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Abstract. We survey known results about polynomial mating, and pose some
open problems.

The operation of polynomial mating is a procedure for producing a dynamical
system F : Σ → Σ on a topological 2-sphere from a pair of complex polynomial
dynamical systems P : C → C and Q : C → C. The concept was introduced by
Douady and Hubbard after computer investigations by Hubbard in 1982 showed
that the Julia sets of certain quadratic rational maps appeared to be closely related
to the Julia sets of certain pairs of quadratic polynomials [Hu2]. A picture of the
Julia set for the mating of the basilica and rabbit quadratic polynomials now adorns
the cover pages of the widely circulated IMS Stony Brook preprints. In this article,
we give precise definitions, discuss foundational issues, survey known results, pose
numerous specific open problems, and conclude with a (hopefully) comprehensive
bibliography to date.

We focus on the case of mating two polynomials. We remark, however, that there
are similar operations in two other closely related areas. A pair of Fuchsian groups
can be mated via Bers’ simultaneous uniformization theorem [Be]. Investigations of
the limiting behavior of such matings feature prominently in the work culminating
in the resolution of the Ending Lamination Conjecture for surface groups; see [Mi1]
for a gentle but non-up-to-date introduction to the subject, [BCM] for the recent
full resolution in the case of surface groups, and [Hu1] in this volume for more
details. There is also a related notion for mating a polynomial with a Fuchsian
group, surveyed in [Bu].

1. Notation and Definitions

1.1. Sets.

• R is the real line, R+ = (0,∞), R− = (−∞, 0).
• C is the complex plane, D := {z ∈ C | 1 > |z|}, U := {z ∈ C | 1 = |z|},
• S is the unit sphere in C× R ≈ R3,
• the upper hemisphere of S is H+ := S ∩ (C×R+), the lower hemisphere of

S is H− := S ∩ (C× R−), the equator of S is S ∩ (C× {0}).

1.2. Thurston maps. Let Σ be an oriented topological 2-sphere. An orientation-
preserving ramified self-covering map f : Σ→ Σ of degree d ≥ 2 is a Thurston map
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if it is postcritically finite, that is, all the points in the critical set Cf have finite
forward orbits, or equivalently, the postcritical set Pf is finite, where

Pf :=
⋃
n≥1

f◦n(Cf ).

Thurston [DH] gives necessary and sufficient homotopy-theoretic combinatorial con-
ditions for a Thurston map f to be conjugate-up-to-isotopy to a rational map. If
this condition fails, we say that f is obstructed.

1.3. Rational maps. Let F : P1 → P1 be a rational map of degree d ≥ 2. The
Julia set JF is the closure of the set of repelling cycles. The Fatou set FF is the
complement of the Julia set. The forward orbit of a point z ∈ P1 is

OF (z) := {F ◦n(z) | n ≥ 1}.

The rational map is

• hyperbolic if the orbit of every critical point is attracted by some attracting
cycle;
• subhyperbolic if all critical points are either preperiodic or converge to at-

tracting cycles;
• geometrically finite if the closure of its postcritical set meets the Julia set

in finitely many points;
• semihyperbolic if it has neither parabolic points nor recurrent critical points.

1.4. Polynomials. Let P : C → C be a monic polynomial of degree d ≥ 2. The
filled-in Julia set is

KP :=
{
z ∈ C | n 7→ P ◦n(z) is bounded

}
.

The Julia set JP is the boundary of KP . The Green’s function hP : C → [0,+∞)
is defined by

hP (z) := lim
n→+∞

1

dn
max

(
0, log |P ◦n(z)|

)
.

When KP is connected, we denote by bötP : C−D→ C−KP the (unique) Böttcher
coordinate which conjugates z 7→ zd to P and which is tangent to the identity at
infinity. The external ray of angle θ ∈ R/Z is

RP (θ) :=
{

bötP (re2πiθ) with r > 1
}
.

If KP is locally connected, the Böttcher coordinate extends to a continuous map

bötP : C− D → C−
◦
KP and we denote by γP : R/Z → JP the Carathéodory loop

defined as

γP (θ) := bötP (e2πiθ).

If KP is not locally connected, we may still define γP : Q/Z→ JP by

γP (θ) := lim
r→1+

bötP (re2πiθ).
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1.5. Formal mating. Let P : C → C and Q : C → C be two monic polynomials
of the same degree d ≥ 2. The formal mating of P and Q is the ramified covering
f = P ]Q : S→ S obtained as follows.

We identify the dynamical plane of P to the upper hemisphere H+ of S and the
dynamical plane of Q to the lower hemisphere H− of S via the gnomonic projections:

νP : C→ H+ and νQ : C→ H−

given by

νP (z) =
(z, 1)∥∥(z, 1)

∥∥ =
(z, 1)√
|z|2 + 1

and νQ(z) =
(z̄,−1)∥∥(z̄,−1)

∥∥ =
(z̄,−1)√
|z|2 + 1

.

The map νP ◦ P ◦ ν−1P defined on the upper hemisphere and νQ ◦ Q ◦ ν−1Q defined
in the lower hemisphere extend continuously to the equator of S by

(e2iπθ, 0) 7→ (e2iπdθ, 0).

The two maps fit together so as to yield a ramified covering map

P ]Q : S→ S

which is called the formal mating of P and Q.

1.6. Hausdorff and topological mating. Let us now consider the smallest equiv-
alence relation ∼ray on S such that for all θ ∈ R/Z,

• points in the closure of νP
(
RP (θ)

)
are in the same equivalence class, and

• points in the closure of νQ
(
RQ(θ)

)
are in the same equivalence class.

The equivalence relation ∼ray is closed if

{(x, y) ∈ S× S | x ∼ray y}

forms a closed subset of S × S. This is the case if and only if the quotient space
SP⊥⊥Q is Hausdorff. In this case, we say that P,Q are Hausdorff mateable.

Assume further now that each equivalence class is closed and connected but is
not the entire sphere. In this situation, a theorem of Moore asserts that SP⊥⊥Q is a
topological 2-sphere if and only if no equivalence class separates S in two or more
connected components. Further, when SP⊥⊥Q is a topological sphere, the quotient
map S→ SP⊥⊥Q induces isomorphisms of homology, and hence imposes a preferred
orientation on SP⊥⊥Q. We say the polynomials P and Q are topologically mateable
if SP⊥⊥Q is a topological 2-sphere. In that case, the formal mating P ] Q induces
a map

P ⊥⊥ Q : SP⊥⊥Q → SP⊥⊥Q

which is called the topological mating of P and Q. It can be shown that this map
is a ramified self-cover of SP⊥⊥Q.

1.7. Geometric mating. Assume P and Q are topologically mateable. Denote

by FP⊥⊥Q the image of
◦
KP ∪

◦
KQ in SP⊥⊥Q. When this open set is nonempty, it

carries a preferred complex structure induced by that on
◦
KP ∪

◦
KQ.
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A geometric mating is a quadruple (P,Q, φ, F ) such that the following diagram
commutes:

SP⊥⊥Q
φ //

P⊥⊥Q
��

P1

F

��
SP⊥⊥Q

φ // P1.

where

• P : C→ C and Q : C→ C are monic polynomials of same degree d ≥ 2,
• F : P1 → P1 is a rational map of degree d ≥ 2 and
• φ : SP⊥⊥Q → P1 is an orientation-preserving homeomorphism which is

conformal in FP⊥⊥Q.

We shall say that F is a geometric mating of P and Q and shall use the notation
F ∼= P ⊥⊥ Q.

2. Fundamental questions (Pilgrim-Tan Lei)

Let Polyd, ratd, topd denote the spaces of degree d monic polynomials, Möbius
conjugacy classes of rational maps, and topological conjugacy classes of branched
coverings of the sphere to itself, respectively; thus ratd ⊂ topd.

Mating may be viewed as a partially defined map

� : Polyd ×Polyd 99K topd.

It is natural to formulate several questions.

(1) (Domains) Determine when the pair (P,Q) is (a) Hausdorff, (b) topolog-
ically, (c) geometrically mateable. Identify obstructions to being mateable
in each sense.

(2) (Images) Given F , determine when F is the geometric mating of two
polynomials. Identify obstructions to being a geometric, topological, or
Hausdorff mating.

(3) (Fibers) Given F , determine those (P,Q) such that (P,Q, φ, F ) is a geo-
metric mating for some φ.

(4) (Multiplicities) Given (P,Q, F ), determine those φ for which (P,Q, φ, F )
is a geometric mating.

(5) (Continuity) Investigate the extent to which the convergence of (Pn, Qn)
to (P,Q) implies the convergence of Pn �Qn to P �Q.

In the following sections, we discuss the interesting facts that mating, viewed
as a map, is neither well-defined, surjective, injective, or continuous. We also pose
numerous open problems.

2.1. Domains. On the one hand, flexible Lattès examples provide counterexamples
to seemingly natural statements. The discussion in this paragraph is taken from
[Mi, Section B-5]. The external rays of the Mandelbrot set of angles 1/12 and 5/12
land at parameter values f1/12 and f5/12. Taking

P = f1/12, Q = f5/12 and F (z) = −1

2

(
z +

1

z

)
+
√

2,

it turns out that F ∼= P ⊥⊥ Q, and hence that G := F ◦F ∼= P ◦P ⊥⊥ Q◦Q. However,
G is a flexible Lattès example. It follows that there are uncountably many pairwise
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holomorphically nonconjugate maps Gt such that Gt ∼= P ◦ P ⊥⊥ Q ◦Q, and hence
that mating, viewed as a map, is not well-defined.

On the other hand, mating often behaves well. We organize our discussion
along vaguely historical lines, treating cases in which the dynamical regularity is
successively relaxed. We consider

(1) P,Q both postcritically finite
(2) P,Q both subhyperbolic
(3) P,Q both geometrically finite
(4) one or both of P,Q is geometrically infinite.

2.1.1. Postcritically finite case. The formal mating f := P ]Q is then a Thurston
map. It may occur that it has obstructions that are removable; in this case, one
considers a modified Thurston map f ′. Other obstructions we call nonremovable.

By using Thurston’s combinatorial characterization of rational functions, and
ideas of M. Rees, Tan Lei [T2] and Shishikura [Shi] showed the following result.

Theorem 1. Suppose d = 2, and suppose P (z) = z2 + cP , Q(z) = z2 + cQ are
postcritically finite. Then the following are equivalent.

(1) (P,Q) are geometrically mateable
(2) (P,Q) are topologically mateable
(3) cP , cQ do not lie in conjugate limbs of the Mandelbrot set.

That (2) ⇒ (3) is easy to see, since if (3) fails then there is a periodic ray-
equivalence class in the formal mating that separates the sphere. However, in degree
3, Shishikura and Tan [ST] gave an explicit example of a pair (P,Q) of postcritically
finite, hyperbolic polynomials which is topologically but not geometrically mateable
(see also [C]).

2.1.2. Subhyperbolic case. Given a polynomial P0, let QC(P0) ⊂ Polyd be the
space of polynomials P for which P0 and P are quasiconformally conjugate on a
neighborhood of their Julia sets. If P0 is e.g. hyperbolic, QC(P0) is the hyper-
bolic component containing P0, and QC(P0) admits a smooth model as a family
of Blaschke products. If now P0 and Q0 are e.g. two hyperbolic polynomials that
yield a rational map F as their geometric mating, the hyperbolic component of F in
ratd is essentially the product QC(P0)×QC(Q0). It follows that in this case mating
can be extended in a reasonable way over the pairs of (sub)hyperbolic parameters
corresponding to points in QC(P0)×QC(Q0). For example, taking P0 = Q0 = z2,
the spaces QC(P0),QC(Q0) are disks parameterized by the respective eigenvalues
λ, µ of the unique attracting fixed points, and the corresponding mating is, up to
conjugacy,

Fλ,µ(z) :=
z(z + λ)

µz + 1

which has a fixed point with multiplier λ at 0 and a fixed point with multiplier µ
at ∞.

2.1.3. Geometrically finite case. By letting (P,Q) tend to certain geometrically
finite parameters on the boundary of QC(P0)×QC(Q0), results of Häıssinsky and
Tan [HT] show that e.g. mating extends to quadratic polynomials with parabolic
cycles; their results hold actually for a slightly wider class of maps.
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2.1.4. Geometrically infinite case. Yampolsky and Zakeri [YZ] considered quadratic
polynomials with Siegel disks. They showed that if

Pλ(z) := λz + z2 and Qµ(z) := µz + z2

with λ = e2πiα, µ = e2πiβ , β 6= −α and α, β irrational numbers which satisfy the
Diophantine condition of bounded type, then Pλ and Qµ are geometrically mateable
with Fλ,µ ∼= Pλ ⊥⊥ Qµ. Zhang [Z] expanded this result to the case where α and β
are of Petersen-Zakeri type (log(an) ∈ O(

√
n) with an the entries of the continued

fraction); see Section 5 for related questions.
Blé and Valdez [BV] showed that for θ irrational of bounded type and c a real

parameter depending in a certain way on θ, the pair (z2 + c, e2πiθz+ z2) is geomet-
rically mateable.

A Yoccoz polynomial is one that has a connected Julia set, all cycles repelling,
and is not infinitely renormalizable. Luo [L] observed that the pair (z2 − 1, z2 + c)
should be geometrically mateable whenever z2 + c is Yoccoz and c does not lie in
the 1/2-limb of the Mandelbrot set. Aspenberg and Yampolsky [AY] implemented
Luo’s program.

If one or more of KP and KQ fail to be locally connected, it is difficult to give
a topological model for P �Q. Dudko [D] gives an intepretation of matings of the
form (z2 − 1) ⊥⊥ (z2 + c) for a large class of parameters c without assuming local
connectivity of the corresponding Julia set.

In the next section, we consider topological questions lying at the foundation of
mating.

2.2. Images. Not every map arises as a mating. The situation is best understood
when F is hyperbolic and postcritically finite. In this case the following is known.

(1) F is a mating of two (postcritically finite, hyperbolic) polynomials P and Q
if and only if F has an equator. This is an oriented Jordan curve γ ⊂ P1−PF
such that F−1(γ) is connected and, as an oriented curve, is homotopic in
P1 − PF to γ.

(2) The (bounded) Fatou components of P and Q survive under matings. If we
color these components of P say white, and the ones of Q black, then the
mating P ⊥⊥ Q maps each Fatou component to one of the same color. Since
in the hyperbolic case each critical point is contained in a Fatou component,
it follows that a necessary condition for F to be a mating is as follows. We
must be able to color half of the critical points of F white, the other half
black (counting multiplicities), such that the orbits of the white critical
points is disjoint from the orbits of the black critical points. This condition
is however not sufficient : the example considered by Tan Lei and Milnor
in [MT] is, according to Wittner [W], not a mating.

(3) Another necessary condition is as follows. There is a loop γ ⊂ P1 − PF ,
based at say b, such that for each n ∈ N, the monodromy induced by γ on
the set F−n(b) is transitive. To see this, take γ to be an equator; see [K,
Proposition 4.2]. This condition is again not sufficient.

It easily follows from (1) that a postcritically finite hyperbolic map with #PF = 3
is never a mating (unless it is conjugate to a polynomial, in which case it may be
viewed as the mating of this polynomial with zd).

For non-hyperbolic maps, we have the following striking result from [Me3].
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Theorem 2 (Meyer). Suppose F is a postcritically finite rational map without
periodic critical points, so that JF = P1. Then every sufficiently high iterate F ◦N

is the geometric mating of two postcritically finite polynomials without periodic
critical points.

The image of the equator under the ray-equivalence quotient map from the formal

mating to F ◦N gives a semiconjugacy from z 7→ zd
N

acting on the unit circle U to
F ◦N acting on P1, i.e. an F ◦N -invariant Peano curve; here d = deg(F ). Moreover,
the image is the limit of a Jordan curve passing through points of PF under a
so-called pseudo-isotopy. The following related question appears in [K, Remark
3.9].

Question 1. Is there a degree d critically finite rational map F such that (i) there
is a semiconjugacy from z 7→ zd on U to F : JF → JF , but (ii) this semiconjugacy
is not the limit of a pseudo-isotopy?

Mashanova and Timorin [MT] identify arcs Ft, t ∈ [0, 1] contained in the bound-
aries of hyperbolic components in the space of quadratic rational maps such that
Ft is a continuous family of geometric matings.

In higher degrees, Tan Lei [T1] shows that within the set of rational maps aris-
ing from Newton’s method applied to cubic polynomials, there is a large subset
comprised of matings.

2.3. Multiplicities. Let (P,Q, φ, F ) be a geometric mating. If (P,Q, ψ, F ) is an-
other geometric mating, then χ := φ ◦ψ−1 : P1 → P1 is a homeomorphism which is
conformal on the Fatou set FF and commutes with F . Conversely, if χ : P1 → P1

is such a homeomorphism, then (P,Q, χ ◦ φ, F ) is a geometric mating. If F is a
flexible Lattès example, the set of such χ is countably infinite. If F is geometrically
finite but not a flexible Lattès example, such a χ is a Möbius transformation, hence
there are at most #Aut(F ) ≤ 3d such χ.

If the polynomials P and Q are varied, the situation is a little more subtle. First,
if ωd−1 = 1, replacing (P,Q) by (Pω, Qω) with

Pω(z) := ω−1P (ωz) and Qω(z) := ωQ(ω−1z)

yields a canonical orientation-preserving homeomorphism (of order d− 1)

χω : SPω⊥⊥Qω → SP⊥⊥Q.

If they exist, the geometric matings (P,Q, φ, F ) and (Pω, Qω, φ◦χω, F ) will be con-
sidered to be equivalent. Next, exchanging the roles of two topologically mateable
polynomials P and Q yields a canonical orientation-preserving homeomorphism

χ : SQ⊥⊥P → SP⊥⊥Q.

If they exist, the geometric matings (P,Q, φ, F ) and (Q,P, φ ◦χ, F ) will be consid-
ered to be equivalent. A rational map F is a shared mating if there are at least two
inequivalent geometric matings (P1, Q1, φ1, F ) and (P2, Q2, φ2, F ).

The existence of shared matings was first observed by Wittner [W]. However, it
is becoming clear that shared matings are quite common (see [R4], [Me2], [Sha2]).

The mating number of a rational map F is the number of equivalence classes of
geometric matings (P,Q, φ, F ). If F is critically finite and hyperbolic, its mating
number is, by the above observations, at most 3d·N+ ·N− ·(d−1), where d = deg(F )
and N± are the number of affine conjugacy classes of critically finite hyperbolic
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Figure 1. A shared mating of two quadratic polynomials having
critical points of period 4 (pictures by I. Zidane). The rational
map has a period 2 cluster. It can be seen as a geometric mating
in 4 distinct ways. Here, we see two of them. Left: mating the left-
most real quadratic polynomial of period 4 with the co-kokopelli.
Right: mating the bi-basilica with the kokopelli.
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polynomials with the appropriate dynamics on their critical orbits; the factor of
(d − 1) accounts for the number of ways to glue together the dynamical planes of
P and Q. The flexible Lattès examples have infinite mating number.

Question 2. When is the mating number finite? When the mating number is finite,
is there a bound in terms of the degree and the number of postcritical points?

See Section 4 below for a more detailed discussion in the case of matings of
quadratic polynomials.

2.4. Continuity. Mating is not continuous. If

Pλ(z) := λz + z2 and Qµ(z) := µz + z2

with (λ, µ) ∈ D2 and µ 6= λ, then Pλ ⊥⊥ Qµ ∼= Fλ,µ where

Fλ,µ(z) :=
z(z + λ)

µz + 1

fixes 0 with multiplier λ and ∞ with multiplier µ. Let <(s) > 1/2, t > 0 and set

λ :=
1− s+ ti

1 + ti
and µ :=

1− s− ti
1− ti

.

For fixed s, we have λ, µ → 1 as t → ∞. However, it can be shown that there
exists a quadratic rational map Fs which has a fixed point of multiplier s/(s− 1/2)
such that Fλ,µ → Fs. So the limit of the matings can depend on the manner of
approach. This phenomenon is apparently widespread and can occur when mating
families of polynomials parameterized by multipliers of attracting cycles of higher
periods.

A. Epstein [Ep] has shown that other, much more subtle, types of discontinuities
exist. However, in all known quadratic examples, the sequences (Pn, Qn) leading
to discontinuity have the property that both Pn and Qn vary.

Question 3. Can mating be discontinuous within a slice? That is, do there exist
a polynomial P and polynomials Q,Qn, n ∈ N with Qn converging to Q such that
P ⊥⊥ Qn converges to F 6= P ⊥⊥ Q?

At places where mating is not defined, limits of matings need not exist. Let
P (z) = z2 − 1 and for Qr(z) = rz + z2. The pair (P,Q−1) is not topologically
mateable; the period 2 external rays of angles 1/3, 2/3 glue together to form a ray
equivalence class separating the sphere. So the point (P,Q−1) is not in the domain
of mating. If −1 < r ≤ 0, however, then

Fr(z) = (z + 1)
z − (1 + r)

rz + (1 + r)
∼= P ⊥⊥ Qr.

A simple calculation shows that as r ↘ −1, the multiplier of Fr at a fixed-point
tends to infinity, and so Fr →∞ in rat2. An intuitive explanation is related to the
nonexistence of the mating of P and Q−1. For −1 < r ≤ 0, there is a pair of arcs
joining infinity to a common fixed-point of Fr separating the Julia set of Fr; they
are interchanged with rotation number 1/2. As the multiplier r of Fr at infinity
tends to −1, in order for a limit to exist, this pair of arcs must collapse to a point.
See e.g. [T3], [P], and the references therein.
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Figure 2. Mating of f1/255 with itself, found using the Medusa algorithm

2.5. Computations. Algebraic and numerical methods for finding solutions to
the systems of polynomial equations associated to a geometric mating F will be
effective only in the most simple cases; they will never, for example, locate the
mating associated with two quadratic polynomials for which the critical points are
periodic of period, say, eight.

In contrast, an implementation of Thurston’s iterative algorithm is sometimes
possible and can be used to find matings. Early versions were apparently used by
Wittner and Shishikura. Hruska Boyd [Hr] and Bartholdi have carried this out as
well (see Figure 2).

Another method, slow mating, gives a continuous interpolation of the discrete
orbits in Thurston’s algorithm (see Section 12 below).

3. Topological matings (Epstein-Meyer)

3.1. The structure of ray-equivalence classes. The proof that postcritically
finite quadratic polynomials are mateable if and only if they do not belong to conju-
gate limbs of the Mandelbrot set relies on Thurston’s classification of postcritically
finite branched covering of the sphere.

Question 4. Is it possible to give a proof without appealing to Thurston’s theo-
rem, but rather by studying the ray-equivalence classes and showing they satisfy the
hypothesis of Moore’s theorem?
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Such an approach would require understanding the structure of ray-equivalence
classes. If an equivalence class for ∼ray contains a loop, the quotient space SP⊥⊥Q
is not a 2-sphere. Thus we assume for now that no ray-equivalence class contains
loops, whence each ray-equivalence class is a tree. There are examples where the
first return to a periodic ray class acts by a combinatorial rotation which is not the
identity. Sharland [Sha1] proved that if the mating of two hyperbolic polynomials is
not obstructed, each periodic ray class contains at most one periodic branch point
with non-zero combinatorial rotation number.

Question 5. What do ray-equivalence classes look like? What do the periodic ones
look like? How does the first return map to such a class act?

If the ray-equivalence is not closed, we say that the mating is Hausdorff-obstructed.

Question 6. Are there Hausdorff-obstructions to matings?

Of course the above question can be asked in various settings. For example the
answer (and/or the proof) might depend on whether the involved polynomials are
postcritically finite or not. Furthermore the answer might depend on the degree.
This seems unlikely, though a proof might be much easier in the quadratic case.

Let ' be the equivalence relation on R/Z induced by the Carathéodory loops
γ1, γ2, that is, the smallest equivalence relation satisfying

s ' t if γ1(s) = γ1(t) or γ2(s) = γ2(t) or γ1(s) = γ2(−t).
Note that ' is closed if and only if ∼ray is closed.

Question 7. If the equivalence classes of ' are uniformly bounded in size, must
' be closed?

3.2. Long ray connections. Given an injective path contained in a ray-equivalence
class, we may ask how often it crosses the equator. The diameter of a ray-
equivalence class is the supremum over all such paths; a priori this quantity may be
infinite. It is not difficult to show that if the ray-equivalence classes have uniformly
bounded diameter then the ray-equivalence relation is closed. On the other hand,
an infinite ray-equivalence class which is closed must separate, in which case the
quotient space cannot be a 2-sphere (see [MP]).

Question 8. Are there matings for which there are ray-equivalence classes with
infinite diameter? Are there matings for which each ray-equivalence class has finite
diameter, but such that the diameter of all equivalence classes is unbounded? If not,
are there effective bounds on the diameter of the ray-equivalence classes?

In [Me1, Theorem 6.1] it is shown that for all matings which arise in a certain way,
the diameter of ray-equivalence classes is indeed uniformly bounded. The diameter
of a rational ray-equivalence class is always finite: indeed, the rays landing at a
given (pre)periodic point are rational numbers of the same denominator.

Question 9. In matings of given degree, what is the maximum diameter for ray-
equivalence classes of angles of given period? Is this quantity unbounded as the
period tends to infinity?

For a given angle θ, consider the set Xθ of parameters c in the Mandelbrot set
such that, for z 7→ z2 + c, the rays of angle θ and some ϑ 6= θ land at the same
point. For an odd-denominator rational θ, the set Xθ is a nonempty finite union of
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compact connected sets, the intersection of M with appropriate wakes associated
to the various partners ϑ. For even-denominator rational θ, the set Xθ admits a
similar, but somewhat more complicated description. Nothing seems to be known
in the irrational case.

Question 10. Is Xθ always nonempty? Can there be infinitely many components?

Question 11. Are there irrational angles which never participate in ray-equivalence
classes of infinite diameter?

Question 12. Is there a combinatorially sensible place to expect to find long ray-
chains? For example, given a ray-chain of some period, can we find longer ray-
chains, of some higher period, which suitably shadows the connection? If we do this
with enough care, can we extract an infinite limit?

3.3. Mating and tuning. It was shown by Pilgrim that for hyperbolic quadratic
(more generally, bicritical) rational maps with two attracting cycles, neither of
which is fixed, the Fatou components are Jordan domains. One expects the inter-
section between any two Fatou component boundaries to be small - perhaps finite,
perhaps involving specific internal angles - thereby leaving little opportunity for
connections between the small Julia sets of tunings. Since mating suitably com-
mutes with tuning when both operations are defined, this heuristic suggests that
renormalizable maps are unlikely to furnish long(er) ray-chains.

Question 13. For quadratic rational maps with two superattracting cycles, what
are the possibilities for intersections of boundaries of immediate basins? Whatever
the situation is, can the result be recovered for matings, using only ray combinatorics
of polynomials? Can Pilgrim’s result be recovered?

Question 14. For a hyperbolic quadratic polynomial, consider the Cantor set of
rays landing on the boundary of the union of the immediate attracting basins. What
can be said about the intersection of two such Cantor sets?

4. Quadratic rational maps (Rees)

Let F : P1 → P1 be a hyperbolic rational map of degree 2. Let Ω1 and Ω2 be
the (possibly equal) connected components of the Fatou set FF which contain the
critical points of F . According to [R2], the rational map is of

type I if Ω1 = Ω2; in that case FF = Ω1 = Ω2 and JF is a Cantor set.
type II if Ω1 6= Ω2 belong to the same periodic cycle of Fatou components.

type III if Ω1 belongs to a cycle of Fatou component and Ω2 is strictly preperiodic
to this cycle, or vice-versa.

type IV if Ω1 and Ω2 belong to distinct cycles of Fatou components.

The notion of Wittner flips and captures arises in [W] and have been studied
further by Rees [R3] and Exall [Ex]. The notion of period 1 and period 2 clusters
arises in Sharland’s thesis [Sha1].

4.1. The overcount of matings. Every geometric mating of critically periodic
quadratic polynomials which is a rational map is the centre of a type IV hyperbolic
component. The rational maps in such a hyperbolic component have two disjoint
periodic orbits of attractive fixed points, of some periods m and n. It is possible
to count the number of such hyperbolic components [KR]. It is also possible to
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Figure 3. Example by Stuart Price. The largest known diameter
of a ray-equivalence class for the mating of two postcritically finite
quadratic polynomials has length 12: mating the rabbit polynomial
with a real quadratic polynomial for which the critical point is
periodic of period 22.
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count the number of matings of critically periodic polynomials P (z) = z2 + c1 and
Q(z) = z2 + c2 such that 0 is of period m under P and of period n under Q.

Surprisingly, the number of matings exceeds the number of hyperbolic compo-
nents for all n ≥ 5 and sufficiently large m. In fact there is an excess even if one
discounts the shared matings arising from the Wittner flip, those arising from period
one clusters, when a mating with a starlike polynomial can be realised in another
way, and a slight generalisation of this: those arising from a period two cluster
when a mating with a critically periodic polynomial for which the periodic Fatou
components accumulate on a period two repelling orbit can be realised in three
other ways (see Figure 1). It was, in fact, the overcount which led to the discovery
of the shared matings arising from period two clusters and removed the overcount
in the case of n = 4. There must be many more shared matings to account for the
overcount for all n ≥ 5.

Question 15. Can one give a simple description of more shared matings?

Here is a brief description of the numerics. We write η′IV(m,n) of type IV
hyperbolic components with disjoint orbits of attractive periodic points of periods
≥ 3 and dividing n and m. For an integer q > 0, let ϕ(q) be the number of integers
between 0 and q which are coprime to q (the usual Euler phi-function). Let νq(n)
be the number of minor leaves of period dividing n in a limb of period q, that is,

νq(n) =

⌊
2n−1

2q − 1

⌋
if q - n and

⌊
2n−1

2q − 1

⌋
+ 1 if q|n.

Then η′IV(m,n) is 7

18
(2n−1 − 1)− 1

4

∑
3≤q≤n

ϕ(q)νq(n)

2q − 1

 · 2m + o(2m) if n is odd, and

7

9
(2n−2 − 1)− 1

4

∑
3≤q≤n

ϕ(q)νq(n)

2q − 1

 · 2m + o(2m) if n is even.

Meanwhile the number of critically periodic matings with critical points of periods
≥ 3, and dividing m and n respectively is4

9
(2n−1 − 1)− 1

2

∑
3≤q≤n

ϕ(q)νq(n)

2q − 1

 · 2m + o(2m) if n is odd, and

8

9
(2n−2 − 1)− 1

2

∑
3≤q≤n

ϕ(q)νq(n)

2q − 1

 · 2m + o(2m) if n is even.

The shared matings coming from the Wittner flip and period two clusters reduce
this by, respectively,

(n− 2)ϕ(n)

2(2n − 1)
· 2m + o(2m) and

2nϕ(n/2)

2n − 1
· 2m + o(2m).



QUESTIONS ABOUT POLYNOMIAL MATINGS 15

So, let θ(n,m) is the number of matings, discounting known sharings. Then,
η′IV(n,m)− θ(n,m) is (n− 2)ϕ(n)

2(2n − 1)
− 1

18
(2n−1 − 1) +

1

4

∑
3≤q≤n

ϕ(q)νq(n)

2q − 1

 2m + o(2m)

if n is odd and (n− 2)ϕ(n)

2(2n − 1)
+

2nϕ(n/2)

2n − 1
− 1

9
(2n−2 − 1) +

1

4

∑
3≤q≤n

ϕ(q)νq(n)

2q − 1

 · 2m + o(2m)

if n is even. For n = 3, 4 and 5 this is respectively

1

21
· 2m + o(2m),

6

35
· 2m + o(2m), − 156

1085
· 2m + o(2m)

But for n ≥ 6

η′IV(n,m)− θ(n,m) ≤ −

 1

18
− 1

4

∑
3≤q≤n

q − 1

(2q − 1)2

 · 2m+n−1

+

1

9
+

1

8

∑
3≤q≤n

q − 1

2q − 1
+

(n− 2)(3n− 1)

2(2n − 1)

 · 2m
<

(
1− 1

27
· 2n−1

)
· 2m < 0.

4.2. Type II components and adjacent type IV components.

Question 16. Are there type II hyperbolic components of quadratic rational maps
whose centers are not periodic Wittner captures?

Question 17. Is there a postcritically finite quadratic rational map with Fatou
components in a single periodic orbit of clusters, which is not a geometric mating?

The second question is slightly weaker than the first, and can be considered
without understanding the definition of periodic Wittner capture. If n ≥ 3, the
boundary of a type II hyperbolic component, with periodic Fatou component of
period n, intersects the boundaries of at most three, and at least two, type IV
hyperbolic components, with periodic Fatou components in two orbits of period n.
If there are less than three, then the original hyperbolic component is unbounded.
In all the known examples, all the type IV maps arising in this way are Thurston
equivalent to matings. Are there any which are not? The representation as a mating
is not usually unique, if it does exist, which, of course, raises other questions.

Any missing boundary points are certainly represented by inadmissible matings.
If at least one of these boundary rational maps is equivalent to a mating, even an
admissible mating, then the centre of the hyperbolic component is equivalent to a
periodic Wittner capture.

For any type II hyperbolic component of quadratic rational maps with Fatou
comoponent of period n ≥ 3, and any q ≥ 2, there are 6(2q−1−1) type IV hyperbolic
components with periodic Fatou components of periods n and nq1, for q1 > 1
dividing q, such that the closures of the type II and type IV components intersect.
The intersection contains a rational map with one critical point of period n and
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an orbit of parabolic basins of period dividing nq. Much of this is proved in [R2],
although there is no count there; and the count given here does need checking.

Question 18. How many of the centers of these type IV hyperbolic components
can be represented as matings?

Such examples may occur even for n = 3 and q = 2, but this has not been
checked properly. There are two type II components of period 3, and hence there
are twelve type IV hyperbolic components to consider for n = 3 and q = 2. Of
these, ten are represented by matings, eight of them in a unique way and two in two
different ways. The last two of the twelve appear not to be represented by matings.
This situation is probably reproduced for n = 3 and any q > 2, but, again, this has
not been checked properly.

5. Quadratic polynomials with irrationally indifferent fixed points
(Buff-Koch)

There is a parallel between mating and constructions in the theory of hyperbolic
3-manifolds. One may view mating as a combination procedure. At a formal
level, one can sometimes combine Kleinian groups G1, G2 via so-called Klein-Maskit
combinations into a larger group G := 〈G1, G2〉. In contrast, under mating, the
dynamics of P,Q typically does not faithfully embed in an even topological way
into that of P ⊥⊥ Q. An exception is mating Blaschke products. For example, the
problem of realizing (λz+z2) ⊥⊥ (µz+z2) when |λ| = |µ| = 1 is formally analogous
to the difficult problem of establishing Thurston’s so-called Double Limit Theorem
(see [Hu1] for more details).

More precisely, let α and β be two irrational numbers with β 6= −α. Set

P (z) := λz + z2 and Q(z) := µz + z2 with λ := e2πiα and µ := e2πiβ .

Both polynomials fix 0. The respective multipliers are λ and µ. Let F be the
rational map defined by

F (z) :=
z(z + λ)

µz + 1

which fixes 0 with multiplier λ and ∞ with multiplier µ.

Question 19. To which extent can F be seen as a mating of P and Q?

The following question is due to Milnor [Mi].

Question 20. If JP and JQ are locally connected, then are P and Q topologically
mateable, and do we have F ∼= P ⊥⊥ Q?

As already mentioned, Yampolsky and Zakeri [YZ] proved that F ∼= P ⊥⊥ Q
when α and β are of bounded type. Zhang [Z] expanded this result to the case
where α and β are of Petersen-Zakeri type.

When at least one of the Julia sets is not locally connected, we can still expect
to see the dynamics of P and Q reflected in that of F . We propose the following
questions.
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Question 21. Are there continuous surjective maps φ : JP → JF , ψ : JQ → JF
such that the following three diagrams commute?

JP
P //

φ

��

JP
φ

��
JF

F
// JF

JQ
Q //

ψ

��

JQ

ψ

��
JF

F
// JF

Q/Z θ 7→ −θ //

γP

��

Q/Z

γQ

��
JP

φ ""

JP

ψ||
JF

It is known that if P has a Siegel disk around 0 (this occurs if and only if α is a
Brjuno number), then F has a Siegel disk around 0. One may wonder whether the
converse holds.

Question 22. Is there a local conjugacy between the dynamics of P near 0 and the
dynamics of F near 0? If it exists, what is its regularity? For example, if F has a
Siegel disk around 0, does P have a Siegel disk around 0?

It is conjectured that if P has a Siegel disk around 0, then its boundary is a
Jordan curve.

Question 23. Assume P has a Siegel disk ∆ around 0 so that F has a Siegel disk
D around 0. Are ∆ and D homeomorphic? Does the boundary of ∆ contain the
critical point of P if and only if the boundary of D contains a critical point of F?

It follows from the Fatou-Shishikura Inequality that the two critical orbits of
F are disjoint. In addition, if F has a Siegel disk around 0 the boundary of the
Siegel disk is contained in the closure of at least one critical orbit. Otherwise 0 is
contained in the closure of at least one critical orbit.

Question 24. Are the closures of the two critical orbits of F disjoint? In particular,
if F has two Siegel disks D0 and D∞ around 0 and ∞, do we have D0 ∩D∞ = ∅?

Lastly, we wish to understand the dynamics of a point randomly chosen with
respect to the Lebesgue measure. For each critical point c of F we set

Bc :=
{
z ∈ P1 | dist(F ◦n(z),OF (c)) −→

n→∞
0
}
.

Question 25. Assume JP and JQ have positive Lebesgue measure. Does F fail to
be ergodic with respect to the Lebesgue measure? More precisely, if c1 and c2 are
the critical points of F , are Bc1 and Bc2 disjoint and do they have positive Lebesgue
measure?
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6. Twisted matings of quadratic polynomials (Buff-Koch)

Let P be a monic polynomial of degree d ≥ 2. Then for any integer k ≥ 1, and
any α = dk − 1 root of unity the polynomial

P kα := z 7→ α · P ◦k(z/α)

is monic with JPkα = α · JP .

Question 26. Given two quadratic polynomials P and Q, and an integer k ≥ 1,
for which (α, β) are P kα and Qkβ mateable?

If P (z) = z2 + c1 and Q(z) = z2 + c2 are postcritically finite, and k = 1, the
answer is well-known: P and Q are mateable if and only if c1 and c2 do not belong
to conjugate limbs of the Mandelbrot set, ([T2], [R1], [R3], [Shi]). It follows from
this result that if P (z) = z2 + c1 and Q(z) = z2 + c2 are two postcritically finite
polynomials for which c1 and c2 are in conjugate limbs, then for all k ≥ 2, and
α = β, then P kα and Qkβ are not mateable.

In the case of P (z) = Q(z) = z2−1, as long as k ≥ 2 and α 6= β, the polynomials
P kα and Qkβ are mateable, see [BEK].

Figure 4. Twisted matings of the basilica, P = Q : z 7→ z2 − 1.
Left: a geometric mating of P 2

1 and Q2
α with α = exp(−2πi/3).

Right: a geometric mating of P 4
1 and Q4

β with β = exp(−2πi/5).

7. Slow matings (Buff-Koch-Meyer)

7.1. Equipotential gluing. Let P and Q be two monic polynomials with con-
nected Julia sets. Let hP : C → [0,+∞) and hQ : C → [0,+∞) be the associated
Green functions. Given η > 0, let UP (η) and UQ(η) be defined by

UP (η) := {z ∈ C | hP (z) < η} and UQ(η) := {w ∈ C | hQ(w) < η}.

Let Ση be the Riemann sphere obtained by identifying

bötP (z) ∈ UP (η) and bötQ(w) ∈ UQ(η) when zw = exp(η).

The restrictions P : UP (η)→ UP (2η) and Q : UQ(η)→ UQ(2η) induce a holomor-
phic map fη : Ση → Σ2η. We wish to know whether the family fη has a limit as



QUESTIONS ABOUT POLYNOMIAL MATINGS 19

η → 0+. For this, we need to normalize the family fη. Choose x ∈ KP and y ∈ KQ.
For η > 0 let φη : Ση → P1 be the conformal isomorphism satisfying

φη(x) = 0, φη(y) =∞ and φη(exp(η/2)) = 1.

The map

Fη := φ2η ◦ fη ◦ φ−1η : P1 → P1

is a rational map.

Question 27. For which polynomials P and Q, and which points x and y does the
family of rational maps Fη converge uniformly on P1 to a rational map F?

Question 28. Assume KP and KQ are locally connected, and Fη → F as η → 0+.
Are P and Q mateable, and is it true that F is a geometric mating of P and Q?

7.2. Holomorphic motions. The strong form of Moore’s theorem says that the
semi-conjugacy from the formal mating to the topological mating can be obtained
as the end of a pseudo-isotopy, i.e., each ray-equivalence class can be continuously
deformed to a point. Is it possible to do this deformation “in a nice way”? If so,
what can be said about this deformation? Particularly nice would be to do the
“ray-shrinking deformation” in a holomorphic motion.

Consider the sphere S divided by the equator in two hemispheres. Each hemi-
sphere is (conformally equivalent to) a unit disk. Draw the laminations from the
two polynomials P and Q whose mating we consider into each hemisphere (more
precisely map the laminations of the unit disk into each hemisphere). Consider
now a gap (i.e. a component of the complement) of one lamination. Assume for
simplicity that it is an ideal triangle. We can think of this gap as consisting con-
formally of three half-strips that are glued together at the center of the gap. Into
each half-strip we put a Beltrami-field of very long, thin, ellipses in the direction
of the strip. When solving the Beltrami-equation these ellipses will be deformed to
be round, causing everything in the strip to be “pulled together”.

Formally note that the map x + iy 7→ 1
Kx + iy is a solution of the Beltrami

equation with µ = 1−K
1+K . Copy this Beltrami fields into each of the three half-strips

of the gap. More precisely we map the half-strip [0,∞)× [0, 1] conformally to “one
third” of the gap and use the conformal map to transfer the Beltrami-field.

Similarly if the gap is an ideal n-gon we divide it into n conformal half-strips
and copy the Beltrami-field as above into each half-strip.

Now we can vary the construction above by setting µ on [0,∞) × [0, 1] to be
constant to another number z0 ∈ D. The solution of the resulting Beltrami-equation
yields a holomorphic motion.

Question 29. Consider first the solutions obtained from setting µ = (1−K)/(1+K)
as in the first paragraph. Does the solution for large real K tend to the pseudo-
isotopy from Moore’s theorem? More precisely: show that the solution hK (of the
Beltrami equation) converges for large K to a continuous map h∞. Show that
preimages of h∞ are precisely the equivalence classes of the ray-equivalence relation.

If the above indeed can be carried out one would get a very natural, as well as
powerful, description of the mating.

These holomorphic motions would be natural candidates for extremal examples
for Brennan’s conjecture a deep conjecture from the theory of conformal maps.
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8. Miscellany (Meyer)

8.1. Semi-conjugacies. A mating induces a semi-conjugacy between the multi-
plication by d acting on R/Z and the rational map F acting on JF , i.e., there is
a continuous, surjective map γ : R/Z → JF such that γ(d · θ) = F ◦ γ(θ) for all
z ∈ R/Z.

There is a parallel in the theory of hyperbolic 3-manifolds. Suppose S is a closed
surface and ρ : π1(S) → PSL2(C) is a discrete faithful representation with image
a Kleinian group G. By [Mj1, Thm. 5.14] (see also [Mj2]), there is an associated
semiconjugacy U → P1 from the action of π1(S) on the boundary of its Cayley
graph to the action of G on its limit set. Called the Cannon-Thurston map, it is
the analog of the Carathéodory loop; see also the main result of [CT] for the case of
3-manifolds fibering over the circle. This result establishes the fact that the limit
sets arising are always locally connected, contrasting with our present setting of
polynomials.

In the case when F is postcritically finite and JF = P1, there often is also a
semi-conjugacy between the multiplication by −d acting on R/Z and the rational
map F acting on P1. Indeed every sufficiently high iterate Fn is a mating of two
postcritically finite polynomials without periodic critical points (see [Me1], [Me2]).
This phenomenon seems to be as common as the standard semi-conjugacies (which
are associated with matings). One may speculate that there is some other type of
mating from which this phenomenon arises. This should be related to orientation
reversing equators of the kind one encounters for the map U 3 z 7→ z−2 ∈ U.

Question 30. Give a proper definition of the “matings” that occur as above.

8.2. Hausdorff dimension.

Question 31. Assume F is the geometric mating of postcritically finite polynomials
P and Q. Is there a relation between the Hausdorff dimension of the Julia sets JP ,
JQ and JF ? For example is it true that max(Hdim JP ,Hdim JQ) ≤ Hdim JF ?

Of course the question could also be asked in other settings, i.e., when P,Q are
not postcritically finite. Then however the answers is no, as the following example
shows. The mating of two complex conjugate perturbations of z2 (whose Julia sets
have Hausdorff dimension greater than 1) is a Blaschke product (whose Julia set
has Hausdorff dimension 1).
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