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The Brjuno function continuously
estimates the size of quadratic Siegel disks

By Xavier Buff and Arnaud Chéritat

Abstract

If α is an irrational number, Yoccoz defined the Brjuno function Φ by

Φ(α) =
∑

n≥0

α0α1 · · ·αn−1 log
1
αn

,

where α0 is the fractional part of α and αn+1 is the fractional part of 1/αn.
The numbers α such that Φ(α) < +∞ are called the Brjuno numbers.

The quadratic polynomial Pα : z "→ e2iπαz + z2 has an indifferent fixed
point at the origin. If Pα is linearizable, we let r(α) be the conformal radius
of the Siegel disk and we set r(α) = 0 otherwise.

Yoccoz [Y] proved that Φ(α) = +∞ if and only if r(α) = 0 and that the
restriction of α "→ Φ(α) + log r(α) to the set of Brjuno numbers is bounded
from below by a universal constant. In [BC2], we proved that it is also bounded
from above by a universal constant. In fact, Marmi, Moussa and Yoccoz [MMY]
conjecture that this function extends to R as a Hölder function of exponent
1/2. In this article, we prove that there is a continuous extension to R.

Contents

1. Introduction

2. Statement of results
2.1. The value of Υ at rational numbers
2.2. The value of Υ at Cremer numbers
2.3. Strategy of the proof

3. Parabolic explosion
3.1. Outline
3.2. Definitions
3.3. A preliminary lemma: Getting some room for holomorphic motions
3.4. The loss of conformal radius when one removes the exploding cycle
3.5. A short remark: Denominators of convergents and Fibonacci numbers
3.6. The key inequality for the upper bound
3.7. Application to the proof of Theorem 2: Υ at Cremer numbers



2 XAVIER BUFF AND ARNAUD CHÉRITAT
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1. Introduction.

For any irrational number α ∈ R\Q, we denote by (pn/qn)n≥0 the approx-
imants to α given by its continued fraction expansion (by convention, p0 = %α&
is the integer part of α and q0 = 1).

Remark. Every time we use the notation p/q for a rational number, we
mean that q > 0 and p and q are coprime.

We denote by %α& ∈ Z the integer part of α, i.e., the largest integer
n ≤ α, by {α} = α − %α& the fractional part of α, and we define (αn)n≥0

recursively by setting α0 = {α} and αn+1 = {1/αn}. We then define β−1 = 1
and βn = α0α1 · · ·αn.

Definition 1 (Yoccoz’s Brjuno function). If α is an irrational number, we
define

Φ(α) =
+∞∑

n=0

βn−1 log
1
αn

.
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If α is a rational number we define Φ(α) = +∞. Irrational numbers for which
Φ(α) < ∞ are called Brjuno numbers. Other irrational numbers are called
Cremer numbers.

Remark. In terms of αn, the definition reads

Φ(α) = log
1
α0

+ α0 log
1
α1

+ α0α1 log
1
α2

+ · · ·

Remark. The set B of Brjuno numbers has full measure in R. It con-
tains the set of all Diophantine numbers, i.e., numbers for which log qn+1 =
O(log qn).

We study the quadratic polynomials

Pα : z "→ e2iπαz + z2

for α ∈ R. It is known that such Pα is linearizable — and so, has a Siegel disk
— if and only if α is a Brjuno number.

Definition 2. If U ! C is a simply connected domain containing 0, we
denote by rad(U) the conformal radius of U at 0, i.e., rad(U) = |φ′(0)| where
φ : (D, 0) → (U, 0) is any conformal representation.

Definition 3. For any Brjuno number α ∈ B, we denote by r(α) the confor-
mal radius at 0 of the Siegel disk of the quadratic polynomial Pα. If α ∈ R\B,
we define r(α) = 0.

Remark. The functions α "→ Φ(α) and α "→ log r(α), defined on B, are
highly discontinuous: for instance they respectively tend to +∞ and −∞ at
every rational number.

It is known that there exists a constant C0 such that for any Brjuno
number α ∈ B and any univalent map f : D → C which fixes 0 with derivative
e2iπα, f has a Siegel disk ∆f which contains B(0, r) with Φ(α) + log r ≥ −C0.
In particular, for all α ∈ B, we have

Φ(α) + log r(α) ≥ −C0 − log 2.(1)

Indeed, Pα is injective on B(0, 1/2).

Remark. The existence of ∆f is due to Brjuno [Brj]. The lower bound
(1) is due to Yoccoz [Y].

In [BC2], we proved that there exists a universal constant C1 such that
for all α ∈ B, we have

Φ(α) + log r(α) ≤ C1.(2)
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Inequalities (1) and (2) imply that Φ(α) + log r(α) is uniformly bounded
on B:

(∃C ∈ R), (∀α ∈ B), |Φ(α) + log r(α)| ≤ C.(3)

Figure 1: The graph of the function α "→ Φ(α) + log r(α) with α ∈ [0, 1]. The
range is [0, log(2π)].

In this article we prove the following result which was conjectured by
Marmi [Ma].

Theorem 1 (Main Theorem). The function α "→ Φ(α) + log r(α) ex-
tends to R as a continuous function.

In fact, Marmi, Moussa and Yoccoz made the following stronger conjecture
([MMY] and [Ca]).

Conjecture 1. The function α "→ Φ(α)+log r(α) —which is well-defined
on B— is Hölder of exponent 1/2.

Remark. Since B is dense in R, being 1/2-Hölder on B and having a
1/2-Hölder extension to R are equivalent, and the extension is unique.

Remark. In [Y], Yoccoz uses a modified version of continued fractions.
He defines a sequence α̃n defined by α̃0 = d(α, Z) and α̃n+1 = d(1/α̃n, Z). The
corresponding function Φ̃ defined by

Φ̃(α) =
∑

n≥0

α̃0 · · · α̃n−1 log
1
α̃n

has the additional property that Φ̃(1 − α) = Φ̃(α). Figure 2 shows the graph
of the function α "→ Φ̃(α) + log r(α). Theorem 4.6 in [MMY] asserts that the
restriction of Φ − Φ̃ to B extends to R as a 1/2-Hölder continuous periodic
function with period one. It has two consequences: first, the Marmi-Moussa-
Yoccoz conjecture is equivalent with Φ replaced by Φ̃. Second, with Theorem 1
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Figure 2: The graph of the function α "→ Φ̃(α) + log r(α) with α ∈ [0, 1]. The
range is [0, log(2π)].

it implies that the function α "→ Φ̃(α) + log r(α) extends to R as a continuous
function.

2. Statement of results

The function Φ(α) + log r(α) is defined on the set of Brjuno numbers B.
In this section, we will define an extension Υ : R → R and in the rest of the
article, we will show that for all α ∈ R,

lim
α′→α, α′∈B

Φ(α′) + log r(α′) = Υ(α).

It is an easy exercise to prove that Υ is then continuous.

Remark. For α ∈ Q, we will give an explicit formula for Υ(α).

Definition 4. For α ∈ B, we set

Υ(α) = Φ(α) + log r(α).

2.1. The value of Υ at rational numbers. A rational number α = p/q ∈ Q
has two finite continued fraction expansions, corresponding to two sequences
of approximants pn/qn, two sequences αn, and two sequences βn. One of
the sequences αn is provided by the usual algorithm: α0 = {α} and αn+1 =
{1/αn}, which eventually gives αm = 0 for some m ∈ N, after which the
sequence is not defined any more. The other has the same αk for k < m, its
αm = 1, and has one more term, αm+1 = 0.1

In both cases, the sequence β is defined by β−1 = 1 and βn = α0 · · ·αn.
Let n0 = m or m+1 be the last index of the sequence αn of p/q that we chose.

1A number α′ tending to p/q has its α′
k that tends to the αk of p/q for all k < m.

According to whether α′ tends to p/q from the left or the right, α′
m tends to one of the

two values defined above, that is 0 or 1, the correspondence depending on the parity of m.
Moreover, if it is 1, then α′

m+1 tends to 0. This motivates the two definitions we made.
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We have αn0 = 0. We can form the finite sum

Φtrunc(p/q) =
n0−1∑

n=0

βn−1 log
1
αn

(with the convention that a sum
∑n=−1

n=0 · · · is equal to 0). It turns out to
be independent of the choice between the two values of n0, as can easily be
checked.

Examples.

Φtrunc(0/1) = 0

Φtrunc(1/2) = log 2

Φtrunc(1/3) = log 3

Φtrunc(2/3) = log 3
2 + 2

3 log 2

The following two definitions and their relations with the conformal radii
of Siegel disks appear in [Ch].

Definition 5. Assume f : (C, 0) → (C, 0) is a germ having a multiple fixed
point at the origin whose Taylor expansion is

f(z) = z + Azk+1 + O(zk+2), with A ∈ C∗.

The asymptotic size of f at 0 is defined by

La(f, 0) =
∣∣∣∣

1
kA

∣∣∣∣
1/k

.

The map Pp/q fixes 0 with derivative e2iπp/q. Therefore, its q-th iterate is
tangent to the identity, and we make the following definition.

Definition 6. Assume p/q ∈ Q is a rational number. Then, we define

La(p/q) = La(P ◦q
p/q, 0).

For Pp/q, it turns out that k = q (see [DH, Ch. IX]).

Definition 7. For all rational number p/q, we define

Υ
(

p

q

)
= Φtrunc

(
p

q

)
+ log La

(
p

q

)
+

log 2π

q
.
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Examples (approximate values rounded to the nearest decimal).

La(0/1) = 1 Υ(0/1) = log 2π = 1.8379 . . .

La(1/2) =
1
2

Υ(1/2) =
log 2π

2
= 0.9189 . . .

La(1/3) =
1

3
1
2 7

1
6

Υ(1/3) =
log 3

2
− log 7

6
+

log 2π

3
= 0.8376 . . .

La(2/3) =
1

3
1
2 7

1
6

Υ(2/3) =
log 3

2
− log 7

6
+

log π

3
= 0.6066 . . . .

2.2. The value of Υ at Cremer numbers.

Definition 8. For all irrational number α and all integer n ≥ 0, we define

Φn(α) =
n∑

k=0

βk−1 log
1
αk

.

We recall that a domain U ⊂ C is hyperbolic if and only if its univer-
sal cover is isomorphic to D as a Riemann surface. We also recall that it is
equivalent to C \ U containing at least two points.

Definition 9. If U ⊂ C is a hyperbolic connected domain containing 0, we
denote by rad(U) the conformal radius of U at 0, i.e., rad(U) = |π′(0)| where
π : (D, 0) → (U, 0) is any universal covering.

Remark. This definition of conformal radius coincides with the one given
in the introduction in the case of simply connected domains.

Definition 10. For all α ∈ R \ Q and all integer n ≥ 0, we define

Xn(α) = {z ∈ C∗ | z is a periodic point of Pα of period ≤ qn}

where pn/qn are the approximants to α,

rn(α) = rad(C \ Xn(α)) and dn(α) = d(0, Xn(α)).

Remark. If n ≥ 2, then qn ≥ 2, Xn(α) contains at least two points and
rn(α) ∈ ]0, +∞ [ . Moreover, for n ≥ 2, the function α "→ log rn(α) is well-
defined and continuous in a neighborhood of every point α ∈ R \ Q.

For all irrational number α, the sequence (rn(α))n≥0 is decreasing and
converges to r(α) as n → ∞. Indeed, if 0 is not linearizable, it is accumulated
by periodic points of Pα.2 If 0 is linearizable, the Siegel disk ∆α is contained
in C \Xn(α) for all n ≥ 0 and the boundary of ∆α is accumulated by periodic

2In fact, Yoccoz proved that 0 is accumulated by whole cycles.
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points of Pα.3 Since Pα is tangent the rotation of angle α and α is irrational,
if 0 is not linearizable, then

rn(α) ∼
n→+∞

dn(α).

If α is a Brjuno number, then

lim
n→∞

Φn(α) + log rn(α) = Υ(α).

In Section 3, we will prove the following theorem.

Theorem 2. For all Cremer numbers α, the sequence

Φn(α) + log rn(α)

has a finite limit when n −→ +∞.

Definition 11. For all Cremer numbers α, we define

Υ(α) = lim
n→+∞

Φn(α) + log rn(α)

Remark. This definition is equivalent to

Υ(α) = lim
n→+∞

Φn(α) + log dn(α).

2.3. Strategy of the proof. Our goal is to prove that for all α ∈ R, the
value of Υ(α) defined previously (see Definitions 4, 7 and 11) is the limit of
Φ(α′) + log r(α′) as α′ ∈ B tends to α. The strategy consists in bounding
Φ(α′) + log r(α′) from above and from below as α′ ∈ B tends to α.

The upper bound follows from techniques of parabolic explosion developed
in [Ch] and [BC2]. We present them in Section 3, and in Section 4 we show
that for all α ∈ R,

lim sup
α′→α, α′∈B

Φ(α′) + log r(α′) ≤ Υ(α).(4)

The lower bound essentially follows from techniques of renormalization
introduced by Yoccoz in [Y]. He uses estimates which are valid for all maps
which are univalent in D and fix 0 with derivative of modulus 1. In our case,
we will need to improve those estimates for maps which are close to rotations
and maps which have at most one fixed point in D∗ (see §5). In Sections 6 and
7 we show that for all α ∈ R,

lim inf
α′→α, α′∈B

Φ(α′) + log r(α′) ≥ Υ(α).(5)

Let us mention that inequality (4) without inequality (5) (respectively
inequality (5) without inequality (4)) is not sufficient to conclude that Υ is
upper semi-continuous (respectively lower semi-continuous) since we only con-
sider approximating α by sequences of Brjuno numbers.

3It is not known whether ∂∆α is always accumulated by whole cycles.
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3. Parabolic explosion

In this section, we first present the techniques of parabolic explosion. We
then apply those techniques in order to prove Theorem 2.

3.1. Outline. Here, we informally describe what will be done in Section 3.
Let α be irrational. Recall that rn−1(α) is the conformal radius at 0 of the
complement of Xn−1(α), the set of non zero periodic points of period ≤ qn−1.
When we increment n− 1 to n, Xn−1(α) contains more periodic points, hence
rn−1(α) decreases. Among the points removed from C \ Xn−1(α), we single
out a particular cycle C. We will prove that this cycle induces a decrease in
conformal radius, of at least βn−1 log 1

αn
, up to a tame error term.

What is this cycle C? The approximant pn/qn is close to α. Therefore Pα

is a perturbation of Ppn/qn
. The latter has a parabolic fixed point at 0. The

perturbations of Ppn/qn
have a cycle C of period qn close to 0.

Why a decrease of βn−1 log 1
αn

? The points in the cycle turn out to de-
pend analytically on the qn-th root of the perturbation. It follows from a ver-
sion of Schwarz’s lemma that the cycle cannot go significantly farther than
|α − pn/qn|1/qn times the conformal radius of the region where the explo-
sion takes place. We will see that the cycle cannot collide with the points
of Xn−1(α). In terms of logarithms of conformal radii, this implies that there
must be a decrease of −1

qn
log |α − pn/qn|. The theory of continued fractions

approximates this value by βn−1 log 1
αn

.
Unfortunately there are several technical difficulties. They will induce

error terms of order 1
qn

log qn. Among them:
• One needs pn/qn to be a good enough approximant to α. When it is not,

the claimed decrease may not be true, but it is then small enough to be
swallowed by the error term.

• The set Xn−1(α) depends on α and thus, during the explosion, the cycle
avoids a set which moves with α. We have to show that this motion
is small (by proving that there is a holomorphic motion defined on a
domain in the parameter space much bigger than the domain on which
the explosion is defined). And we have to prove that this small motion
induces a small error term.

Other technical difficulties are addressed in this section.

3.2. Definitions. Assume p/q ∈ Q is a rational number. The origin is a
parabolic fixed point for the quadratic polynomial Pp/q. It is known (see [DH,
Ch. IX]) that there exists a complex number A ∈ C∗ such that

P ◦q
p/q(z) = z + Azq+1 + O(zq+2).

Thus, P ◦q
p/q has a fixed point of multiplicity q + 1 at the origin. By Rouché’s

theorem, when α is close to p/q, the polynomial P ◦q
α has q + 1 fixed points
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close to 0. One coincides with 0. The others form a cycle of period q for Pα.
More precisely, we have the following proposition (see [Ch] or [BC2, Prop. 1]
for a proof).

Proposition 1. Let p/q be a rational number, and ζ = e2iπp/q. There
exists an analytic function χ : B(0, 1/q3/q) → C such that χ(0) = 0 and for
any δ ∈ B(0, 1/q3/q) \ {0}, χ(δ) .= 0 and the set

〈
χ(δ), χ(ζδ), χ(ζ2δ), . . . , χ(ζq−1δ)

〉

forms a cycle of period q of Pp/q+δq . We will note χ = χp/q, since it depends
on p/q.

In other words, the points of the cycles depend analytically, not on the
perturbation α−p/q but on its q-th root δ. Moreover, these q points are given
by a single analytic function χ, applied to the q values of the q-th root. The
proposition also gives a lower bound on the size of the disk on which this holds.

Remark. Observe that δ ∈ B(0, 1/q3/q) if and only if α = p/q + δq ∈
B(p/q, 1/q3).

In the following definition, note that α is a complex number.

Definition 12. For all p/q ∈ Q and all α ∈ B(p/q, 1/q3), we define

Cp/q(α) = χp/q

{
q
√

α − p/q
}

,

where q
√

z denotes the set of complex q-th roots of z.

The set Cp/q(α) is a cycle of period q for Pα, except when α = p/q, in which
case it is reduced to {0}. In particular, if α is irrational, p/q = pn/qn is an
approximant to α and |α− pn/qn| < 1/q3

n, then Cpn/qn
(α) ⊂ Xn(α). Note that

when |α0 − p/q| < 1/2q3, the cycle Cp/q(α) is defined for all α ∈ B(α0, 1/2q3),
and not reduced to {0}.

3.3. A preliminary lemma: Getting some room for holomorphic motions.
Recall the following classical fact: a periodic point of Pα can be locally followed
holomorphically in terms of α as long as its multiplier is different from 1 (as
can be proved using the Implicit Function Theorem). The following lemma
gives us room to do that.

Lemma 1. Assume α0 ∈ R \ Q and let pn/qn be an approximant to α0

with qn ≥ 2. Assume α ∈ C, α .= pn/qn, q ≤ qn and P ◦q
α has a multiple fixed

point. Then,

|α0 − α| ≥ 1
2q3

n
.
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Proof. Either α = p/q for some integer p. Within the disk B(α0, 1/2q3
n),

the only possibility is p/q = pn/qn. Or α belongs to a Yoccoz disk of radius
log 2/(2πq′) < 1/8q′ tangent to the real axis at p′/q′ for some rational number
p′/q′ with q′ < q ≤ qn (see [Ch, Part I, §6.2], or [BC1, Lemma 1], or [BC2,
Lemma 1]). By a well-known property of approximants, we have

|q′α0 − p′| ≥ |qn−1α0 − pn−1| ≥
1

qn + qn−1
≥ 1

2qn
.

Moreover, by Pythagoras’ theorem,

|α − α0|≥
1
q′

(√
(q′α0 − p′)2 + (1/8)2 − 1/8

)

≥ 1
qn

(√
1/ (2qn)2 + 1/82 − 1/8

)

=
1/(2qn)2

qn

(√
1/ (2qn)2 + 1/82 + 1/8

)

≥ 1
2q3

n
· 1

2
(√

1/42 + 1/82 + 1/8
) ≥ 1

2q3
n
.

Corollary 1. Assume α0 ∈ R \ Q and let pn/qn be an approximant to
α0 with qn ≥ 2. The set

X(α) = {z ∈ C∗ | z is a periodic point of Pα of period ≤ qn}

moves holomorphically with respect to α ∈ B(α0, 1/2q3
n+1).

Proof. If the set X(α) fails to move holomorphically at a point α ∈ C, then,
for some integer q ≤ qn, P ◦q

α has a multiple fixed point. Either α = pn/qn, and
(according to a property of approximants) |α − α0| ≥ 1/(2qnqn+1) > 1/2q3

n+1.
Or α .= pn/qn, and by the previous lemma |α − α0| ≥ 1/2q3

n > 1/2q3
n+1.

3.4. The loss of conformal radius when one removes the exploding cycle.
In the next lemma we investigate the loss of conformal radius of a domain
when we remove the cycle Cp/q(α0) from it. It mainly concerns the case when
p/q is a good enough approximant of α0 but for convenience with respect to
the next chapters, we made a statement valid for all p/q.

Lemma 2. There exists C ∈ R such that for all α0 ∈ R\Q and all p/q ∈ Q
with q ≥ 2, the following holds. Assume V (α) 0 0 is an open set that moves
holomorphically with respect to α ∈ B(α0, 1/2q3).

• If |α0 − p/q| ≥ 1/2q3, set V ′(α0) = V (α0).

• If |α0 − p/q| < 1/2q3, assume Cp/q(α) ⊂ V (α) for all α ∈ B(α0, 1/2q3)
and set V ′(α0) = V (α0) \ Cp/q(α0).
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Then,

log
rad(V ′(α0))
rad(V (α0))

≤ log |α0 − p/q|
q

+ C
log q

q
.

Remark. The first case will turn out to be trivial. For the second case,
before giving the proof, let us informally explain what happens. The explosion
of the multiple fixed point coming from α = p/q is analytic with respect to the
q-th roots δ of α−p/q, and is defined on a disk of radius almost 1 (up to a tame
error term). When α = α0, the q parameters δ have modulus |α0 − p/q|1/q.
Now the explosion takes place in V (α). When q is big, there are many values
of δ, tightly packed on the circle of radius |α0 − p/q|1/q. If V (α) did not
depend on α, if it were simply connected, if the parameters δ covered all the
circle, and if the explosion were defined for all δ ∈ D, Schwarz’s lemma would
imply that removing the cycle from V (α0) decreases its conformal conformal
radius of at least a factor |α0 − p/q|1/q, which in terms of logarithms means
log(rad(V ′(α0)) ≤ log(rad(V ′(α0))+ 1

q log |α0−p/q| (the last term is negative).
None of these 4 assumptions are true, but in each case, we can prove that the
error we make is of order 1

q log q (this is done in [BC2], and we copied here in
the appendix the statements of the relevant theorems).

Proof of Lemma 2. Let us first assume that |α0 − p/q| ≥ 1/2q4 ≥ 1/q5

(this comprises the case V ′(α0) = V (α0)). Then,

log |α0 − p/q| + 5 log q ≥ 0

and the lemma follows trivially with C = 5 since

log
rad(V ′(α0))
rad(V (α0))

≤ 0.

So, let us assume that |α0 − p/q| < 1/2q4. Then,

B
def= B(p/q, 1/2q4) ⊂ B(α0, 1/q4) ⊂ B(α0, 1/2q3).

We set

U = {δ ∈ C | p/q + δq ∈ B} and S = {δ ∈ U | p/q + δq = α0}.

Note that χp/q(S) = Cp/q(α0).
The radius of the disk U is 1/(2q4)1/q and the set S consists in q points

equidistributed on a circle of radius |α0 − p/q|1/q. So, according to Proposi-
tion 11 (see the appendix), we have

log
rad(U \ S)

rad(U)
< log

|α0 − p/q|1/q

1/(2q4)1/q
+

C

q

for some universal constant C.
According to Proposition 12 (see the appendix), there exists for α ∈

B(α0, 1/2q3) an analytic family of universal coverings πα : Ṽ (α) → V (α),
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where Ṽ (α) are open subsets of B(0, 4), and Ṽ (α0) = D. The set V (α) moves
holomorphically with α ∈ B(α0, 1/2q3) and when δ ∈ U , α(δ) = p/q + δq be-
longs to B ⊂ B(α0, 1/q4). For α ∈ B, the sets Ṽ (α) are all contained in some
ball B(0, ρ) with

log ρ =
2 log 4

1 +
1/2q3

1/q4

=
log 16

1 + q/2
.

The map χp/q “lifts” to a map φ : U → B(0, ρ) such that φ(δ) ∈ Ṽ (α(δ)).
It follows from the definitions that,

log
rad(V ′(α0))
rad(V (α0))

= log
rad(V (α0) \ Cp/q(α0))

rad(V (α0))

= log
rad

(
Ṽ (α0) \ π−1

α0

(
χp/q(S)

))

rad(Ṽ (α0))
.

Now Ṽ (α0) = D and φ(S) ⊂ π−1
α0

(χp/q(S)), thus

log
rad(V ′(α0))
rad(V (α0))

≤ log rad(D \ φ(S)) ≤ log rad(B(0, ρ) \ φ(S)).

The range of the function φ needs not to be a subset of D, but we know from
Proposition 10 (see the appendix), that

log rad(B(0, ρ) \ φ(S))≤ log
rad(U \ S)

rad(U)
+ log ρ

≤ log |α0 − p/q|
q

+ 4
log q

q
+

log 2
q

+
C

q
+

log 16
1 + q/2

≤ log |α0 − p/q|
q

+ C ′ log q

q

for some universal constant C ′.

3.5. A short remark : Denominators of convergents and Fibonacci num-
bers. Let Fn be the smallest possible value of qn over all irrationals α, where
pn/qn is the n-th approximant to α. Then Fn is the Fibonacci sequence defined
by

F−1 = 0, F0 = 1, Fn+1 = Fn + Fn−1.

The first terms are

F−1 = 0, F0 = 1, F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .

The function x "→ log(x)/x is decreasing on [e,+∞ [ , thus

for all n ≥ 3,
log qn

qn
≤ log Fn

Fn
.

For n = 1 and 2, the biggest possible value of log(qn)/qn is log(3)/3.
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3.6. The key inequality for the upper bound. The next proposition tells us
that for all irrational α, the sequence Φn(α)+log rn(α) is essentially decreasing,
in the sense that it cannot increase too fast.

Proposition 2. There exists a constant C ∈ R such that for all α ∈ R\Q
and all n ≥ 1 such that qn ≥ 2 (with pn/qn the approximants to α), we have

(
Φn+1(α) + log rn+1(α)

)
−
(
Φn(α) + log rn(α)

)
≤ C

log qn+1

qn+1
.

Proof. Let us fix α0 ∈ R \ Q and choose n so that qn ≥ 2. We want to
apply Lemma 2 with p/q = pn+1/qn+1 and

V (α) = C \ {z ∈ C∗ | z is a periodic point of Pα of period ≤ qn}.

By definition, 0 ∈ V (α) and by Corollary 1, the set V (α) moves holomorphi-
cally with respect to α ∈ B(α0, 1/2q3

n+1). Also, V (α) contains the periodic
cycles of Pα of period qn+1 and so, if |α0 − p/q| < 1/2q3, then Cp/q(α) ⊂ V (α)
for all α ∈ B(α0, 1/2q3). As in Lemma 2, if |α0 − p/q| ≥ 1/2q3, we set
V ′(α0) = V (α0) and otherwise, we set V ′(α0) = V (α0) \ Cp/q(α0). Then,

rn(α0) = rad(V (α0)) and rn+1(α0) ≤ rad(V ′(α0)).

So, Lemma 2 implies that

log rn+1(α0) − log rn(α0)≤
log |α0 − pn+1/qn+1|

qn+1
+ C

log qn+1

qn+1

=
log βn+1

qn+1
+ (C − 1)

log qn+1

qn+1
.

Since βn+1 ≤ αn+1 and 1/qn+1 ≥ βn:

log rn+1(α0) − log rn(α0)≤−βn log
1

αn+1
+ (C − 1)

log qn+1

qn+1

=−Φn+1(α0) + Φn(α0) + (C − 1)
log qn+1

qn+1

for some universal constant C.

The bound we gave depends on α, but for each n, the supremum over all
α ∈ R \ Q is exponentially decreasing with respect to n (according to §3.5).

3.7. Application to the proof of Theorem 2: Υ at Cremer numbers. Yoc-
coz’s work [Y] implies that there exists a constant C ′

0 such that for all α ∈ R\Q
and all n ≥ 0,

Φn(α) + log rn(α) ≥ C ′
0,

(compare with inequality (1)). Now assume α is a Cremer number, and define
un = Φn(α) + log rn(α). Then un is bounded from below.
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The sequence un is not decreasing, but it is “essentially decreasing”, in
the sense that Proposition 2 gives us

un+1 − un ≤ C
log qn+1

qn+1

and (log qn+1)/qn+1 decreases exponentially fast. Therefore the sequence

vn = un −
n∑

k=0

C
log qk

qk

is decreasing and bounded from below, thus convergent. It follows that un

converges.

4. Proof of inequality (4) (the upper bound)

4.1. Irrational numbers. We will now show that for all α ∈ R \ Q,

lim sup
α′→α, α′∈B

Φ(α′) + log r(α′) ≤ Υ(α).

Let us fix ε > 0. We must show that for α′ ∈ B sufficiently close to α,
Φ(α′) + log r(α′) ≤ Υ(α) + ε. Remember that as n → ∞, Φn(α) + log rn(α) →
Υ(α). So, let us choose n0 large enough so that

Φn0(α) + log rn0(α) ≤ Υ(α) + ε/3.

Increasing n0 if necessary, we may also assume that n0 ≥ 2 and
∑

n≥n0

C
log Fn+1

Fn+1
≤ ε/3,

where C is the constant in Proposition 2. In a neighborhood of α, the functions
Φn0 and log rn0 are continuous. So, if α′ is sufficiently close to α,

Φn0(α
′) + log rn0(α

′) ≤ Φn0(α) + log rn0(α) + ε/3

and summing the inequality of Proposition 2 from n = n0 to n = +∞ yields

Φ(α′) + log r(α′) ≤ Υ(α) + ε.

4.2. Rational numbers: Outline. We will show that

lim sup
α′→p/q, α′∈B

Φ(α′) + log r(α′) ≤ Υ(p/q).

Suppose α′ → p/q from one side (either left or right). Then for α′

close enough to p/q the continued fraction expansion of α′ starts with
[a0, . . . , an0 , . . . ]. Here [a0, . . . , an0 ] is one of the two finite continued frac-
tion expansions of the rational number p/q (see §2.1). The other expan-
sion is produced by α′ converging to p/q from the other side. The cycle
Cpn/qn

(α′) tends to 0, and according to Section 3, its distance to 0 is roughly
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d = La(p/q)|2πq2(α′− p/q)|1/q. This cycle is approximately on a regular poly-
gon centered at 0. Therefore, the logarithm of rn0(α′), the conformal radius
of C \ Xn0(α′), is essentially bounded from above by log d = log La(p/q) +
1
q log(q2ε) + log 2π

q , where ε = |α′ − p/q|. Now, in the sum defining the
Brjuno function, the partial sum of the terms from rank 0 up to n0−1 (that we
denoted Φn0−1(α′)) tends to Φtrunc(p/q). The term of rank n0 has expansion
−1

q log(q2ε) + o(1) as ε −→ 0. Thus,

Φn0(α
′) + log rn0(α

′) ≤ Φtrunc(p/q) +
log 2π

q
+ log La(p/q) + o(1).

Then, we add the inequalities of Proposition 2, for n from n0 to +∞ and obtain

(Φ(α′) + log r(α′)) − (Φn0(α
′) + log rn0(α

′)) ≤ C ′ log qn0+1

qn0+1

where C ′ is a universal constant. Now, remark that qn0+1 −→ +∞ when
α′ −→ p/q. This yields the announced upper bound Υ(p/q).

In the simplified explanation above, we cheated when we claimed that the
logarithm of the conformal radius of C \ Xn0(α′) is less than log d + o(1). In
reality, for each q, it is less than log d + Cq + o(1), with Cq > 0. So, we add
to Xn0(α′) the external rays landing at the cycle Cpn/qn

(α′). We then prove
that the logarithm of the conformal radius of the complement of the rays is
less than log d + o(1).

Remark. We do not use the theory of parabolic enrichment (geometric
limits, Lavaurs maps, Ecalle maps, horn maps and Fatou coordinates).

4.3. Rational numbers. In the whole section, we will use the notation

ε = α′ − p/q.

For α′ ∈ C and θ ∈ R, we will also denote by Rα′(θ) the external ray of
argument θ of Pα′ . The external rays for the Mandelbrot set will be denoted
by RM (θ).

The polynomial Pα is conjugate to the quadratic polynomial z "→ z2 + c
with c = e2iπα/2 − e4iπα/4. When Im(α) −→ −∞ and Re(α) −→ θ̃, then
|c| −→ +∞ and arg c −→ 2θ̃ + 1

2 mod 1. Given θ̃ ∈ R, we will denote by R(θ̃)
the connected component of the preimage of RM (2θ̃ + 1/2) by α "→ c, whose
real part tends to θ̃.

When α is real, the parameter c is on the boundary of the main cardioid
of the Mandelbrot set. If α = p/q /∈ Z, then c .= 1/4 and there are two
external rays of M landing at c. We denote by θ− < θ+ their arguments in
]0, 1[ . The arguments θ+ and θ− are periodic of period q under multiplication
by 2 modulo 1. They belong to the same orbit Θ. In the dynamical plane of
Pp/q, the rays Rp/q(θ), θ ∈ Θ, form a periodic cycle of rays which land at 0.
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If p/q ∈ Z, the dynamical ray of argument 0 is fixed and lands at 0. We set
θ− = θ+ = 0 and Θ = {0}.

Let us recall the following rule: the ray Rα′(θ) moves holomorphically
with α′ as long as c does not belong to the closure of the union of the RM (2kθ)
for k ∈ N∗.

Definition 13. When α′ ∈ R is close to p/q, the rays Rα′(θ), θ ∈ Θ, form
a cycle of rays which land on the cycle Cp/q(α′). We denote by Y (α′) the union
of Cp/q(α′) and this cycle of rays.

Figure 3 shows the rays of argument 1/7, 2/7 and 4/7 and the boundary of
the Siegel disk for the polynomial P(1/3)+ε for ε =

√
2/1000 and ε =

√
2/10000.

Figure 3: The rays of argument 1/7, 2/7 and 4/7 and the boundary of the
Siegel disk for the polynomial P(1/3)+ε: left for ε =

√
2/1000 and right for

ε =
√

2/10000.

If ε is irrational and is close enough to 0, then p/q is an approximant
p′n0

/q′n0
to α′, and its index n0 is the same number as in Section 2.1 and

depends on the sign of ε. As α′ → p/q, log rad(C \ Y (α′)) → −∞ and
β′

n0−1 log(1/α′
n0

) → −∞. We postpone the proof of the following lemma to
Section 4.4.

Lemma 3. We have

lim sup
α′→p/q, α′∈R\Q

log rad(C \ Y (α′)) + β′
n0−1 log

1
α′

n0

≤ log La

(
p

q

)
+

log 2π

q
.

When α′ is close to p/q but not necessarily real, the dynamical rays of
argument θ ∈ Θ may bifurcate. In a neighborhood of p/q, this precisely occurs
when c′ = e2iπα′

/2 − e4iπα′
/4 belongs to RM (θ+) or RM (θ−).
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Lemma 4. There exists a constant c ∈ ]0, 1], which depends on p/q, such
that the following holds. Assume α′ ∈ R \ Q and p/q is an approximant to α′.
Let n0 be its index. Let p′n0+1/q′n0+1 be α′’s next approximant. Then, for
all α′′ ∈ B(α′, c/(q′n0+1)2), the dynamical rays of argument θ ∈ Θ do not
bifurcate. In particular, Y (α′′) moves holomorphically with respect to α′′ ∈
B(α′, c/(q′n0+1)2).

Proof. There is exactly one pair θ̃− < θ̃+, with with 2θ̃+ + 1/2 = θ+

(mod 1) and 2θ̃− + 1/2 = θ− (mod 1) such that R(θ̃+) and R(θ̃−) land on
p/q. The rays R(θ̃+) and R(θ̃−) are separated from the upper half plane (that
corresponds to the cardioid by α "→ c), by a smooth curve having a contact
of order 2 with the real line, at p/q. Also, the other external rays RM (θ′) for
θ′ ∈ Θ\{θ+, θ−} do not land on the cardioid. Therefore, there exists a constant
c′ > 0 such that the dynamical rays of argument θ ∈ Θ do not bifurcate when
α′′ ∈ B(α′, c′|α′ − p/q|2). The result follows since

∣∣∣∣α
′ − p

q

∣∣∣∣
2

≥
(

1
2q′n0

q′n0+1

)2

=
1

4q2(q′n0+1)2
.

Let us choose c as in Lemma 4 and α′ ∈ B sufficiently close to p/q so
that q′n0+1 > 1/2c (we denote by p′n/q′n the approximants to α′). Then, the set
Y (α′′) moves holomorphically with respect to α′′ ∈ B(α′, 1/2(q′n0+1)3). Let us
also assume that q′n0+1 ≥ 2

Lemma 5. Under the assumptions above, we have

Φ(α′) + log r(α′) ≤ Φn0(α
′) + log rad(C \ Y (α′)) + (C − 1)

∑

n≥n0+1

log q′n
q′n

,

where C is the constant provided by Lemma 2.

Proof. For α′′ ∈ B(α′, 1/2(q′n0+1)3), let us define Vn0(α′′) = C\Y (α′′) and
by induction, for n ≥ n0 + 1 and α′′ ∈ B(α′, 1/2(q′n+1)3), let us define

• Vn(α′′) = Vn−1(α′′) \ Cp′
n/q′

n
(α′′) if |α′ − p′n/q′n| < 1/2(q′n)3 and

• Vn(α′′) = Vn−1(α′′) otherwise.

Then, the hypotheses of Lemma 2 are satisfied and (as in Proposition 2), we
have

log rad(Vn(α′)) − log rad(Vn−1(α′))≤ log |α′ − p′n/q′n|
q′n

+ C
log q′n

q′n

≤−Φn(α′) + Φn−1(α′) + (C − 1)
log q′n

q′n
,
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where C is the constant provided by Lemma 2. The Siegel disk ∆α′ is contained
in the intersection of the sets Vn(α′), and so,

log r(α′) − log rad(Vn0(α
′)) ≤ −Φ(α′) + Φn0(α

′) + (C − 1)
∑

n≥n0+1

log q′n
q′n

.

As α′ tends to p/q, each q′n0+k (for k ≥ 1) tends to ∞, thus the n0 + k-th
summand tends to 0. Since the sum is dominated by a summable sequence
(log(Fn)/Fn), this yields

∑

n≥n0+1

log q′n
q′n

→ 0.

Moreover, Φn0−1(α′) converges to Φtrunc(p/q) and by Lemma 3,

lim sup
α′→p/q, α′∈R\Q

Φn0(α
′) + log rad(C \ Y (α′)) ≤ Υ(p/q).

This completes the proof of inequality (4).

4.4. Proof of Lemma 3: Removing external rays for α close to p/q. We
recall that α′ = p/q + ε is real, and that n0 depends on the sign of ε.

Lemma 6. For ε ∈ R∗ small enough, let zε be a periodic point of Pα′ in
the cycle Cp/q(α′). Then,

log |zε| + β′
n0−1 log

1
α′

n0

= log La

(
p

q

)
+

log 2π

q
+ O(ε1/q).

Proof. By definition of the asymptotic size, we have

La(p/q) =
∣∣∣∣

1
qA

∣∣∣∣
1/q

with P ◦q
p/q(z) = z + Azq+1 + O(zq+2).

Moreover, P ◦q
p/q+ε(0) = 0 and (P ◦q

p/q+ε)
′(0) = e2iπqε. So

P ◦q
p/q+ε(z) = e2iπqεz + Azq+1 + O(εz2).

We know that zε −→ 0 and that P ◦q
p/q+ε(zε) = zε. Therefore, we have

zq
ε =

1 − e2iπqε

A
(1 + O(zε)) =

−2iπqε

A
(1 + O(zε) + O(ε)) .

Thus, zε = O(ε1/q) and

log |zε| =
1
q

log
∣∣∣∣
2πqε

A

∣∣∣∣+ O(ε1/q).

Observe that
1
q

log
∣∣∣∣
2πqε

A

∣∣∣∣ = log La

(
p

q

)
+

log 2π

q
+

1
q

log q2|ε|.
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Now, if α′ is sufficiently close to p/q, then the n0-th approximant p′n0
/q′n0

to
α′ is p/q, and therefore when ε’s sign is fixed, n0 is fixed, and the numbers q′n0

and q′n0−1 are constants. We have

β′
n0−1 = |q′n0−1α

′ − p′n0−1| =
∣∣∣∣q

′
n0−1

(pn0

qn0

+ ε
)
− p′n0−1

∣∣∣∣

=
∣∣∣∣

1
q′n0

± q′n0−1ε

∣∣∣∣ =
1

q′n0

+ O(ε), and

β′
n0

= q′n0
|ε|, thus

α′
n0

=
β′

n0

β′
n0−1

= (q′n0
)2|ε|(1 + O(ε)).

Thus, we have

β′
n0−1 log |α′

n0
| =

(1
q

+ O(ε)
)

log
(
q2|ε|(1 + O(ε))

)
=

1
q

log q2|ε| + O(ε log |ε|).

Let us now study the dynamical behaviour of Pp/q+ε at the scale of zε.
For this purpose, we rescale the dynamical plane. More precisely, we introduce
the conjugate polynomial

Qε : w "→ 1
zε

Pp/q+ε(zεw).

This polynomial is conjugate to Pp/q+ε. It fixes 0 with derivative e2iπ(p/q+ε)

and has a cycle of period q containing 1.
As ε → 0, Qε converges uniformly on every compact subset of C to the

rotation w "→ e2iπp/qw. Hence, Q◦q
ε converges uniformly on every compact

subset of C to the identity. However, the limit of the dynamics of Qε is richer
than the dynamics of the identity. In some sense, it contains the real flow of
the vector field 2iπqw(1 − wq) ∂

∂w .

Lemma 7. We have

Q◦q
ε (w) = w + 2iπqεw(1 − wq) + εRε(w),

with Rε → 0 uniformly on every compact subset of C as ε → 0.

Proof. Since

P ◦q
p/q+ε(z) = e2iπqεz + Azq+1 + O(εz2),

we have
1
zε

P ◦q
p/q+ε(zεw) = e2iπqεw + Azq

εw
q+1 + O(εzεw

2)

= w + 2iπqε(w − wq+1) + O(ε1+1/qw2) + O(ε2w).
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Figure 4 shows some trajectories of the real flow of the vector field
2iπqw(1 − wq) ∂

∂w for q = 3. The origin is a center and its basin Ω is col-
ored light grey.

Figure 4: Some trajectories of the real flow of the vector field 2iπqw(1−wq) ∂
∂w

for q = 3.

Let us now define
Yε =

1
zε

Y

(
p

q
+ ε

)
.

The set Yε contains 1 and we have

log rad(C \ Y (p/q + ε)) = log rad(Yε) + log |zε|.

Thus, we must show that

lim sup
ε→0, ε∈R

log rad(C \ Yε) ≤ 0.

Set Yε = Yε ∪ {∞}. This set is compact in P1. Without loss of generality,
extracting a subsequence if necessary, we may assume that it converges for the
Hausdorff topology on compact subsets of P1 to some limit Y0 as ε → 0. We
define Y0 = Y 0 \ {∞}. Each Yε is connected and contains 1 and ∞. Passing to
the limit, we see that Y0 is also connected and contains 1 and ∞. Moreover,
Qε converges uniformly on compact subsets of C to the rotation w "→ e2iπp/qw.
Since Qε(Yε) = Yε, we see that Y0 is invariant under this rotation. Note that
Q◦q

ε (Yε) ⊂ Yε and

Q◦q
ε (w) = w + 2iπqεw(1 − wq) + εRε(w)

with Rε → 0 uniformly on compact subsets of C as ε → 0. It follows that Y0

is forward invariant under the real flow of the vector field 2iπqw(1 − wq) ∂
∂w .
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Consider the map φ : w "→ ζ = wq/(wq − 1). It is the composition of w "→ wq,
(which identifies the quotient of P1 under the rotation of angle 1/q with P1),
with a Moebius transformation fixing 0, sending 1 to ∞, and ∞ to 1. It sends
the above vector field to the circular vector field (2πq2)iζ ∂

∂ζ . It follows that Y0

contains the set φ−1(C \ D). Thus, we have

lim sup
ε→0, ε∈R

log rad(C \ Yε) ≤ log rad(φ−1(D)) = 0.

The proof of Lemma 3 is completed.

5. Yoccoz’s renormalization techniques

In this section, we present the techniques of renormalization developed by
Yoccoz [Y].

5.1. Outline. This outline is somewhat informal, rigorous treatment is
made in the other subsections of Section 5. The proof of the lower bound
being technical, we think it is useful to present some of the ideas in a lighter
way.

5.1.1. The renormalization. Assume α0 ∈ ]0, 1[ and let f0 : D → C be a
univalent holomorphic map fixing 0 with derivative e2iπα0 . We would like to
make the following construction: take a sector U0 between the segment [0, 1]
and its image by f0 (the one with angle α0 at the vertex 0). The Riemann
surface V0 obtained as the quotient of U0 with [0, 1] identified with its image
by f0 is a punctured disk. The first-return map to U0 associated to f0 induces
a holomorphic map g : V ′

0 → V0 with V ′
0 ⊂ V0. We can identify V0 with

B(0, S0) \ {0} where S0 is chosen so that D∗ ⊂ V ′
0. Then, g is univalent and

extends at the origin by g(0) = 0 and g′(0) = e−2iπα1 with α1 = {1/α0}.
The renormalized map f1 is defined as the restriction to D of g(z), which has
derivative e2iπα1 at the origin.

One problem that may happen is that the curve f([0, 1]) may cross its
image, preventing the Riemann surface to be well defined. For the renormal-
ization to be well defined, we need to assume that f is close enough to the
rotation Rα. Or we can make the construction with a sector of smaller radius.
Therefore, we introduce a radius ρ0 < 1, and consider only the sector U0 be-
tween the segment [0, ρ0] and its image by f0. In this theory, the control on ρ0

is central. We will not try to associate a canonical value of ρ0 to a given map
f0. In fact the choice will depend on the setting.

If the map f0 : B(0, ρ0) → C were the rotation of angle α0, we could
choose S0 = 1 and the canonical map from U0 to V0 would be z "→ (z/ρ0)1/α0 .
We will always choose ρ0 such that S0 can be taken close to 1 and that the
canonical map from V0 to U0 is close to z "→ (z/ρ0)1/α0 .
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00

U0

f0

ρ0

f0

f0

D

z )→(z/ρ0)1/α0

D⊂V ′
0

g V0

S0

Figure 5: The construction of the renormalized map.

Given a fixed α0 ∈ ]0, 1[ , if f : D → C is a map fixing 0 (its multiplier
may be .= e2iπα0), if f −→ Rα0 , then we can take ρ0 −→ 1. Moreover, its
renormalization tends to Rα1 .

5.1.2. The size of Siegel disks. We can repeat inductively the renormal-
ization construction: given a univalent map fn : D → C which fixes 0 with
derivative e2iπαn , we choose ρn and we let fn+1 be the renormalization of fn.

The crux of the matter is that essentially, f0 can be iterated infinitely
many times on the disk B(0, σ0) with

σ0 = ρ0 · ρα0
1 · ρα0α1

2 · · ·

(it follows easily that B(0, σ0) is contained in the Siegel disk of f0). Indeed,
since f0 is close to a rotation on the disk B(0, ρ0), if |z0| < σ0 < ρ0, its forward
orbit under iteration of f0 intersects U0 at a point z′0. The image of z′0 in V0 is
a point z1 of modulus close to

|z0/ρ0|1/α0 < σ1 = ρ1 · ρα1
2 · ρα1α2

3 · · · .

Then, the forward orbit of z1 under iteration of f1 intersects U1 at a point z′1
and the image of z′1 in V2 is a point z2 with modulus close to

|z1/ρ1|1/α1 < σ2 = ρ2 · ρα2
3 · ρα2α3

4 · · · ,

and so on . . . Since fn is a n-th renormalization of f0, being able to iterate fn

at zn means that we can iterate f0 at z0 many times, and since n is arbitrarily
large, we can iterate f0 at z0 infinitely many times.

5.1.3. Yoccoz ’s lower bound. In order to bound the conformal radius of a
Siegel disk from below, we must find a good enough lower bound for ρn. The
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set of univalent maps f : D → C such that f(0) = 0 and |f ′(0)| = 1 is compact.
It follows rather easily than one can always take ρn = cαn for some universal
constant c. This gives

log σ0 = log(cα0) + α0 log(cα1) + α0α1 log(cα2) + . . .

=−Φ(α0) + (1 + α0 + α0α1 + . . . ) log c

≥−Φ(α0) + 4 log c.

This is essentially how Yoccoz proves inequality (1): the Siegel disk of a uni-
valent map f0 : D → C fixing 0 with derivative e2iπα0 contains a disk B(0, σ0)
with

log σ0 ≥ −Φ(α0) − C0

for some universal constant C0.

5.1.4. Perturbing a Siegel disk. Assume α is a Brjuno number. Let
φ : D → ∆(α) be the linearization. Conjugating by φ−1, the family Pα′

becomes a family gα′ of maps tending to Rα, uniformly on every compact
subset of D, as α′ −→ α. We will give a lower bound on the size the Siegel
disks ∆(gα′). Conjugating back by φ multiplies conformal radii by r(α), and
the Siegel disk of Pα′ must contain φ(∆(gα′)).

Consider the sequence of renormalized maps (fn)n≥0 with f0 = gα′ . As
α′ → α, f0 → Rα0 uniformly on every compact subset of D. Thus, we can
choose ρ0 close to 1 and as α′ −→ α, the renormalized map f1 converges to
the rotation Rα1 uniformly on every compact subset of D.

Given n > 0, if α′ is sufficiently close to α, we can repeat this argument
n times: we can take ρ0 = ρ1 = ρn−1 =

α′→α
1 − o(1). Afterwards, we can take

ρn = cα′
n, ρn+1 = cα′

n+1, . . . , for some universal constant c, as in Section 5.1.3.
The Siegel disk of gα′ contains B(0, σ) with

log σ = −(1 + β′
0 + . . . + β′

n−2)o(1) +
+∞∑

k=n

β′
k−1 log α′

k + (β′
n−1 + β′

n + . . . ) log c.

It follows that

log r(α′) ≥ log r(α) −
+∞∑

k=n

β′
k−1 log

1
α′

k

− β′
n−1C0 + o(1)

with a universal constant C0 as in Section 5.1.3. Adding Φ(α′) on both sides
yields

Υ(α′) ≥ log r(α) +
n−1∑

k=0

β′
k−1 log

1
α′

k

− β′
n−1C0 + o(1).
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For all k < n, the term β′
k log 1

α′
k

tends to βk log 1
αk

as α′ −→ α. Thus,

lim inf
α′∈B→α

Υ(α′) ≥ log r(α) +
n−1∑

k=0

βk−1 log
1
αk

− βn−1C0.

Recall that α is a Brjuno number, thus passing to the limit n −→ +∞ (whence
βn−1 −→ 0):

lim inf
α′∈B→α

Υ(α′) ≥ log r(α) +
+∞∑

k=0

βk−1 log
1
αk

= Υ(α).

5.1.5. Perturbation of a parabolic point. Assume α′ −→ p/q on one side.
This corresponds to one of the two continued fractions of p/q (see Section 2.1):
[a0, . . . , an0 ]. Recall that we defined

Υ(p/q) = log La(p/q) + Φtrunc(p/q) +
log 2π

q
.

The cycle Cp/q(α′) (see Definition 12) tends to 0. This cycle is approximately on
a regular polygon centered at 0, and of radius d, where (according to Section 3):

log d = log La(p/q) + β′
n0−1 log α′

n0
+

log 2π

q
+ o(1).

When we rescale by a factor d, we conjugate Pα′ to a polynomial Qα′ such
that Q◦q

α′ tends to the identity along an explicit and fixed vector field (which
depends only on q). This vector field has a center at 0. The maximal domain
of linearization turns out to have conformal radius 1. Consider the change of
variable which sends this domain to the unit disk.

In this new coordinate, the polynomials Pα′ are conjugate to maps gα′

which converge to the rotation Rα, uniformly on every compact subset of D.
As in Section 5.1.4, we can construct the sequence of renormalizations (fn)n≥0

with f0 = gα′ , taking ρ0, ρ1, . . . ρn0−1 close to 1. This time, α′
n0

→ αn0 = 0
and as α′ → α. The n0-th renormalization fn0 tends to the identity uniformly
on every compact subset of D. It tends to the identity along a vector field of
rotation, which allows us to take ρn0 close to 1. Then, we take ρn = cα′

n for
n > n0.

As in Section 5.1.4 it follows that as α′ −→ p/q,

log r(α′) ≥ log d −
+∞∑

k=n0+1

β′
k−1 log

1
α′

k

− β′
n0

C0 + o(1).

Adding Φ(α′) on both sides, using the expansion of log d, and using β′
n0

→
βn0 = 0 yields

Υ(α′) ≥ log La(p/q) +
n0−1∑

k=0

β′
k−1 log

1
α′

k

+
log 2π

q
+ o(1) = Υ(p/q) + o(1).
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5.1.6. Perturbing a Cremer point under the Pérez-Marco condition. In
this case, we will construct the sequence of renormalized maps (fn)n≥0 without
changing coordinates, i.e., with f0 = Pα′ .

We first consider the case α′ −→ α with
∑

βk−1 log log
e

αk
< +∞.

Remember that rn(α) stands for the conformal radius of C \ Xn(α), where
Xn(α) is the set of non zero periodic points of period ≤ qn. We have rn(α) ∼
dn(α) where dn(α) is the distance of 0 to Xn(α).

We will choose ρ0 = dn1(α) for some large n1. As n1 −→ ∞, dn1(α) −→ 0.
Thus, given n0, if n1 is large enough and α′ is sufficiently close to α, the
renormalized maps f1, f2, . . . , fn0 will be close to rotations on D, and we can
take ρ1, ρ2, . . . , ρn0 close to 1. Since the map f0 does not have periodic cycles
of period ≤ qn on B(0, ρ0), it turns out that the maps fn0+1, fn0+2, . . . fn1

do not have fixed points in D∗. In that case, Pérez-Marco proved that we can
take ρn = c/ log(e/αn) for n0 + 1 ≤ n ≤ n1 and for some universal constant c.
As usual, for n > n1, we can take ρn = cαn.

It follows that

log r(α′) ≥ log dn1(α)+o(1)−
n1∑

k=n0+1

β′
k−1 log log

e

α′
k

−
+∞∑

k=n1+1

β′
k−1 log

1
α′

k

−β′
n0

C0

with o(1) −→ 0 as α′ −→ α. Adding Φ(α′) on both sides and letting α′ −→ α
yields

lim inf
α′∈B→α

Υ(α′) ≥ log dn1(α) + Φn1(α) −
n1∑

k=n0+1

βk−1 log log
e

αk
− βn0C0.

Since the series
∑

βk−1 log log e
αk

is convergent, letting first n1 −→ ∞ and then
n0 −→ ∞ gives

lim inf
α′∈B→α

Υ(α′) ≥ Υ(α) − lim
n0→∞




+∞∑

k=n0+1

βk−1 log log
e

αk
+ βn0C0



 = Υ(α).

5.1.7. Perturbation of a Cremer point with good approximants. The last
case is the most difficult. In all the cases which have not been covered yet, we
have

supβn−1 log
1
αn

= +∞.

When βn−1 log 1
αn

is large, we say that pn/qn is a good approximant.
Consider n0 such that pn0/qn0 is a good approximant. For n .= n0 we will

take ρn = cαn. We will now explain how we choose ρn0 . On the one hand,
it follows from our techniques of parabolic explosion that the distance dn0(α′)
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between 0 and Cpn0/qn0
(α′) satisfies log dn0(α′) ≤ −Φn0(α′)+C0. On the other

hand, it follows from Yoccoz’s lower bound on the size of Siegel disks and from
parabolic explosion that the other cycles of period ≤ qn0 lie outside a disk
B(0, σn0(α′)) with log σn0(α′) = −Φn0−1(α′) − C0. Note that

log σn0(α
′) − log dn0(α

′) ≥ βn0−1 log
1

αn0

− 2C0.

Thus, if pn0/qn0 is a good approximant, the cycle Cpn0/qn0
(α′) is very close to

0 compared to the other cycles of period ≤ qn0 .
We will see that the (n0 − 1)-th renormalization of f0 = Pα′ is a univalent

map fn0−1 : D → C having only two fixed points in D: 0 and a point ζn0 ,
the (n0 − 1)-th renormalization of the cycle Cpn0/qn0

(α′). Since for n < n0 the
canonical map from Un to Vn is close to z "→ (z/ρn)1/α′

n , we have

dn0(α
′)2 ρ0

(
ρ1 . . .

(
ρn0−2

(
ρn0−1 |ζn0 |

α′
n0−1

)α′
n0−2

)...)α′
0

= ρ0ρ
β′

0
1 ρβ′

1
2 . . . ρ

β′
n0−2

n0−1 |ζn0 |β
′
n0−1 .

We will show that instead of taking ρn0 = cα′
n0

, we can take ρn0 close to |ζn0 |
so that log ρn0 2 log |ζn0 |. It will follow that

log ρ0 + β′
0 log ρ1 + . . . + β′

n0−1 log ρn0 2 log dn0(α
′).

As a consequence

lim inf
α′∈B→α

Υ(α′) ≥ log dn0(α) + Φn0(α) − βn0C0.

Again, we conclude that

lim inf
α′∈B→α

Υ(α′) ≥ Υ(α)

by letting n0 −→ +∞ with βn0−1 log 1
αn0

→ +∞.

5.2. Renormalization principle. Here, we recall what Pérez-Marco writes
in [PM, §III], adapting it to the setting of maps which are close to translations.

Remark. There will be many constants in the discussion. Their sharp
value is not important for the application we will make here, so we did not try
to optimize them. Moreover, in many estimates where Cδ appears, it can be
weakened to ε(δ), where ε(x) −→

x→0
0, while still applying to our proof.

We denote by T the translation Z "→ Z +1, by S(α) the space of univalent
mappings F : H → C such that F ◦T = T ◦F and such that F (Z)−Z → α as
Im(Z) → +∞. This space is compact for the topology of uniform convergence
on compact subsets of H.
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Given δ > 0, we denote by Sδ(α) the space of maps F ∈ S(α) such that

(∀Z ∈ H) |F (Z) − Z − α| ≤ δα and |F ′(Z) − 1| ≤ δ.(6)

Such a function F extends continuously to H ∪ R.

Step 1. Assume F ∈ Sδ(α) and define l = iR+ and l′ = [0, F (0)]. If
δ is sufficiently small (for example δ < 1/10), l ∪ l′ ∪ F (l) bounds an open
strip U in C. Gluing the curves l and F (l) in the boundary of U via F , we
obtain a surface V, whose remaining boundary corresponds to the segment l′.
Its interior is a Riemann surface for the complex structure inherited from U
(the gluing is analytic). It is biholomorphic to the punctured disk D∗. Lifting
via Z "→ z = e2iπZ , we get an injective holomorphic map L : U → H which
extends continuously to U and such that

(∀Z ∈ l) L(F (Z)) = L(Z) + 1.

We normalize L by requiring L(0) = 0.

Proposition 3. For all δ ∈ ]0, 1/10[ , all α ∈ ]0, 1[ , all F ∈ Sδ(α), and
all Z ∈ U ,

Im(Z) − 2δ < αIm(L(Z)) < Im(Z) + 2δ.(7)

Proposition 3 will be proved in section 5.3.

Proposition 4. Under the same assumptions, the map L extends to a
univalent map on

W = U ∪ {Z ∈ C ; − 1 ≤ Re(Z) ≤ 0 and Im(Z) ≥ 4δ}

and for all Z ∈ W,

Im(Z) − 5δ < αIm(L(Z)) < Im(Z) + 5δ.(8)

From now on, L will refer to this extension. The definition of W is so that
any point Z ∈ W is eventually mapped to U under iteration of F : F k(Z) =
Z ′ ∈ U for some k ∈ N. Then, one defines L(Z) = L(Z ′) − k. In particular, L
conjugates F to the translation T (see Figure 6).

Step 2. Given δ ∈ ]0, 1/10[ and F ∈ S(α), we can define inductively a
sequence of univalent maps (Fn)n≥0 such that Fn ∈ S(αn). The construction
depends on the choice at each step of some real number tn > 0. We start with
F0 = F − a0 (where a0 = %α&) and we assume that Fn is constructed. We
choose tn such that the fundamental estimates (6) hold for Im(Z) ≥ tn (which
is always possible). It follows that Gn : Z "→ Fn(Z + itn) − itn belongs to
Sδ(αn). For Gn, we construct Un, Wn and Ln as above. Let Hn be defined
on Ln{Z ∈ U ; Im(Z) > 4δ} by Hn(Z) = Ln ◦ T−1 ◦ L−1

n . Note that, by
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U

1

Z

F (Z)

∼α ∼1/α 1

L(Z)

L(Z)+1 L(Z)+k
F ◦k(Z)

W

L
F (l)l

F (0)

l′

0 0 1

Figure 6: Construction of the map L : W → H.

Proposition 3, for all z ∈ H, if Im(Z) > 6δ/αn, then there exists an integer k
such that Z − k belongs to D, the domain of definition of Hn.

Then, D+Z contains the half plane “Im(Z) > 6δ/αn”. Moreover, the map
Hn commutes with the translation T on the set of points in Ln(i[0, +∞ [ ) whose
imaginary part is > 6δ/αn. This set being analytically removable, this implies
Hn extends univalently to the upper half-plane {Z ∈ C | Im(Z) > 6δ/αn}.
Moreover, as Im(Z) → +∞, Hn(Z) − Z → −1/αn = −an+1 − αn+1.

We set
W ′

n = Wn + itn

and we define Kn : W ′
n → C by

Kn(Z) = s ◦ Ln(Z − itn) − i
6δ

αn

where s(x + iy) = −x + iy, and Fn+1 ∈ S(αn+1) defined on H by

Fn+1 = Kn ◦ T−1 ◦ K−1
n − an+1.

Note that on W ′
n ∩ F−1

n (W ′
n), Kn conjugates Fn to T−1. The construction of

Fn+1 is summarized on Figure 7.

Step 3. Next, to a point Z ∈ H, we associate a sequence (Zn)n≥0 as
follows. We define Z0 = Z. If dn = Im(Zn) ≥ 4δ + tn, we choose Z ′

n such that
Zn − Z ′

n ∈ Z and −1 ≤ Re(Z ′
n) < 0, and we define

Zn+1 = Kn(Z ′
n).

The sequence (Zn)n≥0 may be finite or infinite. The estimates of Proposition 3
imply that for n ≥ 0 such that Zn+1 is defined,

Im(Zn) − tn − 11δ ≤ αnIm(Zn+1) ≤ Im(Zn) − tn − δ.
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Fn+1

Hn

Tan+1

G
◦an+1
n

T−1

itn

0

0

−i 6δ

αn

R R

RR

Z )→Z−itn

GnFn

T−1

F
◦an+1
n

T1

Ln

T−1

Z )→s(Z)−i 6δ

αn

Figure 7: The construction of Fn+1.

For n0 ≥ 0:

n0−1∑

n=0

βn−1(tn + δ) ≤ d0 − βn0−1dn0 ≤
n0−1∑

n=0

βn−1(tn + 11δ),(9)

which implies

n0−1∑

n=0

βn−1tn ≤ d0 − βn0−1dn0 ≤ 44δ +
n0−1∑

n=0

βn−1tn(10)

Indeed, 1 + β0 + · · ·+ βn−2 ≤ 4 since β−1 = 1, β0 = α0 ≤ 1 and, βn+2 ≤ βn/2.
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Proposition 5. If Z ∈ H and if there exists m ≥ 0 such that F ◦m(Z)
/∈ H, then the sequence (Zn)n≥0 is finite.

Proof. Let Hn be the half plane defined by “ImZ > tn”. If Zn is defined,
let 1 + kn (with kn ≥ 0) be the rank of the first iterate of Zn under Fn :
H → C that leaves Hn. Note that if kn = 0, then Zn+1 is not defined. Now,
if Zn+1 is defined and kn+1 > 0, this means that Zn − kn+1 is eventually
mapped back to Un by iteration of Fn, without leaving Hn. Therefore (since
|Fn(Z) − (Z + αn)| < αn/10 on Hn),

kn+1 ≤ 11
10

αnkn.

Since αnαn+1 ≤ 1/2 this implies kn+2 ≤ 121
200kn whenever defined, from which

the proposition follows.

We can now reformulate Theorem III.1.1 in [PM] as follows.

Proposition 6. Assume we can choose the sequence (tn)n≥0 so that the
n-th renormalization Fn satisfies the fundamental estimates (6) when
Im(Z) > tn and so that

Φ =
+∞∑

n=0

βn−1tn < +∞.

Then F is linearizable and its Siegel disk contains the following upper half-
plane:

{Z ∈ C | Im(Z) > Φ + 44δ} .

Proof. It is enough to prove that all point Z in the half plane has infinite
orbit. By Proposition 5, this follows from the sequence Zn being infinite.
Indeed, assume Zn is defined. According to the previous computations,

βn−1dn ≥ d0 −
n−1∑

k=0

βk−1tk − (1 + · · · + βn−2)11δ

= (d0 − Φ − 44δ) + βn−1tn +
+∞∑

k=n+1

βk−1tk +

(
4 − (1 + · · · + βn−1)

)
11δ + βn−111δ

≥βn−1(tn + 11δ).

Therefore, dn ≥ tn + 11δ. Since 11 > 4, this implies Zn+1 is defined.

Also, there is a correspondence between periodic orbits for F and for Fn.
Given a map F : H → C that commutes with T , we will say that Z ∈ C is
periodic with rotation number p/q when F q(Z) = Z + p. In this case, p and q
need not to be coprime.



32 XAVIER BUFF AND ARNAUD CHÉRITAT

Proposition 7. Let n0 ≥ 0. If Fn0 has a fixed point with rotation number
0/1 and imaginary part hn0 , then F has a periodic orbit with rotation number
pn0/qn0 contained in the strip

{Z ∈ C; H ≤ Im(Z) ≤ H + 44δ} with H = βn0−1hn0 +
n0−1∑

n=0

βn−1tn.

Reciprocally, if F has a periodic orbit with rotation number pn0/qn0 whose

imaginary part h0 satisfies h0 >
n0−1∑

n=0

βn−1tn + 44δ, then Fn0 has a fixed point

of rotation number 0/1, and height hn0 satisfying

h0 − 44δ ≤ βn0−1hn0 +
n0−1∑

n=0

βn−1tn ≤ h0.

Proof. Same as in [PM, annex 2.e].

In the previous proposition, the reader should be aware that Fn0(Z) =
Z +k with k ∈ Z∗ is not considered as a fixed point with rotation number 0/1.

5.3. Proof of Proposition 3: The uniformization L is close to a linear
map. Since F (Z) − Z − α is periodic of period 1, we have

|F (Z) − Z − α| ≤ δαe−2πIm(Z) and |F ′(Z) − 1| ≤ δe−2πIm(Z).

Let B be the half-band {Z ∈ H | 0 < Re(Z) < 1}. Let H : B → U be the map
defined by

H(X + iY ) = iαY + X
[
F (iαY ) − iαY

]
.(11)

An elementary computation shows that ‖∂H/∂H‖∞ < 1 and if we set

KH =
1 + |∂H/∂H|
1 − |∂H/∂H|

,

One computes that
∣∣∂H − α

∣∣≤αδe−2παY

∣∣∂H|≤αδe−2παY

And therefore4

KH(X + iY ) ≤ 1
1 − 2δe−2παY

.

Then, using δ < 1/10, we have the inequality

KH(X + iY ) ≤ 1 +
5
2
δe−2παY .

4A quick majoration yields a 4, having a 2 requires more care.
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In particular, H is a (1 + 5
2δ)-quasiconformal homeomorphism. Moreover, by

definition
Im(H(Z)) − αδ ≤ αIm(Z) ≤ Im(H(Z)) + αδ,

and thus for all Z ∈ U , since α < 1:

Im(Z) − δ ≤ αIm(H−1(Z)) ≤ Im(Z) + δ.

Since L is conformal, the map G = L ◦ H is quasiconformal with the same
dilatation as H. Moreover, G(iY +1) = G(iY )+1 and so, since the imaginary
axis is quasiconformally removable, G extends to a quasiconformal homeomor-
phism H → H. We will show that for all Z ∈ H,

αIm(Z) − δ ≤ αIm(G(Z)) ≤ αIm(Z) + δ.

It follows that

Im(Z)−2δ ≤ αIm(H−1(Z))−δ ≤ αIm(L(Z)) ≤ αIm(H−1(Z))+δ ≤ Im(Z)+2δ.

Lemma 8. Assume ψ : (D, 0) → (D, 0) is a K-quasiconformal homeomor-
phism. Then, for all z ∈ D,

41−K |z|K ≤ |ψ(z)| ≤ 41−1/K |z|1/K .

Proof. To prove the upper bound, note that ψ sends the annulus D \ [0, z]
to an annulus separating 0 and ψ(z) from S1. The modulus is divided by at
most K. So,

|ψ(z)| ≤ µ−1

(
µ(|z|)

K

)
,

where, for r ∈ ]0, 1[ , µ(r) is the modulus of the annulus D \ [0, r] (it is a
decreasing function). The estimate

µ−1

(
µ(r)
K

)
≤ 41−1/Kr1/K

can be found in [AVV, Cor. 5.44].
The lower bound is obtained by applying the upper bound to ψ−1 which

is K-quasiconformal.

Lemma 9. If Ψ : H → H is a K-quasiconformal homeomorphism such
that Ψ ◦ T = T ◦ Ψ, then

1
K

Im(Z) − K − 1
2πK

log 4 ≤ Im(Ψ(Z)) ≤ KIm(Z) +
K − 1

2π
log 4.

Proof. Ψ is the lift, via Z "→ z = e2iπZ , of a K-quasiconformal homeomor-
phism ψ : (D, 0) → (D, 0) as in the previous lemma.
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We now come to the control of the quasiconformal homeomorphism G.

Lemma 10. Let ε and η be any two positive real numbers. Assume G :
H → H is a (1 + ε)-quasiconformal homeomorphism such that G ◦ T = T ◦ G
and

KG(X + iY ) ≤ 1 + εe−ηY .

Then,

Im(Z) − ε

η
− ε

2π(1 + ε)
log 4 ≤ Im(G(Z)) ≤ Im(Z) +

ε

η
+

ε

2π
log 4,

which yields ∣∣Im(G(Z)) − Im(Z)
∣∣ ≤ ε

η
+

ε

2π
log 4.

Proof. We can write G = G2 ◦ G1 with

G1(X + iY ) = X + i
1

1 + ε

(
Y − ε

η
e−ηY +

ε

η

)
.

An elementary computation shows that

KG1(X + iY ) =
1 + ε

1 + εe−ηY
and Im(G1(Z)) ≤ 1

1 + ε

(
Im(Z) +

ε

η

)
.

So, we can apply the previous lemma to G2 with K = 1 + ε, which yields the
upper bound for Im(G(Z)).

To get the lower bound, we use the same argument, writing G = G4 ◦ G3

with

G3(X + iY ) = X + i(1 + ε)
(

Y +
1
η

log
1 + εe−ηY

1 + ε

)
.

We have

KG3(X + iY ) =
1 + ε

1 + εe−ηY
and Im(G3(Z)) ≥ (1 + ε)

(
Im(Z) − ε

η

)
.

To conclude the proof of the proposition, we apply the previous lemma to
ε = 5

2δ and η = 2πα. Using α < 1, we have

ε

η
+

ε

2π
log 4 =

5δ

4πα

(
1 + α log 4

)
≤ δ

α
.

5.4. Controlling the height of renormalization. In this section, we deter-
mine an upper bound for the height t above which the fundamental estimates
(6) are satisfied. The first result is due to Yoccoz (it easily follows from the
compactness of S(0) , but the interested reader can find sharper bounds in [Y],
in the lemma of §3.2, p. 26).
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Proposition 8. For all δ ∈ ]0, 1/10[ , there exists a constant Cδ such that
for all F ∈ S(α),

Im(Z) ≥ Cδ =⇒ |F ′(Z) − 1| ≤ δ

and
Im(Z) ≥ 1

2π
log

1
α

+ Cδ =⇒ |F (Z) − Z − α| ≤ δα.

(Of course, Cδ −→ +∞ when δ −→ 0.)

Remark. In particular, F can not have fixed points above 1
2π log 1

α plus
some universal constant.

The next result is a slight generalization of a result of Pérez-Marco.

Proposition 9. For all δ ∈ ]0, 1/10[ , there exists a constant Cδ such that
the following holds. Assume Im(Z0) ∈ H, α ∈ ]0, 1[ and F ∈ S(α) has no fixed
point except possibly Z0 and its translates by an integer. If

Im(Z) ≥ Im(Z0) +
1
2π

(
log log

e

α
− log(1 + 2πIm(Z0))

)
+ Cδ

then
|F (Z) − Z − α| ≤ δα.

One can rewrite

log log
e

α
− log(1 + 2πIm(Z0)) = log

1 + log(α−1)
1 + 2πIm(Z0)

.

Thus for Im(Z0) < log(α−1)/2π, this number is positive. From this, and the
remark following Proposition 8, it follows that we can take the same constants
Cδ in propositions 8 and 9.

Remark. It follows that if F has no fixed point, the fundamental estimates
(6) are satisfied as soon as

Im(Z) ≥ 1
2π

log log
e

α
+ Cδ.

This result is due to Pérez-Marco [PM]. This is the form we will use in Sec-
tion 6.

Remark. If Im(Z0) ≥
1
2
· 1
2π

log
1
α

, it follows from the two propositions and
an elementary computation that the fundamental estimates (6) are satisfied as
soon as

Im(Z) ≥ Im(Z0) + 1 + Cδ.

This is the form5 we will use in Section 7.

5The assumption Im(Z0) ≥ 1
2 · 1

2π log 1
α can be replaced by Im(Z0) ≥ µ · 1

2π log 1
α with

µ ∈ ]0, 1[ , giving the condition Im(Z) ≥ Im(Z0) + log(µ−1)/2π + Cδ.
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Proof of Proposition 9. Without loss of generality, we may assume that

Im(Z0) <
1
2π

log
1
α

since otherwise, the result follows from Proposition 8. Let us set r = e−2πIm(Z0)

if F has a fixed point at Z0 and r = 1 if F has no fixed point. Then, α < r.
Let us now define u(Z) = F (Z) − Z. Since u is Z-periodic, there exists

a function g : D∗ → C such that u(Z) = g(e2iπZ). The map g extends holo-
morphically at 0 by g(0) = α. We need now to find an upper bound on |z|
which ensures that |g(z) − α| < αδ. By compactness of S(0), we can find a
(universal) radius r0 < 1 such that on B(0, r0), g takes its values in B(0, e).
Moreover, if F has a fixed point at Z0, we define ζ0 = e2iπZ0 . Then g(ζ0) = 0
and g does not vanish in D \ {ζ0}. If F has no fixed point, g does not vanish
in D. In both cases, the map g : B(0, r0) \ {ζ0} → B(0, e) \ {0} is contracting
for the hyperbolic metrics.

The coefficient of the hyperbolic metrics of B(0, e) \ {0} at the point α is
equal to 1/(α log(e/α)), so at first approximation, points at hyperbolic distance
of order δ/ log(e/α) should be at Euclidean distance of order δα. The lemma
below makes a rigorous statement.

Lemma 11. (∀δ ∈ ]0, 1/10[ ), (∀α ∈ ]0, 1[ ),

dB(0,e)\{0}(α, z) ≤ δ

2 log e/α
=⇒ |z − α| ≤ δα.

Proof. For x < α, let ρ(x) be the infimum of the coefficient of the hyper-
bolic metric on the Euclidean circle of center α and radius x. If |z − α| > δα,
then the hyperbolic geodesic in B(0, e) \ {0} from α to z is longer than

∫ δα

0
ρ(x)dx.

Let us introduce the function



f(x) = 1

x log e/x 0 < x ≤ 1

f(x) = 1 1 ≤ x < e

Then f is decreasing, and ρ(x) = f(x+α). Moreover, f is C1 and convex, and
therefore above its tangents. Therefore

dB(0,e)\{0}(α, z)≥
∫ α+δα

α
f(x)dx

≥
∫ α+δα

α

(
f(α) + (x − α)f ′(α)

)
dx

=
δ

log e/α

(
1 − δ

2

(
1 − 1

log(e/α)

))
≥ c

δ

log e/a

with c = 19/20 > 1/2.
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The next lemma is also motivated by a hyperbolic metrics coefficient com-
putation.

Lemma 12. (∀r0 < 1), (∃γ > 0), (∀δ ∈ ]0, 1/10[ ), if 0 < α < r ≤ 1, then

|z| ≤ γδr
log e/r

log e/α
=⇒ dB(0,r0)\{r}(0, z) ≤ δ

2 log e/α
.

Proof. First case: r ≥ r0/2. When |z| ≤ δr0, then

dB(0,r0)\{r}(0, z) ≤ dB(0,r0/2)(0, z) = log
1 + 2|z|/r0

1 − 2|z|/r0
≤ 5|z|

r0
.

Thus, when r ≥ r0/2, we can take any γ such that

γ ≤ min
r∈[r0/2,1]

r0

10r log e/r
=

1
10 log e/r0

.

Second case: r < r0/2. We first solve the problem when r0 = 1. Let
ρ(z)|dz| be the element of hyperbolic metric on D \ {r}. A computation gives

ρ(z) =
1 − r2

|1 − rz| · |z − r| · log
(
|1−rz|
|z−r|

) .

A majoration gives, for |z| < r/10, ρ(z) < 10/(9r log |s|−1) with
s = (z − r)/(1 − rz). Then, |s| < 11r/(10 + r2) < 11r/10. Thus

∀r ∈ ]0, 1/2[ , ∀z with |z| ≤ r

10
, ρ(z) ≤ 12

r log e/r
.

Therefore, for r0 = 1, we can take γ = γ1, with

γ1 = 12.

For r0 ∈ ]0, 1[ , we rescale the problem by the factor 1/r0, and according to
what we did above, a sufficient condition on z is that

∣∣∣∣
z

r0

∣∣∣∣ < γ1δ
r

r0

log er0/r

log e/α
,

Then, using r < r0/2, we can take

γ ≤ γ1
log 2e

log 2e + log r−1
0

.

The two previous lemmas show that there exists γ > 0 such that for all
δ ∈ ]0, 1/10[ ,

|z| ≤ γδr
log e/r

log e/α
=⇒ |g(z) − α| ≤ δα.
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As a consequence,

Im(Z) ≥ 1
2π

(
log

1
γδ

+ log
1
r

+ log
log e/α

log e/r

)
=⇒ |F (Z) − Z − α| ≤ δα.

6. Proof of inequality (5) (the lower bound) in most cases

6.1. Renormalizing a map close to a translation. Let us recall this in-
equality:

lim inf
α′→α, α′∈B

Φ(α′) + log r(α′) ≥ Υ(α).

Let us also recall a few notations from Section 5.2. Let Fα′ ∈ S(α′).
Assume we are given δ ∈ ]0, 1/10[ and t > 0 such that the map

Gα′ : Z "→ Fα′(Z + it) − it

belongs to Sδ(α′). Then, for Gα′ we can construct Uα′ , Wα′ and Lα′ as in
Section 5.2. We then define W ′

α′ = Wα′ + it, Kα′ : W ′
α′ → C by

Kα′(Z) = s ◦ Lα′(Z − it) − i
6δ

α′

where s(Z) = −Z and Fα′,1 ∈ S(α′
1) by

Fα′,1 = Kα′ ◦ T−1 ◦ K−1
α′ −

⌊
1
α′

⌋
.

We will use the following fact several times:

Lemma 13. Assume α′ ∈ ]0, 1[ tends to α ∈ ]0, 1[ and Fα′ ∈ S(α′) tends
to the translation Tα : Z "→ Z + α uniformly on every compact subset of H.
Then,

(1) Given δ ∈ ]0, 1/10[ and t > 0, if Fα′ is sufficiently close to Tα, the map

Gα′ : Z "→ Fα′(Z + it) − it

belongs to Sδ(α′) (it is important that α .= 0), and thus Kα′ and Fα′,1

are defined.

(2) The map Kα′ tends to Z "→ (s(Z) − it − i6δ)/α uniformly on every
compact subset of W ′

α′ and Fα′,1 tends to the translation Z "→ Z + α1

uniformly on every compact subset of H.

Proof. The convergence of Fα′ to Z + α is uniform on every upper half-
plane of the form “Im(Z) ≥ t > 0”, and F ′

α′ −→ 1 uniformly on these half-
planes, whence the first claim. As Fα′ tends to Tα, Lα′ tends to Z "→ Z/α
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uniformly on every compact subset of W. Indeed, as in Section 5.3, we can
write L = G ◦ H−1 where H is defined by equation (11) page 32. Then, H
converges to Z "→ αZ uniformly on B and G : H → H is a K-quasiconformal
homeomorphism such that G(0) = 0 and G ◦ T = T ◦ G. Moreover, K −→ 1
as Fα′ −→ Tα. Thus G converges to the identity uniformly on every compact
subset of H.

6.2. Brjuno numbers. Assume α ∈ ]0, 1[ is a Brjuno number and let
φα : D → ∆α be a linearizing parameterization. Note that |φ′

α(0)| = r(α). For
α′ close to α, let us define

fα′ = φ−1
α ◦ Pα′ ◦ φα

on φ−1
α (∆α ∩ P−1

α′ (∆α)). Since Pα(∆α) = ∆α and Pα′ −→ Pα as α′ −→ α, we
see that when α′ −→ α, fα converges uniformly on every compact subset of D
to the rotation of angle α. Note that when α′ is a Brjuno number, fα′ has a
Siegel disk of radius ρ(α′) ≤ r(α′)/r(α). Indeed, the image of this Siegel disk
by φα is contained in the Siegel disk of Pα′ . Finally, let Fα′ be the lift of fα′

via Z "→ e2iπZ which satisfies |F (Z) − Z − α′| −→ 0 when Im(Z) −→ +∞.
Let us now fix η > 0, δ ∈ ]0, 1/10[ and n0 ≥ 1. For n ≥ 0, we will

define a sequence of heights t′n and a sequence of maps Fα′,n+1 ∈ S(α′
n+1) as

in Section 5.2.
According to the fact mentioned at the beginning of Section 6, and using

induction on n0, we know that provided α′ ∈ R \ Q is sufficiently close to α,
we can take

t′0 = . . . = t′n0
= η/(n0 + 1).

By Proposition 8, for n ≥ n0 + 1, we can take

t′n =
1
2π

log
1
α′

n
+ Cδ

for some constant Cδ which only depends on δ.
It follows from Proposition 6 that if α′ ∈ B is sufficiently close to α, we

have

log
r(α)
r(α′)

≤ log
1

ρ(α′)
≤ 2π

( ∞∑

n=0

β′
n−1t

′
n + 44δ

)

≤Φ(α′) − Φn0(α
′) + 2π(η + 4β′

n0
Cδ + 44δ)

(we used β′
n0

+ β′
n0+1 + . . . ≤ 4β′

n0
which follows from β′

k+1 ≤ β′
k and β′

k+2 ≤
β′

k/2). Let us rewrite it

Φ(α′) + log r(α′) ≥ Φn0(α
′) + log r(α) − 2π(η + 4β′

n0
Cδ + 44δ).

Letting α′ −→ α and using Φn0(α′) −→ Φn0(α) and β′
n0

−→ βn0 ,

lim inf
α′→α, α′∈B

Φ(α′) + log r(α′) ≥ Φn0(α) + log r(α) − 2π(η + 4βn0Cδ + 44δ).
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Now, as n0 −→ +∞, Φn0(α) −→ Φ(α) and βn0 −→ 0. Thus

lim inf
α′→α, α′∈B

Φ(α′) + log r(α′) ≥ Φ(α) + log r(α) − 2π(η + 44δ).

Since this is valid for all η > 0 and δ ∈ ]0, 1/10[ , it implies

lim inf
α′→α, α′∈B

Φ(α′) + log r(α′) ≥ Φ(α) + log r(α) = Υ(α).

6.3. Rational numbers. We consider a rational number α = p/q and a
Brjuno number α′ close to p/q. Let us note α′

n and β′
n the sequences associated

to α′. According to the sign of ε = α′ − p/q, we associated in Section 2.1 to
α = p/q an integer n0 ∈ N, and finite sequences α0, α1, . . . , αn0 = 0, and
p0/q0, p1/q1, . . . , pn0/qn0 = p/q such that for all k ≤ n0, α′

k −→ αk, p′k −→ pk

and q′k −→ qk when α′ −→ α on one side.
We will use the notation of Section 4.3. Let zε be a point of the cycle

Cp/q(α′). To study the dynamics of Pp/q+ε at the scale of zε, we defined

Qε : w "→ 1
zε

Pp/q+ε(zεw).

Lemma 7 asserts that

Q◦q
ε (w) = w + 2iπqεw(1 − wq) + εRε(w),(12)

with Rε −→ 0 uniformly on every compact subset of C as ε −→ 0.
Set φ(w) = ωq/(1 − ωq) and Ω = φ−1(D). It is the preimage by w "→ wq

of the half plane “Re(z) < 1/2” and is illustrated as a gray set for q = 3 in
Figure 4, p. 21. Let ψ : Ω → D be a holomorphic map satisfying ψ(w)q = φ(w).
Then, ψ(0) = 0, |ψ′(0)| = 1 and ψ is a conformal representation between Ω
and D. It sends the vector field 2iπqw(1 − wq) ∂

∂w to the vector field 2iπqζ ∂
∂ζ .

We define
fε = ψ ◦ Qε ◦ ψ−1

on ψ(Ω∩Q−1
ε (Ω)). As ε −→ 0, fε converges uniformly on every compact subset

of D to the rotation of angle p/q. Moreover by (12) we see that when ε −→ 0,

f◦q
ε (z) = z + 2iπqεz + εgε(z),

with gε −→ 0 uniformly on every compact subset of D. Note that when
α′ = p/q + ε is a Brjuno number, fε has a Siegel disk of conformal radius

ρ(ε) ≤ r(α′)/|zε|.

Let Fε be the lift of fε via Z "→ e2iπZ which satisfies |Fε(Z) − Z − α′| −→ 0
when Im(Z) −→ +∞. When ε −→ 0,

F ◦q
ε ◦ T−p(Z) = Z + qε + εGε(Z)

with Gε −→ 0 uniformly on every compact subset of H.
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Let us fix δ ∈ ]0, 1/10[ and η > 0. For n ≥ 0, we will define a sequence of
heights t′n and a sequence of maps Fε,n+1 ∈ S(α′

n+1).
As ε tends to 0, Fε converges uniformly to the translation by p/q on the

upper half-plane {Z ∈ C | Im(Z) ≥ η/(n0 + 1)}. Moreover, for n ≤ n0 − 1, as
ε −→ 0, α′

n −→ αn .= 0. Thus, if ε is sufficiently close to 0, we can take

t′0 = t′1 = . . . = t′n0−1 = t
def= η/(n0 + 1).

We will call W ′
ε,n and Kε,n : W ′

ε,n → C the objects corresponding to W ′
n and

Kn defined in Section 5.2. When ε −→ 0, the interior of W ′
ε,n tends to the

interior of a set W ′
0,n which is the union of two half strips “ − 1 ≤ Re(Z) ≤ 0

and Im(Z) ≥ 4δ + t” and “0 ≤ Re(Z) ≤ αn and Im(Z) ≥ t”. For n ≤ n0 − 1,
as ε tends to 0, Kε,n tends to Z "→ (s(Z) − it − i6δ)/αn uniformly on every
compact subset of W ′

0,n, where s(Z) = −Z.
Now, when ε −→ 0, Fε,n0 converges uniformly to the translation Z "→

Z + αn0 = Z + 0, i.e., to the identity.

Lemma 14. If ε is small enough, we can take t′n0
= η/(n0 + 1).

Proof. Let us now consider the map

Ψε = Kε,n0−1 ◦ . . . ◦ Kε,0.

Its set of definition eventually contains every compact subset of the interior of

W ′′ =
{
Z ∈ C ; − βn0−1 ≤ (−1)n0Re(Z) ≤ βn0−2 and Im(Z) ≥ t′ − 2δβn0−2

}
,

with t′ = (t + 6δ)(1 + β1 + . . . + βn0−2). On every of these compact subsets,
Ψε eventually conjugates F ◦q

ε ◦ T−p to Fε,n0 .
As ε tends to 0, Ψε converges to Z "→ (sn0(Z) − it′)/βn0−1, uniformly on

every compact subset of the interior of W ′′. Thus, since sn0◦Ψε is holomorphic,
the derivative of sn0 ◦ Ψε converges to 1/βn0−1, uniformly on every compact
subset of the interior of W ′′. Therefore

Fε,n0(Z) = Z +
q|ε|

βn0−1
+ εHε(Z)

with Hε −→ 0 uniformly on every compact subset of H. Since α′
n0

= q|ε|/β′
n0−1

= q|ε|/βn0−1 + O(ε2), |Fε,n0(Z) − Z − α′
n0
| = α′

n0
Iε(Z) with Iε(Z) −→ 0

uniformly on every compact subset of Ψ0(W ′′). This set contains “ − 1 <
Re(Z) < 1 and Im(Z) > 0”. Since Fε,n0 commutes with T , this implies that
|Fε,n0(Z)−Z −α′

n0
| = α′

n0
Iε(Z) with Iε(Z) −→ 0 uniformly on every compact

subset of H. As a consequence |F ′
ε,n0

(Z)−1| −→ 0 uniformly on every compact
subset of H.

Finally, for n ≥ n0 + 1, we can take

t′n =
1
2π

log
1
α′

n
+ Cδ
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where Cδ is the constant in Proposition 8. So, if ε is sufficiently small, we have

log
|zε|

r(α′)
≤ 2π

( ∞∑

n=0

β′
n−1t

′
n + 44δ

)
≤ Φ(α′)−Φn0(α

′)+ 2π(η +4β′
n0

Cδ +44δ).

Reordering the terms, we obtain

Φ(α′) + log r(α′) ≥ log |zε| + Φn0(α
′) − 2π(η + 4β′

n0
Cδ + 44δ).

As ε −→ 0, log |zε|+Φn0(α′) tends to Υ(p/q) and β′
n0

tends to 0. We therefore
have (see Lemma 6)

lim inf
α′→p/q, α′∈B

Φ(α′) + log r(α′) ≥ Υ
(

p

q

)
− 2π(η + 44δ)

and the proof of inequality (5) at rational numbers is completed since η and δ
can be chosen arbitrarily small.

6.4. Cremer numbers whose Pérez-Marco sum converges. It is possible
to give a proof that works for all Cremer numbers at the same time, but for
clarity, we prefer to study two cases (which overlap) separately. Here, we will
assume α is a Cremer number such that

∞∑

n=0

βn−1 log log
e

αn
< ∞.

We will call this sum the Pérez-Marco sum, since it was introduced by Pérez-
Marco in [PM]. There, he proves that, under this condition, every germ that
fixes 0 with derivative e2iπα is linearizable or has small cycles.

Let us fix η > 0, δ ∈ ]0, 1/10[ and n0 ≥ 1. For n1 ≥ n0, we set

dn1(α
′) = d(0, Xn1(α

′))

(see Definition 10 for Xn). Since a Cremer point of a polynomial is accumulated
by periodic points, and because we defined Xn1(α) as the set of all periodic
points of period ≤ qn1 except 0, we have dn1(α) −→ 0 when n1 −→ +∞. Thus,
provided n1 is big enough, we see that for all α′ close enough to α, Fα′ is injec-
tive on B(0, dn1(α′)). Let Fα′ ∈ S(α′) be the lift of Pα′ via Z "→ dn1(α′)e2iπZ .
This amounts to restrict the polynomial Pα′ to the disk B(0, dn1(α′)) where
there are no periodic cycle of period less than or equal to qn1 , except 0. Note
that when α′ is a Brjuno number, this restriction has a Siegel disk of conformal
radius ≤ r(α′).

For n ≥ 0, we will define a sequence of heights t′n and a sequence of maps
Fα′,n+1 ∈ S(α′

n+1).

Lemma 15. If n1 is sufficiently large and α′ is sufficiently close to α, we
can take

t′0 = t′1 = . . . = t′n0
= η/(n0 + 1).
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Proof. Let us choose ε sufficiently small so that α′
0 .= 0, . . . , α′

n0
.= 0 for

all α′ ∈ [α − ε, α + ε]. As n1 −→ ∞, (α′, Z) "→ Fα′(Z) − Z − α′ converges
uniformly to 0 on [α − ε, α + ε] × {Z ∈ C | Im(Z) ≥ η/(n0 + 1)}. If n1 is
sufficiently large, we can therefore take t′0 = t′1 = . . . = t′n0

= η/(n0 + 1).

By construction, the maps Fα′ have no periodic cycle of period less than
or equal to qn1 . So, by Proposition 7, for n ≤ n1, the renormalizations Fα′,n

have no fixed point in H. Thus, by Proposition 9, we can take

t′n0+1 =
1
2π

log log
e

αn0+1
+ Cδ . . . t′n1

=
1
2π

log log
e

αn1

+ Cδ

for some constant Cδ which only depends on δ. Finally, by Proposition 8, for
n ≥ n1 + 1, we can take

t′n =
1
2π

log
1
α′

n
+ Cδ.

Now, Proposition 6 yields

1
2π

log
dn1(α′)
r(α′)

≤
∞∑

n=0

β′
n−1t

′
n + 44δ.

Using the value of t′n chosen above, we get

Φ(α′) + log r(α′)≥Φn1(α
′) + log dn1(α

′) −
n1∑

n=n0+1

β′
n−1 log log

e

α′
n

−2π(η + 4β′
n0

Cδ + 44δ).

Let α′ tend to α:

lim inf
α′→α, α′∈B

Φ(α′) + log r(α′)≥Φn1(α) + log dn1(α) −
n1∑

n=n0+1

βn−1 log log
e

αn

−2π(η + 4βn0Cδ + 44δ).

Let n1 tend to +∞. Recall that dn1(α) ∼ rn1(α), and by Definition 11 Υ(α) =
lim

n1−→+∞
Φn1(α) + rn1(α). Thus,

lim inf
α′→α, α′∈B

Φ(α′) + log r(α′)≥Υ(α) −
+∞∑

n=n0+1

βn−1 log log
e

αn

−2π(η + 4βn0Cδ + 44δ).

Let n0 tend to +∞. Since βn0 −→ 0 and the Pérez-Marco sum of α was
assumed to be convergent, we have

lim inf
α′→α, α′∈B

Φ(α′) + log r(α′)≥Υ(α) − 2π(η + 44δ).

Since this is valid for arbitrarily small η and δ, this concludes the proof for the
case when the Pérez-Marco sum of α converges.
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7. Proof of inequality (5) when the Pérez-Marco sum diverges

In this section, we assume that α is a Cremer number such that

sup
n

βn−1 log
1
αn

= ∞.

To deal with this case, we will have to combine techniques of parabolic explo-
sion and techniques of renormalization.

Note that if βn−1 log 1/αn ≤ C < ∞ for all n ≥ 0, then βn−1 log log(e/αn)
≤ βn−1 log(1 + C/βn−1) decreases exponentially fast, and α belongs to the set
of Cremer numbers studied in Section 6.4.

7.1. Parabolic explosion. The techniques of parabolic explosion are used to
have a precise control on the position of some periodic points of Pα′ for α′ close
to α. The maps Pα′ , for α′ real, are injective on B(0, 1/2). We let Fα′ ∈ S(α′)
be the lift of Pα′ via Z "→ 1

2e2iπZ . Let us recall that we called a periodic point
of a map F that commutes with T , a point Z such that F q(Z) = p for integers
q ∈ N∗ and p ∈ Z (p and q need not be coprime). Then q is called the period,
and p/q the rotation number.

Lemma 16. There exists a constant Bα > 0 such that for all Brjuno num-
ber α′ sufficiently close to α and all integer n ≥ 2,

a) if 1
2πΦn(α′)−Bα > 0, then Pα′ has a periodic point with period ≤ qn and

modulus 1
2e−2πh′

0 with h′
0 ≥ 1

2πΦn(α′) − Bα;

b) for all Z in the upper half-plane
{

Z ∈ C | Im(Z) ≥ 1
2π

Φn−1(α′) + Bα

}

the first qn iterates of Z under iteration of Fα′ have imaginary part ≥
1
2πΦn−1(α′) + 44δ and if Z is periodic with period ≤ qn, then Z comes
from Cpn/qn

(α′) (in the sense that 1
2e2iπZ ∈ Cpn/qn

(α′)).

Proof. For n ≥ 2 and for α′ ∈ R \ Q, let us define

X∗
n(α′) = Xn(α′) \ Cpn/qn

(α′), r∗n(α′) = rad(X∗
n(α′)),

dn(α′) = d(0, Xn(α′)), and d∗n(α′) = d(0, X∗
n(α′)).

By Proposition 2 (since q2 ≥ 2), we have for α′ close enough to α,

Φn(α′) + log rn(α′) ≤ Φ2(α′) + log r2(α′) + C
n∑

k=3

log qk

qk
.

As α′ −→ α, the right hand term is bounded independently of n. So, there
exists a constant Cα such that for all n ≥ 2 and all α′ ∈ B sufficiently close
to α,

Φn(α′) + log dn(α′) ≤ Φn(α′) + log rn(α′) ≤ 2πCα.
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Thus, if α′ is sufficiently close to α, Pα′ has a periodic point with modulus
1
2e−2πh′

0 with h′
0 ≥ 1

2π
Φn(α′) − Cα − log 2

2π
when the right hand is positive.

This proves part a).
Part b) follows from [PM, annex 2.f] and the following observation. By

Lemma 1, in B(α′, 1/2q3
n), the only cycle of period less than or equal to qn that

does not move holomorphically is the cycle Cpn/qn
(α′). So, as in Lemma 5, for

all n ≥ 2, we have

Φ(α′) + log r(α′) ≤ Φn−1(α′) + log r∗n(α′) + (C − 1)
∑

k≥n

log q′k
q′k

,

where C is the constant provided by Lemma 2. By inequality (1), Φ(α′) +
log r(α′) is universally bounded from below. So, there exists a constant C ′

such that for all n ≥ 2 and all α′ sufficiently close to α,

Φn−1(α′) + log r∗n(α′) ≥ −C ′.

Finally, we claim that there exists a constant C ′
α such that for all n ≥ 2

and all α′ sufficiently close to α, we have

log d∗n(α′) ≥ log r∗n(α′) − C ′
α.

Part b) follows easily. To prove the claim, let ρ′ = e2iπα′ and ρ = e2iπα.
Let n0 be such that d∗n0

(α) < |ρ − 1|/4 (this is possible since α is a Cremer
number). For α′ close enough to α, d∗n0

(α′) < |ρ′ − 1|/2. For each fixed value
of n < n0, log d∗n(α′)− log r∗n(α′) −→ log d∗n(α)− log r∗n(α) when α′ −→ α. For
n ≥ n0, let z ∈ X∗

n(α′) be a point that realizes the distance d∗n(α′) and set
w = Pα′(z) = ρ′z + z2. Then, |z| = d∗n(α′) ≤ d∗n0

(α′) < |ρ′ − 1|/2 and

r∗n(α′) ≤ rad(C \ {z, w}) = d∗n(α′) · rad (C \ {1, w/z}) .

As α′ tends to α, w/z = ρ′ + z remains in a compact subset of C \ {1} and so,
rad(C \ {1, w/z}) is bounded.

7.2. Renormalization. Let us now fix δ ∈ ]0, 1/10[ . For n ≥ 0, we will
define a sequence of heights t′n and a sequence of maps Fα′,n ∈ S(α′

n) as in
Section 5.2.

Let us set
C ′ = 2π(Bα + 4Cδ + 44δ),

where Bα is the constant in Lemma 16.
Now, let us choose n0 so that βn0−1 log 1/αn0 > 4C ′ (this is possible

because sup βn−1 log 1/αn = ∞). If α′ is sufficiently close to α, we have

β′
n0−1 log 1/α′

n0
> 4C ′.

By Proposition 8, we can take

t′0 =
1
2π

log
1
α′

0

+ Cδ . . . t′n0−1 =
1
2π

log
1

α′
n0−1

+ Cδ.
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By Lemma 16 part a), Pα′ has a periodic point 1
2e2iπZ′

0 with period ≤ qn0

satisfying Im(Z ′
0) = h′

0 ≥ 1
2π

Φn0(α
′) − Bα. Note that

1
2π

Φn0(α
′) − Bα ≥ 1

2π
Φn0−1(α′) +

4C ′

2π
− Bα ≥ 1

2π
Φn0−1(α′) + Bα.

By Lemma 16 part b), Z ′
0 is periodic for Fα′ and comes from Cpn0/qn0

(α′), and
thus has rotation number pn0/qn0 . By Proposition 7, Fα′,n0 has a fixed point
Z ′

n0
with Im(Z ′

n0
) = h′

n0
satisfying

h′
0 − 44δ < β′

n0−1h
′
n0

+
n0−1∑

n=0

β′
n−1t

′
n < h′

0

(see inequality (10) page 30). So,

h′
n0

>
1
2π

log
1

α′
n0

− Bα + 4Cδ + 44δ

β′
n0−1

>
3
4
· 1
2π

log
1

α′
n0

.

If Z .= Z ′
n0

is another fixed point of Fα′,n0 , then Proposition 7 and Lemma 16
imply that

β′
n0−1Im(Z) +

n0−1∑

n=0

β′
n−1t

′
n <

1
2π

n0−1∑

n=0

β′
n−1 log

1
α′

n
+ Bα.

Thus,

Im(Z) <
Bα

β′
n0−1

<
1
4
· 1
2π

log
1

α′
n0

.

So, there is a gap of height greater than
1
2
· 1
2π

log
1

a′n0

that separates the fixed

point Z ′
n0

of Fα′,n0 from the other fixed points of Fα′,n0 . According to the
second remark after Proposition 9, we can therefore take

t′n0
= h′

n0
+ 1 + Cδ.

Finally, for n ≥ n0 + 1, we can take

t′n =
1
2π

log
1
α′

n
+ Cδ.

As in the previous section, Proposition 6 we have

log
1

2r(α′)
≤ 2π

( ∞∑

n=0

β′
n−1t

′
n + 44δ

)

≤ 2π

(
n0−1∑

n=0

β′
n−1t

′
n + β′

n0−1h
′
n0

)
+

∞∑

n=n0+1

β′
n−1 log

1
α′

n

+2π(β′
n0−1(4Cδ + 1) + 44δ)

≤ 2πh′
0 + Φ(α′) − Φn0(α

′) + 2π(β′
n0−1(4Cδ + 1) + 44δ).
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Note that 2πh′
0 ≤ − log(2dn0(α′)) where dn0(α′) = d(0, Xn0(α′)). So, reorder-

ing the terms and simplifying by log 2, we get

Φ(α′) + log r(α′) ≥ Φn0(α
′) + log dn0(α

′) − 2π(β′
n0−1(4Cδ + 1) + 44δ).

We can now conclude as in Section 6.4.

Appendix: Extracts from [BC2]

The following proposition is Proposition 10 from [BC2].

Proposition 10. Assume U, V ⊂ C are two hyperbolic domains contain-
ing 0 and χ : U → V is a holomorphic map fixing 0. Let S be a finite subset
of U avoiding 0, such that χ(S) avoids 0. Then,

rad(V \ χ(S))
rad(V )

≤ rad(U \ S)
rad(U)

.

Given an integer q ≥ 1, set

Uq =
{

e2iπk/q
∣∣ k = 0, . . . , q − 1

}
.

The following proposition is Proposition 12 from [BC2].

Proposition 11. There exists a constant C > 0 such that for q ≥ 2 and
r < 1, we have

log rad(D \ rUq) ≤ log r +
C

q
.

One can take C = log 4 + 2 log(1 +
√

2).

Let Vλ be hyperbolic subdomains of C which contain 0 and move holo-
morphically with respect to λ ∈ D. The following proposition is Proposition
13 from [BC2].

Proposition 12. There exists a family of simply connected open sets Ṽλ

and of universal coverings πλ : Ṽλ → Vλ such that Ṽ0 = D, the set

Ṽ =
{
(λ, z) ∈ D × C

∣∣z ∈ Ṽλ

}

is open, and Π : (λ, z) ∈ Ṽ "→ πλ(z) is analytic. For all λ ∈ D,

Ṽλ ⊂ B(0, ρ) with log ρ =
2 log 4

1 + |λ|−1 .
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