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Abstract. One fundamental theorem in the theory of holomorphic dynamics is
Thurston’s topological characterization of postcritically finite rational maps. The
proof of it is a beautiful application of Teichmüller theory. In this chapter we provide
a self-contained proof of a slightly generalized version of Thurston’s theorem (the
marked Thurston’s theorem). We also mention some applications and related results,
as well as the notion of deformation space of a rational map introduced by A. Epstein.

Introduction

Let f(z) = p(z)/q(z) be a rational map with p and q relatively prime poly-
nomials. The degree d = deg(f) of f is defined to be the maximum of the
degrees of p and q. In the following we will always assume that deg(f) > 1.

The iteration of f generates a holomorphic dynamical system on the Rie-
mann sphere Ĉ, and partitions the sphere into two dynamically natural subsets
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Ĉ = Jf t Ff , where by definition

Ff =
{
z ∈ Ĉ | {f◦n|U}n≥0 is a normal family on some neighborhood U of z

}
.

The set Jf (resp. Ff ) is called the Julia set (resp. the Fatou set) of f .
Roughly speaking, Ff consists of the set of initial values z such that the

long term behavior of the iterated orbit
(
f◦n(z)

)
n≥0

is insensitive to small

perturbations of z. The simplest example is given by f(z) = z2, for which
Ff =

{
|z| 6= 1

}
and Jf =

{
|z| = 1

}
. With a little effort one can also show

that for f(z) = z2 − 2, Jf = [−2, 2]. There are however very few rational
maps for which the Julia set can be described by smooth equations, as Jf
often presents a fractal shape.

The orbit of a point z is simply
{
f◦n(z), n ≥ 0

}
. We say that z is periodic if

there is p such that fp(z) = z. By a classical result of Fatou and Julia, there are
at most finitely many periodic points outside the Julia set Jf (more precisely,
all repelling periodic points are in the Julia set and there are finitely many non-
repelling periodic points; see theorem 4.3 below), and Jf is compact containing
uncountably many points, in which the periodic points form a countable dense
subset.

The rational map f is proper and the Julia and Fatou sets are completely
invariant: f−1(Jf ) = f(Jf ) = Jf and f−1(Ff ) = f(Ff ) = Ff . As a conse-
quence, f maps each Julia (resp. Fatou) component onto another Julia (resp.
Fatou) component as a proper map.

We consider f as a branched covering of Ĉ. With finitely many exceptions,
every value w ∈ Ĉ has exactly d preimages. More precisely, denote by Cf the

set of points z ∈ Ĉ such that f is not locally injective. These points are called
the critical points of f . Let Vf = f(Cf ) be the set of critical values of f .

Then f : Ĉ r f−1(Vf )→ Ĉ r Vf is an (unramified) covering of degree d.
The postcritical set Pf of f is defined to be

Pf = closure(
⋃

z∈Cf , n≥1

{
f◦n(z)

}
).

In a certain sense, this set captures the essence of the dynamical system gener-
ated by f . We say that f is postcritically finite if Pf is finite. This is equivalent
to the fact that all critical points of f are eventually periodic under iteration.

A rational map f is hyperbolic if it is uniformly expanding near its Julia
set. These are the natural analogs of Smale’s Axiom A maps in this setting.
If in addition the Julia set is connected, the dynamics of f on Jf is equivalent
to the dynamics of a map f0 which is postcritically finite.

We may also forget the analytic nature of a rational map and consider it
as a topological (orientation preserving) branched covering of the two sphere
S2. As the notions of degree, critical points, postcritical set and postcritical
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finiteness are topological, they are naturally defined for a branched covering
as well.

In the early eighties, Thurston gave a complete topological characterization
of postcritically finite rational maps (see [Th1, DH1]), which can be stated
roughly as follows: The set of postcritically finite rational maps (except the
Lattès examples) are in one-to-one correspondence with the homotopy classes
of postcritically finite branched self-coverings of S2 with no Thurston obstruc-
tions (see Section 2.1 for a more precise statement).

This result has then become a fundamental theorem in the theory of holo-
morphic dynamics, together with some surprising applications outside the field.

Teichmüller theory plays an essential role in Thurston’s proof of his theo-
rem. An outline goes as follows: To a postcritically finite branched covering
F of S2 one can associate the Teichmüller space T of the punctured sphere
S2 r PF . The pullback of complex structures by F induces a weakly con-
tracting operator σ on T . The main point is to prove that in the absence of
obstructions, σ has a unique fixed point in T . This fixed point represents a
complex structure that is invariant (up to isotopy) by F , thus turns F into an
analytic branched covering, i.e. a rational map.

Therefore in order to build a rational map with desired combinatorial prop-
erties one may first construct a branched covering F as a topological model
(this is a lot more flexible than building holomorphic objects, for example one
may freely cut, paste and interpolate various holomorphic objects), and then
check whether F has Thurston obstructions (this is not always easy). If not
then Thurston’s theorem ensures the existence of a rational map with the same
combinatorial properties.

In practice, one sometimes needs a slightly generalized version of Thurston’s
theorem, namely one with a larger marked set than the mere postcritical set.
We will call it ’marked Thurston’s theorem’. The main purpose of writing
up this chapter is to provide a self-contained proof of this theorem. As one
can see below, the proof follows essentially the same line as that presented by
Douady and Hubbard ([DH1]), except some refinements in the estimates. For
instance to get a strong contraction of the pullback operator on the appropriate
Teichmüller space, we had to raise the operator to a large power (instead of
just to its second power).

Just to illustrate the power of this characterization theorem we will men-
tion some of its applications. There are many such applications. These include
Rees’ descriptions of parameter spaces [Re2], Kiwi’s characterization of poly-
nomial laminations (using previous work of Bielefield-Fisher-Hubbard [BFH]
and Poirier [Po]), Rees, Shishikura and Tan’s studies on matings of polynomi-
als ([Re1, ST, Ta1, Ta2]), Pilgrim and Tan’s cut-and-paste surgery along arcs
([PT]), and Timorin’s topological regluing of rational maps ([Ti]), among many
others. Furthermore, one of the two main outstanding questions in the field,
namely, the density of hyperbolicity in the quadratic polynomial family, can



4

be reduced to the assertion that every (infinitely renormalizable) quadratic
polynomial p is a limit of certain postcritically finite ones pn obtained via
Thurston’s theorem and McMullen’s quotienting process ([McM]). The de-
tailed knowledge of the combinatorics of the parameter space of quadratic
polynomials (which follows from a special case of Thurston’s theorem) was
used by Sørensen ([So]) to construct highly non-hyperbolic quadratic poly-
nomials with non-locally connected Julia sets, and this in turn was used by
Henriksen ([Hen]) to show that McMullen’s combinatorial rigidity property
fails for cubic polynomials.

We will give a more complete, but by no means exhaustive, list of applica-
tions and related results. We mention in particular an interesting result of L.
Geyer beyond the field of complex dynamics. Khavinson and Świa̧tek ([KS])
proved that harmonic polynomials z − p(z), where p is a holomorphic polyno-
mial of degree n > 1, have at most 3n − 2 roots, and the bound is sharp for
n = 2, 3. Bshouty and Lyzzaik ([BL]) extended the sharpness of the bound to
the cases n = 4, 5, 6 and 8, using purely algebraic methods. Finally L. Geyer
([Ge]) settled the sharpness for all n at once, by constructing ’à la Thurston’
a polynomial p of degree n with real coefficients and with mutually distinct
critical points z1, z2, . . . , zn−1 such that p(zj) = zj .

We will also present the notion of deformation space of a rational map in-
troduced by Adam Epstein in his PhD thesis (in fact, the construction applies
to finite type transcendental maps on compact Riemann surfaces which was
his original motivation). Those are smooth sub-manifolds of appropriate Te-
ichmüller spaces of spheres with marked points. In the dynamical setting, the
relation between Epstein’s deformation spaces and spaces of rational maps is
somewhat comparable to the relation between Teichmüller spaces and moduli
spaces in the classical theory of Riemann surfaces. Interesting transversality
properties are more easily expressed and proved in those deformation spaces,
and we believe they will attract an increasing amount of interest in the coming
years.

1 Teichmüller spaces for rational maps

In this section we will recall classical theory of the Teichmüller space of a
marked sphere, define the Teichmüller space associated to a rational map, the
Thurston pullback map and Epstein’s deformation space.

1.1 Teichmüller space of a marked sphere

Let S2 be an oriented surface homeomorphic to Ĉ. All homeomorphisms S2 →
Ĉ we will consider are orientation preserving.
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Let Z ⊂ S2 be finite with #Z ≥ 4. Then,

• MZ is the space of equivalence classes [i], with i : Z ↪→ Ĉ an injection
and i1 ∼ i2 if there is a Möbius transformation M such that M ◦ i1 = i2.

• TZ = Teich(S2, Z), the Teichmüller space of the marked sphere (S2, Z),
is defined to be the space of equivalence classes of homeomorphisms
φ : S2 → Ĉ with φ ∼ ϕ, if there is a Möbius transformation M such that
M ◦ ϕ|Z = φ|Z and M ◦ ϕ = φ ◦ h, with h a homeomorphism isotopic to
the identity rel Z. Here is the diagram:

(S2, Z)
ϕ //

h

��

(
Ĉ, ϕ(Z)

)
M

��
(S2, Z)

φ
//
(
Ĉ, φ(Z)

)
.

• For a finite set X ⊂ Ĉ containing at least three points, we denote by
Q(X) the space of integrable quadratic differentials on Ĉ which are
holomorphic outside X. Equivalently, Q(X) is the space of meromor-

phic quadratic differentials on Ĉ, holomorphic outside X with at worst
simple poles in X. By the Riemann-Roch theorem, the number of poles
minus the number of zeros of a meromorphic quadratic differential on Ĉ
is equal to 4, taking into account multiplicities. It follows that Q(X) is
a C-linear space of dimension

dimQ(X) = #X − 3 . (1.1)

• The space Q(X) is equipped with the norm

‖q‖ =

∫
Ĉ
|q| =

∫
C

∣∣q(x+ iy)
∣∣ dxdy.

If ψ : S2 → Ĉ represents a point τ ∈ TZ , the cotangent space to TZ at τ
may be canonically identified to Q

(
ψ(Z)

)
.

• We equip TτTZ with the dual norm

∀ν ∈ TτTZ , ‖ν‖ = sup
q∈Q(ψ(Z))
‖q‖≤1

∣∣〈q, ν〉∣∣.
• The induced Teichmüller metric on TZ is given by

dTZ
(
[φ1], [φ2]

)
= inf

1

2
logK(h)

where the infimum is taken over all the quasiconformal homeomorphisms
h : Ĉ→ Ĉ such that φ−1

1 ◦ h ◦ φ2 is homotopic to the identity rel Z and
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where K(h) is the quasiconformal distortion

K(h) =
1 + ‖∂̄h/∂h‖∞
1− ‖∂̄h/∂h‖∞

.

1.2 Teichmüller space of a rational map

Let f : Ĉ→ Ĉ be a rational map with deg(f) ≥ 2.
The grand orbit of a point z is defined to be{

z′ ∈ Ĉ | ∃n,m ∈ N such that fn(z′) = fm(z)
}
.

The extended Julia set, denote by Ĵf , is the closure of the grand orbits
of all periodic points and all critical points. We always have

Pf ∪ Jf ⊆ Ĵf .

• M(f), the moduli space of f , denotes the space of conformal equivalence
classes of rational maps quasiconformally conjugate to f , that is

M(f) =

{
g

∣∣∣∣ there is a quasiconformal map h
such that h ◦ f = g ◦ h

}/
∼

where g ∼ G if there is a Möbius transformation H such that g ◦ H =
H ◦G.

• QC(f) is the group of quasiconformal automorphisms of Ĉ which com-
mute with f .

• QC0(f) ⊂ QC(f) is the normal subgroup consisting of those quasiconfor-
mal automorphisms which are isotopic to the identity in an appropriate
sense: there is a family (ht), t ∈ [0, 1], with h0 = id, h1 = h such that
each ht is quasiconformal, ht ◦ f = f ◦ ht, and (t, z) 7→ (t, ht(z)) is a

homeomorphism from [0, 1] × Ĉ onto itself. Note that ht must be iden-
tity on the set of periodic points as well as on the postcritical set for all
t ∈ [0, 1]. Consequently ht is the identity on Ĵf .

• Mod(f) = QC(f)/QC0(f), the modular group of f , denotes the group
of isotopy classes of quasiconformal automorphisms of f up to isotopy,
that is, the group of equivalence classes [φ], such that φ : Ĉ → Ĉ is a
quasiconformal homeomorphism, φ ◦ f = f ◦ φ, and φ ∼ ϕ if ϕ = φ ◦ h
with h ∈ QC0(f). This group contains as a subgroup the set of Möbius
transformations commuting with f , denoted by Aut(f).

• T (f), the Teichmüller space of f is the set of equivalence classes of pairs
(g, ψ) such that g is a rational map, ψ is a quasiconformal conjugacy
between f and g (i.e. ψ ◦ f = g ◦ ψ), and (g1, ψ1) ∼ (g2, ψ2) if there is a
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Möbius transformationM such that g1 = M◦g2◦M−1 andM◦ψ2 = ψ1◦h
with h ∈ QC0(f):

(Ĉ, Ĵg2)

M

))

g2

��

(Ĉ, Ĵf )
ψ2oo h //

f

��

(Ĉ, Ĵf )
ψ1 //

f

��

(Ĉ, Ĵg1)

g1

��
(Ĉ, Ĵg2)

M

66
(Ĉ, Ĵf )

ψ2

oo
h
// (Ĉ, Ĵf )

ψ1

// (Ĉ, Ĵg1)

For example when M ∈ Aut(f), then (f,M) ∼ (f, id). Note that

M(f) = T (f)/Mod(f).

Let Ratd denote the space of all rational maps f : Ĉ→ Ĉ of degree d. This
space can be realized as the complement of a hyper-surface in the projective
space P2d+1(C) by considering f(z) = p(z)/q(z) where p and q are relatively
prime polynomials in z with d = max{deg p,deg q}. The group of Möbius

transformations Aut(Ĉ) acts on Ratd by conjugacy: if φ ∈ Aut(Ĉ) and f ∈
Ratd, then φ · f = φ−1 ◦ f ◦ φ ∈ Ratd.

Theorem 1.1 (McMullen and Sullivan, [MS]). The group Mod(f) acts prop-
erly discontinuously by holomorphic automorphisms on T (f). There is a nat-

ural holomorphic injection of complex orbifolds M(f)→ Ratd/Aut(Ĉ) param-
eterizing the rational maps g quasiconformally conjugate to f .

Each connected component of the Fatou set F of a rational map f of degree
d ≥ 2 properly maps to a connected component of F . Such a Fatou component
U is periodic if there is a p ≥ 1 such that fp(U) = U and is preperiodic if
fk(U) is periodic for some k ≥ 0. If U is not preperiodic, then it is called a
wandering Fatou component.

Sullivan, using the Measurable Riemann Mapping theorem in Teichmüller
theory, proved that if f had a wandering Fatou component, then the Te-
ichmüller space T (f) would be infinite dimensional, contradicting the previous

theorem since Ratd/Aut(Ĉ) has dimension 2d− 2. Thus,

Theorem 1.2 (Sullivan, [Su]). Every Fatou component of a rational map is
preperiodic.

Since Sullivan, the Measurable Riemann Mapping theorem has been ap-
plied in almost every domain of holomorphic dynamics. We recommend the
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monograph of Branner-Fagella, [BF], for a detailed account of relative results
and references.

The following classification of periodic Fatou components goes back to Fa-
tou and is rather elementary. Assume U is a periodic Fatou component of
period p. Then U is either

• a superattracting basin: there is a point z0 in U , fixed by fp, with
(fp)′(z0) = 0, attracting all points of U under iteration of fp;

• an attracting basin: there is a point z0 in U , fixed by fp, with 0 <
|(fp)′(z0)| < 1, attracting all points of U under iteration of fp;

• a parabolic basin: there is a point z0 in ∂U with (fp)′(z0) = 1, attracting
all points of U ;

• a Siegel disk: U is conformally isomorphic to the unit disk, and fp|U is
conformally conjugate to an irrational rotation;

• a Herman ring: U is conformally isomorphic to an annulus {r < |z| < R}
with 0 < r < R <∞, and fp|U is conformally conjugate to an irrational
rotation.

If U is an attracting basin, then f acts properly discontinuously on U r Ĵf
and the quotient (U r Ĵf )/f is isomorphic to a punctured torus. If U is

a parabolic basin, then f acts properly discontinuously on U r Ĵf and the

quotient (U r Ĵf )/f is isomorphic to a punctured sphere.

Theorem 1.3 (McMullen and Sullivan, [MS]). The space T (f) is canonically
isomorphic to a connected finite-dimensional complex manifold, which is the
product of a polydisk and traditional Teichmüller spaces associated to punctured
tori and punctured spheres.

In particular, the obstruction to deforming a quasiconformal conjugacy
between two rational maps to a conformal conjugacy is measured by finitely
many complex moduli.

1.3 Thurston pullback map

Let F : S2 → S2 be an orientation preserving branched covering of degree
d ≥ 2. The set CF of critical points, the set VF of critical values and the
postcritical set PF are defined in the same way as for a rational map.

Assume Y ⊂ S2 is a finite set containing at least three points with VF ⊆ Y .
Then there is a Thurston pullback map ςF : TY → TF−1(Y ) which may be
defined as follows. Let τ ∈ TY be represented by a homeomorphism φ : S2 →
Ĉ. This homeomorphism φ defines a complex structure c on S2 which can be
pulled-back via F : S2 → S2 to a complex structure F ∗c on S2 (one has to use
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the removable singularity theorem to define the complex structure near the
critical points of F ). The Uniformization Theorem guarantees the existence

of an isomorphism ψ : (S2, F ∗c)→ Ĉ. Then, ςF is defined by

TY 3 [φ]
ςF−→ [ψ] ∈ TF−1(Y ).

It is not obvious that this definition is independent on the choice of φ and ψ.
We will show this now.

First, note that φ ◦ F ◦ ψ−1 is analytic (thus a rational map):

S2 ψ //

F

��

Ĉ

f∈Ratd
��

S2

φ
// Ĉ.

(1.2)

Assume τ ∈ TY is represented by the homeomorphisms φ0 : S2 → Ĉ and
φ1 : S2 → Ĉ. Let M : Ĉ→ Ĉ be a Möbius transformation and let h : S2 → S2

be a homeomorphism isotopic to the identity rel Y , such that M = φ0◦h◦φ−1
1 .

Let ψ0 : S2 → Ĉ and f0 : Ĉ → Ĉ (resp. ψ1 : S2 → Ĉ and f1 : Ĉ → Ĉ)
satisfy diagram (1.2). Since Y ⊇ VF , there is a lift k : S2 → S2 which is a
homeomorphism isotopic to the identity rel F−1(Y ) such that h ◦ F = F ◦ k.
We therefore have a commutative diagram:

Ĉ

N

))

f1∈Ratd
��

S2

ψ1

oo
k
//

F

��

S2

ψ0

//

F

��

Ĉ

f0∈Ratd
��

Ĉ

M

44S2φ1oo h // S2 φ0 // Ĉ.

Since M , f0 and f1 are analytic, the homeomorphism N = ψ0 ◦ k ◦ ψ−1
1 is

analytic, thus a Möbius transformation. As a consequence, ψ0 and ψ1 represent
the same point in TF−1(Y ).

Proposition 1.4. The map ςF : TY → TF−1(Y ) is analytic.

Proof. Let ψ : S2 → Ĉ and φ : S2 → Ĉ be such that f = φ ◦ F ◦ ψ−1 ∈ Ratd.
The Teichmüller spaces TY and TF−1(Y ) are canonically identified to quotients

of the unit ball of the space of Beltrami differentials on Ĉ and the map ςF :
TY → TF−1(Y ) is induced by the C-linear (thus analytic) map µ 7→ f∗µ.

Assume now X ⊆ F−1(Y ) contains at least three points. Then, there is an
analytic submersion $ : TF−1(Y ) → TX which consists in forgetting points in
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F−1(Y ) rX. We shall use the notation σF for the Thurston pullback map

σF = $ ◦ ςF : TY → TX .

As a composition of analytic maps, this map is itself analytic. We will be
particularly interested in the case that F is postcritically finite (i.e., PF is
finite) and X = Y = PF .

Now, if f : Ĉ → Ĉ is a rational map and q is a meromorphic quadratic
differential on Ĉ, the pullback f∗q and the push forward f∗q may be defined
in coordinates as follows:

• if q = b(y)dy2, then f∗q = a(x)dx2 with a(x) = b
(
f(x)

)
· (f ′(x)

)2
.

• if q = b(y)dy2, then f∗q = c(z)dz2 with c(f(y)) =
∑

y∈f−1(z)

b(y)(
f ′(y)

)2 .
It follows that

f({poles(f∗q)}) ⊆ {poles(q)} and

f−1({poles(q)}) ⊆ {poles(f∗q) ∪ Cf};
(1.3)

on the other hand,

{poles(f∗q)} ⊆ f(Cf ) ∪ f({poles(q)}) . (1.4)

Let τ ∈ TY be represented by φ : S2 → Ĉ. Let ψ : S2 → Ĉ represent
σF (τ) ∈ TX with f = φ ◦F ◦ψ−1 ∈ Ratd. Then, the cotangent space to TY at
τ is canonically identified to Q

(
φ(Y )

)
and the cotangent space to TX at σF (τ)

is canonically identified to Q
(
ψ(X)

)
. By means of those identifications, the

adjoint map of the derivative DτσF : TτTY → TσF (τ)TX is the push forward

operator f∗ : Q
(
ψ(X)

)
→ Q

(
φ(Y )

)
.

1.4 Epstein’s deformation space

In his Ph.D. thesis, generalizing a construction due to Thurston which will be
described below, Adam Epstein introduced the following deformation space.
Definition. Let F : S2 → S2 be an orientation preserving branched covering
of degree d ≥ 2. Let X and Y be finite subsets of Ĉ containing at least three
points such that X ⊆ Y ∩ F−1(Y ) and VF ⊆ Y . Define

DefYX(F ) = {τ ∈ TY | π(τ) = σF (τ)},

where π : TY → TX is the submersion which consists in forgetting points in
Y rX and σF : TY → TX is the Thurston pullback map induced by F .

Given its definition, the set DefYX(f) is an analytic subset of TY . We will see
that in most cases, it is either empty or a smooth submanifold of TY (Theorem
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1.5 below). We may first briefly discuss why this space is interesting from a
dynamical point of view.

Note that if φ : S2 → Ĉ represents a point τ ∈ DefYX(F ), then, there is a

unique ψ : S2 → Ĉ representing π(τ) = σF (τ) and coinciding with φ on X. In
that case, the map f = φ ◦ F ◦ ψ−1 is a rational map of degree d and we have
the following commutative diagram:

(S2, X)
ψ //

F

��

(
Ĉ, ψ(X)

)
f

��
(S2, Y )

φ
//
(
Ĉ, φ(Y )

) with
φ|X = ψ|X and
φ isotopic to ψ relative to X.

(1.5)

Any point of DefYX(F ) is represented by a triple (φ, ψ, f) as in this diagram.
If (φ1, ψ1, f1) and (φ2, ψ2, f2) are two triples representing the same point τ ∈
DefYX(F ), then the rational maps f1 and f2 are Möbius conjugate by the
Möbius transformation sending ψ1(X) to ψ2(X). In particular, there is a
natural map

Φ : DefYX(F )→ Ratd/Aut(Ĉ).

In addition, for x ∈ X we have

f
(
φ(x)

)
= φ

(
F (x)

)
.

In particular, φ sends cycles of F contained in X to cycles of f .
If F is postcritically finite, there exists a smallest function

νF : S2 → N ∪ {∞}

such that ν(x) = 1 if x /∈ PF and ν(x) is a multiple of ν(y) · degy F for each
y ∈ F−1(x). The function νF is called the orbifold signature of F .

We say that an orientation-preserving branched covering F is a (2,2,2,2)-
map if F is postcritically finite and its orbifold signature takes the value 2
exactly at 4 points and the value 1 otherwise. This happens exactly when
#PF = 4, CF ∩ PF = ∅ and all critical points of F are simple.

Theorem 1.5 (Epstein,[E2]). If F is not a (2, 2, 2, 2)-map or if X does not
contain the entire postcritical set of F , then the deformation space DefYX(F )
is either empty or a smooth manifold of TY of dimension #(Y −X).

Proof. Let τ be a point of DefYX(F ) represented by a triple (φ, ψ, f). By the
Implicit Function Theorem, it is enough to show that the linear map

Dτπ −DτσF : TτTY → Tπ(τ)TX
is surjective. The cotangent space to TY at τ is canonically identified to
Q
(
φ(Y )

)
and the cotangent space to TX at π(τ) = σF (τ) is canonically
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identified to Q
(
φ(X)

)
. The adjoint map of Dτπ − DτσF is the linear map

∇f = id − f∗ : Q
(
φ(X)

)
→ Q

(
φ(Y )

)
. It is enough to prove that this linear

map is injective. If there were a q ∈ Q
(
φ(X)

)
such that q = f∗q, according

to Lemma 1.6 below, f would be a (2, 2, 2, 2)-map and the set of poles of q
would be Pf . As a consequence, we would have Pf ⊆ φ(X). The restriction
of F to X is conjugate to the restriction of f to φ(X). Thus, F would be a
(2, 2, 2, 2)-map with PF ⊆ X, contradicting our assumptions.

Lemma 1.6 (Thurston’s contraction principle,[Th1, DH1]). Let f : Ĉ → Ĉ
be a rational map of degree d ≥ 2. Then for any integrable meromorphic
quadratic differential q on Ĉ, we have ‖f∗q‖ ≤ ‖q‖, with equality if and only if
f∗f∗q = d · q. Furthermore, if q = f∗q for some q 6= 0 then f is a (2, 2, 2, 2)-
map and the set of poles of q is Pf .

Proof. The inequality ‖f∗q‖ ≤ ‖q‖ follows easily from the triangle inequality:

if U ⊂ ĈrVf is a simply connected open set of full measure and if {gi}i∈{1,...,d}
are the inverse branches of f on U , then∫

Ĉ
|f∗q| =

∫
U

|f∗q| =
∫
U

∣∣∣∣∣∑
gi

g∗i q

∣∣∣∣∣ ≤
∫
U

∑
gi

|g∗i q| =
∫
f−1(U)

|q| ≤
∫
Ĉ
|q|.

The case of equality follows easily.
As a consequence, if q = f∗q, we have f∗q = d · q. In particular, the set Z

of poles of q satisfies f(Z) ⊆ Z and f−1(Z) ⊆ Z ∪ Cf . Thus,

#Z + (2d− 2) ≥ #Z + #Cf ≥ #f−1(Z) ≥ d ·#Z − (2d− 2). (1.6)

This implies 4(d− 1) ≥ #Z(d− 1). As d > 1, we have #Z ≤ 4.
Assume q 6= 0. Then, q has at least 4 poles, thus #Z = 4 and all inequalities

in (1.6) become equalities. The leftmost equality in (1.6) implies Z∩Cf = ∅ and
#Cf = 2d−2, which means that all critical points of f are simple. The middle
equality means that f−1(Z) = Z t Cf so Vf ⊆ Z. But f(Z) ⊆ Z (if q has a
pole at z, then f∗q has a pole at f(z)). So Pf =

⋃
n≥0 f

n(Vf ) ⊆ Z. It remains

to show Z ⊆ Pf . Note that f−1(Z rPf ) is contained in Z ∪Cf and is disjoint
from Cf ∪ Pf . So f−1(Z r Pf ) ⊆ Z r Pf and hence f−n(Z r Pf ) ⊆ Z r Pf
for any n. But f−1(z) consists of d distinct points for any z which is not a
critical value. This proves that Z r Pf , as a set with at most 4 points, must
be empty. Therefore f is a (2, 2, 2, 2)-map and the set of poles of q is Pf .

Corollary 1.7. Let f be a rational map of degree d > 2 that is not a (2,2,2,2)-
map. Then the operator ∇f = id − f∗ is injective on the space of integrable

meromorphic quadratic differentials on Ĉ.

Characterizing the cases for which the deformation space DefYX(f) is not
empty is not an easy task. Thurston’s theorem below gives precise conditions
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under which this space is not empty (actually is a single point) when F is
postcritically finite and X = Y = Z is a finite forward invariant set containing
PF .

2 Thurston’s theorem with marked points

Let us define an equivalence relation on the set of pairs (F,Z) such that F :
S2 → S2 is an orientation-preserving branched covering of a topological sphere
S2 of degree deg(F ) ≥ 2 and Z ⊂ S2 is a finite set satisfying PF ⊆ Z and
F (Z) ⊆ Z.

An equivalence (φ, ψ) between two pairs (F0, Z0) and (F1, Z1) is a pair of
homeomorphisms φ, ψ : S2 → S2 such that φ(Z0) = ψ(Z0) = Z1, φ|Z0

= ψ|Z0
,

the two maps φ and ψ are isotopic rel Z0 and F1 ◦ψ = φ◦F0. In this situation,
we say that (F0, Z0) is combinatorially equivalent to (F1, Z1).

In the case that Z = PF and #Z < ∞, Thurston’s characterization theo-
rem ([Th1, DH1]) provides a necessary and sufficient condition for (F,Z) to be

combinatorially equivalent to (f,X) with f : Ĉ → Ĉ a rational map (we say
that (f,X) is a rational representative). We will now present the condition.

2.1 Thurston obstructions

A Jordan curve γ disjoint from Z is said null-homotopic (resp. peripheral) rel Z
if one of its complementary component contains zero (resp. one) point of Z. A
Jordan curve that is disjoint from Z, such that each of its two complementary
components contains at least two points of Z, is said non-peripheral rel Z.

We say that Γ = {γ1, · · · , γk} is a multicurve of (F,Z), if each γi is a
Jordan curve disjoint from Z and is non-peripheral rel Z, and the γj ’s are
mutually disjoint and mutually non-homotopic rel Z.

We say that Γ is (F,Z)-stable if every curve of F−1(Γ) is either homotopic
rel Z to a curve of Γ or null-homotopic or peripheral rel Z. This implies that
for any m > 0, every curve of F−m(Γ) is either homotopic rel Z to a curve of
Γ or null-homotopic or peripheral rel Z.

Each such Γ induces a (F,Z)-transition matrix FΓ together with its leading
eigenvalue λΓ as follows: Let (γi,j,δ)δ denote the components of F−1(γj) homo-
topic to γi rel Z (there might be no such components). Then F : γi,j,δ → γj
is a topological covering of a certain degree di,j,δ. The transition matrix is
defined to be FΓ = (

∑
δ 1/di,j,δ). This is a non-negative matrix. By Perron-

Frobenius Theorem there is a non-negative eigenvalue λΓ that coincides with
the spectral radius of FΓ.
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We say that a (F,Z)-stable multicurve Γ is a Thurston obstruction for
(F,Z) if λΓ ≥ 1. In the particular case Z = Pf , we simply say that Γ is a
Thurston obstruction for F .

2.2 Main results

Theorem 2.1 (Marked Thurston theorem). Let F : S2 → S2 be a postcrit-
ically finite branched covering which is not a (2, 2, 2, 2)-map. Let Z ⊂ S2 be
finite with PF ⊆ Z and F (Z) ⊆ Z. If (F,Z) has no Thurston obstructions,
then the combinatorial equivalence class of (F,Z) contains a rational repre-
sentative which is unique up to Möbius conjugacy. More precisely, if (φ, ψ) is
an equivalence between two rational representatives (f1, X1) and (f2, X2), then
there is a (unique) Möbius transformation M which is isotopic to both φ and
ψ rel X1 and satisfies M ◦ f1 = f2 ◦M .

Remark. Our statement is slightly more general than Thurston’s original
theorem (see [Th1, DH1]), where Z = PF . We actually prove more.

Theorem 2.2. Let F : S2 → S2 be a branched covering and Z ⊂ S2 be a finite
set containing at least three points x0, x1, x2 with PF ⊆ Z and F (Z) ⊆ Z. Let

φ0 : S2 → Ĉ be any given orientation preserving homeomorphism. Define
(φn, fn) recursively so that φn : S2 → Ĉ is a homeomorphism agreeing with φ0

on {x0, x1, x2} and so that the map fn = φn−1 ◦ F ◦ φ−1
n is a rational map. If

F is not a (2, 2, 2, 2)-map and (F,Z) has no Thurston obstructions, then

• the Thurston pullback map σF : TZ → TZ has a unique fixed point τ ;

• the sequence [φn] converges to τ in the Teichmüller space TZ ;

• {fn} converges uniformly to a rational map f on Ĉ; and

• φn(Z) converges pointwise to a set X ⊂ Ĉ.

Moreover, there is an equivalence (φ, ψ) between (F,Z) and (f,X) with φ, ψ :

S2 → Ĉ both representing the fixed point τ ∈ TZ .

An easy corollary of the above theorem is that if Z contains more than
deg(F ) + 1 fixed points then (F,Z) is necessarily obstructed. There might be
a direct proof of this fact without using Thurston’s theorem.

It is easy to see that Theorem 2.2 implies Theorem 2.1. The sequence
(φn, fn) appearing in the previous theorem is called Thurston’s algorithm for
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the pair (F, φ0). Its definition is sketched on the commutative diagram below.

�� ��
S2

F

��

φ2 // Ĉ2

f2
��

S2

F

��

φ1 // Ĉ1

f1
��

S2 φ0 // Ĉ0

(2.1)

Let us now state without proof a result of McMullen ([McM], Theorem B4)
which is closely related to the previous discussion. Again this form is slightly
stronger than McMullen’s original version but the proof goes through without
any trouble.

Theorem 2.3. Let f : Ĉ→ Ĉ be a rational map (not necessarily postcritically

finite), and let Ẑ ⊆ Ĉ be closed (not necessarily finite) with Pf ⊆ Ẑ and

f(Ẑ) ⊆ Ẑ. Let Γ be a (f, Ẑ)-stable multicurve (defined in a similar way as

in the case that Ẑ is finite). Then λΓ ≤ 1. If λΓ = 1, then either f is a
(2, 2, 2, 2)-map; or f is not postcritically finite, and Γ includes a curve that is
contained in a Siegel disk or a Herman ring.

2.3 Classical results from hyperbolic geometry

In this chapter we will make the following convention on the choice of the
multiplicative constant in a hyperbolic metric.

1) The hyperbolic metric on the unit disc D is
2|dz|

1− |z|2
, on the upper half plane

H is
|dz|
=z

.

2) The modulus of an open annulus A is denoted by mod(A), and

mod
(
{1 < |z| < r}

)
=

log r

2π
.

3) For S a hyperbolic Riemann surface and γ a closed geodesic on S, we use
`S(γ) (or `(γ) if there is no confusion) to denote the hyperbolic length of γ.
Set w(γ) = − log `(γ) (one should consider it as a kind of logarithmic width).
4) For any non-peripheral simple closed curve γ on S2rZ and any point τ ∈ TZ
represented by φ : S2 → Ĉ, we denote by `(γ, τ) the length of the unique simple

closed geodesic in Ĉ r φ(Z) homotopic to φ(γ) and w(γ, τ) = − log `(γ, τ).
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Denote w(τ) = supw(γ, τ) where the supremum is taken over all simple closed
geodesics in S2 r Z.
5) For any constant C > 0, set

TZ(C) =
{
τ ∈ TZ | w(τ) ≤ C

}
=

{
τ ∈ TZ

∣∣∣∣ − log `(γ, τ) ≤ C for every non-peripheral
simple closed curve γ in S2 r Z

}
.

Lemma 2.4. Let τ1, τ2 ∈ TZ . Assume dT (τ1, τ2) ≤ D. Then for any non
peripheral simple closed curve γ in S2 r Z,∣∣w(γ, τ1)− w(γ, τ2)

∣∣ ≤ 2D .

If in addition τ1 ∈ TZ(C), then τ2 ∈ TZ(C + 2D).

Proof. Let D′ > D be arbitrary. Let φ1, φ2 be representatives of τ1, τ2
respectively. There is a quasi-conformal homeomorphism h : φ1(S2 r Z) →
φ2(S2 rZ) homotopic to φ2 ◦φ−1

1 with
1

2
logK(h) ≤ D′. Set S1 = φ1(S2 rZ)

and S2 = φ2(S2rZ). Let γ1 a closed geodesic on S1 and γ2 the closed geodesic
on S2 homotopic to h(γ1). Let A1 → S1 be an annular cover associated to γ1

and A2 → S2 be an annular cover associated to γ2. Then

mod(A1) =
π

`S1
(γ1)

and mod(A2) =
π

`S2
(γ2)

.

In addition, h : S1 → S2 lifts to a K(h)-quasiconformal homeomorphism
between A1 and A2, and according to Grötzsch’s inequality,

mod(A1) ≤ K(h) ·mod(A2) and mod(A2) ≤ K(h) ·mod(A1).

This yields ∣∣∣∣log
`S1

(γ1)

`S2(γ2)

∣∣∣∣ =

∣∣∣∣log
mod(A1)

mod(A2)

∣∣∣∣ ≤ logK(h) .

Therefore for any non peripheral simple closed curve γ in S2 r Z,

|w(γ, τ1)− w(γ, τ2)| = | log `(γ, τ1)− log `(γ, τ2)| ≤ logK(h) ≤ 2D′ .

As D′ > D is arbitrary, we may replace D′ by D in the inequality.

Lemma 2.5. Let S be a hyperbolic Riemann surface.

(1) (short geodesics are simple and disjoint) Let γ1, γ2 be distinct closed
geodesics on S.

`(γi) < 2 log(1 +
√

2), i = 1, 2

=⇒ γ1 ∩ γ2 = ∅ and γ1, γ2 are simple. (2.2)
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(2) Let A ⊆ S be an open annulus whose equator is homotopic to a simple
closed geodesic γ on S. Then

modA ≤ π

`(γ)
. (2.3)

(3) (collar) For any simple closed geodesic γ on S, there is a canonical an-
nulus CS(γ) ⊂ S whose equator coincides with γ, with

modCS(γ) >
π

`(γ)
− 1 . (2.4)

Moreover if two simple closed geodesics ξ, η are disjoint, then CS(ξ) and
CS(η) are disjoint.

Proof. This is a classical result in hyperbolic geometry. See e.g. Hubbard,
[Hu].

Lemma 2.6. (Short geodesics under a forgetful map) Let S be a hyperbolic
Riemann surface and S′ = S r Q with Q ⊂ S a finite set. Choose L <
2 log(1 +

√
2). Set q = #Q. Let γ be a simple closed geodesic on S. Denote

by {γ′i}i∈I the set of simple closed geodesics on S′ homotopic to γ in S so that
the hyperbolic length `′i := `S′(γ

′
i) satisfies `′i < L. Set ` = `S(γ). Then

(1) For every i ∈ I, `′i ≥ `, and #I ≤ q + 1 (in particular it is finite).

(2)

1

`
− 1

π
− q + 1

L
<
∑
i∈I

1

`′i
<

1

`
+
q + 1

π
, (2.5)

in particular if I = ∅ then
1

`
− 1

π
− q + 1

L
< 0.

Proof. The fact `′i ≥ ` follows from Schwarz Lemma.
Apply (2.2) to S′, we know that the γ′i’s are pairwise disjoint. Also, any

pair γ′i, γ
′
j enclose an annulus in S (since they are homotopic in S and disjoint)

containing at least one point of Q (since they are not homotopic in S′). It
follows that there are at most q + 1 such curves.

It follows from (2.4) that the collars CS′(γ
′
i) are pairwise disjoint. There

is therefore an open annulus A ⊆ S containing
⋃
i∈I CS′(γ

′
i) with equator

homotopic to γ on S.
The right hand side of (2.5) is trivial if I = ∅, otherwise,∑

i∈I

π

`′i
− (q + 1)

#I≤q+1

≤
∑
i∈I

(
π

`′i
− 1

)
(2.4)
<
∑
i∈I

modCS′(γ
′
i)

Grötzsch
≤ modA

(2.3)

≤ π

`
.
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We now prove the left hand side inequality of (2.5). We first decom-
pose CS(γ) into t (1 ≤ t ≤ q + 1) pairwise disjoint annuli Cj such that∑t
j=1 modCj = modCS(γ), Cj ⊂ S′, and the core curves of Cj are pair-

wise non-homotopic in S′. For each j, let δj be the geodesic on S′ homotopic
in S′ to the core curve Cj .

We have then

π

`
− 1

(2.4)
< modCS(γ) =

t∑
j=1

modCj =

 ∑
modCj≤ πL

+
∑

modCj>
π
L

modCj

≤ (q + 1)π

L
+

∑
modCj>

π
L

modCj
(2.3)

≤ (q + 1)π

L
+

∑
modCj>

π
L

π

`S′(δj)
.

Assume that the index set of the rightmost term is non empty. Then
`S′(δj) < L so δj = γ′i for some i ∈ I, in particular I 6= ∅. In this case

π

`
− 1 <

(q + 1)π

L
+
∑
i∈I

π

`′i
.

If I = ∅, then necessarily no Cj satisfies modCj >
π
L and we have

π

`
− 1 <

(q + 1)π

L
.

The left hand inequality of (2.5) is now proved.

2.4 From TZ to Ratd

From now on, we fix three points x0, x1, x2 in Z ⊆ F−1(Z). A point τ ∈ TZ
may be represented by a homeomorphism φ : S2 → Ĉ sending x0, x1, x2 to
respectively 0, 1,∞. Its restriction φτ : Z → Ĉ only depends on τ . Similarly,
ςF (τ) ∈ TF−1(Z) may be represented by a homeomorphism ψ : S2 → Ĉ sending
x0, x1, x2 to respectively 0, 1,∞, so that f = φ ◦ F ◦ ψ−1 is a rational map.
The restriction ψτ : F−1(Z)→ Ĉ of ψ and the rational map f only depend on
τ . Indeed, if dx stands for the local degree of F at x ∈ S2, then

f = fτ = λτ · Pτ/Qτ

where

Pτ (z) =
∏

x∈F−1(x0)
x 6=x2

(
z − ψτ (x)

)dx
, Qτ (z) =

∏
x∈F−1(x2)

x6=x2

(
z − ψτ (x)

)dx



19

and λτ is the value taken by Qτ/Pτ at any point of ψτ
(
F−1(x1)

)
. Since

ςF : TZ → TF−1(Z) is analytic, the map

TZ 3 τ 7→ (fτ , φτ , ψτ ) ∈ Ratd × (Ĉ)Z × (Ĉ)F
−1(Z)

is analytic.
It is true, although not elementary, that the image of TZ under the map

τ 7→ fτ is closed in Ratd. We shall circumvent the difficulties by introducing
the following space. We shall denote by RZ,F the set of triples

(f, φ, ψ) ∈ Ratd × (Ĉ)Z × (Ĉ)F
−1(Z)

such that

• φ and ψ are injections sending x0, x1, x2 to respectively 0, 1,∞,

• φ ◦ F = f ◦ ψ on F−1(Z) and

• the local degree of F at x is equal to that of f at ψ(x) for all x ∈ F−1(Z).

In particular, setting Y = φ(Z) and X = ψ
(
F−1(Z)

)
= f−1(Y ), we have the

following commutative diagram:

(S2, CF ⊆ F−1(Z))
ψ //

F

��

(Ĉ, Cf ⊆ X)

f

��
(S2,VF ⊆ Z)

φ
// (Ĉ,Vf ⊆ Y ) .

Let dĈ stands for the spherical distance in Ĉ. Given c > 0, we shall denote
by RZ,F (c) the subset of RZ,F consisting of those triples (f, φ, ψ) for which
dĈ
(
z1, z2

)
≥ c for any pair of distinct points z1 6= z2 in ψ

(
F−1(Z)

)
.

Lemma 2.7. For all c > 0, the set RZ,F (c) is a compact subset of RZ,F . For
all C > 0 there exists c > 0 such that

τ ∈ TZ(C) =⇒ (fτ , φτ , ψτ ) ∈ RZ,F (c).

Proof. Let (fn, φn, ψn) be a sequence of triples in RZ,F (c). Set Yn = φn(Z)

and Xn = ψn
(
F−1(Z)

)
= f−1

n (Yn). Since Ĉ is compact, extracting a sub-
sequence if necessary, we may assume that the sequences (φn : Z → Yn)
and

(
ψn : F−1(Z) → Xn

)
converge respectively to maps φ : Z → Y and

ψ : F−1(Z) → X for some finite sets X,Y ⊂ Ĉ. Since the spherical distance
between distinct points in Xn is at least c > 0, the limit ψ : Z → X is a
bijection and the spherical distance between distinct points in X is at least c.
The sequence of rational maps fn converges to f = λ · P/Q where

P (z) =
∏

x∈F−1(x0)
x6=x2

(
z − ψ(x)

)dx
, Q(z) =

∏
x∈F−1(x2)

x6=x2

(
z − ψ(x)

)dx
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and λ is the value taken by Q/P at any point of ψ
(
F−1(x1)

)
. If x ∈ F−1(Z),

then

f ◦ ψ(x) = lim fn ◦ ψn(x) = limφn ◦ F (x) = φ ◦ F (x).

The local degree of f at a point ψ(x) is at least dx, and for all y ∈ Y , the
number of preimages of y by f , counting multiplicities is

d =
∑

x∈(φ◦F )−1(y)

deg
(
f, ψ(x)

)
≥

∑
x∈(φ◦F )−1(y)

dx

≥
∑

z∈φ−1(y)

∑
x∈F−1(z)

dx = d ·#φ−1(y).

Thus, #φ−1(y) = 1, i.e. φ is injective, and the local degree of f at ψ(x) is dx.
All this shows that (f, φ, ψ) ∈ RZ,F (c).

This proves that RZ,F (c) is a compact subset of Ratd × (Ĉ)Z × (Ĉ)F
−1(Z).

Let us now prove that the image of TZ(C) is contained in RZ,F (c) for some
c > 0. Set Yτ = φτ (Z) and Xτ = ψτ

(
F−1(Z)

)
= f−1

τ (Yτ ). By definition

of TZ(C), the length of any simple closed geodesic γ ∈ Ĉ r Yτ is bounded
from below by e−C . Since Yτ contains the critical values of fτ , the map
fτ : Ĉ rXτ → Ĉ r Yτ is a covering. It follows that the length of any simple
closed geodesic δ ∈ ĈrXτ is bounded from below by e−C . As a consequence, as
τ ranges in TZ(C) and x, y range in F−1(Z) with x 6= y, the spherical distance
between ψτ (x) and ψτ (y) is uniformly bounded away from 0 as required.

2.5 Contraction of Thurston pullback maps

Let F : S2 → S2 be a branched covering of degree d ≥ 2 with a finite postcrit-
ical set PF . Let Z ⊂ Ĉ be a finite set with #Z ≥ 4, PF ⊆ Z and F (Z) ⊆ Z.
Setting X = Y = Z, the conditions in Section 1.4 are satisfied and thus,
Thurston pullback map σF : TZ → TZ is well defined. From now on, we set

k = #Z and G = F ◦k.

Recall that the tangent space to TZ at some point τ represented by ψ :
S2 → Ĉ is equipped with the dual norm:

∀ν ∈ TτTZ , ‖ν‖ = sup
q∈Q(ψ(Z))
‖q‖≤1

∣∣〈q, ν〉∣∣.
We will now show that σ◦kF is contracting, and even uniformly contracting on
TZ(C) for C > 0. It will be useful to notice that σ◦kF = σG. Indeed, assume

τ is a point in TZ , and for i ∈ [0, k], let φi : S2 → Ĉ be a homeomorphism

representing σ◦iF (τ) so that fi = φi ◦ F ◦ φ−1
i+1 : Ĉ → Ĉ is a rational map

for i ∈ [0, k − 1]. Then, we have the following commutative diagram with
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Zi = φi(Z):

(S2, Z)

F

��

φk // (Ĉ, Zk)

fk−1

��
(S2, Z)

��

φk−1 // (Ĉ, Zk−1)

��
(S2, Z)

F

��

φ2 // (Ĉ, Z2)

f1
��

(S2, Z)

F

��

φ1 // (Ĉ, Z1)

f0
��

(S2, Z)
φ0 // (Ĉ, Z0).

(2.6)

Set φ = φ0, ψ = φk and g = f0 ◦ f1 ◦ · · · ◦ fk−1. Then, the commutative
diagram

(S2, Z)
ψ //

G

��

(Ĉ, Zk)

g

��
(S2, Z)

φ
// (Ĉ, Z0)

shows that

σ◦kF (τ) = [ψ] = σG
(
[φ]
)

= σG(τ).

Lemma 2.8. If there is a set X ⊆ Z such that #X ≥ 4 and G−1(X) ⊆ Z∪CG,
then F : S2 → S2 is a (2, 2, 2, 2)-map.

Proof. Define recursively

X0 = X and Xi+1 = F−1(Xi) r CF ,

so that Xk = G−1(X) r CG ⊆ Z. In particular, #Xk ≤ #Z = k.
Since F−1(Xi) ⊆ Xi+1 ∪ CF , we have the following inequalities (compare

with (1.6)):

#Xi+1 + (2d− 2) ≥ #Xi+1 + #CF ≥ #F−1(Xi) ≥ d ·#Xi − (2d− 2) . (2.7)
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This implies #Xi+1 − 4 ≥ d · (#Xi − 4). In particular,

dk−4 > k − 4 ≥ #Xk − 4 ≥ dk−4 · (#X4 − 4) ≥ · · ·
≥ dk−1 · (#X1 − 4) ≥ dk · (#X0 − 4) ≥ 0.

As a consequence, #Xi = 4 for i = 0, 1, 2, 3, 4 and inequalities (2.7) must be
equalities for i = 0, 1, 2, 3:

• #CF = 2d− 2, thus the critical points of F are simple.

• #Xi+1+#CF = #F−1(Xi), thus CF∩Xi+1 = ∅. In particular, CF∩X1 =
∅.

• #F−1(Xi) = d ·#Xi − (2d− 2), thus VF ⊆ Xi. In particular,

VF◦3 = VF∪F (VF )∪F ◦2(VF ) ⊆ X1 and VF◦4 = F (VF◦3)∪F ◦3(VF ) ⊆ X0.

We now claim that X1 = PF . Indeed

• X1 ⊆ PF since otherwise a point in X1rPF would have d3 > 4 preimages
in X4 whereas #X4 = 4.

• PF ⊆ X1 since

VF ⊆ VF◦2 ⊆ VF◦3 ⊆ VF◦4 ⊆ X0,

so that

2 ≤ #VF ≤ #VF◦2 ≤ #VF◦3 ≤ #VF◦4 ≤ 4

which forces the non-decreasing sequence VF◦i to stabilize: there exists
i0 ≤ 3 such that VF◦i = VF◦i0 for i ≥ i0. We then have PF = VF◦i0 =
VF◦3 ⊆ X1.

Summarizing, we see that PF = X1 has cardinality 4, CF ∩PF = CF ∩X1 = ∅
and all the critical points of F are simple. Thus, F is a (2, 2, 2, 2)-map.

Lemma 2.9 (Contraction). If F : S2 → S2 is not a (2, 2, 2, 2)-map, then
‖Dτσ

◦k
F ‖ < 1 (where k = #Z) for any τ ∈ TZ .1

Proof. A point τ ∈ TZ yields a triple (gτ , φτ , ψτ ) ∈ RZ,G such that gτ ◦ψτ =
φτ ◦ G on G−1(Z). The norm of the linear map Dτσ

◦k
F = DτσG is equal

to the norm of its adjoint (gτ )∗ : Q
(
ψτ (Z)

)
→ Q

(
φτ (Z)

)
. The result is a

consequence of the following more general Lemma.

Lemma 2.10. Assume F : S2 → S2 is not (2, 2, 2, 2)-map and (g, φ, ψ) ∈
RZ,G. Then, g∗ : Q

(
ψ(Z)

)
→ Q

(
φ(Z)

)
has norm less than 1.

1It is known that in the classical version of Thurston’s theorem where Z = PF , one may
choose k = 2. In the general version, it is possible to prove that we may choose k ≥ 2 such
that dk−2 > #(Z r PF ).
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Proof. It follows from Lemma 1.6 that ‖g∗‖ ≤ 1, with equality if and only
if there is a non-zero q ∈ Q

(
ψ(Z)

)
such that q = d−kg∗(g∗q). Let Y ⊆ φ(Z)

be the set of poles of g∗q. Then, every point of g−1(Y ) is either a pole of
q, or a critical point of g. So, g−1(Y ) ⊆ ψ(Z) ∪ Cg. As a consequence,
X = φ−1(Y ) satisfies X ⊆ Z and G−1(X) ⊆ Z ∪ CG. According to Lemma
2.8, this contradicts the fact that F is not a (2, 2, 2, 2)-map.

Lemma 2.11 (Uniform contraction on TZ(C)). If F is not a (2, 2, 2, 2)-map,
then for each C > 0, there is λ < 1 such that ‖Dτσ

◦k
F ‖ ≤ λ for all τ ∈ TZ(C).

Proof. We proceed by contradiction and assume we can find a sequence
τn ∈ TZ(C) such that ‖Dτnσ

◦k
F ‖ tends to 1 as n tends to ∞. Consider the

corresponding sequence of triples (gn, φn, ψn) ∈ RZ,G. Set Xn = ψn(Z) and
Yn = φn(Z). The norm ‖Dτnσ

◦k
F ‖ is equal to the norm of (gn)∗ : Q(Xn) →

Q(Yn). Thus, we can find a sequence of quadratic differentials qn ∈ Q(Xn) of
norm 1 so that ‖(gn)∗qn‖ tends to 1 as n tends to ∞.

According to Lemma 2.7, this sequence belongs to a compact subset of
RZ,G. So, extracting a subsequence if necessary, we may assume that the
triple (gn, φn, ψn) converges to (g, φ, ψ) ∈ RZ,G. According to the previous
lemma, the norm of g∗ : Q(X)→ Q(Y ) is less than 1.

The poles of the quadratic differentials qn are simple and stay uniformly
away from each other for the spherical distance. It follows that we may extract
a further subsequence so that qn converges locally uniformly outside X to
some q ∈ Q(X) of norm 1. The sequence of quadratic differentials (gn)∗qn
then converges locally uniformly to g∗q ∈ Q(Y ) outside Y . Since the poles
of (gn)∗qn are in Yn, they remain uniformly away from each other for the
spherical distance. As a consequence, ‖g∗q‖ = lim

∥∥(gn)∗qn
∥∥ = 1 = ‖q‖. This

contradicts the previous observation that ‖g∗‖ < 1.

2.6 Proof of Theorem 2.2

Proposition 2.12. (short geodesics do not become shorter) Assume that (F,Z)
has no Thurston obstructions. Given τ0 ∈ TZ , set τn = σ◦nF (τ0). Then there
is a positive integer m depending only on deg(F ) and #Z, a positive constant
C depending only on deg(F ), #Z and dT (τ0, τ1), such that:

∀n ≥ 0, w(τn) > C ⇒ w(τn+m) < w(τn).

We will postpone the proof of this proposition to Section 2.7.
Proof of Theorem 2.2 assuming proposition 2.12.

Given τ0 ∈ TZ , set τn = σ◦nF (τ0) and D = dT (τ0, τ1). Let δ be a geodesic
of TZ connecting τ0 and τ1 and for n ≥ 0, set δn = σ◦nF (δ). According to
Lemma 2.4, σF : TZ → TZ is contracting and so, for all n ≥ 0, we have
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length(δn+1) ≤ length(δn). It then follows from Lemma 2.9 that

∀n ≥ 0, dT (τn, τn+1) ≤ dT (τ0, τ1) ≤ D and w(τn+1) ≤ w(τn) + 2D. (2.8)

Let m and C be given by Proposition 2.12. Set C1 = max
(
C,w(τ0)

)
. We

claim that the sequence (τn)n≥0 remains in TZ(C1 + 2mD). Indeed, for n ≥ 0,
let jn ∈ [0, n] be the largest integer j such that τj ∈ TZ(C1). If jn = n, then
we are done. Otherwise, let us write n = (jn + 1) + qm + r with 0 ≤ r < m.
For j ∈ [jn + 1, n], we have w(τj) > C1 ≥ C. It follows from Proposition 2.12
and Lemma 2.4 that

w(τn) ≤ w(τjn+1+r) ≤ w(τjn) + (r + 1) · 2D ≤ C1 +m · 2D.

Set C2 = C1 + (m + 1) · 2D. According to Lemma 2.4, δn ⊂ TZ(C2) for
all n ≥ 0. Set k = #Z. By lemma 2.11, there is a constant λ < 1 such that
‖Dτσ

◦k
F ‖ < λ for any τ ∈ TZ(C). It follows that, for any n ≥ 0 and any

1 ≤ j ≤ k,

dT (τnk, τnk+j) ≤ λndT (τ0, τj) ≤ jDλn ≤ kDλn .

Therefore (τn)n≥0 is a Cauchy sequence in TZ and hence converges to a fixed
point τ in TZ .

We now prove that the fixed point is unique, independent of the choice of
τ0. Indeed, let τ and τ ′ be two fixed points of σF . Let δ be the geodesic joining
τ and τ ′. Recall that k = #Z. Then σ◦kF (δ) is a curve joining τ and τ ′ and its
length is less that that of δ, which contradicts the fact that δ is the shortest
curve joining τ and τ ′.

Finally, as τn ∈ TZ tends to τ ∈ TZ , the sequence (fτn , φτn , ψτn) ∈ RZ,F
tends to (fτ , φτ , ψτ ). This shows that if φ0 : S2 → Ĉ is an orientation pre-
serving homeomorphism sending x0, x1, x2 to 0, 1,∞ and if (φn, fn) is defined

recursively so that φn : S2 → Ĉ is a homeomorphism sending x0, x1, x2 to
0, 1,∞ and so that the map fn = φn−1 ◦ F ◦ φ−1

n is a rational map, then

• fn = fτn converges to fτ and

• φn(Z) = φτn(Z) converges pointwise to a set X ⊂ Ĉ.

Since σF (τ) = τ the bijections φτ : Z → X coincides with the bijection
ψτ : Z → X. It follows that fτ (X) ⊆ X and that fτ is postcritically finite
with Pfτ ⊆ X.

Finally, let φ : S2 → Ĉ be homeomorphism representing τ sending x0, x1, x2

to 0, 1,∞. Let ψ : S2 → Ĉ be the homeomorphism representing σF (τ) = τ
sending x0, x1, x2 to 0, 1,∞ with fτ ◦ψ = φ◦F . Then, (φ, ψ) is an equivalence
between (F,Z) and (f,X).
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2.7 Proof of Proposition 2.12.

Notice that from the definition of the transition matrix, given a degree d, and
an integer p, there are only finitely many possible transition matrices FΓ with
F of degree d and Γ of size at most p − 3. Therefore there are finitely many
such matrices with leading eigenvalue λΓ < 1. The integer m, depending only
on d and p, is chosen so that every such matrix FΓ with λΓ < 1 satisfies
‖FmΓ ‖ < 1/2, where ‖ · ‖ is relative to the sup-norm of RΓ (this is possible due
to the spectral radius formula ‖FnΓ ‖1/n −→n→∞ λΓ).

Set A = − log(2 log(
√

2 + 1)) and D = dT (τ0, τ1). We choose at first any
J > m(log d+ 2D), and set B = (p− 3)J +A.

For the moment choose any C > B and assume w(τn) > C for some n ≥ 0.
We want to show that w(τn+m) < w(τn), up to a further adjustment of C.

Let φ : S2 → Ĉ represent τn and set P = φ(Z) and

Ln = {w(γ, τn), γ a non-peripheral Jordan curve on S2 r Z}.

Now let ]a, b[ be the leftmost gap in [A,+∞[rLn of length J . Let

Γ = {γ, γ a non-peripheral Jordan curve on S2 r Z with w(γ, τn) ∈ ] a,+∞ [ } .

Then w(γ, τn) ≥ b for γ ∈ Γ. By Lemma 2.5, the set of γ with w(γ, τn) > A
consists of pairwise disjoint non-peripheral simple closed curves in S2rZ. But
Z consists of exactly p points. It follows that there are at most p− 3 elements
of Ln greater than A. By assumption w(τn) > C > B = (p− 3)J + A. So at
least one element of Ln is greater than (p − 3)J + A. It follows that b < B
and Γ 6= ∅.
Claim (a). The multicurve Γ is (F,Z)-stable.
Proof. For this we will only use the fact that J > log d+ 2D.

Let ϕ be a representative of τn+1 = σF (τn) such that f = φ ◦ F ◦ ϕ−1 is a
rational map. Set T ′ = ϕ(Z) and T ′′ = ϕ

(
F−1(Z)

)
= f−1(P ). Given γ ∈ Γ,

let η be a non-peripheral Jordan curve in F−1(γ). Let ξ′ (respectively ξ′′)

be the geodesic homotopic to ϕ(η) in Ĉ r T ′ (respectively in Ĉ r T ′′). Since

f : Ĉ r T ′′ → Ĉ r P is a holomorphic covering, and since T ′ ⊆ T ′′, we have

`ĈrT ′′(ξ
′′) = deg(F : η → γ) · `ĈrP

(
f(ξ′′)

)
= deg(F : η → γ) · `(γ, τn)

and

`ĈrT ′′(ξ
′′) ≥ `ĈrT ′(ξ

′′) ≥ `ĈrT ′(ξ
′) = `(η, τn+1) .

Thus

w(η, τn+1) ≥ w(γ, τn)− log deg(F : η → γ) ≥ w(γ, τn)− log d ≥ b− log d .

By Lemma 2.4, we have |w(η, τn+1)− w(η, τn)| ≤ 2D. Thus

w(η, τn) ≥ b− log d− 2D > a
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since b− a = J > log d+ 2D. This shows that η is homotopic rel Z to a curve
in Γ. That is, Γ is an (F,Z)-stable multicurve. This ends the proof of Claim
(a).

Set G = F ◦m. Let ψ be a representative of τn+m such that g = φ◦G◦ψ−1 is
a rational map of degree dm. Set P ′ = ψ(Z) and P ′′ = ψ

(
G−1(Z)

)
= g−1(P ).

Then P ′ ⊆ P ′′.
Claim (b). Every simple closed geodesic in ĈrP ′′ of length less than dm ·e−b
is homotopic (rel P ′′) to a component of g−1 ◦ φ(γ) for some unique choice of
γ ∈ Γ.
Proof. Let β be a simple closed geodesic in ĈrP ′′ of length less than dm ·e−b.
Then g(β) is a simple closed geodesic in ĈrP with length less than e−b, that
is, w

(
g(β)

)
≥ b. Thus g(β) is homotopic, rel P , to φ(γ) for some unique choice

of γ ∈ Γ. The critical values of g are contained in P . We may then lift the
homotopy by g to get Claim (b).

Set L = dm · e−B . Note that L depends only on p, d and D. Let Γ =
{γ1, · · · , γs} be the non-empty (F,Z)-stable multicurve defined above. Define
v, v′ ∈ RΓ by

vi =
1

`(γi, τn)
and v′i =

1

`(γi, τn+m)
.

Set S = ĈrP ′ and Q = P ′′rP ′. Set q = #Q = #P ′′−#P ′ = #P ′′− p. We
have #P ′′ = #g−1(P ) < dm ·#P − 1 = dm · p− 1 as P ′′ contains at least two
critical points. It follows that q + 1 ≤ (dm − 1)p. Furthermore

L = dm · e−B = dm · e−(p−3)Je−A < dm · e−(p−3) log dme−A

≤ dm · e− log dme−A = 2 log(
√

2 + 1) .

By the left inequality of (2.5), we have, for any i,

v′i =
1

`(γi, τn+m)
<
∑
β∈Wi

1

`ĈrP ′′(β)
+

1

π
+
q + 1

L
=
∑
β∈Wi

1

`ĈrP ′′(β)
+

1

π
+

(dm − 1)p

L
,

(2.9)

where Wi is the set of all simple closed geodesics on Ĉ r P ′′ homotopic to
ψ(γi) rel P ′, and of length (in Ĉ r P ′′) less than L = dm · e−B .
Claim (c). Each curve β of Wi is homotopic rel P ′′ to some ψ(η), for a
component η of G−1(γ) of a unique choice γ ∈ Γ . Furthermore η is homotopic
rel Z to γi, and

1

`ĈrP ′′(β)
=

1

deg(G : η → γ)

1

`(γ, τn)
.

Also the map β 7→ η is injective.
Proof. Let β ∈ Wi. It has length in Ĉ r P ′′ less than dm · e−B which is
less than dm · e−b. By Claim (b), it is homotopic rel P ′′ to a component ψ(η)
of g−1

(
φ(γ)

)
= ψ

(
G−1(γ)

)
for a unique choice of γ ∈ Γ. But γ being non-
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peripheral rel Z, the curves in G−1(γ) are pairwise non-homotopic rel G−1(Z).
Thus the curves in ψ

(
G−1(γ)

)
are pairwise non-homotopic rel P ′′. This shows

that η is unique. As β and ψ(η) are homotopic rel P ′′, they are also homotopic
rel P ′. But β is homotopic rel P ′ to ψ(γi) by the definition of Wi. We conclude
that ψ(η) is also homotopic rel P ′ to ψ(γi).

As g : Ĉ r P ′′ → Ĉ r P is a holomorphic covering, the curve g(β) is the

simple closed geodesic of Ĉ r P homotopic to φ(γ) rel P . So

`ĈrP ′′(β) = deg(g : β → g(β)) · `ĈrP (g(β)) = deg(G : η → γ) · `(γ, τn) .

The injectivity of β 7→ η follows from the fact that every curve in ψ
(
G−1(Γ)

)
is homotopic rel P ′′ to a unique simple closed geodesic of ĈrP ′′. This proves
the claim.

It follows from this claim that∑
β∈Wi

1

`ĈrP ′′(β)
≤
∑
γ∈Γ

( ∑
η∼Zγi

1

deg(G : η → γ)

)
1

`(γ, τn)
= (GΓv)i

where the sum is taken over all curves in G−1(γ) homotopic to γi rel Z, and
the right equality is due to the definition of the transition matrix. It follows
from (2.9) that for any i,

v′i ≤ (GΓv)i +
1

π
+

(dm − 1)p

L
.

Therefore

|v′| ≤ |GΓv|+
1

π
+

(dm − 1)p

L
≤ ‖GΓ‖ · |v|+

1

π
+

(dm − 1)p

L
,

where |v| denotes the sup norm of RΓ. As Γ is (F,Z)-stable, we have GΓ =

(FΓ)m. By the choice of m, we have ‖GΓ‖ ≤
1

2
. Thus

|v′| ≤ 1

2
|v|+ 1

π
+

(dm − 1)p

L
.

If

|v| > 2

(
1

π
+

(dm − 1)p

L

)
,

then |v′| < |v|, that is, w(τn+m) < w(τn). Now we see that if we choose

C = max

{
log

(
1

π
+

(dm − 1)p

L

)
+ log 2 , B

}
,

then the proposition is proved.
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3 Applications of Thurston’s theorem and related results

3.1 Geyer’s sharpness result for harmonic polynomials

The power of Thurston’s theorem is beautifully illustrated by a result of L.
Geyer. We present this result here.

Let π denote the map z 7→ z̄. We say that P (z) = adz
d + · · ·+ a1z + a0 is

a Geyer polynomial if P has all coefficients real, all critical points simple,
at most one critical point real, and maps each critical point c to its complex
conjugate c̄.

Theorem 3.1 (Geyer, [Ge]). For every d ≥ 2, there is a Geyer polynomial P
of degree d.

This result solved a sharpness problem in the study of harmonic polynomi-
als. It has been conjectured by Wilmshurst ([Wil]) that for any polynomial P
of degree d ≥ 2, the equation

P (z) = z̄

has at most 3d−2 solutions. Khavinson and Świa̧tek ([KS]) proved the conjec-
ture and showed that for d = 2, 3 there are polynomials realizing the bound.
Then Crofoot and Sarason noticed that the bound 3d − 2 would be realized
by a Geyer polynomial of degree d if it exists. Later on Bshouty and Lyzzaik
proved that such polynomials exist for d = 4, 5, 6 and 8 ([BL]). But their
method seems to be difficult to reach the remaining degrees.
Proof of Theorem 3.1. The idea is to first construct a topological model,
and then prove the existence using Thurston’s theorem.

Fix any d ≥ 2. Assume that there exists a branched covering of Ĉ of degree
d satisfying G−1(∞) =∞, G◦π = π ◦G, all critical points are simple, at most
one critical point is real, and each critical point c is mapped to its complex
conjugate c̄. (Please refer to Geyer, [Ge] for a construction). The postcritical
set of G coincides with the set of critical points CG. Set Z = CG.

Let π : z 7→ z̄.
Notice that all critical points of G are periodic (of period 1 or 2). A theo-

rem of S. Levy proves that in this case (G,Z) has no Thurston obstructions.
Furthermore, fix a non-real critical point c of G. Let (φn, fn) the sequence
in Thurston’s algorithm (2.1) so that every φn fixes pointwise ∞, c, c̄, and
φ0 = π ◦ φ0 ◦ π−1.

It follows from Theorem 2.2 that fn converges uniformly to a polynomial
P combinatorially equivalent to G.

We want to prove that P is real. For this we will show that fn is real for
every n.

Set φ′1 = π ◦ φ1 ◦ π−1 and F = π ◦ f1 ◦ π−1. Then F (z) = f1(z̄) is again a
polynomial and we have the following chains of commutative diagrams:
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Ĉ

G
��

φ′1

##
Ĉπoo φ1 //

G
��

Ĉ

f1
��

π // Ĉ

F
��

Ĉ

φ0

;;Ĉ
π
oo

φ0

// Ĉ
π
// Ĉ.

Due the unicity of the normalized ψ making φ0 ◦ G ◦ ψ−1 holomorphic, we
conclude that π ◦ φ1 ◦ π = φ′1 = φ1. So φ1 is real. This in turn implies that f1

is real.

So φ0 real =⇒
{
φ1

f1
real =⇒

{
φn
fn

real .

But fn → P , so P is real.

3.2 Applications of Thurston’s theorem.

There are many applications of Thurston’s theorem in holomorphic dynamics.
In most cases, there is no need to work directly with Teichmüller spaces. One
just need to study Thurston obstructions.

As illustrated by Geyer’s result above, the general procedure of an appli-
cation goes as follows:
a. Construct a postcritically finite branched covering F with some specific
dynamical properties (if possible).
b. Check whether F has Thurston obstructions.
c. In the case of absence of obstructions use Thurston’s theorem to get a
(unique up to Möbius conjugation) rational map f combinatorially equivalent
to F , therefore having the same dynamical properties.

Here is a case that there is an obstruction of topological nature: there
is no branched covering of degree 4 having one double critical point c, four
simple critical points sharing two critical values v and w. To prove it by
contradiction, draw a segment linking v to w through the critical value coming
from c, and pullback this segment. One runs easily into trouble due to Jordan
curve theorem.

Another interesting case is that although it is easy to construct a cubic
branched covering F with 4 distinct and fixed critical points, no cubic rational
map has this property. So such a F must have a Thurston obstruction.

It is in general difficult to apply Thurston’s theorem effectively, namely to
check whether a specific branched covering has Thurston obstructions or not.
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Each successful application is usually a theorem in its own right. Here is brief
account of some related results:

• Topological polynomials. These are the branched coverings of S2 with
one backward invariant point. S. Levy ([Levy, Go]) reduced Thurston’s
obstructions to some specific type of obstructions (called the Levy cy-
cles). An easy consequence is that if every critical point eventually lands
in a periodic cycle containing a critical point, then the map is unob-
structed. In this case the map is combinatorially equivalent to a poly-
nomial.

• Matings of two polynomials. This is a surgery procedure in order to
obtain rational maps whose Julia set is the gluing of two postcritically
finite polynomial (therefore simpler) Julia sets. Obstructions often oc-
cur. Via the works of Milnor, Rees, Sharland, Shishikura, Tan, among
others, some families of maps have been well understood. They include
quadratic rational maps and Newton’s method of cubic polynomials. See
for example [Mil, Re1, Sha, Shi2, Ta1, Ta2, ST]. One may consult the
beautiful animations in the webpage of Chéritat [C], as well as the article
of vulgarization [Ta3]. It has been known that two pairs of polynomials
may lead to the same rational map. An amazing recent work of Rees
shows that the number of pairs giving the same rational map can be
arbitrarily large [Re5]. There are also results of matings of postcritically
infinite polynomials (see for example [AY, HT, YZ]).

• Captures. This is a surgery procedure to deform a polynomial so that the
point at∞ glides along a certain path and gets ’captured’ by a bounded
orbit. Again obstructions may occur and the procedure is highly non-
injective. See the works of Wittner, Rees ([Wit,Re2-Re6]), among others.

• Blowing up an arc surgery. This consists of cutting open an invariant
arc of a rational map in order to create a rational map of higher degree.
This has been used in the works of Pilgrim and Tan [PT, Pi1] to con-
struct a variety of rational maps with interesting dynamical properties
– Fatou component boundaries which are homeomorphic to a figure-8,
symmetries, Sierpinski carpet Julia sets, maps with cylinders, etc.

• Classifications of a family of rational maps. This consists of studying a
full set of combinatorics that arises in a given family. Such combinatorics
may take the form of Hubbard trees, external rays, spiders, kneading
sequences, laminations, graphs, etc. See for example the works of Biele-
field, Geyer, Hubbard, Kiwi, Mikulich, Poirier, Rees, Rückert, Schleicher
([BFH, G, HS, Ki, Mik, MR, Po, Re2-Re6]), among others. See also
Douady-Hubbard-Sullivan’s proof of the monotonicity of the topological
entropy in the logistic family presented by Milnor and Thurston in [MT].

• Criteria of absence of Thurston obstructions. Several techniques have
been developed in various situations. See for example work of Bonnot,
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Braverman, Pilgrim, Shishikura, Tan and Yampolsky [BBY, Pi3, PT,
Shi3, ST].

• Perron algebraic number as the exponential of the topological entropy.
Thurston ([Th3]) proved recently that any positive algebraic number
greater than the modulus of its Galois conjugates can be realized as
the leading eigenvalue of a transition matrix associated to a polynomial
action on its Hubbard tree.

• Folding surgery. This is a new type of surgery providing examples of
postcritically finite rational maps whose Julia set contains wandering
separating continua, see [CT2]. It is known, due to works of Thurston,
Kiwi and Levin, [Th3, Ki, Levin], that such continua do not exist for
polynomials with locally connected Julia sets (in particular for postcrit-
ically finite polynomials).

• N. Selinger studies compactifications of rational map Teichmüller spaces,
[Se]. Work of Bonk, Häıssinsky, Meyer and Pilgrim, [BM, HP1, HP2,
HP3, HP4, Me1, Me2, Pi2, Pi3] study postcritically finite branched cov-
erings of S2, in particular those with Thurston obstructions. Rivera-
Letelier, [Ri], studies some weakly hyperbolic rational maps with the
help of the convergence of Thurston’s algorithm.

• Bisets as algebraic invariant of combinatorial equivalent classes.

Let f be a postcritically finite rational map. Let t /∈ Pf . Set G =

π1(Ĉ r Pf , t).

Define Mf to be the set of homotopic paths in Ĉ r Pf , linking t to a
point in f−1(t). This set is equipped with a right action by G which is by
amending a curve δ ∈ G first before taking γ ∈Mf to get γ.δ, and with
a left action by G which is by taking γ ∈Mf first and then by following
the corresponding lift by f of δ ∈ G. These two actions commute and
make Mf into a G-biset.

Nekrachevych introduced this notion and proved that Mf is a complete
invariant of the combinatorial equivalent class of f ([N1]). L. Bartholdi
and V. Nekrachevych then used this invariant to solve the so-called
twisted rabbit problem of Hubbard, [BN1]. See also the related works of
them as well as that of K. Bux, G. Kelsey and R. Perez [BN2, Ke, N2, N3],
among others.

• Extensions of Thurston’s theorem beyond postcritically finite maps.

Thurston’s original theorem can only be applied to postcritically finite
rational maps. On the one hand, these maps all have a connected Julia
set; on the other hand, they form a totally disconnected subset in the
parameter space (except for the Lattès examples). Therefore the theo-
rem alone cannot characterize the combinatorics of disconnected Julia



32

sets, nor the dynamical bifurcations through continuous parameter per-
turbations.

Up to now there are several extensions of Thurston’s theory to post-
critically infinite rational maps. David Brown [Br], supported by previ-
ous work of Hubbard and Schleicher [HS], has extended it to uni-critical
polynomials with an infinite postcritical set (but always with a connected
Julia set), and pushed it even further to the infinite degree case, namely
the exponential maps. Hubbard-Schleicher-Shishikura [HSS] extended
Thurston’s theorem to postcritically finite exponential maps. Zhang an-
nounced a corresponding result for maps that have a fixed Siegel disc
with bounded type rotation number and are postcritically finite else-
where. Jiang-Zhang [JZ], in parallel with Cui-Tan [CT1] solved the
characterization problem for sub-hyperbolic rational maps with possi-
bly disconnected Julia set. The proof of the former uses similar ideas as
Thurston. Whereas that of the latter reduces the situation to a post-
critically finite setting and applies the marked Thurston’s theorem (the
unmarked one is not enough for this purpose), and at the same time
provides a combination result together with a detailed description of the
structure of disconnected Julia sets, alongside a Thurston-like theory for
maps that are only partially defined.

G. Zhang, [Z], has generalized Thurston’s theorem to maps with a fixed
Siegel disc of bounded rotation number (and postcritically finite else-
where). A generalization to maps with parabolic periodic points is also
under preparation ([CT3]).

X. Wang, [Wa], developed a Thurston-like theory for rational maps with
Herman rings and Siegel disks, by combining the work of [CT1] and [Z]
together with a surgery technique of Shishikura [Shi1].

• Covering properties of Thurston pullback maps.

Let f : Ĉ → Ĉ be a postcritically finite rational map with postcritical
set Pf . It induces a Thurston pullback map σf : TPf → TPf which has
a unique fixed point ~ = [id] ∈ TPf . For any τ ∈ TPf , the sequence(
σnf (τ)

)
n≥0

converges to ~ as n→ +∞.

We mention here a result about the covering properties of σf .

Theorem 3.2 (Buff-Epstein-Koch-Pilgrim,[BEKP]). (1) Assume f is
a polynomial of degree ≥ 2 whose critical points are all periodic.
Then σf (TPf ) is open and dense in TPf and σf : TPf → σf (TPf ) is
a covering map. In particular the derivative of σf at ~ is invertible.

(2) The rational map f(z) =
3z2

2z3 + 1
is postcritically finite. The asso-

ciated Thurston pullback map σf : TPf → TPf is a ramified covering
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whose group of deck transformations acts transitively on the fibers,
and the derivative of σf at ~ is not invertible.

(3) There are explicit postcritically finite polynomials and rational maps
f for which σf : TPf → TPf is constant. For example, this is the
case for the polynomial

f(z) = 2i

(
z2 − 1 + i

2

)2

.

4 Epstein’s transversality results

From now on, we assume that

• f : Ĉ→ Ĉ is a rational map

• X and Y are finite subsets of Ĉ containing at least three points with
Vf ⊆ Y and X ⊆ Y ∩ f−1Y ,

• either f is not a (2, 2, 2, 2)-map or X does not contain the entire post-
critical set Pf and

In Section 1.4, we used Thurston’s contraction principle, i.e., the injectivity
of the operator ∇f = id − f∗ acting on the space of meromorphic quadratic

differentials on Ĉ having at most simple poles, to show the smoothness of the
deformation space DefYX(f). In addition, let ~ stands for the basepoint in
DefYX(f) represented by the triple (id, id, f) as in (1.5). Then, the proof shows
that the cotangent space to DefYX(f) at ~ is canonically identified with the
quotient space Q(Y )/∇fQ(X).

Right after his Ph.D. thesis, Epstein observed that he could deduce corre-
sponding results for appropriate loci of maps with given multipliers, parabolic
degeneracies, and holomorphic indices, from the injectivity of ∇f on appropri-
ate spaces of meromorphic quadratic differentials with higher order poles. The
reader who is not a dynamicist is invited to focus on the statements related
to the multipliers, since we think those are the most easily accessible ones.

4.1 Formal invariants of a cycle

Let us recall the following classical definitions. A point x ∈ Ĉ is a periodic
point of f of period p if f◦p(x) = x for some least integer p ≥ 1. The multiplier
ρ of the cycle

〈x〉 =
{
x, f(x), . . . , f◦(p−1)(x)

}
is the eigenvalue of the derivative Dx(f◦p) : TxĈ→ TxĈ. The cycle is
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• superattracting if ρ = 0,

• attracting if 0 < |ρ| < 1,

• repelling if |ρ| > 1,

• irrationally indifferent if |ρ| = 1 and ρ is not root of unity, and

• parabolic if ρ is a root of unity.

The holomorphic index of f along 〈x〉 is the residue

ι = Resx
dζ

ζ − ζ ◦ f◦p

where ζ is a local coordinate at x. It is remarkable that this residue does not
depend on the choice of local coordinate ζ. If ρ 6= 1, then

ι =
1

1− ρ
.

When ρ = e2πir/s is a s-th root of unity, there are

• a unique integer m ≥ 1 called the parabolic multiplicity of f◦p at x

• a unique complex number β ∈ C called the résidu itératif of f at x and

• a (non unique) local coordinate ζ vanishing at x

such that the expression of f is

ζ 7→ ρζ

(
1 + ζms +

(
ms+ 1

2
− β

)
ζ2ms

)
+O(ζ2ms+2).

Such a coordinate ζ is called a preferred coordinate for f at x. The résidu
itératif β of f at x is related to the holomorphic index ι of f◦s at x by

ι =
ms+ 1

2
− β

s

(see for example Buff-Epstein, [BE]).
Let us now assume that x ∈ U is a periodic point of f of period p and

let 〈x〉 be the cycle containing x. The formal invariants of the cycle are by
definition the formal invariant of f◦p at any point of the cycle (they do not
depend on the point of the cycle).

4.2 Quadratic differentials with higher order poles

We shall say that two quadratic differentials q1 and q2 which are defined and
meromorphic in a neighborhood of a point z ∈ Ĉ represent the same divergence
at z if q1 − q2 has at most a simple pole z. We shall denote by Dz the vector
space of divergences [q]z at z.
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For (f,X, Y ) as above, let C ⊆ X be a union of cycles of f contained in
X. Denote by DC the direct sum

DC =
⊕
z∈C
Dz.

In other words, a divergence at z is a polar part of degree ≤ −2 of meromorphic
quadratic differentials at z.

We shall denote by Q̂C(X) (respectively Q̂C(Y )) the set of meromorphic

quadratic differentials on Ĉ which are holomorphic outside X (respectively Y )

and have at most simple poles outside C. Note that Q(X) ⊂ Q̂C(X) and

Q(Y ) ⊂ Q̂C(Y ) and moreover, we have the canonical identifications

Q̂C(X)/Q(X) ' Q̂C(Y )/Q(Y ) ' DC .

In addition, the linear operator ∇f descends to the quotient space (we keep
the notation ∇f for the induced map) and we have the following commutative
diagram with exact columns and rows: Thus, the following diagram commutes:

0

��

0

��
0 // Q(X)

∇f //

��

Q(Y ) //

��

Q(Y )/∇fQ(X)

K(f) // Q̂C(X)
∇f //

��

Q̂C(Y )

��
DC(f) // DC

∇f //

��

DC

��
0 0

where K(f) is the kernel of the linear map ∇f : Q̂C(X)→ Q̂C(Y ) and DC(f)
is the kernel of the linear map ∇f : DC → DC .

4.3 The Fatou-Shishikura inequality

According to the Snake Lemma, there is a linear map Hf : DC(f)→ Q(Y )/∇fQ(X)
such that the following sequence is exact:

0→ K(f)→ DC(f)
Hf→ Q(Y )/∇fQ(X).
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Adam Epstein then gave a complete description of DC(f). And, by analyz-
ing K(f), he proved that Hf is injective on a certain subspace of DC(f) (the
space D[C(f) defined below).

Proposition 4.1 (Epstein [E1]).

• The space DC(f) is computed cycle by cycle:

DC(f) =
⊕
〈x〉⊆C

D〈x〉(f).

Let x ∈ Ĉ be a periodic point of f of period p.

(1) The projection D〈x〉 → Dx restricts to an isomorphism D〈x〉(f)→ Dx(f◦p)
whose inverse is

/x : Dx(f◦p)
≈−→ D〈x〉(f), [q]x 7→

p−1⊕
k=0

[
f◦k∗ q

]
f◦k(x)

.

(2) If 〈x〉 is superattracting, then Dx(f◦p) = 0.

(3) If 〈x〉 is attracting, repelling or irrationally indifferent, then Dx(f◦p)

is the one-dimensional vector space spanned by

[
dζ2

ζ2

]
x

for any local

coordinate ζ vanishing at x.

(4) If 〈x〉 is parabolic with multiplier e2πir/s, parabolic multiplicity m and
résidu itératif β, then Dx(f◦p) is the direct sum of the m-dimensional
vector space Dmx (f◦p) spanned by[

dζ2

ζ2

]
x

, . . . ,

[
dζ2

ζsk+2

]
x

, . . . ,

[
dζ2

ζ(m−1)s+2

]
x

together with the one-dimensional vector space spanned by[
dζ2

(ζms+1 − βζ2ms+1)2

]
x

for any preferred coordinate ζ for f◦p at x.

Let us now introduce the subspace D[C(f) ⊆ DC(f) defined by

D[C(f) =
⊕
〈x〉⊆C

D[〈x〉(f)

with:

• D[〈x〉(f) = {0} if 〈x〉 is superattracting or repelling,

• D[〈x〉(f) = D〈x〉(f) if 〈x〉 is attracting or rationally indifferent or parabolic

with <(β) ≤ 0 and
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• D[〈x〉(f) = /x(Dmx (f◦p)) if 〈x〉 is parabolic with <(β) > 0.

Proposition 4.2 (Epstein [E1]). The restriction

Hf |D[C(f) : D[C(f)→ Q(Y )/∇fQ(X)

is injective.

As an immediate corollary, Epstein refined the Fatou-Shishikura inequality
on the number of non-repelling cycles of a rational map. The non refined
version is the following. The proof we present is due to Epstein.

Theorem 4.3 (Shishikura, [Shi1]). A rational map of degree d ≥ 2 has at
most 2d− 2 non-repelling cycles.

Proof. If f is a (2, 2, 2, 2)-map, then all the cycles are repelling. Otherwise,
let C0 be the union of superattracting cycles of f and let C be a union of
cycles of f which are non-repelling and non-superattracting. Let X ⊂ Ĉ be
the union of C0 ∪ C with, if necessary, a repelling cycle of f so that |X| ≥ 3.
Set Y = Vf ∪X.

#{〈x〉 ⊆ C, 〈x〉 non repelling}
≤

∑
〈x〉⊆C

dimD[〈x〉(f) since each cycle contributes ≥ 1 dimension

≤ dimD[C(f)

≤ dimQ(Y )/∇fQ(X) by Prop. 4.2

= dimQ(Y )− dim∇fQ(X)

= dimQ(Y )− dimQ(X) due to the injectivity of ∇f (Cor. 1.7)

= (#Y − 3)− (#X − 3) = #(Y −X) since X ⊆ Y
≤ #(Vf r C0).

Since each superattracting cycle contains at least one critical value of f , the
number of non repelling cycles contained in C0 ∪C is therefore bounded from
above by #Vf , which in turn is bounded from above by #Cf ≤ 2d− 2.

4.4 Transversality for multiplier loci

Now, recall that there is a natural map Φ : DefYX(f) → Ratd/Aut(Ĉ): if
(ψ, φ, g) is a triple representing a point τ ∈ DefYX(f) as in (1.5), then the
rational map g represents Φ(τ). If 〈x〉 is a cycle of f contained in X, then
its image φ〈x〉 = ψ〈x〉 is a cycle of g. Since the multiplier of a cycle is
invariant under holomorphic change of variables, in particular under Möbius
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conjugacy, the multiplier ρ〈x〉(τ) of this cycle only depends on τ , not on the
triple representing τ . This defines a multiplier function

ρ〈x〉 : DefYX(f)→ C.

Theorem 4.4 (Epstein [E2]). Assume f is a rational map of degree d ≥ 2
and 〈x〉 is a non-superattracting cycle of f . Let X and Y be finite subsets of

Ĉ containing at least three points such that 〈x〉 ⊆ X ⊆ Y ∩ f−1Y and Vf ⊆ Y .

Let ~ ∈ DefYX(f) be the point represented by the triple (id, id, f). Then the
logarithmic derivative D~ log ρ〈x〉 : T~DefYX(f)→ C is the cotangent vector

D~ log ρ〈x〉 = Hf ◦ /x
[

dζ2

ζ2

]
x

∈ Q(Y )/∇fQ(Y )

where ζ is any local coordinate vanishing at x.

Finally, let C be a collection of non-repelling, non-superattracting cycles of
f . For 〈x〉 ⊆ C, let V〈x〉 be the analytic subset of DefYX(f) defined by

V〈x〉 =
{
τ ∈ DefYX(f) | ρ〈x〉(τ) = ρ〈x〉(~)

}
.

The injectivity result of Epstein (Proposition 4.2) implies that the logarithmic
derivatives (D~ log ρ〈x〉, 〈x〉 ⊆ C) are linearly independent. In particular, we
have the following transversality result.

Proposition 4.5. Near ~ in DefYX(f), the loci (V〈x〉)〈x〉⊆C are smooth and

transverse complex submanifolds of DefYX(f).

The reader may be interested in transferring such a transversality result to
various spaces, such as the space Ratd, or the orbifold Ratd/Aut(Ĉ), or the
space of monic centered polynomials of degree d, or the space of rational maps
of degree d with marked critical points, and so on. . . To achieve this goal, one
can try to prove that there is an immersion from DefYX(f) to the considered
space or orbifold (in the latter case, one has to be cautious with such a notion
since one then has to define the tangent space to an orbifold). For an example
of how to proceed, one may consult [E2] where Epstein characterizes the cases

where Φ : DefYX(f)→ Ratd/Aut(Ĉ) is an immersion.
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