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Abstract

We present an algorithm to compute Approximate Fekete
points for polynomial interpolation in one or several
real/complex variables.

Fekete Points

K ⊂ Rd (or Cd) compact set (notation: ‖f‖K = maxx∈K |f(x)|)

{pj}1≤j≤N , N = dim(Pd
n(K)) polynomial basis

X = {ξ1, . . . , ξN} ⊂ K interpolation points

V (ξ1, . . . , ξN) = [pj(ξi)] Vandermonde matrix, det(V ) 6= 0

Πnf(x) =
∑N

j=1
f(ξj) ℓj(x) determinantal Lagrange formula

ℓj(x) =
det(V (ξ1, . . . , ξj−1, x, ξj+1, . . . , ξN))

det(V (ξ1, . . . , ξj−1, ξj, ξj+1, . . . , ξN))
, ℓj(ξi) = δij

Fekete points: det(V (ξ1, . . . , ξN)) is max in KN ⇒ ‖ℓj‖K ≤ 1
=⇒ bound of the Lebesgue constant (often rather pessimistic)

Λn = max
x∈K

N
∑

j=1

|ℓj(x)| ≤ N = dim(Pd
n(K))

Fekete points (and Lebesgue constants) are independent of
the choice of the basis

Fekete points are analytically known only in few cases:
interval: Gauss-Lobatto points, Λn = O(log n)
complex circle: equispaced points, Λn = O(log n)

cube: for tensor-product polynomials, Λn = O(logd n)

recent important result:
Fekete points are asymptotically equidistributed with respect
to the pluripotential equilibrium measure of K (cf. [1])

essentially open problems:
• asymptotic spacing in the multivariate case (cf. [5])
• efficient computation, even in the univariate complex case
(large scale optimization problem in N × d variables [9])

• idea: extract Fekete points from a discretization of K:
but which could be a suitable mesh?

Polynomial Inequalities and Admissible Meshes

Weakly Admissible Mesh (WAM): sequence of discrete sub-
sets An ⊂ K such that

‖p‖K ≤ C(An)‖p‖An
, ∀p ∈ P

d
n(K)

where card(An) ≥ N and C(An) grow polinomially with n

C(An) bounded: Admissible Mesh (AM)

Properties of (W)AMs (cf. [3, 6]):

• C(An) is invariant under affine mapping

• any sequence of unisolvent interpolation sets whose
Lebesgue constant grows polynomially with n is a WAM,
C(An) being the Lebesgue constant itself

• a finite union of (W)AMs is a (W)AM for the correspond-
ing union of compacts, C(An) being the maximum of the
corresponding constants

• in Cd a (W)AM of the boundary ∂K is a (W)AM of K (by
the maximum principle)

• given a polynomial mapping πm of degree m, then
πm(Anm) is a (W)AM for πm(K) with constants C(Anm)

• any K satisfying a Markov polynomial inequality like
‖∇p‖K ≤ Mnr‖p‖K has an AM with O(nrd) points

Relevance to polynomial approximation:

• Least Squares polynomial LAn
f on a (W)AM, f ∈ C(K):

‖f − LAn
f‖K ≈ C(An)

√

card(An) min {‖f − p‖K , p ∈ Pd
n(K)}

• Fekete points extracted from a WAM have a Lebesgue
constant Λn ≤ NC(An)

Approximate Fekete Points

extracting Fekete points from (W)AMs, An = {a1, . . . , aM}

m

discrete optimization problem: extracting a maximum
volume (determinant) N × N submatrix from the rectangular

M × N Vandermonde matrix V (a1, . . . , aM) = [pj(ai)]

this is NP-hard: then we look for an approximate solution

Algorithm greedy
(max volume submatrix of A ∈ RN×M , M > N)

for j = 1, . . . , N

• “extract the largest norm column colij ”;

• “remove from every remaining column of A

its orthogonal projection onto colij”;

end;

this algorithm can be easily implemented by the well known
QR factorization with column pivoting by Businger and
Golub (1965), applied to A = V t (in Matlab/Octave, simply
via the standard “backslash” linear solver!)

Key asymptotic result (cf. [3]): the Approximate Fekete
points extracted from a (W)AM by the greedy algorithm have
the same asymptotic behavior of the true Fekete points

discrete measures
1

N

N
∑

j=1

δξj

weak∗
−−−→ equilibrium measure of K

Numerical Algorithm

Algorithm AFP
(Approximate Fekete Points by iterative refinement)

• take a (Weakly) Admissible Mesh An = (a1, . . . , aM) ⊂ K

• V0 = V (a1, . . . , aM) ; P0 = I ;
• for k = 0, . . . , s − 1

Vk = QkRk ; Uk = inv(Rk) ;
Vk+1 = VkUk ; Pk+1 = PkUk ;

end ;
• A = V t

s ; b = (1, . . . , 1)t ; (b is irrelevant in practice)
• w = A\b ; (this implements the greedy algorithm)
• ind = find(w 6= 0) ; X = An(ind) ;

main feature: change with the nearly orthogonal basis
(q1, . . . , qN) = (p1, . . . , pN)Ps with respect to the discrete inner
product (f, g) =

∑

f(ai)g(ai)

tries to overcome possible numerical rank-deficiency and
severe ill-conditioning arising with nonorthogonal bases

Approximate Fekete Points in One Variable

FIGURE 1. N = 31 Approximate Fekete points (deg n = 30) from Admis-
sible Meshes in: one interval, two and three disjoint intervals

FIGURE 2. As above for some compacts in the complex plane

Approximate Fekete Points in Two Variables

Admissible Meshes on 2-dimensional compacts: O(n4) points

geometric WAMs (Weakly Admissible Meshes): obtained
by a suitable transformation, much lower cardinality!

example: Duffy quadratic transformation of the Padua
interpolation points of degree 2n (cf. [2]) from the square
onto the triangle: O(n2) points, C(An) = O(log2 2n)

WAMs on polygons by triangulation and finite union

FIGURE 3. 861 Padua points of deg 2n = 40 in the square and the
corresponding geometric WAM (dots) with N = 231 Approximate Fekete
points (circles) of deg n = 20 for the triangle

FIGURE 4. geometric WAMs (dots) with N = 231 Approximate Fekete
points (circles) of deg n = 20 for an annulus and a polygon

Lebesgue Constants

TABLE 1. Numerically estimated Lebesgue constants of interpolation

points in some 1-dimensional real and complex compacts (Figs. 1-2)

points n = 10 20 30 40 50 60

N = 11 21 31 41 51 61

equisp intv 29.9 1e+4 6e+6 4e+8 7e+9 1e+10
Fekete intv 2.2 2.6 2.9 3.0 3.2 3.3
AFP intv 2.3 2.8 3.1 3.4 3.6 3.8

AFP 2intvs 3.1 6.3 7.1 7.6 7.5 7.2
AFP 3intvs 4.2 7.9 12.6 6.3 5.8 5.3
AFP disk 2.7 3.0 3.3 3.4 3.5 3.7

AFP triangle 3.2 6.2 5.2 4.8 9.6 6.1
AFP 3disks 5.1 3.0 7.6 10.6 3.8 8.3

AFP 3branches 4.7 3.5 3.8 8.3 5.0 4.8

TABLE 2. As above in some 2-dimensional real compacts (Figs. 3-4)

points n = 6 10 14 18 22 26 30

N = 28 66 120 190 276 378 496

Padua square 5.4 6.9 8.0 8.8 9.5 10.2 10.7
Fekete triangle [9] 4.2 7.8 9.7 13.5 * * *

AFP triangle 7.1 14.9 24.8 35.4 72.1 70.2 89.5
AFP annulus 8.3 17.7 28.3 35.9 55.9 62.7 93.2
AFP polygon 6.3 15.6 22.8 26.3 46.7 87.5 75.9

Developments and Applications

• algebraic cubature: b = moments in Alg. AFP ⇒ w = weights

• weighted interpolation: prescribed poles, digital filters, ...

• three-dimensional instances: cube, ball, tetrahedron, ...

• numerical PDEs: spectral and high order methods, colloca-
tion, discrete least squares (promising results in [7, 10]), ...
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