KERGIN INTERPOLANTS AT THE ROOTS OF UNITY APPROXIMATE C^2 FUNCTIONS

Bv

LEN BOS AND JEAN-PAUL CALVI

Abstract. We establish a new formula for Kergin interpolation in the plane and use it to prove that the Kergin interpolation polynomials at the roots of unity of a function of class C^2 in a neighborhood of the unit disc $\mathbb D$ converge uniformly to the function on $\mathbb D$.

1. Introduction

A fundamental theorem of constructive real analysis states that the Lagrange interpolation polynomial $L_d(f)$ at the d-th Chebyshev points of every Lip1 function f on [-1,1] converges uniformly to f on [-1,1] as $d \to \infty$, i.e.

$$\lim_{d\to\infty} ||f - L_d(f)||_{[-1,1]} = 0.$$

(Recall that the d-th Chebyshev points are the roots of the d-th Chebyshev polynomial $T_d(x) := \cos d\theta$, $\cos \theta = x$.) The difficult part of the proof consists in establishing that the Lebesgue constant Δ_d (i.e., the norm of the operator L_d on C[-1,1]) is equivalent to $(2/\pi) \log d$ as $d \to \infty$ (see, e.g., [R]), for then, if p_d is the best approximation of f among the polynomials of degree at most d, one has

$$||f - L_d(f)|| \le (1 + \Delta_d)||f - p_d||$$
;

whence the convergence follows by the classical Jackson Theorem.

The purpose of this note is to prove a two-dimensional version of this result in which [-1, 1] is replaced by the unit disc

$$\mathbb{D} := \{ (x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 \le 1 \};$$

the Chebyshev nodes, by the vertices of the standard regular d-polygon (i.e., the d-th roots of unity)

(1.1)
$$e^{kd} := (\cos \theta_{kd}, \sin \theta_{kd}) = e^{i\theta_{kd}}, \quad k = 1, \dots, d$$