TOTALLY REAL POINTS IN THE MANDELBROT SET

XAVIER BUFF AND SARAH KOCH

ABSTRACT. The postcritically finite parameters in the Mandelbrot set M are special algebraic integers $c \in M$ for which z = 0 has finite orbit under the polynomial $f_c(z) = z^2 + c$. Recently, Noytaptim and Petsche proved that the only totally real parameters that are postcritically finite are 0, -1, and -2. In this note, we study another distinguished algebraic subset of M, the parabolic parameters. A parameter $c \in M$ is parabolic provided that $f_c(z) = z^2 + c$ possesses a parabolic cycle. We show that the only totally real parameters that are parabolic are $\frac{1}{4}, -\frac{3}{4}, -\frac{5}{4}$ and $-\frac{7}{4}$.

INTRODUCTION

Consider the family of quadratic polynomials defined by

$$f_c(z) := z^2 + c, \quad c \in \mathbb{C}.$$

Each polynomial $f_c : \mathbb{C} \to \mathbb{C}$ is a dynamical system that can display rich and complicated behavior, depending on the value of the parameter c. There is a natural invariant subset of \mathbb{C} associated to iterating f_c .

Definition 1. The *filled Julia set* of f_c is the set of all $z_0 \in \mathbb{C}$ for which the *orbit* $z_n := f_c(z_{n-1})$ is bounded.

Definition 2. The *Mandelbrot set* $M \subseteq \mathbb{C}$ is the set of all parameters $c \in \mathbb{C}$ for which the filled Julia set of f_c is connected.

The Mandelbrot set has been extensively studied for decades; it is well known that M is connected, compact, and full [DH]. (Recall that a subset of \mathbb{C} is *full* provided that its complement is connected). In this note, we study special algebraic points in M that we will discuss after introducing a few more dynamical concepts.

Definition 3. The distinct points z_0, \ldots, z_{n-1} comprise a *periodic cycle of period* n for f_c provided that $z_i = f_c(z_{i-1})$, where arithmetic on the indices is taken modulo n. The *multiplier* of the cycle is the product of the derivative of f_c along the points in the cycle

$$\lambda = (f_c)'(z_0)\cdots(f_c)'(z_{n-1}).$$

The multiplier encodes the behavior of f_c near the cycle. The cycle is said to be

- attracting provided that $|\lambda| < 1$,
- repelling provided that $|\lambda| > 1$, and
- *indifferent* provided that $|\lambda| = 1$. An indifferent cycle is *parabolic* provided that λ is a root of unity.

The research of the second author was supported in part by the NSF.

FIGURE 1. Filled Julia sets of four polynomials $z \mapsto z^2 + c$. The parameters c = -1 and c = i belong to M, and they are postcritically finite. The parameter c = 1/4 belongs to M, and it is parabolic. The parameter c = -3/4 + i/2 does not belong to M.

In Figure 1, the filled Julia set of the polynomial $z \mapsto z^2 - 1$ is drawn in the upper left. This polynomial has an attracting cycle of period 2. The filled Julia set of the polynomial $z \mapsto z^2 + 1/4$ is drawn in the lower right. This polynomial has a parabolic fixed point.

A main principle in complex dynamics asserts that in order to understand the global behavior of a polynomial under iteration, one should study the orbits of its critical points. Indeed, the parameter $c \in M$ if and only if the orbit of z = 0 (the critical point of f_c) is bounded. Furthermore, if the polynomial f_c has an attracting cycle or a parabolic cycle, then orbit of the critical point will converge to it. Consequently, f_c can have at most one attracting or one parabolic cycle.

Definition 4. A parameter $c \in \mathbb{C}$ is *parabolic* provided that f_c has a parabolic cycle.

As an example, the parameter c = 1/4 is parabolic; it is located at the cusp of the main cardiod of M (see Figure 2). The parabolic parameters form a countably infinite collection of algebraic numbers contained in the boundary of M. In particular, if $c \in \mathbb{C}$ is a parabolic parameter, then 4c is an algebraic integer (see [Bo]); moreover, 4c is an algebraic unit in $\overline{\mathbb{Z}}/2\overline{\mathbb{Z}}$ (see [M, Remark 3.2]).

The following parameters form another distinguished algebraic subset of M.

Definition 5. A parameter $c \in \mathbb{C}$ is *postcritically finite* provided that the orbit of the critical point of f_c is finite.

The parameter c can be postcritically finite in exactly one of two ways:

FIGURE 2. The Mandelbrot set M. The parabolic parameters and the postcritically finite parameters are special algebraic subsets of M.

- (1) the critical point 0 is part of a periodic cycle of f_c ; in this case, the parameter c is contained in the interior of M, or
- (2) the critical point 0 is strictly preperiodic; that is, 0 is eventually mapped into a periodic cycle, but 0 is not part of the cycle itself. In this case, the parameter c is contained in the boundary of M.

For example, the parameters $\{-1, i\}$ are postcritically finite: c = -1 is contained in the interior of M, and c = i is contained in the boundary of M. The postcritically finite parameters form a countably infinite collection of algebraic integers contained in M. More precisely, $c \in \mathbb{C}$ is a postcritically finite parameter if and only if c is an algebraic integer whose Galois conjugates all belong to M (see [M] and [Bu]).

The arithmetic properties of the postcritically finite parameters and the parabolic parameters are a bit mysterious. Recently, Noytaptim and Petsche [NP] completely determined which postcritically finite parameters are totally real.

Definition 6. An algebraic number $c \in \overline{\mathbb{Q}}$ is *totally real* provided that all of its Galois conjugates are in $\overline{\mathbb{Q}} \cap \mathbb{R}$.

Proposition 1 (Noytaptim-Petsche). The only totally real parameters $c \in \overline{\mathbb{Q}}$ for which $z \mapsto z^2 + c$ is postcritically finite are -2, -1 and 0.

Their proof relies on the fact that the Galois conjugates of a postcritically finite parameter are also postcritically finite parameters, thus contained in M, and on the fact that $M \cap \mathbb{R} = [-2, \frac{1}{4}]$ has small arithmetic capacity. We recount their proof and then determine the totally real parabolic parameters as in the following result.

Proposition 2. The only totally real parameters $c \in \overline{\mathbb{Q}}$ for which $z \mapsto z^2 + c$ has a parabolic cycle are $\frac{1}{4}$, $-\frac{3}{4}$, $-\frac{5}{4}$ and $-\frac{7}{4}$.

1. Postcritically finite parameters

We revisit the proof of Noytaptim and Petsche [NP].

X. BUFF AND S. KOCH

Proof of Proposition 1. Assume that c is a totally real postcritically finite parameter. Then, c is an algebraic integer and all of its Galois conjugates are real postcritically finite parameters, so they must all lie in the interval [-2, 0]. Indeed,

- for $c \in (0, \frac{1}{4})$, the orbit of 0 is infinite, converging to an attracting fixed point of f_c ;
- for $c = \frac{1}{4}$ the orbit of 0 under iteration of f_c is infinite, converging to a parabolic fixed point of f_c at $z = \frac{1}{2}$;
- for $c \in (-\infty, -2) \cup (\frac{1}{4}, +\infty)$ the orbit of 0 under iteration of f_c is infinite, converging to ∞ .

We would now like to apply Kronecker's theorem, which states that if $\alpha \in \overline{\mathbb{Q}}$ is an algebraic integer that is contained in the unit circle \mathbb{U} , and all Galois conjugates of α are also contained in \mathbb{U} , then α is a root of unity [G].

To this end, consider the surjective map $\Psi : \mathbb{U} \to [-2, 2]$ given by $\Psi(z) = z + 1/z$. Let $a \in \Psi^{-1}(\{c\})$; that is, let a be a solution of $a^2 - ca + 1 = 0$. Then a is an algebraic integer contained in the unit circle, and a has nonpositive real part (since $c \in [-2, 0]$). Moreover, all Galois conjugates of a are also contained in the unit circle, and they all have nonpositive real part. By Kronecker's theorem, a is a root of unity. And since the Galois conjugates of a all have nonpositive real part, the only possibilities are the following:

- a = -1, and $\Psi(a) = c = -2$;
- $a = e^{\pm 2\pi i/3}$, and $\Psi(a) = c = -1$;
- $a = \pm i$, and $\Psi(a) = c = 0$.

Therefore, the only postcritically finite parameters that are totally real are -2, -1, and 0.

2. PARABOLIC PARAMETERS

We now present the proof of Proposition 2. First note that $\left\{\frac{1}{4}, -\frac{3}{4}, -\frac{5}{4}, -\frac{7}{4}\right\}$ are all parabolic parameters. Indeed,

- $z \mapsto z^2 + 1/4$ has a fixed point, at z = 1/2, with multiplier 1
- $z \mapsto z^2 3/4$ has a fixed point, at z = -1/2, with multiplier -1
- $z \mapsto z^2 5/4$ has a cycle of period 2, at the two roots of $4z^2 + 4z 1$, with multiplier -1
- $z \mapsto z^2 7/4$ has a cycle of period 3, at the three roots of $8z^3 + 4z^2 18z 1$, with multiplier 1

Proof of Proposition 2. Assume that c is a totally real parabolic parameter. Then, the Galois conjugates of c are also parabolic parameters. Either $c \in \{\frac{1}{4}, -\frac{3}{4}, -\frac{5}{4}\}$, or c and all of its Galois conjugates lie in the interval $[-2, -\frac{5}{4}]$. Indeed, a parabolic cycle must attract the orbit of the critical point 0. However,

- for $c \in (-\frac{3}{4}, \frac{1}{4})$, the orbit of 0 converges to an attracting fixed point of f_c ;
- for $c \in (-\frac{5}{4}, -\frac{3}{4})$ the orbit of 0 converges to an attracting cycle of period 2 of f_c ;
- for $c \in (-\infty, -2) \cup (\frac{1}{4}, +\infty)$ the orbit of 0 converges to ∞ .

Let us assume that $c \in [-2, -\frac{5}{4})$. Then, b := 4c + 6 and all of its Galois conjugates lie in the interval [-2, 1). Let $a \in \Psi^{-1}(\{b\})$; that is, let a be a solution of $a^2 - ba + 1 = 0$. Then a is an algebraic integer contained in the unit circle with real part less than $\frac{1}{2}$, and all of its Galois conjugates are also contained in the unit circle, and they all have real part less than $\frac{1}{2}$.

By Kronecker's theorem, a is a root of unity. And since the Galois conjugates of a all have real part less than $\frac{1}{2}$, the only possibilities are the following:

- a = -1, b = -2, c = -2, and c is not a parabolic parameter,
- a = -1, b = -2, c = -2, and c is not a parabolic parameter,
- $a = e^{\pm 2\pi i/3}, b = -1, c = -\frac{7}{4}$, and c is a parabolic parameter,
- $a = \pm i, b = 0, c = -\frac{3}{2}$; in this case 4c = -6, so c is not an algebraic unit in $\overline{\mathbb{Z}}/2\overline{\mathbb{Z}}$, and c is not a parabolic parameter,
- $a = e^{\pm 2\pi i/5}, b = 2\cos(\frac{2\pi}{5}), c = \frac{\sqrt{5}-13}{8}$; in this case, f_c has an attracting cycle of period 4, so c is not a parabolic parameter,
- $a = e^{\pm 4\pi i/5}, b = 2\cos(\frac{4\pi}{5}), c = \frac{-\sqrt{5}-13}{8}$; then the Galois conjugate $\frac{\sqrt{5}-13}{8}$ is not a parabolic parameter, so c is not a parabolic parameter.

This completes the proof of the proposition.

Remark: the following proof that c = -3/2 is not a parabolic parameter is due to Valentin Huguin. We will use the notation $(f_c)^{\circ n} := f_c \circ \cdots \circ f_c$, the composition of f_c with itself n times. It follows from [Bo] that for all $n \ge 1$,

discriminant $((f_c)^{\circ n}(z) - z, z) = P_n(4c)$ with $P_n(b) \in \mathbb{Z}[b]$ and $\pm P_n$ monic.

As an example,

$$P_1(b) = -b + 1$$
, $P_2(b) = (b - 1)(b + 3)^3$, $P_3(z) = (b - 1)(b + 7)^3(b^2 + b + 7)^4$,

and

$$P_4(z) = (b-1)(b+3)^3(b+5)^6(b^3+9b^2+27b+135)^4(b^2-2b+5)^5.$$

Note that this yields an alternate proof that $c = \frac{1}{4}$, $c = -\frac{3}{4}$, $c = -\frac{5}{4}$ and $c = -\frac{7}{4}$ are parabolic parameters. In addition,

$$P_n(0) = \operatorname{discriminant}(z^{2^n} - z, z) \equiv 1 \pmod{2}.$$

As a consequence

$$P_n(-6) \equiv 1 \pmod{2}.$$

Thus, for all $n \ge 1$, the roots of

 $\left(f_{-\frac{3}{2}}\right)^{\circ n}(z) - z$ are simple, which shows that $f_{-\frac{3}{2}}$ has no parabolic cycle.

X. BUFF AND S. KOCH

References

- [Bo] T. Bousch, Les racines des composantes hyperboliques de M sont des quarts d'entiers algébriques, Frontiers in Complex Dynamics: a volume in honor of John Milnor's 80th birthday, A. Bonifant, M. Lyubich, S. Sutherland, editors. Princeton University Press 2014, 25–26.
- [Bu] X. BUFF, On Postcritically Finite Unicritical Polynomials, New York J. Math. 24 (2018) 1111–1122.
- [DH] A. DOUADY & J.H. HUBBARD, Etude dynamique des polynômes complexes I & II, Publ. Math. d'Orsay (1984–1985).
- [G] G. GREITER, A simple proof for a theorem of Kronecker, Amer. Math. Monthly 85 (1978), no.9, 756–757.
- [M] J. MILNOR, Arithmetic of unicritical polynomial maps, Frontiers in Complex Dynamics: a volume in honor of John Milnor's 80th birthday, A. Bonifant, M. Lyubich, S. Sutherland, editors. Princeton University Press 2014, 15–24.
- [NP] C. NOYTAPTIM & C. PETSCHE, Totally real algebraic integers in short intervals, Jacobi polynomials, and unicritical families in arithmetic dynamics, Bull. Lond. Math. Soc.56 (2024), no.1, 364–379.

Email address: xavier.buff@math.univ-toulouse.fr

INSTITUT DE MATHÉMATIQUES DE TOULOUSE; UMR5219, UNIVERSITÉ DE TOULOUSE; CNRS, UPS, F-31062 TOULOUSE CEDEX 9, FRANCE

$Email \ address: \ \texttt{kochscQumich.edu}$

Department of Mathematics, 530 Church Street, East Hall, University of Michigan, Ann Arbor MI 48109, United States