Interpolation in Fréchet spaces with an application to complex function theory

by Jean Paul Calvi

Laboratoire d'analyse complexe, Université Paul Sabatier, 31062 Toulouse, France

Communicated by Prof. J. Korevaar at the meeting of April 27, 1992

ABSTRACT

We give a necessary and sufficient condition on a sequence of linear functionals on a Fréchet space to be interpolating. A practical criterion is given and applied to several natural interpolation problems in complex function theory.

1. INTRODUCTION

Let E be a Fréchet space, E^* the topological dual of E; $L_n \in E^*$, n = 1, 2, ... is said to be an interpolating sequence if for any scalar sequence A_n , n = 1, 2, ... there exists $f \in E$ such that $L_n(f) = A_n$, n = 1, 2, ... The problem is to find conditions on the sequence L_n to ensure that it is an interpolating sequence. Let us note that obviously the answer does not depend on the ordering of the sequence (L_n) .

This problem has very natural applications when $E = H(\Omega)$, the space of holomorphic functions in an open set Ω in \mathbb{C}^n , endowed with the topology of uniform convergence on compact subsets of Ω .

P. Gauthier and L.A. Rubel have given a necessary and sufficient condition on (L_n) to be an interpolating sequence when E is separable.

DEFINITION 1.1. For each n, denote by V_n the space $span(L_1, ..., L_n)$. The sequence (L_n) is said to be totally linearly independent if

(1) (L_n) is linearly independent in E^* ;