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Abstract. To study the geometry of a Fibonacci map f of even degree ` ≥ 4,
Lyubich [Ly2] defined a notion of generalized renormalization, so that f is
renormalizable infinitely many times. Van Strien and Nowicki [SN] proved
that the generalized renormalizations R◦n(f) converge to a cycle {f1, f2} of
order 2 depending only on `. We will explicitly relate f1 and f2 and show
the convergence in shape of Fibonacci puzzle pieces to the Julia set of an
appropriate polynomial-like map.
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1. Introduction.

In this article, our goal is to study the geometry of real Fibonacci maps of
degree ` ≥ 4. The importance of Fibonacci maps has been emphasized by Hofbauer
and Keller [HK] for unimodal maps and by Branner and Hubbard [BH] for cubic
polynomials. In [LM], Lyubich and Milnor studied the restriction to the real axis
of a quadratic Fibonacci polynomial, and this study was enlarged to the complex
plane by Lyubich in [Ly2] and [Ly3]. Existence of real Fibonacci polynomials of
the form z 7→ z` + c was obtained by Hofbauer and Keller for any even integer
` ≥ 2, and follows from a combinatorial argument due to Milnor and Thurston
[MT]. However, Lyubich and Milnor [LM] observed that the geometry of Fibonacci
maps was different for degree ` = 2 and for degrees ` ≥ 4.

Fibonacci maps of degree ` ≥ 4 have since been studied by van Strien and Nowicki
in [SN] where they obtained new results using renormalization techniques. We
would like to use results by H. Epstein [E1] [E2] on fixed points of renormalization
to improve the results obtained by van Strien and Nowicki.

In his survey [Ly4], Lyubich describes renormalization in the following way: the
notion of renormalization of a dynamical system f consists in taking a small piece of
the dynamical space, considering the first return map to this piece, and then rescale
it to the “original” size. The new dynamical system is called the renormalization
R(f) of the original one. Depending on the way one chooses the small piece, and the
way one defines the first return map, one gets several definitions of renormalization.

We will show that the study of the geometry of real Fibonacci maps of degree
` ≥ 4 is similar to the study of the geometry of Feigenbaum maps. For this purpose,
we will show that one can make a parallel approach between two notions of renor-
malization that have been developped during the last two decades in holomorphic
dynamics.

The first notion of renormalization was introduced in 1976 by Feigenbaum [F1]
[F2], and independently Coullet & Tresser [CT] for real dynamical systems and
more precisely for unimodal maps. To explain a universality phenomenon, they de-
fined a renormalization operator R that acts on an appropriate space of dynamical
systems, and conjectured that R had a unique fixed point f . Lanford [La] gave a
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computer-assisted proof of this conjecture. Later, Epstein [E1] [E2] gave a proof
of the existence of a renormalization fixed point that does not require computers.
However, his proof does not give uniqueness of the fixed point. This fixed point
satisfies a functional equation known as the Cvitanović-Feigenbaum equation:

f(z) = − 1
α

f ◦ f(αz),

for some α ∈]0, 1[. In 1985, the generalization to holomorphic dynamics via polynomial-
like mappings, was introduced by Douady and Hubbard [DH]. The “classical renor-
malization theory” has been extensively studied (see Collet and Eckmann and Lan-
ford [CE], [CEL] and [La], Cvitanović [Cv], Eckmann and Wittwer [EW], Vul, Sinai
and Khanin [VSK], Epstein [E1] and [E2], Sullivan [S], de Melo and van Strien
[dMvS], McMullen [McM1] and [McM2], Lyubich [Ly3], [Ly4], [Ly5] and [Ly6]).
For a historical account, the reader is invited to consult [T] or [Ly5].

Lyubich generalized the notion of renormalization for polynomial-like mappings,
to a wider class of maps, that we will call L-maps. This allowed him to apply the
renormalization ideas to “non-renormalizable” maps as well. Lyubich and Milnor
[LM] showed that this generalization could be applied to the study of Fibonacci
maps. Let us define a Fibonnaci map as a branch covering f : U0 ∪U1 → V , such
that

• U0, U1 and V are topological open disks satisfying U i ⊂ V , i = 1, 2 and
U0 ∩ U1 = ∅;

• f has a unique critical point ω ∈ U0:
• the orbit of the critical point satisfies some combinatorics that will be de-

fined in section 4.

Fibonacci maps are not renormalizable in the classical sense. However, it has been
the idea of Lyubich that one could define a generalized renormalization operator
R, sending the space of Fibonacci maps into itself. Hence, given a Fibonacci map
f , one can define an infinite sequence of generalized renormalizations R◦n(f). In
[SN], van Strien and Nowicki proved that if the degree ` of the critical point ω

is larger than 2, and if the map f is real (i.e., f(z̄) = f(z)), then this sequence
converge to a cycle {f1, f2} of order 2, where f1 and f2 are two Fibonacci maps of
degree `. In [Ly4], Lyubich writes: “the combinatorial difference between f1 and
f2 is that the restrictions of these maps on the corresponding non-critical puzzle
pieces have opposite orientation”. We will prove that in fact f1 and f2 are related
in the following way.

Theorem A. For every even integer ` ≥ 4, let fi : U0
i ∪ U1

i → Vi, i = 1, 2, be the
two real Fibonacci maps of degree `, normalized so that ωi = 0 and fi(ωi) = 1, and
satisfying R(f1) = f2 and R(f2) = f1. Then, there exists a neighborhood U of 0
and a neighborhood U ′ of 1 such that

• f1|U∩U0
1

= f2|U∩U0
2
, and

• f1|U ′∩U1
1

= −f2|U ′∩U1
2
.

The main ingredient in our proof is a flipping operator that does not preserve
the dynamics of the maps, but has the nice property of sending the space of real
Fibonacci maps of degree ` into itself.
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Figure 1. The polynomial-like maps fα : Wα → fα(Wα) and
fα2 : Wα2 → fα2(Wα2) corresponding to a degree ` = 6 and their
Julia sets J(fα) and J(fα2).

We will then show that the restriction f of f1 to U0
1 satisfies a system of equations,

that we will call the Cvitanović-Fibonacci equation:




f(z) = −1/α2f(αf(αz)), 0 < α < 1,
f(0) = 1 and
f(z) = F (z`), with F ′(0) 6= 0 and ` ≥ 4 even.

We will first study the geometry of the solutions of the Cvitanović-Fibonacci
equation, and we will prove the following theorem.

Theorem B. For every even integer ` ≥ 4, let f be the solution of the Cvitanović-
Fibonacci equation in degree `, and set fα(z) = f(αz) and fα2(z) = f(α2z).

Then, there exist domains Wα ⊂ C and Wα2 ⊂ C containing 0 such that
fα : Wα → fα(Wα) and fα2 : Wα2 → fα2(Wα2) are polynomial-like mappings
of degree `. Besides, fα : Wα → fα(Wα) has an attracting cycle of order 2 and
fα2 : Wα2 → fα2(Wα2) has an attracting fixed point. In particular, the Julia set
J(fα) is quasi-conformally homeomorphic to the Julia set J(z 7→ z` − 1) and the
Julia set J(fα2) is a quasi-circle.

Finally, the domain of analyticity of f is the quasi-disk Ŵ bounded by the quasi-
circle αJ(fα2).

Figure 1 shows the two polynomial-like mappings fα : Wα → fα(Wα) and
fα2 : Wα2 → fα2(Wα2) and their Julia sets.
Remark. In the context of classical renormalization, McMullen proved that the
domain of analyticity of the fixed point of renormalization satisfying the Cvitanović-
Feigenbaum equation is a dense open subset of C. Our result shows that the
behaviour for generalized renormalization is drastically different.
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Figure 2. Degree six Fibonacci puzzle pieces (made by Scott Sutherland).

The next step will be to prove that any solution of the Cvitanović-Fibonacci
equation gives rise to a cycle of order 2 of Fibonacci maps which is invariant under
renormalization.

Theorem C. Given any solution f of the Cvitanović-Fibonacci equation, there
exists a Fibonacci map φ : U0 ∪ U1 → V such that φ and f coincide on U0 and
such that R◦2([φ]) = [φ].

We will then derive the following corollary.

Corollary. For every even integer ` ≥ 4, there exists a unique α ∈]0, 1[ such that
the Cvitanović-Fibonacci equation has a solution, and this solution is itself unique.

We will say that f is the solution of the Cvitanović-Fibonacci equation in degree
`.

We will then define a Yoccoz puzzle for Fibonacci maps, and study the conver-
gence in shape of puzzle pieces. In [Ly4], Lyubich writes: “the following picture
of the principal nest for degree 6 Fibonacci map show that all puzzle pieces have
approximately the same shape: [see figure 2] [. . . ] these puzzle pieces have as-
ymptotically shapes of the Julia set of an appropriate polynomial-like map.” We
will prove that this observation is true. More precisely, we will prove the following
theorem.

Theorem D. Let

• Sk be the Fibonacci numbers defined by S0 = 1, S1 = 2, and Sk+1 =
Sk + Sk−1,

• ` ≥ 4 be an even integer,
• F : U0 ∪ U1 → V be a real Fibonacci map of degree ` normalized so that

the critical point is ω = 0,
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• Ck be the connected component of F−k(V ) that contains the critical point
(it is called the critical puzzle piece of depth k),

• f be the solution of the Cvitanović-Fibonacci equation in degree `,
• α ∈]0, 1[ be the constant defined by the Cvitanović-Fibonacci equation, and
• fα : Wα → fα(Wα) and fα2 : Wα2 → fα2(Wα2) be the polynomial-like

mappings defined in Theorem B.
Then, there exists a constant λ 6= 0 such that

• the sequence of rescaled puzzle pieces
λ

αk+1
CSk−2 converges for the Haus-

dorff topology to the filled-in Julia set K(fα2), and

• the sequence of rescaled puzzle pieces
λ

αk−1
CSk−3 converges to the filled-in

Julia set K(fα).
Let us mention that a similar result has already been proved by Lyubich [Ly2] for
Fibonacci maps in degree 2. He proved the convergence in shape of some puzzle
pieces to the Julia set of z → z2 − 1.

2. Dynamical systems.

In this section, we will quickly recall the definition of polynomial-like mappings
(see [DH]) and of generalized polynomial-like mappings (see [Ly3]). We will also
define the corresponding notion of renormalization.

2.1. Polynomial-like maps. In [DH], Douady and Hubbard introduced the con-
cept of polynomial-like maps. A polynomial-like map is a branched covering f : U →
V between two topological disks U and V , with U b V . One defines the filled-in
Julia set K(f) and the Julia set J(f) of a polynomial-like map f : U → V as:

K(f) = {z ∈ U | (∀n ∈ N) fn(z) ∈ U}, and J(f) = ∂K(f).

Definition 1. We say that f is a DH-map if f : U → V is a polynomial-like map
having a single critical point ω ∈ K(f).

Remark. The Julia sets K(f) and J(f) are connected if and only if K(f) con-
tains all the critical points of f . Hence, the Julia set of a DH-map will always be
connected.

Douady and Hubbard showed that a polynomial-like map behaves dynamically
like a polynomial.

Proposition 1. (see [DH]) For each DH-map f , there exists
• a unique polynomial Pc of the form z`+c, up to conjugacy by z → e2iπk/(`−1)z,

k = 0, 1, . . . , `− 1,
• topological disks Uc and Vc, and
• a quasi-conformal homeomorphism φ : V → Vc satisfying ∂φ/∂z = 0 a.e.

on K(f),
such that for all z ∈ U ,

φ ◦ f = Pc ◦ φ.

We will say that the two maps are in the same hybrid class.

Definition 2. Given a DH-map f : U → V , we say f is renormalizable if we can
find

• an integer k strictly greater than 1, and
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• topological disks U1 and V1 containing ω, such that
f◦k : U1 → V1 is a DH-map.

We will say f is k-renormalizable and that f◦k : U1 → V1 is a renormalization
of f . We will be interested in one particular polynomial, called the Feigenbaum
polynomial, which is the unique polynomial, PFeig = z2 + cFeig with cFeig ∈ R,
2-renormalizable, and such that PFeig and its renormalizations are in the same
hybrid class. Results about the existence and uniqueness of this polynomial are
discussed in [S], in [dMvS] and in [McM2].

2.2. Generalized polynomial-like maps. Another family of polynomial-like maps
was introduced by Lyubich in [Ly3] to study what happens when the critical point
escapes from U . This kind of maps appears naturally when one studies cubic
polynomials with two critical points, one escaping to infinity, the other having a
bounded orbit (see [BH]).

Definition 3. A generalized polynomial-like map, which we will call an L-map, is
a ramified covering map

f :
k−1⋃

i=0

U i → V

such that
• there is a unique critical point ω ∈ U0,
• the orbit of ω is contained in the union of the U i,
• each U i contains at least one point of the orbit of ω, and if i < j the orbit

of ω visits U i before U j,
• each U i, i = 0, . . . k − 1 is a topological disk compactly contained in V ,
• the U i are pairwised disjoint.

There is only one way of ordering the U i because of the third condition. We can
again define

Kf = {z | fn(z) ∈
k−1⋃

i=0

U i, ∀n ∈ N}, and J(f) = ∂K(f).

Figure 3 shows an L-map f : U0∪U1 → V , where f is a cubic polynomial with
one critical orbit escaping to infinity and one critical point having a bounded orbit.

As in [BH], [H] or [Mi], we can define the puzzles associated to an L-map.

Definition 4. The puzzles are defined by induction:
• the elements of the puzzle P0(f) of depth 0 are the open sets U i (called

puzzle pieces),
• the elements of the puzzle Pn of depth n are the connected components of

f−n(P0).

We can define a notion of renormalization associated to those L-maps.

Definition 5. We will say f is L-renormalizable if we can find
• a finite collection of puzzle pieces U i

1, i = 0, . . . , l− 1, a puzzle piece V1 and
• integers ni, i = 0, . . . , l − 1 with at least one ni > 1,

such that
• ω ∈ U0

1 and
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Figure 3. the L-map f : U0 ∪ U1 → V and its Julia set.

• the map g :
⋃l−1

i=0 U i
1 → V1 defined by g|U i

1 = f◦ni is an L-map.

We say f is (n0, . . . , nl−1)-renormalizable, and g :
⋃l−1

i=0 U i
1 → V1 is an L-

renormalization of f .
In this context, we will study Fibonacci maps, which are L-maps defined by some

dynamical properties. Such maps were introduced in [HK] and [BH], and studied
further in [LM], [Ly2] or [SN].

For the two kind of renormalizations, the maps we are interested in are infin-
itely renormalizable. We will assume the sequence of successive renormalizations
converges to a fixed point of renormalization (cf [S], [dMvS] or [McM2] for Feigen-
baum case, and [SN] for Fibonacci maps. We will then study those fixed points of
renormalization, using H. Epstein’s work (cf [E2]).

To do this, we must first introduce two notions. The first one is a notion of
convergence, which will enable us to talk of limits, the second one is a notion of
germs which will allow us to talk of fixed points of renormalization.

2.3. Topology on the space of polynomial-like maps. In [McM1], McMullen
introduces the following topology. First of all, a pointed region is a pair (U, u),
where U ⊂ C is an open set, and u ∈ U is a point.

Definition 6. We say that (Un, un) converges to (U, u) in the Carathéodory topol-
ogy if and only if

• un → u, and
• for any Hausdorff limit K of the sequence P1 \ Un, U is the connected

component of P1 \K which contains u.

To define a topology on the sets of polynomial-like maps, we use a theorem by
McMullen.
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Proposition 2. (see [McM2]) Let

gn : (Un, un) → (Vn, vn)

be a sequence of proper maps between pointed disks, with deg(gn) ≤ d. Suppose
un → u, gn converges uniformly to a non-constant limit on a neighborhood of u,
and (Vn, vn) → (V, v). Then (Un, un) converges to a pointed disk (U, u), and gn

converges uniformly on compact subsets of U to a proper map g : (U, u) → (V, v),
with 1 ≤ deg(g) ≤ d.

This enables us to define a topology on the sets of DH-maps or L-maps, because
each branch of those maps are proper maps between disks. For DH-map and L-
map, there is a natural way of choosing the basepoints. One can, for example, take
the first visit of the critical orbit in the disks U i.

2.4. Space of germs. In [McM1], McMullen introduces the notion of germs of
polynomial-like maps. We can adapt this notion to L-maps. To do so, we just
need to say two maps f1 and f2 are equivalent if they have the same Julia set,
K(f1) = K(f2) = K, and if f1|K = f2|K.

Definition 7. The set G of germs [f ] is the set of equivalence classes.

McMullen gives G the following topology: [fn] → [f ] if and only if there are
representatives fn and f , which are DH-maps or L-maps, depending on the context,
and such that fn → f for the Carathéodory topology. Then, the space of germs is
Hausdorff.

3. Feigenbaum maps

All the results we will state here have already been proved by Epstein [E1] and
McMullen [McM1]. The goal is to introduce some functional equation satisfied by
fixed points of renormalization, and to state some results related to it. The work
we present here has been completed in [B3].

3.1. Feigenbaum polynomial. The Feigenbaum polynomial is the most famous
example of polynomial which is infinitely renormalizable (meaning it is k-renormalizable
for infinitely many k). It is the unique real quadratic polynomial which is 2k-
renormalizable for all k ≥ 1.

Definition 8. One can define the Feigenbaum polynomial as the unique real poly-
nomial which is a fixed point of tuning by −1.

Tuning is the inverse of renormalization. Given a parameter c ∈ M , such that 0 is
a periodic point of period p, Douady and Hubbard have constructed a tuning map,
x 7→ c∗x, which is a homeomorphism of M into itself, sending 0 to c, and such that
if x 6= 1/4, then fc∗x is p-renormalizable, and the corresponding renormalization is
in the same hybrid class as fx. This is how they show there are small copies of the
Mandelbrot set inside itself.

The Feigenbaum value, cFeig = −1.401155..., is in the intersection of all the
copies of M obtained by tuning by −1. This intersection is not known to be
reduced to one point, but its intersection with the real axis is reduced to the point
cFeig.
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3.2. Feigenbaum renormalizations. By construction, the Feigenbaum polyno-
mial, PFeig, is 2-renormalizable. There are several renormalizations g : U → V
such that g = f2|U is a DH-map. But all those renormalizations define the same
germ of DH-map. By the straightening theorem (see [DH]), there is a unique poly-
nomial which is in the same hybrid class as g, i.e., quasi-conformally conjugate to
g on a neighborhood of its Julia set, the ∂ derivative of the conjugacy vanishing
almost everywhere on the Julia set. This polynomial is a real polynomial, because g
is real, and 2k-renormalizable for all k ≥ 1. Thus, it is the Feigenbaum polynomial.

We can define a renormalization operator, R2. Given a germ of DH-map, [f ],
which hybrid class is the one of the Feigenbaum polynomial, let us choose a repre-
sentative g corresponding to period 2 renormalization.

Definition 9. Assume [f ] is a germ of a quadratic-like map which is renormalizable
with period 2. There exist open sets U ′ and U such that the map g : U ′ →
U defined by g = f◦2|U is a polynomial-like map with connected Julia set. The
renormalization operator R2 is defined by

R2([f ]) = [α−1 ◦ g ◦ α],

with α = g(0) = f2(0), and α(z) = αz.

We have normalized the germs, so that the critical value is 1.
We have seen that if [f ] is a germ of Feigenbaum DH-map, then R2([f ]) is still

a germ of Feigenbaum DH-map, and we can iterate this process, defining in such a
way a sequence of germs : R◦n2 ([PFeig]), n ∈ N. The following result can be found
in [S], [dMvS] or [McM2].

Proposition 3. The sequence of germs R◦n2 ([PFeig]), n ∈ N, converges (for the
Carathéodory topology defined in the introduction), to a point [φ]. By construction
this point is a fixed point of renormalization :

R2([φ]) = [φ],

and is in the hybrid class of the Feigenbaum polynomial. It is the unique fixed point
of R2.

Remark. We say that two quadratic-like germs [f ] and [g] are in the same hybrid
class if there exist representatives f : U ′ → U and g : V ′ → V which are in the
same hybrid class.

Now, if [f ] is a fixed point of R2, then it satisfies the following functional equa-
tion, known as the Cvitanović-Feigenbaum equation.

Proposition 4. Let [f ] be a fixed point of R2. Then,



f(z) = − 1
αf(f(αz)), 0 < α < 1,

f(0) = 1, and
f(z) = F (z2), with F ′(0) 6= 0.

This equation is satisfied at least on the Julia set of f (which does not depend
on the representative f of the germ [f ]).

3.3. Study of some functional equations. Now the question is: what infor-
mation can we obtain from this equation ? The way we can deal with it, was
explained to us by H. Epstein and is developped in [E2]. There is a global the-
ory which enables us to deal with the study of the fixed points of the three kind
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of renormalization at the same time. The functional equation we will study will
depend on two parameters. The first one is the degree ` of the critical point. The
second one is a parameter ν which corresponds to the case we are dealing with.

• in the case of renormalization for DH-maps, ν = 1,
• in the case of renormalization for L-maps, ν = 1/2, and
• in the case of renormalization for holomorphic pairs, ν = 2.

Definition 10. The universal equation is the following system of equations:




f(z) = − 1
λf(f(λνz)), 0 < λ < 1,

f(0) = 1, and
f(z) = F (z`), with F ′(0) 6= 0.

First of all, we want to study solutions such that f and F are real analytic maps
on an open interval J containing 0, and their complex extension. So let J be an
open interval in R, possibly empty, and define

C(J) = {z ∈ C : Im(z) 6= 0, or z ∈ J} = H+ ∪H− ∪ J,

where

H+ = {z ∈ C : Im(z) > 0} = −H−.

F(J) is the space of holomorphic functions h in C(J), such that h(z) = h(z).
P1(J) ⊂ F(J) is the space of functions h such that h(H+) ⊂ H+. A function
h ∈ P1(J) is called a Herglotz function (and −h is anti-Herglotz). We will study
solutions of the universal equation, such that F is univalent in a neighborhood of
0, and has an anti-Herglotz inverse, F−1. In fact, as the limit of renormalization
can be obtained as a limit of polynomials having all their critical values in R, this
condition is satisfied by the fixed points of renormalization we will consider.

The first step is to look at the graph of f on the real axis. Figure 4 shows what
this graph looks like. This graph gives the relative position of several points on the
real axis.

Proposition 5. Epstein (see [E2]) Let f be a solution of the universal equation,
and x0 > 0 be the first positive preimage of 0 by f . Then

• f(λνx0) = x0,
• f(1) = −λ, and
• the first critical point in R+ is x0/λν , with f(x0/λν) = −1/λ.

Besides, the universal equation can be restated in two surprising ways on the
following commutative diagrams. The first diagram tells that x0 is an attracting
fixed point of the map f(λνz). The linearizer is f .

x0
f(λνz) //

f

²²

x0

f

² ²
0 −λz

// 0
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1

−λ

0

1

x0

λνx0

x0 x0/λν

−1/λ

Figure 4. The graph of f on R+.

The second diagram tells that 1 is a repulsive fixed point of the map −1/λf(z).
The parametrizer is F .

1
−1/λf(z) // 1

0
z/λν

//

F

OO

0

F

OO

The first diagram enables Epstein to study how much one can extend F−1. His
results are the following.

Theorem 1. Epstein (see [E2]) Let f(z) = F (z`) be a solution of the universal
equation, such that F−1 is anti-Herglotz. We then have the following results:

• one can extend F−1 such that F−1 ∈ −P1(]− 1/λ, 1/λ2[),
• one can extend F−1 continuously to the boundary R of H+, and even an-

alytically except at points (−1/λ)n, n ≥ 1, which are branching points of
type z1/`,

• the values of F−1 are never real except in [−1/λ, 1/λ2],
• the extension of F−1 to the closure of H+ is injective, and
• when z tends to infinity in H+, F−1(z) tends to a point in H−, which will

be denoted by F−1(i∞).

By symmetry, similar statements hold in H−. Hence, W = F−1(C(]−1/λ, 1/λ2[)
is a bounded domain of C. Those results are summarized in figure 5.

In the following, we will use the notations:


Cλ = C \ (

]−∞,−1/λ] ∪ [1/λ2, +∞[
)
,

W = F−1(Cλ), and
W = {z ∈ C | z` ∈ W}.

By construction,
f : W → Cλ
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1/λ21−1/λ0

W

R

F−1(−i∞)

F

Figure 5. Maximal univalent extension of F .

is a ramified covering with only one critical point in 0, of degree `. The set W is
symmetric by rotation of angle 2iπ/`.

In [E2], Epstein uses those informations to prove the following result.

Theorem 2. (cf [E2] and figure 6) Let f be a solution of the universal equation of
parameters ν = 1 and ` = 2. The map f : W → Cλ is a polynomial-like map. It
is quasi-conformally conjugated to the Feigenbaum polynomial PFeig.

f

K(f)−1/λ 1/λ2

Cλ

W

Figure 6. The Feigenbaum map f : W → Cλ.

Proof. See [E2] or [B3]. ¤
To study the geometry of the Julia set of the Feigenbaum polynomial, it is

sometime enough to study the geometry of the Julia set K(f) of this polynomial-
like map. This has been done in [B2]. Some results are easier to obtain using the
fixed point of renormalization because of the invariance with respect to the scaling
map z → λz.
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4. Fibonacci maps.

In this section, we will deal with renormalization for L-maps, and more precisely,
for Fibonacci maps. We will see that the dynamics of Fibonacci maps is strongly
related to Fibonacci numbers, so let us first recall the definition of the Fibonacci
sequence Sn.

Definition 11. The Fibonacci sequence Sk is defined by S0 = 1, S1 = 2, and
Sk+1 = Sk + Sk−1.

In particular S2 = 3, S3 = 5, S4 = 8, S5 = 13, and so on.

4.1. Definition of Fibonacci maps. Let us now return to the definition of Fi-
bonacci maps. We have defined the puzzles Pn associated to an L-map in the intro-
duction. Following Branner and Hubbard, we will distinguish the puzzle pieces that
contain the critical point and define a notion of genealogy between those pieces.

Definition 12. Let f :
⋃

U i → V be an L-map, and for each z ∈ K(f), let Pn(z)
be the puzzle piece of depth n which contains z.

The critical piece Cn of depth n is defined to be Pn(ω) if n ≥ 0 and C−1 is
defined to be the piece V .

For all n ≥ −1, the children of Cn are the critical pieces Cl such that f◦(l−n)(Cl) =
Cn and f◦k(Cl) does not contain the critical point ω for 0 < k < l − n.

Remark. If Cl is a child of Cn, then f◦(l−n) : Cl → Cn is a ramified covering
ramified only at ω.

Let us now define what is a Fibonacci map.

Definition 13. A Fibonacci map of degree ` ≥ 2 is an L-map f : U0 ∪ U1 → V
having a critical point of degree ` and satisfying the following conditions:

• for each n ≥ −1, the critical piece Cn has exactly two children;
• if Cl is a child of Cn, then f◦(l−n)(0) ∈ Cn \ Cl.

Figure 7 shows the domain, range and Julia set of a Fibonacci map having a
critical point ω of degree 6.

We would like to mention that our definition of Fibonacci maps is not the one
given by Branner and Hubbard in [BH] but we will show that it is equivalent. The
first condition is not sufficient to guaranty that those maps are Fibonacci maps in
the sense of [BH]. The second condition says that there are no central returns in
the terminology of Lyubich [Ly3].

The way Branner and Hubbard define Fibonacci maps is the following. They
introduce the concept of a tableau in order to describe recurrence of critical orbits
for cubic polynomials having one escaping critical point, and one critical point with
bounded orbit. They call f a Fibonacci map if the tableau of f is the “Fibonacci
tableau”. The restriction of such a polynomial f to well chosen domains U0 and
U1 gives rise to an L-map f : U0 ∪U1 → V . It is then clear from the definition of
the Fibonacci tableau that every critical piece of f has exactly two children (this
is in fact the reason why the Fibonacci tableau was introduced by Branner and
Hubbard), and that there are no central returns. Hence the L-map f : U0∪U1 → V
is a Fibonacci map in our sense.

On the other hand, we will show that the orbit of the critical point of our
Fibonacci maps returns closer to zero after each Fibonacci number of iterations
in some combinatorial sense; more precisely, we will show that f◦Sn(ω) belongs
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U0

U1

V
f

f

Figure 7. A Fibonacci map having a critical point of degree 6.

to the the critical puzzle piece of depth Sn+1 − 3 but not to the critical puzzle
piece of depth Sn+1− 2. This is precisely the way Branner and Hubbard define the
Fibonacci tableau.

This discussion and proposition 12.8 in [BH] show that there exist Fibonacci
maps having a critical point of arbitrary degree ` ≥ 2.

In [SN], van Strien and Nowicki mimicked an argument due to Lyubich and
Milnor [LM] and prove that for every even integer ` ≥ 2, there exists a Fibonacci
map f : U0 ∪ U1 → V satisfying f(z) = f(z) and f(z) = F (z`) with F ′(0) 6= 0.

Definition 14. We will say that f is a real symmetric Fibonacci map of degree `
if and only if f : U0 ∪ U1 → V is a Fibonacci map satisfying f(z) = f(z) and
f(z) = F (z`) with F ′(0) 6= 0.

The proof is based on the formal machinery of kneading theory developed in
[MT]. The first step consists in constructing a polynomial P (z) = z` + c such that
the orbit of the critical point returns closer to zero after each Fibonacci number of
iterations. The second step consists in renormalizing this polynomial in the sense
of L-maps, so as to get an L-map f : U0 ∪ U1 → V where f |U0 = P ◦5 and
f |U1 = P ◦3. One can easily check that for this map f , the orbit of the critical
point still returns closer to zero after each Fibonacci number of iterations so that
it is a Fibonacci map.

We will now show that a Fibonacci map is infinitely renormalizable in the sense
of L-maps. Afterwards, we will prove the equivalence between our definition of
Fibonacci maps and the one given by Branner and Hubbard.

4.2. Renormalization of Fibonacci maps.
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Proposition 6. (see picture 8) Given a Fibonacci map f : U0 ∪ U1 → V , let
V1 = C0 be the critical piece of depth 0, U0

1 = C2 be the critical piece of depth
2, and U1

1 = P1(f◦2(ω)) be the piece of depth 1 that contains f◦2(ω). Then, the
mapping g : U0

1 ∪U1
1 → V1 defined by g|U0

1
= f◦2 and g|U1

1
= f is a Fibonacci map.

ω

f

f V

U0

U1

f◦2(ω)

U0
1

f(ω)

f◦2

f

f

f

U1
1

Figure 8. A Fibonacci map is (2, 1) renormalizable.

Remark. We will call g the canonical renormalization of f .
Proof. Let us first prove a lemma that will be useful to prove this proposition
and lemma 4 below.

Lemma 1. Let f : U0 ∪ U1 → V be a Fibonacci map. Then, f(ω) ∈ U1 and if
f◦n(ω) ∈ U1, we have f◦(n+1)(ω) ∈ U0.

Proof. The first statement simply follows from the fact that f has no central
returns. The second statement follows from the fact that C−1 = V has only two
children. Indeed, let C0 = U0 and C1 be the critical puzzle pieces of depth 0 and
1. Then, writing

C0
f−→ C−1 and C1

f−→ U1 f−→ C−1,

we see that C0 and C1 are the two children of C−1. In particular, there can be no
extra child.

Thus, let U = f |−1
U1(U1) be the connected component of f−1(U1) which is con-

tained in U1 (see picture 8). Let us prove that the critical orbit never enters U .
If this were not the case, then we could define j to be the least integer such that
f◦j(ω) enters U , and we could pull-back univalently the puzzle piece U along the
orbit f(ω) 7→ · · · 7→ f◦j(ω) ∈ U . Pulling-back once more by f |U0 , we would obtain
an extra child of C−1.

Hence, if f◦n(ω) ∈ U1, then f◦(n+1)(ω) ∈ V \U1 and since f◦(n+1)(ω) ∈ K(f) ⊂
U0 ∪ U1, we see that the proof of the lemma is completed. ¤
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Let us now prove that the map g : U0
1 ∪ U1

1 → V1 is an L-map. Since the
connected components of the domain and range of g are puzzle pieces, they are
topological disks, and given two of them, we have only three possible configurations:
they are equal, one is compactly contained in the other one, or their closures are
disjoint. Since U0

1 is the critical piece of depth 2 and V1 is the critical piece of depth
0, we see that U0

1 b V1. Furthermore, since f(ω) ∈ U1 and f◦2(ω) ∈ U0 = V1, we
see that f◦2 : U0

1 → V1 is a ramified covering with, ramified only at ω. On one
hand, the “no central returns” condition implies that f◦2(ω) 6∈ U0

1 . On the other
hand, by definition, f◦2(ω) ∈ U1

1 . Hence, the closures of U0
1 and U1

1 are disjoint.
Besides, lemma 1 shows that V1 contains f◦2(ω). Since, V1 is a puzzle piece of
depth 0 and U1

1 is a puzzle piece of depth 1, and since both of them contain f◦2(ω),
we see that U1

1 b V1.
Let us now show that the critical orbit of g never escapes U0

1 ∪ U1
1 . Assume

g◦n(ω) ∈ V1 \ U0
1 = C0 \ C2. We want to show that g◦n(ω) ∈ U1

1 . Since g◦n(ω) =
f◦k(ω) for some integer k, and since ω ∈ K(f), we see that g◦n(ω) belongs to a
puzzle piece of f of depth 1 contained in C0 \ C2. It cannot be inside the critical
piece C1 since the puzzle pieces of depth 2 contained in C1 \ C2 are mapped by
f and f◦2 into U1, so that f◦(k+1)(ω) and f◦(k+2)(ω) would both be inside U1,
contradicting lemma 1. Hence, g◦n(ω) is inside a puzzle piece of depth 1 contained
in C0 \ C1. Assume it is a puzzle piece U 6= U1

1 . Then, we can use the same
argument as in the proof of lemma 1: we let j be the least integer such that f◦j(ω)
enters U , and we pull-back C0 along the following orbits: ω 7→ f(ω) 7→ f◦2(ω) ∈ C0,
ω 7→ f(ω) 7→ f◦2(ω) ∈ U1

1 7→7→ f◦3(ω) ∈ C0 and ω 7→ f(ω) 7→ · · · 7→ f◦j(ω) ∈ U 7→
f◦(j+1) ∈ C0 showing that C0 has at least 3 children.

Let us finally show that g : U0
1 ∪ U1

1 → V1 is a Fibonacci map. The critical
pieces of the puzzle of g are exactly the critical pieces of the puzzle of f which
are children of C0, grand-children of C0, grand-grand-children of C0 and so on. In
particular, every critical piece of g has exactly two g-children. Besides, since f has
no central returns, the same property holds for g, which concludes the proof of the
proposition. ¤

Let us now use this renormalization result to prove that our definition of Fi-
bonacci maps is equivalent to the one given by Branner and Hubbard.

Proposition 7. If f : U0 ∪ U1 → V is a Fibonacci map, then for any n ≥ 0,
f◦Sn(ω) belongs to the critical puzzle piece of depth Sn+1 − 3 but not to the critical
piece of depth Sn+1 − 2.

Remark. One can easily check that this correspond to the definition of the Fi-
bonacci marked grid given in [BH], example 12.4.
Proof. Let us subdivide the proof within two lemmas that will be used again
later.

Lemma 2. Let f : U0 ∪ U1 → V be a Fibonacci map. Then, we can define a
sequence (

fn : U0
n ∪ U1

n → Vn

)
n≥0

,

where f0 = f and fn+1 is the canonical renormalization of fn. Then for n ≥ 1,
• the connected components of the range and the domain of fn are Vn =

CSn+1−3, U0
n = CSn+2−3 and U1

n = PSn+1+Sn−1−3

(
f◦Sn(ω)

)
;

• the restrictions of fn to U0
n and U1

n are fn|U0
n

= f◦Sn and fn|U1
n

= f◦Sn−1 .
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Proof. The proof is an easy induction based on the definition of the canonical
renormalization. We leave the details to the reader. ¤

Lemma 3. Let f : U0∪U1 → V be a Fibonacci map. Then, for any integer n ≥ 1,
CSn+1−2 is a child of CSn−1−2.

Proof. This is again proved by induction. We first claim that the induction
property holds for n = 1. Indeed, CS2−2 = C1, CS0−2 = C−1 and we have

C1
f−→ U1 f−→ C−1,

so that C1 is a child of C−1.
Next, assume that the induction property holds for some integer n ≥ 1. Then,

f◦Sn+1 restricts to a ramified covering between the critical piece of depth Sn+2 − 2
and the piece of depth Sn+2 − 2− Sn+1 = Sn − 2 which contains f◦Sn+1(ω). Since
lemma 2 shows that f◦Sn+1(ω) ∈ CSn+2−3 ⊂ CSn−2, we see that f◦Sn+1 : CSn+2−2 →
CSn−2 is a ramified covering.

We still need to see that f◦Sn+1 : CSn+2−2 → CSn−2 is ramified only at ω.
To prove this result, observe that f◦Sn+1 = f◦Sn−1 ◦ f◦Sn . Since CSn+2−2 ⊂
CSn+1−2 and since CSn+1−2 is a child of CSn−1−2, we see that f◦Sn : CSn+2−2 →
f◦Sn(CSn+2−2) is a ramified covering, ramified only at ω. Hence, we only need to
prove that the restriction of f◦Sn−1 to f◦Sn(CSn+2−2) is univalent. We already know
that this restriction is a (possibly ramified) covering onto its image. Hence, we must
show that f◦Sn(CSn+2−2) does not contain a critical point of f◦Sn−1 . Recall that
by lemma 2, the restriction of f◦Sn−1 to CSn+1−3 has a unique critical point at ω.
Hence, it is sufficient to show that f◦Sn(CSn+2−2) ⊂ CSn+1−3 \CSn+1−2 (see figure
9). By definition, f◦Sn(CSn+2−2) is the puzzle piece of depth Sn+2 − 2 − Sn =

f◦Sn−1

CSn+2−2

ω

f◦Sn(ω)
f◦Sn f◦Sn−1(ω)

CSn+1−3 CSn+1−2

CSn−3

CSn−2

f◦Sn−1

f◦Sn
CSn−1−2

Figure 9. The position of f◦Sn(CSn+2−2).
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Sn+1 − 2 that contains f◦Sn(ω). By lemma 2, we have f◦Sn(ω) ∈ CSn+1−3, so
that f◦Sn(CSn+2−2) ⊂ CSn+1−3. Besides, the induction property at level n says
that CSn+1−2 is a child of CSn−1−2 and the no central return condition implies that
f◦Sn(ω) 6∈ CSn+1−2. In particular, f◦Sn(CSn+2−2) ⊂ CSn+1−3 \ CSn+1−2. ¤

The proof of the proposition is contained within the proof of lemma 3, since

f◦Sn(0) ∈ f◦Sn(CSn+2−2) ⊂ CSn+1−3 \ CSn+1−2.

¤
From now on, all Fibonacci maps we will consider will be real symmetric Fi-

bonacci maps. In particular, the critical point is 0. We now come back to renor-
malization of Fibonacci maps.

Definition 15. We can define a renormalization operator R(2,1), on the set of
Fibonacci maps, by

R(2,1)(f) = α−1 ◦ g ◦ α,

where g is the canonical renormalization of f , and where α(z) = g(0) ·z = f◦2(0) ·z.
The map R(2,1)(f) is normalized so that its critical value is 1. This map can be

projected to the space of germs of Fibonacci maps. We will keep the letter R(2,1)

to denote the projection.
The results obtained by van Strien and Nowicki in [SN] can be reformulated in

the following way.

Theorem 3. (see [SN], Theorem 7.1)
• Assume f1 : U0

1 ∪ U1
1 → V1 and f2 : U0

2 ∪ U1
2 → V2 are two real sym-

metric Fibonacci maps of even degree ` ≥ 4, such that f1(0) · f◦21 (0) and
f2(0) · f◦22 (0) have the same sign. Then, there exists a quasi-conformal
homeomorphism ψ : V1 → V2 which conjugate the Fibonacci maps f1 and
f2. Besides, there exists a constant ε > 0 such that ψ is C1+ε at 0.

• For every even integer ` ≥ 4, the renormalization operator R(2,1) has a
unique cycle {[f1], [f2]} of order 2, where [f1] and [f2] are two germs of
real symmetric Fibonacci maps of degree `. If f : U0 ∪ U1 → V is a real
symmetric Fibonacci map of even degree ` ≥ 4, then the sequence R◦n(2,1)([f ])
converges to the cycle {[f1], [f2]}.

Proof. The proof given by van Strien and Nowicky consists in first obtaining
real a-priori bounds which show that the closure of the post-critical set is a Cantor
set with bounded geometry. If f1(0) · f◦21 (0) and f2(0) · f◦22 (0) have the same
sign, then the ordering of the critical orbit on the real axis is the same, so that two
maps are quasi-symmetrically conjugate along their critical orbit. Then, applying a
pullback argument due to Sullivan and described in [dMvS], van Strien and Nowicky
show that this quasi-symmetric conjugacy can be promoted to a quasi-conformal
conjugacy between the two Fibonacci maps.

To prove that the conjugacy is C1+ε at 0, they use renormalization techniques,
and the theory of towers introduced by McMullen in [McM2]. They show the
convergence of renormalizations to a cycle of order 2 at the same time. ¤

Let us now improve this result in the following way.

Theorem A. For every even integer ` ≥ 4, let fi : U0
i ∪ U1

i → Vi, i = 1, 2, be
the two real symmetric Fibonacci maps of degree `, normalized so that ωi = 0 and
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fi(ωi) = 1, and satisfying R(2,1)([f1]) = [f2] and R(2,1)([f2]) = [f1]. Then, there
exists a neighborhood U of 0 and a neighborhood U ′ of 1 such that

• f1|U∩U0
1

= f2|U∩U0
2
, and

• f1|U ′∩U1
1

= −f2|U ′∩U1
2
.

Proof. To prove this theorem, let us define a flipping operator which to a Fi-
bonacci map f associates the new map f̃ : U0 ∪U1 → V defined by f̃ |U0 = f and
f̃ |U1 = −f .

Lemma 4. If f : U0 ∪U1 → V is a real symmetric Fibonacci map, then f̃ : U0 ∪
U1 → V is still a Fibonacci map.

Proof. The fact f̃ is still an L-map is not obvious. We must first show that the
orbit of ω = 0 stays in U0 ∪U1, and then show that the genealogical properties are
satisfied. We define ωn to be the n-th iterate of the critical point: ωn = f◦n(ω).
Let us show by induction that for any n ≥ 0, ω̃n = f̃◦n(ω) = ±ωn if ωn ∈ U0 and
ω̃n = ωn if ωn ∈ U1. Indeed, we have already mentioned in the previous proof that
the difference between two consecutive returns of the critical orbit in U0 is at most
2. This implies that if ωn−1 ∈ U1, then ωn ∈ U0. Hence, assuming the induction
property holds for n− 1, we see that

• if ωn−1 ∈ U0, then ω̃n = f(±ωn−1) = ωn ∈ U0 ∪ U1, and
• if ωn−1 ∈ U1, then ω̃n = −f(ωn−1) = −ωn ∈ U0.

This shows that the induction property is true for n. Besides, the critical pieces
of the puzzle of f̃ are exactly the pieces Cn and f̃◦k(Cn) is either f◦k(Cn), or
−f◦k(Cn). Thus, the genealogy of f and of f̃ are exactly the same. Hence, f̃ is a
Fibonacci map. ¤

Lemma 5. If f : U0 ∪ U1 → V is a real symmetric Fibonacci map, then the
flipping operator and the renormalization operator commute:

R̃(2,1)([f ]) = R(2,1)([f̃ ]).

Proof. We have seen that the central branch of the canonical renormalization
of f is f1 ◦ f0, where f0 = f |U0 and f1 = f |U1 . The other branch is f1. Hence,
R̃(2,1)([f ]) has central branch 1/αf1 ◦ f0(αz) and outer branch −1/αf1(αz), where
α = f◦2(0).

On the other hand, the canonical renormalization of f̃ has central branch −f1 ◦
f0 and outer branch −f1, and f̃◦2(0) = −f◦2(0) = −α. Hence, R(2,1)([f̃ ]) has
central branch −1/α

[− f1 ◦ f0(−αz)
]

= 1/αf1 ◦ f0(αz) and outer branch −1/α
[−

f1(−αz)
]

= −[− 1/αf1(αz)
]
. ¤

We now claim that if {[f1], [f2]} is the cycle of order 2 of real symmetric germs
of Fibonacci maps of degree ` which is invariant by R(2,1), then we necessarily have
[f2] = [f̃1]. Indeed, observe that {[f̃1], [f̃2]} is a cycle of order 2 of real symmetric
Fibonacci maps of degree ` which is invariant by R(2,1). By uniqueness of such a
cycle (see theorem 3), we have {[f1], [f2]} = {[f̃1], [f̃2]}, and since [f1] 6= [f̃1], we
have [f2] = [f̃1].

This shows that f1 and f2 coincide in a neighborhood of K(f1)∩U0
1 = K(f2)∩U0

2 ,
and f1 and −f2 coincide in a neighborhood of K(f1) ∩ U1

1 = K(f2) ∩ U0
2 , which

concludes the proof of theorem A. ¤
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We will now show that if f : U0 ∪ U1 → V is a real symmetric Fibonacci map
such that R(2,1)([f ]) = [f̃ ], then the restriction f0 = f |U0 of f to U0 satisfies the
following system of equations, that we will call the Cvitanović-Fibonacci equation:




f(z) = − 1
α2

f(αf(αz)), 0 < α < 1,

f(0) = 1 and
f(z) = F (z`), with F ′(0) 6= 0 and ` ≥ 4 even.

Indeed, let f1 = f |U1. Then, writing down R(2,1)([f ]) = [f̃ ] gives:
{

f0(z) = −1/α2f0(αf0(αz)), and
f1(z) = −1/αf0(αz),

Indeed, we have seen that the central branch of R(2,1)([f ]) is 1/αf1 ◦ f0(αz) and
the outer branch is 1/αf1(αz). As R(2,1)([f ]) = [f̃ ], we get

f0(z) =
1
α

f1 ◦ f0(αz)

and
f1(z) = − 1

α
f0(αz)

for all z in the Julia set K(f), which enables us to conclude, replacing f1 in the
first equation.

4.3. Solutions of the Cvitanović-Fibonacci equation. We will now study the
geometry of the solutions of the Cvitanović-Fibonacci equation. In particular, we
will study the domain of analyticity of such solutions.

Definition 16. Let f and g be two holomorphic functions defined on open connected
domains of C: Uf and Ug. We say g is an analytic extension of f if g is equal
to f on some non-empty open set. Moreover, if all such analytic extension are
restriction of a single map

f̂ : Ŵ → C,

we will say that f̂ is the maximal analytic extension of f .

Theorem B. For every even integer ` ≥ 4, let f be the solution of the Cvitanović-
Fibonacci equation in degree `, and set fα(z) = f(αz) and fα2(z) = f(α2z).

Then, there exist domains Wα ⊂ C and Wα2 ⊂ C containing 0 such that
fα : Wα → fα(Wα) and fα2 : Wα2 → fα2(Wα2) are polynomial-like mappings
of degree `. Besides, fα : Wα → fα(Wα) has an attracting cycle of order 2 and
fα2 : Wα2 → fα2(Wα2) has an attracting fixed point. In particular, the Julia set
J(fα) is quasi-conformally homeomorphic to the Julia set J(z 7→ z` − 1) and the
Julia set J(fα2) is a quasi-circle.

Finally, the domain of analyticity of f is the quasi-disk Ŵ bounded by the quasi-
circle αJ(fα2).

Remark. The functions fα and fα2 are not conjugated to f . As we will see, their
dynamical behavior is really different.
Proof. The map fα is a solution of the universal equation we introduced in the
preceding chapter for λ = α2 and ν = 1/2:

fα(z) = − 1
λ

fα(fα(λ2z)).
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We will use the notations of the preceding chapter, indexing all the sets with the
letter α. We have seen that there exists a bounded domain Wα ⊂ C such that
fα : Wα → Cα2 = C(]− 1/α2, 1/α4[) is a ramified covering.

Let us now show that the interpretation of the universal equation in terms of a
linearization equation enables us to prove the following lemma.

Lemma 6. (see figure 1) The maps

fα : Wα → Cα2 and fα2 : Wα2 = Wα/α → Cα2

are DH-maps with attracting cycles.

Proof. By definition of Wα, the mapping fα is a ramified covering map from
Wα to Cα2 with only one critical point of degree ` in 0. Hence, the map fα2 is a
ramified covering from Wα2 to Cα2 . Moreover, as the degree is even,

Wα ∩ R = [−x0/α, x0/α] ⊂]− 1/α, 1/α[,

with fα(x0) = 0. The inclusion is given by the relative position of points obtained
from figure 4. Hence, fα and fα2 are both polynomial-like maps. We will show they
are DH-maps, i.e., that the critical point does not escape. To do this, it is enough
to show that fα has an attracting cycle of period 2, and fα2 has an attracting fixed
point. Those cycles must attract the critical point.

We can rewrite the Cvitanović-Fibonacci equation, using the functions fα and
fα2 in two different ways:




fα(z) = − 1
α2

fα(fα2(z))

fα2(z) = − 1
α2

fα(fα(−α2z))

The first equation tells us that fα linearizes fα2 in a neighborhood of x0:

x0
fα2 //

fα

²²

x0

fα

²²
0

−α2z

// 0.

Hence fα2 has an attracting fixed point, x0, of multiplier α2.
The second equation tells us fα ◦ fα is conjugated by z → −α2z to fα2 . Hence,

fα ◦ fα has an attracting fixed point: −α2x0 < 0. Since fα(−α2x0) > 0, fα has a
cycle of period 2: {−α2x0, fα(−α2x0)}. ¤

We have just shown that fα2 is a DH-map with an attracting fixed point. It
follows immediately that the attracting basin Ŵα of fα2 is a quasi-disk. Moreover,
as fα is the linearizer of fα2 , it has a maximal analytic extension f̂α : Ŵα → C.
To conclude the proof, just remind that f(z) = fα(z/α), and define Ŵ = αŴα. ¤
Remark. The basin of attraction of the DH-map fα2 : Wα2 → Cα2 being Ŵ/α,
and fα2 being conjugate to f◦2α by the scaling map z 7→ −α2z, we see that the
immediate basin of the DH-map fα : Wα → Cα2 has two connected components,
the one containing 0 being αŴ , the other one being fα(αŴ ).

Before going further, let us observe some consequences of this theorem. The
following lemma will be useful in the construction of a particular Fibonacci map
(see theorem C).
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Lemma 7. The mapping fα : Ŵ → Ŵα is a DH-map representing the same germ
as fα : Ŵα → Cα2 .

Proof. Since Ŵα is by definition the basin of attraction of the DH-map fα2 : Wα2 →
Cα2 , we see that the map fα2 : Ŵα → Ŵα is a ramified covering, ramified only at
0. Hence, the same property holds for the map fα : Ŵ → Ŵα.

Let us now show that Ŵ is relatively compact in Ŵα. This is an immediate
consequence of the following inclusion of sets (see figure 10): W ⊂ Ŵ b Wα = W/α.
The first inclusion is obvious because f is analytic on W , which has to be inside

W

Wα = W/αŴ

Figure 10. We have W ⊂ Ŵ b Wα = W/α.

the domain of analyticity Ŵ of f . To show the second inclusion, note that the map
fα2 : Wα2 → Cα2 is a DH-map. Hence its filled-in Julia set, i.e., the closure of Ŵα,
is contained in Wα2 .

This concludes the proof of the lemma, since any polynomial-like restriction of
a DH-map represent the same germ. ¤

Definition 17. For k ≥ −1, we define Dk and D′k to be the sets

Dk =
{
z ∈ Ŵα | f

◦(k+1)
α2 (z) ∈ Ŵ

}
and D′k =

{
z ∈ Ŵ | f◦(k+1)

α (z) ∈ Ŵ
}
.

We can now prove the following geometric result, which will be used in the proofs
of theorems C and D.
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Lemma 8. For any k ≥ −1, the sets Dk and D′k are quasi-disks. We have the
inclusions

Dk b Dk+1 b Ŵα and K(fα) ⊂ D′k+1 b D′k.

Besides, the mappings fα2 : Dk+1 → Dk and fα : D′k+1 → D′k are ramified
coverings, ramified only at 0.

Furthermore, the closure of the set Dk – resp. D′k – converges, for the Hausdorff
topology on compact subsets of P1, to the filled-in Julia set K(fα2) – resp. K(fα)
– as k tends to infinity.

Proof. The statement for the sets D′k is an immediate consequence of the fact
that fα : Ŵ → Ŵα is a DH-map whose Julia set is K(fα), combined with the fact
that Dk = [fα|cW ]−(k+1)(Ŵ ).

Proving the statement for the sets Dk is of the same order of difficulty. Indeed,
the set Ŵ = D−1 is contained in the basin of attraction of fα2 , i.e. Ŵα. Besides,

Dk = [fα2 |cWα
]−(k+1)(Ŵ ).

Finally, fα2(Ŵ ) = fα(αŴ ), and since the immediate basin of the DH-map fα : Ŵ →
Ŵα is αŴ ∪ fα(αŴ ), we see that fα2(Ŵ ) ⊂ Ŵ . ¤
4.4. Construction of a Fibonacci map. We will now prove that any solution
of the Cvitanović-Fibonacci equation gives rise to a cycle of order 2 of Fibonacci
maps which is invariant under renormalization.

Theorem C. (see figure 11) Given any solution f of the Cvitanović-Fibonacci
equation, there exists a Fibonacci map φ : U0∪U1 → V such that φ and f coincide
on U0 and such that R◦2(2,1)([φ]) = [φ].

Proof. We first need to define the map φ. We define V to be the domain Ŵ . The
domain U0 is defined to be equal to α2D0 (defined in definition 17). Combining
lemmas 1 and 7, we see that the mapping fα : Ŵ → Ŵα is a DH-map having a
cycle of period 2: {−α2x0, fα(−α2x0)}. The immediate basin of this cycle has two
connected components. The one containing 0 is αŴ . We define U1 to be the other
connected component. It is clear that U0, U1 and V are quasi-disks.

We claim that the map φ : U0 ∪ U1 → V, defined by
{

φ|U0(z) = f(z)

φ|U1(z) =
1
α

f(αz),

is a Fibonacci map, and that the germ [φ] is a fixed point of R̃(2,1).
Step 1. Let us first show that U0 and U1 are disjoint and contained in V. Lemma 8
says that D0 = U0/α2 is compactly contained in Ŵα = Ŵ/α. Hence, the closure of
U0 is contained in αŴ . Since the immediate basin of the DH-map fα : Ŵ → Ŵα

is αŴ tU1, we see that U0 and U1 are disjoint and contained in V = Ŵ (see figure
12).
Step 2. The map φ : U0 → V is a ramified covering, ramified only at 0 and the
map φ : U1 → V is an isomorphism. Indeed, lemma 8 states that fα2 : D0 → D−1

is a ramified covering ramified only at 0. Using fα2(z) = f(α2z), D0 = U0/α2

and D−1 = V, the first statement is proved. Using again that the immediate basin
of the DH-map fα : Ŵ → Ŵα is αŴ t U1, and that the critical point of this
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V

U1

U0

φ|U0(z) = f(z)

φ|U1(z) = 1
αf(αz)

Figure 11. The Fibonacci map φ.

DH-map is contained in αŴ , we see that fα : U1 → αŴ is an isomorphism, which
immediately implies the second statement, since φ|U1 = fα/α.
Step 3. We now need to show that the critical orbit does not escape from U0 ∪U1.
For this purpose, we will prove a result that will be used again later, in the study
of the shape of puzzle pieces. In the following lemma, [x] denotes the integer part
of x.

Lemma 9. For any k ≥ 0, φ◦S2k is well defined on α2k+2Dk and φ◦S2k+1 is well
defined on α2k+2Ŵ . Besides,

φ◦S2k : α2k+2Dk → α2kDk−1 and φ◦S2k+1 : α2k+2Ŵ → α2kŴ

are ramified coverings ramified only at 0. In both cases, the iterate φ◦Sn coincides
with the map

z 7→ (−1)[(n+1)/2]αnf
( z

αn

)
.

Proof. We first claim that this property holds for k = 0. Indeed, it says that
• φ is well defined on α2D0 = U0, φ : α2D0 = U0 → D−1 = V is a ramified

covering ramified only at 0 which coincides with f ;
• φ◦2 is well defined on α2Ŵ , and φ◦2 : α2Ŵ → Ŵ is a ramified covering

ramified only at 0 which coincides with −αf(z/α).
The first point is obvious (by definition of φ). The second point requires some
argumentation. To prove this, remember that the immediate basin of the DH-map
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Ŵα

U0
U1

fα

fα

V = Ŵ

αŴ

Figure 12. U0 and U1 are quasi-disks relatively compact in V and
their closures are disjoint.

fα : Ŵ → Ŵα is αŴ tU1. Hence, fα : αŴ → U1 is a ramified covering, ramified
only at 0, so that

φ(α2Ŵ ) = f(α2Ŵ ) = fα(αŴ ) = U1,

and φ : α2Ŵ → U1 is a ramified covering, ramified only at 0. Post-composing
with the isomorphism φ : U1 → V = Ŵ , we are done. Indeed, we see that
φ◦2 : α2Ŵ → Ŵ is a ramified covering ramified only at 0 which coincides with

1
α

f(αf(z)) = −α
[
− 1

α2
f
(
αf

(
α

z

α

))]
= −αf(z/α).

Let us now assume that the property holds for some integer k− 1 ≥ 0. We need
to show that it holds for k. Remember that Dk ⊂ Ŵ/α. Hence, using the induction
property at level k−1, we see that φ◦S2k−1 is well defined on α2k+2Dk ⊂ α2k−1Ŵ ⊂
α2kŴ . Besides,

φ◦S2k−1(α2k+2Dk) = α2k−1f

(
α2k+2Dk

α2k−1

)
= α2k−1f(α3Dk).

Since α3Dk ⊂ αŴ , we have

φ◦S2k−1(α2k+2Dk) ⊂ α2k−1fα(αŴ ) = α2k−1U1 ⊂ α2k−1Ŵ .

Hence, the induction property at level k − 1 shows that φ◦S2k−2 is well defined on
φ◦S2k−1(α2k+2Dk) and coincides with (−1)[(2k−1)/2]α2k−1f(z/α2k−1). This shows
that φ◦S2k = φ◦S2k−2 ◦ φ◦S2k−1 is well defined on α2k+2Dk and coincides with

(−1)[(2k−1)/2]α2k−2f
[ 1
α2k−2

(
(−1)[(2k)/2]α2k−1f

( z

α2k−1

))]
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= (−1)[(2k−1)/2]α2k
[ 1
α2

f
(
αf

(
α

z

α2k

))]
= (−1)[(2k+1)/2]α2kf

( z

α2k

)
.

In particular, we can write the following diagram:

α2k+2Dk

φS2k
//

z 7→z/α2k+2

²²

α2kDk−1

Dk

fα2 // Dk−1.

z 7→(−1)[(2k+1)/2]α2kz

OO

Since fα2 : Dk → Dk−1 is a ramified covering, ramified only at 0, we see that
φS2k : α2k+2Dk → α2kDk−1 is a ramified covering, ramified only at 0.

The same analysis can be performed for φS2k+1 = φS2k−1 ◦ φS2k and yields the
diagram:

α2k+2Ŵ
φS2k

//

z 7→z/α2k+3

²²

α2kŴ

Ŵα

fα2 // Ŵα

z 7→(−1)[(2k+2)/2]α2k+1z

OO

We leave this analysis to the reader. ¤
Since for any k ≥ 0, φSn is well defined in a neighborhood of 0, we have proved

that the critical orbit never escapes from U0 ∪ U1. In particular, we have proved
that the mapping φ : U0 ∪ U1 → V is an L-map.
Step 4. Let us now prove that this L-map is a Fibonacci map. We will show that
φ◦Sn(0) belongs to the critical piece of depth Sn+1 − 3 but not to the critical piece
of depth Sn+1 − 2 (this corresponds to Branner Hubbard definition of Fibonacci
maps).

Lemma 10. For any k ≥ 0, the critical piece of depth S2k − 2 is equal to α2kŴ ,
and the critical piece of depth S2k+1 − 2 is equal to α2k+2Dk. For any n ≥ 0, the
critical piece of depth Sn+1 − 3 is equal to αnD′n−1.

Proof. Once more, this is proved by induction. Let us first do it for pieces of
depth S2k − 2 and S2k+1 − 2. For k = 0 observe that the critical piece of depth
S0 − 2 = −1 is Ŵ and the critical piece of depth S1 − 2 = 0 is α2D0. This is clear
by definition. Then, lemma 9 shows that we have the following ramified coverings:

α2k+2Ŵ
φ◦S2k+1

//
α2kŴ

α2k+4Dk+1

φ◦S2k+2
// α2k+2Dk

which shows that if the critical piece of depth S2k − 2 (resp. S2k+1 − 2) is α2kŴ

(resp. α2k+2Dk), then α2k+2Ŵ (resp. α2(k+1)+2Dk+1) is the critical piece of depth
S2k − 2 + S2k+1 = S2k+2 − 2 (resp. S2k+1 − 2 + S2k+2 = S2k+3 − 2).

To prove the result for the pieces of depth Sn − 3, observe that for n = 0 the
critical piece of depth S1−3 = −1 is D′1 = Ŵ . Then, assume that the critical piece
of depth Sn+1 − 3 is equal to αnD′n−1. If n is odd, i.e., n = 2k + 1, then we can
argue that αn+1D′n ⊂ αn+1Ŵ = α2k+2Ŵ . Hence, lemma 9 shows that φSn is well
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defined on αn+1D′n and we have:

αn+1D′n ⊂ αn+1Ŵ
φ◦Sn

//

z 7→z/αn+1

²²

αnD′n−1 ⊂ αn−1Ŵ

D′n ⊂ Ŵ
fα

// D′n−1 ⊂ Ŵα.

z 7→(−1)[(n+1)/2]αnz

OO

This shows that if n is odd, then φ◦Sn : αn+1D′n → αnD′n−1 is a ramified covering,
so that αn+1D′n is the critical piece of depth Sn+1−3+Sn = Sn+2−3. To treat the
case when n is even, we will use the same argument. However, this requires first
proving that α2k+1D′2k ⊂ α2k+2Dk, i.e., we need to prove the following sub-lemma.

Sub-lemma. For any k ≥ 0, D′2k ⊂ αDk.

Proof of the Sub-lemma. This property holds for k = 0. Indeed, we already
mentioned that D′0 = αD0. Let us now assume that it holds for some integer k ≥ 0.
Since, by definition, D′2k+2 ⊂ Ŵ , we have D′2k+2/α ⊂ Ŵα and

fα2(D′2k+2/α) = fα(D′2k+2) = D′2k+1.

Besides, lemma 8 shows that D′2k+1 b D′2k. Hence

fα2(D′2k+2/α) ⊂ Dk,

and by definition of Dk+1, we see that D′2k+2/α ⊂ Dk+1. ¤
We now return to the proof of our lemma. When n = 2k is even, lemma 9 shows

that φSn is well defined on αn+1D′n and we have

αn+1D′n ⊂ α2k+2Dk

φ◦Sn

//

z 7→z/αn+1

²²

αnD′n−1 ⊂ α2kDk−1

D′n ⊂ αDk
fα

// D′n−1 ⊂ Dk−1.

z 7→(−1)[(n+1)/2]αnz

OO

This concludes the proof of the lemma ¤
To conclude the proof of step 4, observe that lemma 9 implies that

φ◦Sn(0) = (−1)[(n+1)/2]αnf(0) = (−1)[(n+1)/2]αn.

Hence, to prove that φ◦Sn(0) belongs to the critical piece of depth Sn+1 − 3 but
not to the critical piece of depth Sn+1 − 2, we need to show that for all n ≥ 0,
αn ∈ αnD′n−1, for all even integer n ≥ 0, αn 6∈ αn+2Dn/2 and for all odd integer
n ≥ 0, αn 6∈ αn+1Ŵ . Since for all even integer n ≥ 0, we have αn+2Dn/2 ⊂ αn+1Ŵ ,
it is sufficient to prove that 1 ∈ D′n−1 \ αŴ . This is clear since 1 is contained U1.
Indeed, U1 ⊂ K(fα) ⊂ D′n−1, and U1 ∩ αŴ = ∅ since they are the two connected
components of the immediate basin of attraction of the DH-map fα : Ŵ → Ŵα.
Step 5. We finally show that R̃(2,1)([φ]) = [φ]. The canonical renormalization of
φ : U0 ∪ U1 → V is ψ : U0

1 ∪ U1
1 → V1, where

• V1 is equal to U0,
• U0

1 is the critical piece of depth 2 = S3 − 3, i.e., α2D′1,
• U1

1 is the piece of depth 1 that contains φ◦2(ω) = −α,
• ψ|U0

1
(z) = φ◦2(z) = −αf(z/α), and
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• ψ|U1
1
(z) = φ(z) = f(z).

Hence the central branch of R̃(2,1)(φ) cöıncides with −1/α
[−αf(−αz/α)

]
= f and

the outer branch of R̃(2,1)([φ]) coincides with 1/α
[
f(−αz)

]
= 1/αf(αz). Since the

two branches of the Fibonacci maps R̃(2,1)(φ) and φ coincide, and since the range
of R̃(2,1)([φ]) is contained in the range of φ – indeed, V1/α = αD0 ⊂ Ŵ = V – we
see that R̃(2,1)(φ) is a restriction of φ. Thus, we only need to prove that there are
no points of K(φ) in V \ V1. This immediately follows from the following inclusion
of sets:

K(φ) ⊂ U0 ∪ U1 ⊂ K(fα) ⊂ D′0 = αD0 = V1.

¤

Corollary. For every even integer ` ≥ 4, there exists a unique α ∈]0, 1[ such that
the Cvitanović-Fibonacci equation has a solution, and this solution is itself unique.

Proof. For every even integer ` ≥ 4, we have seen that there exists a real number
α ∈]0, 1[ such that the Cvitanović-Fibonacci equation has a solution. This solution
was obtained as a limit of renormalizations. Now, if there was another possible
value of α or another solution, then the renormalization operator R(2,1) would have
at least two cycles of order 2 of real Fibonacci maps of degree `. But this contradicts
theorem 3. ¤

4.5. Shape of the Fibonacci puzzle pieces. To conclude our study of Fibonacci
maps, we will show the following geometric result describing the shape of some
Fibonacci critical puzzle pieces.

Theorem D. Let
• ` ≥ 4 be an even integer,
• F : U0∪U1 → V be a real symmetric Fibonacci map of degree ` normalized

so that the critical point is ω = 0,
• Ck be the critical puzzle piece of depth k,
• f be the solution of the Cvitanović-Fibonacci equation in degree `,
• α ∈]0, 1[ be the constant defined by the Cvitanović-Fibonacci equation, and
• fα : Wα → fα(Wα) and fα2 : Wα2 → fα2(Wα2) be the polynomial-like

mappings defined in Theorem B.
Then, there exists a constant λ 6= 0 such that

• the sequence of rescaled puzzle pieces
λ

αk+1
CSk−2 converges for the Haus-

dorff topology to the filled-in Julia set K(fα2), and

• the sequence of rescaled puzzle pieces
λ

αk−1
CSk−3 converges to the filled-in

Julia set K(fα).

Let us mention that a similar result has already been proved by Lyubich [Ly2]
for Fibonacci maps in degree 2. He proved the convergence in shape of some puzzle
pieces to the Julia set of z → z2 − 1.

Proof. We will first show that the theorem holds for the Fibonacci map φ : U0 ∪
U1 → V constructed in theorem C. Since the critical pieces of φ̃ : U0 ∪ U1 → V
are the same as the critical pieces of φ, the statement also holds for φ̃. We will
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then use theorem 3 which says that there exists a quasiconformal homeomorphism
ψ : V → V which conjugates F to either φ or φ̃. The fact that this conjugacy is
C1+ε at 0 will enable us conclude the proof of theorem D.

The statement for the Fibonacci map φ : U0∪U1 → V constructed in theorem C
is an immediate consequence of lemmas 8 and 10. Indeed, let us call Cn the critical
puzzle piece of depth n for this Fibonacci map. Then, lemma 10 says that

CS2k−2 = α2k+1Ŵα, CS2k+1−2 = α2k+2Dk and CSn−3 = αn−1D′n−2

Then, CS2k−2/α2k+1 is constantly equal to the closure of Ŵα which is precisely
K(fα2), and lemma 8 shows that CS2k+1−2/α2k+2 = Dk converges to K(fα2) whereas
CSn−3/αn−1 = D′n−2 converges to K(fα).

Theorem 3 says that there exists a quasiconformal homeomorphism ψ : V → V
which conjugates F to either φ or φ̃. Without loss of generality, we may assume
that F is conjugate to φ. Since ψ is C1+ε at 0, we have

ψ(z) = λz +O (|z|1+ε
)
,

for some real number λ 6= 0. Observe that

1
αk

ψ(αkz) = λz +
O (|αkz|1+ε

)

αk

converges uniformly on every compact subset of C, as k tends to infinity, to the
scaling map z 7→ λz. Besides, it sends CSk−2/αk+1 – resp. CSk−3/αk−1 – to
CSk−2/αk+1 – resp. CSk−3/αk−1. In particular, the compact sets λCSk−2/αk+1

and CSk−2/αk+1 have the same limit. This is also true for the compact sets
λCSk−3/αk−1 and CSk−3/αk−1. Hence, the theorem is proved. ¤
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