is not an eigenvalue of Xk+σ−kj ,N . Let α = inf l 6=j |θl − θj | > 0. Since,

Xk+σ−kj ,N =
√
Ndiag(((θl − θj)Ikl)l 6=j) + Řk+σ−kj ,N ,

if µ is an eigenvalue of Xk+σ−kj , then

|µ|/
√
N ≥ α− ||Řk+σ−kj ,N ||/

√
N.

Now, using Lemma 5.7,
||Řk+σ−kj ,N ||/

√
N = oP(1).

Hence ξN (ΛN ) cannot be an eigenvalue of Xk+σ−kj ,N . Therefore, we can define

X̌kj ,N = Xkj ,N −Xkj×k+σ−kj ,N (Xk+σ−kj ,N − ξN (ΛN )Ik+σ−kj )
−1Xk+σ−kj×kj ,N

= Vkj ,N − Řkj×k+σ−kj ,N (Xk+σ−kj ,N − ξN (ΛN )Ik+σ−kj )
−1Řk+σ−kj×kj ,N + oP(1).

To get (5.34), it remains to show that

||Řkj×k+σ−kj ,N (Xk+σ−kj ,N − ξN (ΛN )Ik+σ−kj )
−1Řk+σ−kj×kj ,N || = oP(1).

This follows from the previous computations showing that (for some constant C > 0)

||(Xk+σ−kj ,N − ξN (ΛN )Ik+σ−kj )
−1|| ≤ (C + oP(1)) /

√
N,

combined with the definition of Řk+σ,N (ΛN ) and Lemma 5.7. The statement of the proposition then
follows from (6.1). 2

STEP 3: We now examine the convergence of the kj × kj matrix Vkj ,N = U∗Kj×kj [Bk,N ]↖KjUKj×kj

Proposition 5.4. The kj × kj matrix Vkj ,N = U∗Kj×kj [Bk,N ]↖KjUKj×kj converges in distribution to

a GU(O)E(kj × kj ,
θ2jσ

2

θ2j−σ2 ) if and only if maxkjp=1 maxKji=1 |(Uk)ip| converges to zero when N goes to
infinity.

Proof
Assume that maxkjp=1 maxKji=1 |(Uk)ip| converges to zero when N goes to infinity. We decompose the

proof of the convergence of U∗Kj×kj [Bk,N ]↖KjUKj×kj in distribution to a GU(O)E(kj × kj ,
θ2jσ

2

θ2j−σ2 ) into
the two following lemmas.
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Lemma 5.8. If maxkjp=1 maxKji=1 |(Uk)ip| converges to zero when N goes to infinity then the kj × kj
matrix U∗Kj×kj [Wk]↖KjUKj×kj converges in distribution to a GU(O)E(kj × kj , σ2).

Proof of Lemma 5.8: First we consider the complex case. Let αpq ∈ C, 1 ≤ p < q ≤ kj and
αpp ∈ R, 1 ≤ p ≤ kj , and define

LN (α) :=
∑

1≤p<q≤kj

(αpq(U∗kWkUk)pq + αpq(U∗kWkUk)pq) +
∑

1≤p≤kj

2αpp(U∗kWkUk)pp.

We have

LN (α) =
Kj∑
i=1

Di(WN )ii +
∑

1≤i<l≤Kj

Ril(
√

2<e((WN )il)) +
∑

1≤i<l≤Kj

Iil(
√

2=m((WN )il)),

where

Di = 2<e
( ∑

1≤p≤q≤kj

αpq(Uk)iq(Uk)ip

)
,

Ril =
√

2<e
( ∑

1≤p≤q≤kj

αpq((Uk)lq(Uk)ip + (Uk)iq(Uk)lp)
)
,

Iil =
√

2=m
( ∑

1≤p≤q≤kj

αpq((Uk)lq(Uk)ip − (Uk)iq(Uk)lp)
)
.

Hence LN (α) =
∑Kj

2

m=1 βm,Nφm where φm are i.i.d random variables with distribution µ and βm,N

are real constants (depending on the αpq) which satisfy maxKj
2

m=1 |βm,N | → 0 when N goes to infinity.

Therefore the cumulants of LN (α) are given by C
(N)
n =

∑Kj
2

m=1 β
n
m,NCn(µ) for any n ∈ N∗ where

Cn(µ) denotes the n-th cumulant of µ (all are finite since µ has moments of any order). In particular
C

(N)
1 = 0. We are going to prove that the variance of LN (α) is actually constant, given by

C
(N)
2

σ2
=

K2
j∑

m=1

β2
m,N = 2

∑
1≤p<q≤kj

|αpq|2 + 4
∑

1≤p≤kj

|αpp|2. (5.35)

One may rewrite LN (α) as
LN (α) = Tr (HU∗kWkUk)

where H is the k × k Hermitian matrix defined by

Hpq = αqp if p > q and Hpp = 2αpp.

Hence using
E [(Wk)ji(Wk)qp] = δjpδiqσ

2

it is easy to see that

E
[
LN (α)2

]
= σ2 Tr

[
(UkHU∗k )2

]
= σ2 TrH2.

Then (5.35) readily follows. In the following, we let const =
∑Kj

2

m=1 β
2
m,N .

Since |C(N)
n | ≤ constmax

K2
j

m=1 |βm,N |n−2|Cn(µ)|, C(N)
n converges to zero for each n ≥ 3. Thus we

can deduce from Janson’s theorem [J] that LN (α) converges to a centered gaussian distribution with
variance σ2(2

∑
1≤p<q≤kj |αpq|

2 + 4
∑

1≤p≤kj |αpp|
2) and the proof of Lemma 5.8 is complete in the

complex case.
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Dealing with symmetric matrices, one needs to consider the random variable

LN (α) :=
∑

1≤p<q≤kj

αpq(U tkWkUk)pq +
∑

1≤p≤kj

αpp(U tkWkUk)pp

for any real numbers αpq, p ≤ q. One can similarly prove that LN (α) converges to a centered gaussian
distribution with variance σ2(2

∑
1≤p<q≤kj α

2
pq + 2

∑
1≤p≤kj α

2
pp). 2

Remark 5.1. Note that Lemma 5.8 is true under the assumption of the existence of a fourth moment.
This can be shown by using a Taylor development of the Fourier transform of LN (α).

Lemma 5.9. If maxkjp=1 maxKji=1 |(Uk)ip| converges to zero when N goes to infinity then the kj× kj ma-

trix 1√
N
U∗Kj×kj

[(
Y Ĝ(ρθj )Y

∗ − (N − k)σ
2

θj
Ik

)]↖
Kj
UKj×kj converges towards a GU(O)E(kj×kj , σ4

θ2j−σ2 ).

Proof of Lemma 5.9: We shall apply a slightly modified version of Theorem 6.2 (see Theorem 7.1
in [B-Ya2]) but requiring the finiteness of sixth (instead of fourth) moments. Let K = kj(kj + 1)/2.
The set {1, . . .K} is indexed by l = (p, q) with 1 ≤ p ≤ q ≤ kj , taking the lexicographic order. We
define a sequence of i.i.d centered vectors (xi, yi)i≤N−k in CK × CK by xli = Uip and yli = Uiq for
l = (p, q) where U is defined in Lemma 5.2. The matrix A of size N − k is the matrix Ĝ(ρθj ) and is
independent of U . Note that we are not exactly in the context of Theorem 7.1 of [B-Ya2] since the i.i.d
vectors (xi, yi)i depend on N (and should be rather denoted by (xi,N , yi,N )i) but their distribution
satisfies:

1. ρ(l) = E[x̄l1yl1] = δp,qσ
2 for l = (p, q) is independent of N .

2. E[x̄l1yl′1] = δp,q′σ
2 if l = (p, q), l′ = (p′, q′) (see B2 in (6.2)).

3. Complex case: E[x̄l1x̄l′1] = E[yl1yl′1] = 0 if l = (p, q), l′ = (p′, q′) (see B3 in (6.2)).

Real case: E[x̄l1x̄l′1] = σ2δp,p′ and E[yl1yl′1] = σ2δq,q′ if l = (p, q), l′ = (p′, q′).

4. (see B1 in (6.2))
E[x̄l1yl1x̄l′1yl′1] = σ4(δp,qδp′,q′ + δp,q′δp′,q)+

[E(|W12|4)− 2σ4]
∑Kj
i=1(Uk)i,q(Uk)i,p(Uk)i,q′ (Uk)i,p′ in the complex case,

E[x̄l1yl1x̄l′1yl′1] = σ4(δp,qδp′,q′ + δp,q′δp′,q + δp,p′δq,q′)+
[E(|W12|4)− 3σ4]

∑Kj
i=1(Uk)i,q(Uk)i,p(Uk)i,q′ (Uk)i,p′ in the real case.

Under the assumption that maxkjp=1 maxKji=1 |(Uk)i,p| converges to zero when k goes to infinity, the last
term in the r.h.s of the two above equations tends to 0.
It can be seen that the proof of Theorem 7.1 still holds in this case once we verify that for ε > 0 and
for z = x or y, for any l,

E[|zl1|41I(|zl1|≥εN1/4)] −→ 0 as N →∞. (5.36)

We postpone the proof of (5.36) to the end of the proof. Assuming that (5.36) holds true, we obtain
the CLT theorem 7.1 ([B-Ya2]): the Hermitian matrix ZN = (ZN (p, q)) of size kj defined by

ZN (p, q) =
1√

N − k
[

∑
i,i′=1,...N−k

ŪipĜ(ρθj )ii′Ui′q − δp,qσ2 Tr(Ĝ(ρθj ))]

converges to an Hermitian Gaussian matrix G. The Laplace transform of G (considered as a vector
of CK , that is of {Gpq, 1 ≤ p ≤ q ≤ kj}) is given for any c ∈ CK by

E[exp(cTG)] = exp[
1
2
cTBc]
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where the K ×K matrix B = (B(l, l′)) is given by: B = limN B1(N) +B2 +B3 with

B1(N)(l, l′) = ω(E[x̄l1yl1x̄l′1yl′1]− ρ(l)ρ(l′)),
B2(l, l′) = (θ − ω)E[x̄l1yl′1]E[x̄l′1yl1]
B3(l, l′) = (τ − ω)E[x̄l1x̄l′1]E[yl1yl′1]

and the coefficients ω, θ, τ are defined in Theorem 6.2. Here A = Ĝ(ρθj ) so that ω = 1/θ2
j and

θ = 1/(θ2
j − σ2) (see the Appendix).

From Lemma 5.2,
B2(l, l′) = (θ − ω)σ4δp,q′δp′,q = (θ − ω)σ41p=q=p′=q′ .

Moreover in the complex case, B3 ≡ 0 and in the real case,

B3(l, l′) = (θ − ω)σ4δl,l′ .

From 4., in the real case,
lim
N→∞

B1(N)(l, l′) = δl,l′ωσ
4(1 + δp,q),

and in the complex case,
lim
N→∞

B1(N)(l, l′) = δl,l′ωσ
4δp,q.

It follows that B is a diagonal matrix given by: B(l, l) = (1 + δp,q)θσ4 = (1 + δp,q) σ4

θ2j−σ2 in the real case,

B(l, l) = δp,qθσ
4 = δp,q

σ4

θ2j−σ2 in the complex case.

In the real case, the matrix B is exactly the covariance of the limiting Gaussian distribution G. It
follows that G is the distribution of the GOE(k+σ × k+σ, σ

4/(θ2
j − σ2)).

In the complex case, from the form of B, we can conclude that the coordinates of G are independent (B
diagonal), Gpp has variance σ4/(θ2

j − σ2) and for p 6= q, <e(Gpq) and =m(Gpq) are independent with
the same variance (since B(l, l) = 0 for p 6= q). It remains to compute the variance of <e(Gpq). Since
the Laplace transform of <e(ZN (p, q)) and =m(ZN (p, q)) can be expressed as a Laplace transform
of ZN (p, q) and ZN (p, q), we shall apply Theorem 7.1 to (ZN (p, q), ZN (p, q)) that is to the vectors
xi = (Uip,Uiq) and yi = (Uiq,Uip) in C2. We denote by B̃ the associated ”covariance” matrix of
size 2. The variance of <e(Gpq) is given by 1

2 limN→∞ B̃12 (since B̃11 = B̃22 = 0 from the previous
computations) with

B̃12 = B̃12(1) + B̃12(2) + B̃12(3)

where here B̃12(3) = 0,

B̃12(1) = ωE[|U1p|2|U1q|2]→ ωσ4 and B̃12(2) = (θ − ω)E[|U1p|2]E[|U1q|2] = (θ − ω)σ4.

Therefore, var(<e(Gpq)) = θσ4/2 = σ4/(2(θ2
j − σ2)). We thus obtain Lemma 5.9 by using that

Tr(Ĝ(ρθj )) = (N − k) trN−k(Ĝ(ρθj )) and trN−k(Ĝ(ρθj ))→ 1/θj .
It remains to prove (5.36). The variable αN := |zl1|41I(|zl1|≥εN1/4) tends to 0 in probability. It is
thus enough to prove uniform integrability of the sequence αN , a sufficient condition is given by
supN E[α6/4

N ] < ∞. It is easy to see that for any 1 ≤ p ≤ kj , supN E[|U1p|6] < ∞ since the Wigner
matrix WN has finite sixth moment and Uk is unitary. This proves (5.36) and finishes the proof of
Lemma 5.9. 2

Assume now that the matrix Vkj ,N = U∗Kj×kj [Bk,N ]↖KjUKj×kj converges in distribution towards a

GU(O)E(kj × kj ,
θ2jσ

2

θ2j−σ2 ) whereas maxkjp=1 maxKji=1 |(Uk)ip| does not converge to zero when N goes to

infinity. There exists p0 ∈ {1, . . . , kj} such that maxKji=1 |(Uk)ip| does not converge to zero. Let iN be
such that maxKji=1 |(Uk)ip0 | = |(Uk)iNp0 |. Now we have(

Vkj ,N
)
p0p0

= |(Uk)iNp0 |2WiN iN +XN
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where XN is a random variable which is independent with |(Uk)iNp0 |2WiN iN . One can find a sub-
sequence such that |(Uk)iφ(N)p0 |2Wiφ(N)iφ(N) converges in distribution towards cξ where c > 0 and
ξ is µ-distributed. This leads to a contradiction using Cramer-Lévy’s Theorem since

(
Vkj ,φ(N)

)
p0p0

converges towards a gaussian variable. The proof of Proposition 5.4 is complete. 2

In the case a), condition of Proposition 5.4 are obviously not satisfied and we have the following
asymptotic result.

Proposition 5.5. In case a), the Hermitian (resp. symmetric) matrix Vkj ,N converges in distribution
towards the law of Vkj×kj of size kj defined in the following way. Let WK̃j

be a Wigner matrix of size
K̃j with distribution given by µ (cf (i)) and HK̃j

be a centered Hermitian (resp. symmetric) Gaussian
matrix of size K̃j independent of WK̃j

with independent entries Hpl, p ≤ l with variance
vpp = E(H2

pp) =
t

4

(m4 − 3σ4

θ2
j

)
+
t

2
σ4

θ2
j − σ2

, p = 1, . . . , K̃j ,

vpl = E(|Hpl|2) =
σ4

θ2
j − σ2

, 1 ≤ p < l ≤ K̃j .
(5.37)

Then, Vkj×kj is the kj × kj matrix defined by

Vkj×kj = Ũ∗
K̃j×kj

(WK̃j
+HK̃j

)ŨK̃j×kj . (5.38)

The proof follows from Theorem 6.2 and is omitted since we have detailed the similar proof of Lemma
5.9.

STEP 4: We are now in position to prove that(
ξN (λk̂j−1+1(MN )), . . . , ξN (λk̂j−1+kj

(MN ))
)
L−→
(
λ1(Vkj×kj ), . . . , λkj (Vkj×kj )

)
. (5.39)

To prove (5.39), our strategy will be indirect: we start from the matrix Vkj ,N and its eigenvalues
(λi(Vkj ,N ); 1 ≤ i ≤ kj) and we will reverse the previous reasoning to raise to the normalized eigen-
values ξN (λk̂j−1+i(MN )), 1 ≤ i ≤ kj . This approach works in both Cases a) and b) as we now explain.

First, for any 1 ≤ i ≤ kj , we define Λ(i)
N such that

ξN (Λ(i)
N ) = λi(Vkj ,N ),

that is Λ(i)
N = ρθj + λi(Vkj ,N )/cθj

√
N .

Since Vkj ,N converges in distribution towards Vkj×kj , λi(Vkj ,N ) also converges in distribution towards
λi(Vkj×kj ). Hence ξN (Λ(i)

N ) converges in distribution and Λ(i)
N converges in probability towards ρθj .

Let X̌(i)
kj
≡ X̌kj ,N (Λ(i)

N ) = Vkj ,N + oP(1) as defined in Proposition 5.3. This fit choice of Λ(i)
N gives that

λi(X̌
(i)
kj

) = ξN (Λ(i)
N ) + εi, with εi = oP(1).

Hence, ξN (Λ(i)
N ) is an eigenvalue of X̃(i)

kj
− εiIkj .

According to Propositions 5.1 and 5.3, on an event Ω̌N whose probability goes to one as N goes to
infinity, there exists some li such that

Λ(i)
N = λli

(
MN −

εi√
N

diag(Ikj , 0N−kj )
)
.

The following lines hold on Ω̌N . By using Weyl’s inequalities (Lemma 6.1), one has for all i ∈
{1, . . . , kj} that ∣∣∣∣λli(MN −

εi√
N

diag(Ikj , 0N−kj )
)
− λli(MN )

∣∣∣∣ ≤ |εi|√N .
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We then deduce that(
ξN (λl1(MN )), . . . , ξN (λlkj (MN ))

)
=
(
λ1(Vkj ,N ), . . . , λkj (Vkj ,N )

)
+ oP(1) (5.40)

and thus (
ξN (λl1(MN )), . . . , ξN (λlkj (MN ))

)
L−→
(
λ1(Vkj×kj ), . . . , λkj (Vkj×kj )

)
. (5.41)

Now, to get (5.39), it is sufficient to prove that

P
(
li = k̂j−1 + i; i = 1, . . . , kj

)
→ 1, as N →∞. (5.42)

Indeed, one can notice that on the event {li = k̂j−1 + i; i = 1, . . . , kj} the following equality holds
true (

ξN (λk̂j−1+1(MN )), . . . , ξN (λk̂j−1+kj
(MN ))

)
=
(
ξN (λl1(MN )), . . . , ξN (λlkj (MN ))

)
. (5.43)

Hence, if (5.42) is satisfied then (5.43) combined with (5.41) imply (5.39).
We turn now to the proof of (5.42). The key point is to notice that the kj eigenvalues of Vkj×kj
have a joint density. This fact is well-known if Vkj×kj is a matrix from the GU(O)E and so when Kj

is infinite (Case b)). When Kj is bounded (Case a)), we call on the following arguments. One can
decompose the matrix Ũ∗

K̃j×kj
HK̃j

ŨK̃j×kj appearing in the definition (5.38) of Vkj×kj in the following
way

Ũ∗
K̃j×kj

HK̃j
ŨK̃j×kj = Qkj + Ȟkj

with Ȟkj distributed as GU(O)E (using the fact that Ũ∗
K̃j×kj

ŨK̃j×kj = Ikj ) and Qkj independent from

Ȟkj . Hence, the law of Vkj×kj is that of the sum of two random independent matrices: the first one
being the matrix Ȟkj distributed as GU(O)E associated to a Gaussian measure with some variance τ
and the second one being a matrix Zkj of the form Ũ∗

K̃j×kj
WK̃j

ŨK̃j×kj + Qkj . Using the density of

the GU(O)E matrix Ȟkj with respect to the Lebesgue measure dM on Hermitian (resp. symmetric)
matrices, decomposing dM on UN × (RN )≤ (denoting by UN the unitary (resp. orthogonal) group),
one can easily see that the distribution of the eigenvalues of Ȟkj + Zkj is absolutely continuous with
respect to the Lebesgue measure dλ on Rn with a density given by:

f(λ1, . . . , λN ) = exp(−N
τt

N∑
i=1

λ2
i )
∏
i<j

(λi − λj)
4
t E
(

exp
{
−N
τt

TrZ2
kj

}
I((λ1, . . . , λN ), Zkj )

)
dλ

where I((λ1, . . . , λN ), Zkj ) =
∫

exp
(

2
τtN Tr(Udiag(λ1, . . . , λN )U∗Zkj )

)
m(dU) denoting by m the

Haar measure on the unitary (resp. orthogonal) group.
Thus, we deduce that the kj eigenvalues of Vkj×kj are distinct (with probability one). Using Port-
manteau’s Lemma with (5.41) then implies that the event

Ω̌
′

N :=
{
ξN (λl1(MN )) > · · · > ξN (λlkj (MN ))

}⋂
Ω̌N

is such that limN P(Ω̌
′

N ) = 1. By Theorem 3.1, we notice that the event

Ω̃′N :=
{
λk̂j−1

(MN ) > ρθj + δ > λl1(MN )
}⋂

Ω̌
′

N

⋂{
λlkj (MN ) > ρθj − δ > λk̂j−1+kj+1(MN )

}
also satisfies limN P(Ω̃′N ) = 1, for δ small enough. This leads to (5.42) since Ω̃′N ⊂ {li = i+ k̂j−1, i =
1, . . . , kj}.
The proof of Theorems 3.2 and 3.3 is complete. 2

According to Theorem 3.3, in order to establish Theorem 3.4, we only need to prove that the
condition (3.6) is actually necessary for universality of the fluctuations. Hence assume that√
N(λk1+···+kj−1+1(MN )− ρθj )

L−→ N (0, t2σ
2
θj

). Proposition 5.1 and Proposition 5.3 lead to

cθj
√
N(λk1+···+kj−1+1(MN )− ρθj ) = V1,N + oP(1)
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where
V1,N = U∗Kj×1[Bk,N ]↖KjUKj×1.

It follows that V1,N converges towards the gaussian distribution N (0, t2
θ2jσ

2

θ2j−σ2 ) and then according to

Proposition 5.4, maxKji=1 |(Uk)i1| converges to zero when N goes to infinity. 2

Let θj such that θj > σ and kj = 1. Let us prove now the description given in subsection 3.2 of
the fluctuations of λk1+···+kj−1+1(MN ) for some intermediate situations between Case a) and Case
b). Let m be a fixed integer number. Assume that for any l = 1, . . . ,m (Uk)l1 is independent of
N , whereas maxm<l≤Kj |(Uk)l1| → 0 when N goes to infinity. Following the proofs of Lemma 5.8
and Lemma 5.9, one can check that V1,N converges in distribution towards

∑m
i,l=1 ailξil + N in the

complex case,
∑

1≤l≤i≤m ailξil +N in the real case, where ξil, (i, l) ∈ {1, . . . ,m}2,N are independent
random variables such that

• for any (i, l) ∈ {1, . . . ,m}2, the distribution of ξil is µ;

• ail =


√

2=((Uk)l1(Uk)i1) if i < l√
t<((Uk)l1(Uk)i1) if i > l√
t
2 |(Uk)l1|2 if i = l;

• N is a centered gaussian variable with variance

t

4

[
m4 − 3σ4

]∑m
l=1 |(Uk)l1|4

θ2
j

+
t

2
σ4

θ2
j − σ2

+
t

2

1−

(
m∑
l=1

|(Uk)l1|2
)2
σ2.

Now, following the lines of Step 4 (using the results of Steps 1 and 2), we can conclude that
cθj
√
N(λk1+···+kj−1+1(MN ) − ρθj ) converges in distribution towards the mixture of µ-distributed or

gaussian random variables
∑m
i,l=1 ailξil + N in the complex case,

∑
1≤l≤i≤m ailξil + N in the real

case.2

6 Appendix

In this section, we recall some basic facts on matrices and some results on random sesquilinear forms
needed for the proofs of Theorems 3.2 and 3.3.

6.1 Linear algebra

For Hermitian matrices, denoting by λi the decreasing ordered eigenvalues, we have the Weyl’s in-
equalities:

Lemma 6.1. (cf. Theorem 4.3.7 of [H-J]) Let B and C be two N ×N Hermitian matrices. For any
pair of integers j, k such that 1 ≤ j, k ≤ N and j + k ≤ N + 1, we have

λj+k−1(B + C) ≤ λj(B) + λk(C).

For any pair of integers j, k such that 1 ≤ j, k ≤ N and j + k ≥ N + 1, we have

λj(B) + λk(C) ≤ λj+k−N (B + C).

In the computation of determinants, we shall use the following formula.

Lemma 6.2. (cf. Theorem 11.3 page 330 in [B-S2]) Let A ∈Mk(C) and D be a nonsingular matrix
of order N − k. Let also B and tC be two matrices of size k × (N − k). Then

det
(
A B
C D

)
= det(D) det(A−BD−1C). (6.1)
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6.2 CLT for random sesquilinear forms

In the following, a complex random variable x will be said standardized if E(x) = 0 and E(|x|2) = 1.

Theorem 6.1. (Lemma 2.7 [B-S1]) Let B = (bij) be a N×N Hermitian matrix and YN be a vector of
size N which contains i.i.d standardized entries with bounded fourth moment. Then there is a constant
K > 0 such that

E|Y ∗NBYN − TrB|2 ≤ KTr(BB∗).

This theorem is still valid if the i.i.d standardized coordinates Y (i) of YN have a distribution depending
on N such that supN E(|Y (i)|4) <∞.

Theorem 6.2. (cf. [B-Ya2] or Appendix by J. Baik and J. Silverstein in [C-D-F] in the scalar case)
Let A = (aij) be a N ×N Hermitian matrix and {(xi, yi), i ≤ N} a sequence of i.i.d centered vectors
in CK × CK with finite fourth moment. We write xi = (xli) ∈ CK and X(l) = (xl1, . . . , xlN )T for
1 ≤ l ≤ K and a similar definition for the vectors {Y (l), 1 ≤ l ≤ K}. Set ρ(l) = E[x̄l1yl1]. Assume
that the following limits exist:

(i) ω = limN→∞
1
N

∑N
i=1 a

2
ii,

(ii) θ = limN→∞
1
NTrA2 = limN→∞

1
N

∑N
i,j=1 |aij |2,

(iii) τ = limN→∞
1
NTrAAT = limN→∞

1
N

∑N
i,j=1 a

2
ij.

Then the K-dimensional random vector 1√
N

(
X(l)∗AY (l) − ρ(l)TrA

)
converges in distribution to a

Gaussian complex-valued vector G with mean zero. The Laplace transform of G is given by

∀c ∈ CK , E[exp(cTG)] = exp(
1
2
cTBc),

where the K ×K matrix B = (B(l, l′)) is given by B = B1 +B2 +B3 with:

B1(l, l′) = ω(E[x̄l1yl1x̄l′1yl′1]− ρ(l)ρ(l′))
B2(l, l′) = (θ − ω)E[x̄l1yl′1]E[x̄l′1yl1] (6.2)
B3(l, l′) = (τ − ω)E[x̄l1x̄l′1]E[yl1yl′1].

6.3 CLT for the empirical distribution of a Wigner matrix and applications

Theorem 6.3. (Theorem 1.1 in [B-Ya1]) Let f be an analytic function on an open set of the complex
plane including [−2σ, 2σ]. If the entries ((WN )il)1≤i≤l≤N of a general Wigner matrix WN of variance
σ2 satisfy the conditions

(i) for i 6= l, E(|(WN )il|4) = const,

(ii) for any η > 0, limN→+∞
1

η4n2

∑
i,l E

[
|(WN )il|4 1I{|(WN )il|≥η

√
N}

]
= 0,

then N
(

trN (f( 1√
N

WN ))−
∫
fdµsc

)
converges in distribution towards a Gaussian variable, where µsc

is the semicircle distribution of variance σ2.

We now prove some convergence results of the resolvent Ĝ used in the previous proofs.
Let 1 ≤ j ≤ J+σ and k such that k√

N
→ 0.

Lemma 6.3. Each of the following convergence holds in probability as N →∞:

i)
√
N
(

trN−k Ĝ(ρθj )− 1/θj
)
−→ 0,

ii) trN−k Ĝ2(ρθj ) −→
∫

1
(ρθj−x)2 dµsc(x) = 1/(θ2

j − σ2),

iii) 1
N−k

∑N−k
i=1 (Ĝ(ρθj )ii)

2 −→
(∫ dµsc(x)

ρθj−x

)2

= 1/θ2
j .
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Proof of Lemma 6.3: We denote by G the resolvent of the non-Deformed Wigner matrix
WN−k/

√
N .

i) By Theorem 6.3, one knows that
√
N
(

trN−kG(ρθj )−
∫ dµsc(x)

ρθj−x

)
converges in probability towards

0. Now, we have
∫ dµsc(x)

ρθj−x
= 1

θj
(see [H-P] p. 94). It is thus enough to show that

trN−k Ĝ(ρθj )− trN−kG(ρθj ) = oP(1/
√
N).

Let then UN−k := U (resp. DN−k) be a unitary (resp. diagonal) matrix such that AN−k = U∗DN−kU .
Then, one has

| trN−k Ĝ(ρθj )− trN−kG(ρθj )| = | trN−k
(
Ĝ(ρθj )AN−kG(ρθj )

)
|

= | trN−k
(
DN−kU

∗G(ρθj )Ĝ(ρθj )U
)
|

:= | trN−k
(
DN−kΛ(ρθj )

)
| ≤ (r/(N − k))‖DN−k‖‖Λ(ρθj )‖

where r is the finite rank of the perturbed matrix AN−k.
One has ‖DN−k‖ ≤ ‖AN‖ := c (with c = max(θ1, |θJ |) independent from N). Moreover on the event
Ω̃N := Ω(2)

N ∩ {‖WN−k/
√
N‖ < 2σ + δ}, ‖Λ(ρθj )‖ ≤ (ρθj − 2σ − δ)−2 (use (5.1)) so that we deduce

that
| trN−k(Ĝ(ρθj ))− trN−k(G(ρθj ))|1IΩ̃N ≤

rc

N − k
(ρθj − 2σ − δ)−2 → 0.

Using Theorem 6.3 and the fact that P(Ω̃N )→ 1, we obtain the announced result.

ii) It is sufficient to show that trN−k Ĝ2(ρθj ) − trN−kG2(ρθj ) → 0 in probability since, by Theorem
6.3, one knows that trN−kG2(ρθ) converges in probability towards

∫
1

(ρθj−x)2 dµsc(x).

Using the fact that Tr(BC) = Tr(CB), it is not hard to see that

trN−k Ĝ2(ρθj )− trN−kG2(ρθj ) = trN−k
(

(Ĝ(ρθj ) +G(ρθj ))(Ĝ(ρθj )−G(ρθj ))
)

= trN−k
(
Ĝ(ρθj )AN−kG(ρθj )(G(ρθj ) + Ĝ(ρθj )))

)
= trN−k

(
DN−kUG(ρθj )(G(ρθj ) + Ĝ(ρθj ))Ĝ(ρθj )U

∗
)

:= trN−k
(
DN−kΛ′(ρθj )

)
where the matrices DN−k and U have been defined in i). We then conclude in a similar way as before
since on the event Ω̃N , ‖Λ′(ρθj )‖ ≤ 2(ρθj − 2σ − δ)−3.

For point iii), we refer the reader [C-D-F]. Indeed, it was shown in Section 5.2 of [C-D-F] that the
announced convergence holds in the case k = 1 and for G instead of Ĝ. It is easy to adapt the
arguments of [C-D-F] which mainly follow from the fact that, for any z ∈ C such that =m(z) > 0,

1
N−k

∑N−k
i=1 (Ĝ(z)ii)2 converges towards g2

σ(z). But this latter convergence was proved in Section 4.1.4
of [C-D-F]. 2
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