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Abstract. We investigate the notion of complex rotation number which was

introduced by V. I. Arnold in 1978. Let f : R/Z → R/Z be an orientation

preserving circle diffeomorphism and let ω ∈ C/Z be a parameter with posi-
tive imaginary part. Construct a complex torus by glueing the two boundary

components of the annulus
{
z ∈ C/Z : 0 < Im(z) < Im(ω)

}
via the map

f + ω. This complex torus is isomorphic to C/(Z + τZ) for some appropriate
τ ∈ C/Z. We study the behavior of τ as Im(ω) → +∞ or as Im(ω) → 0. In

particular, we show that there is a continuous extension as Im(ω) → 0.

Notation:

• H = H+ is the set of complex numbers with positive imaginary part.
• H− is the set of complex numbers with negative imaginary part.
• If p/q is a rational number, then p and q are assumed to be coprime.
• If x and y are distinct points in R/Z, then (x, y) denotes the set of points
z ∈ R/Z − {x, y} such that the three points x, z, y are in increasing order
and [x, y] := (x, y) ∪ {x, y}.

• If f : R/Z→ R/Z is a circle diffeomorphism, Df :=

∫
R/Z

∣∣∣∣f ′′(x)

f ′(x)

∣∣∣∣ dx.

Introduction

Given an orientation preserving analytic circle diffeomorphism f : R/Z → R/Z
and a parameter ω ∈ H/Z, set

fω:=f + ω : R/Z→ R/Z + ω.

The circles R/Z and R/Z + ω bound an annulus Aω ⊂ C/Z. Glueing the two
sides of Aω via fω, we obtain a complex torus E(fω), which may be uniformized as
Eτ :=C/(Z+τZ) for some appropriate τ ∈ H/Z, the homotopy class of R/Z in E(fω)
corresponding to the homotopy class of R/Z in Eτ . The complex rotation number
of fω is τf (ω) := τ . It is the complex analog of the ordinary rotation number of
f + t for t ∈ R/Z.

V. I. Arnold’s problem [1], generalized by R. Fedorov and E. Risler independently,
is to study the relation of the ordinary rotation number of the circle diffeomorphism
f : R/Z → R/Z and the limit behaviour of the complex rotation number τf (ω) as
ω tends to 0.

According to work of Risler [6, Chapter 2, Proposition 2], the function

τf : H/Z→ H/Z
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is holomorphic. We shall study the behavior of τf (ω) as the imaginary part of ω
tends to +∞, and as the imaginary part of ω tends to 0. In particular, we shall
show that there is a continuous extension of τf to the boundary R/Z.

1. Notation and statement of results

The map

C/Z 3 z 7→ exp(2πiz) ∈ C− {0}
is an isomorphism of Riemann surfaces. Thus, C/Z may be compactified as a

Riemann surface C/Z isomorphic to the Riemann sphere, by adding two points
+i∞ and −i∞ (the notation suggests that ±i∞ is the limit of points z ∈ C/Z
whose imaginary part tends to ±∞). We shall denote by

H±/Z = H±/Z ∪ R/Z ∪ {±i∞}

the closure of H±/Z in C/Z.
The following construction is usually referred to as conformal welding. It is

customarily studied in the case of non-smooth circle homeomorphisms and is trivial
in the case of analytic circle diffeormorphisms.

The analytic circle diffeomorphism f may be viewed as an analytic diffeomor-
phism between the boundary of H+/Z and the boundary of H−/Z. If we glue H+/Z
to H−/Z via f , we obtain a Riemann surface which is isomorphic to C/Z. We may
choose the isomorphism φ such that φ(±i∞) = ±i∞. Such an isomorphism is not
unique, but it is unique up to addition of a constant in C/Z. It restricts to univalent

maps φ± : H±/Z→ C/Z which extend univalently to neighborhoods of H±/Z and

satisfy φ− ◦ f = φ+ near the boundary of H+/Z.
Holomorphy of φ± near ±i∞ yields that

φ±(z) = z + C± + o(1) as z → ±i∞

for appropriate constants C± ∈ C/Z. Since φ is unique up to addition of a constant,
the difference

Cf :=C+ − C−

only depends on f and will be referred as the welding constant of f .
Our first result, proved in Section 3, concerns the asymptotic behavior of τf (ω)

as ω ∈ C/Z tends to +i∞.

Theorem 1.1. Let f : R/Z → R/Z be an orientation preserving analytic circle
diffeomorphism and let Cf be its welding constant. As ω tends to +i∞ in C/Z,

τf (ω) = ω + Cf + o(1).

The ordinary rotation number of a circle homeomorphism f : R/Z → R/Z is
defined as follows. Let F : R→ R be a lift of f : R/Z→ R/Z. Such a lift is unique
up to addition of an integer. The sequence of functions 1

n

(
F ◦n − id

)
converges

uniformly to a constant function Θ. If we replace F by F + k with k ∈ Z, the limit
Θ is replaced by Θ+k, so that the value rot(f) ∈ R/Z of Θ modulo 1 only depends
on f . This is the rotation number of f . Note that the rotation number is rational
if and only if the circle homeomorphism has a periodic cycle.

Our second result, proved in Section 4.6, concerns the behavior of τf (ω) as ω
tends to R/Z. Recall that a periodic cycle of a circle diffeomorphism is called
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parabolic if its multiplier is 1, and it is called hyperbolic otherwise. A circle diffeo-
morphism with periodic cycles is called hyperbolic if it has only hyperbolic periodic
cycles.

Theorem 1.2. Let f : R/Z → R/Z be an orientation preserving analytic circle
diffeomorphism. Then, the function τf : H/Z → H/Z has a continuous extension

τ̄f : H/Z→ H/Z. Assume ω ∈ R/Z.

• If rot(fω) is irrational, then τ̄f (ω) = rot(fω).
• If rot(fω) = p/q is rational, then τ̄f (ω) belongs to the closed disk of radius
Df/(πq

2) tangent to R/Z at p/q; moreover
– if fω has a parabolic cycle, then τ̄f (ω) = rot(fω).
– if fω is hyperbolic, then τ̄f (ω) ∈ H/Z, in particular τ̄f (ω) 6= rot(fω).

We shall also prove the following result.

Theorem 1.3. There exist orientation preserving analytic circle diffeomorphisms
f : R/Z→ R/Z for which τf : H/Z→ H/Z fails to be univalent.

2. Denjoy’s Lemma

Before embarking into the proof of our results, we shall recall a classical result
of Denjoy on the dynamics of circle diffeomorphisms.

The distortion of a diffeomorphism f : I → J is

disI(f) = max
x,y∈I

log
f ′(x)

f ′(y)
.

If f : I → J and g : J → K are diffeomorphisms, then

disJ(f−1) = disI(f) and disI(g ◦ f) ≤ disI(f) + disJ(g).

Lemma 2.1 (Denjoy). Let f : R/Z → R/Z be an orientation preserving diffeo-
morphism and I ⊂ R/Z be an interval such that I, f(I), f◦2(I), . . . , f◦n(I) are
disjoint. Then,

disI(f
◦n) ≤ Df .

Proof. Let x and y be points in I. Set xk:=f◦k(x) and yk := f◦k(y). Then,

∣∣log(f◦n)′(x)− log(f◦n)′(y)
∣∣ =

∣∣∣∣∣
n−1∑
k=0

log f ′(xk)− log f ′(yk)

∣∣∣∣∣
≤
n−1∑
k=0

∣∣∣∣∫ yk

xk

f ′′(x)

f ′(x)
dx

∣∣∣∣ ≤ ∫
R/Z

∣∣∣∣f ′′(x)

f ′(x)

∣∣∣∣ dx = Df . �

As a corollary, we have the following control on the multipliers of the periodic
cycles of f .

Lemma 2.2. Let f : R/Z→ R/Z be an orientation preserving diffeomorphism and
ρ be the multiplier of a cycle of f . Then, | log ρ| ≤ Df .

Proof. The average of the derivative (f◦q)′ along the circle R/Z is equal to 1. As a
consequence, there exists a point x0 ∈ R/Z such that (f◦q)′(x0) = 1. Any periodic
cycle {x, f(x), . . . , f◦q(x) = x} divides the circle into disjoint intervals I1, . . . , Iq
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which are permuted by f . Without loss of generality, we may assume that I1
contains x and x0. Then, according to the previous Lemma,

| log ρ| =
∣∣log(f◦q)′(x)

∣∣ =

∣∣∣∣log
(f◦q)′(x)

(f◦q)′(x0)

∣∣∣∣ ≤ disI1(f◦q) ≤ Df . �

3. Behavior of τf near +i∞

The proof of Theorem 1.1 goes as follows.
Step 1. The isomorphism between the complex torus E(fω) and Eτf (ω) induces a
univalent map φω : Aω → C/Z which extends univalently to a neighborhood of the
closed annulus Aω, with φω(fω) = φω + τf (ω) in a neighborhood of R/Z.

Step 2. As ω → +i∞, the sequence of univalent maps

φ+ω : z 7→ φω(z)− φω(0)

converges locally uniformly in H+/Z to a limit φ+ : H+/Z→ C/Z, and the sequence
of univalent maps

φ−ω : z 7→ φω(z + ω)− φω
(
f(0) + ω

)
converges locally uniformly in H−/Z to a limit φ− : H−/Z→ C/Z. In addition, the
maps φ± : H+/Z → C/Z form a pair of univalent maps provided by the welding
construction.

Step 3. Comparing constant Fourier coefficients of φω, φ+ and φ−, we deduce that
as ω → +i∞, we have

C+ + φω(0) = −ω + C− + φω
(
f(0) + ω

)
+ o(1),

whence

τf (ω) = φω
(
f(0) + ω

)
− φω(0) = ω + C+ − C− + o(1) = ω + Cf + o(1).

3.1. The map φω. Let δ > 0 be sufficiently tiny so that f : R/Z → R/Z extends
univalently to the annulus Bδ:=

{
z ∈ C/Z : δ > | Im(z)|

}
. Set

A+
ω :=Aω ∪Bδ ∪

(
ω + f(Bδ)

)
.

The complex torus E(fω) is the quotient of A+
ω where z ∈ Bδ is identified to

fω(z) ∈ f(Bδ) + ω.
An isomorphism between E(fω) and Eτ :=C/(Z+τZ) sending the homotopy class

of R/Z in E(fω) to the homotopy class of R/Z in Eτf (ω) will lift to a univalent map

φω : A+
ω → C/Z sending R/Z to a curve homotopic to R/Z, preserving orientation.

The following relation then holds on Bδ:

φω(fω) = φω + τf (ω).

3.2. Convergence of φ±ω . As ω → +i∞, the open sets A+
ω eat every compact

subset of H+/Z ∪Bδ. The sequence of univalent maps φ+ω : A+
ω → C/Z defined by

φ+ω (z):=φω(z)− φω(0)

is normal and any limit value φ+ : H+/Z ∪ Bδ satisfies φ+(0) = 0. It cannot
be constant since each φ+ω sends R/Z to a homotopically nontrivial curve in C/Z
passing through 0. So, any limit value φ+ : H+/Z ∪Bδ → C/Z is univalent.

Similarly, as ω → +i∞, the open sets

A−ω :=− ω +A+
ω
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eat every compact subset of H−/Z ∪ f(Bδ). In addition, the sequence of univalent
maps φ−ω : A−ω → C/Z defined by

φ−ω (z):=φω(z + ω)− φω
(
f(0) + ω

)
is normal and any limit value φ− : H/Z ∪ f(Bδ) → C/Z is univalent and satisfies
φ−
(
f(0)

)
= 0.

Passing to the limit on the following relation, valid on Bδ:

φ−ω ◦ f(z) = φω
(
f(z) + ω)− φω

(
f(0) + ω

)
= φω(z) + τf (ω)− φω

(
f(0) + ω

)
= φω(z)− φω(0) = φ+ω (z),

we get the following relation, valid on Bδ:

φ− ◦ f = φ+.

It follows that the pair (φ−, φ+) induces an isomorphism from
(
A+
ω t A−ω

)
/f

(we identify z ∈ Bδ ⊆ A+
ω to f(z) ∈ f(Bδ) ⊆ A−ω ) to C/Z. Therefore, φ− and

φ+ coincide with the unique isomorphisms arising from the welding construction,
normalized by the conditions φ+(0) = φ−

(
f(0)

)
= 0. This uniqueness shows that

there is only one possible pair of limit values. Thus, the sequences φ−ω : A−ω → C/Z
and φ+ω : A+

ω → C/Z are convergent.

3.3. Comparing Fourier coefficients. Note that z 7→ φ±ω (z)− z and z 7→ φ±(z)
are well-defined on R/Z with values in C. The previous convergence implies:

C+
ω :=

∫
R/Z

(
φ+ω (z)− z

)
dz −→

ω→+i∞
C+:=

∫
R/Z

(
φ+(z)− z

)
dz

and

C−ω :=

∫
R/Z

(
φ−ω (z)− z

)
dz −→

ω→+i∞
C−:=

∫
R/Z

(
φ−(z)− z

)
dz.

Since φω is holomorphic on A+
ω , we have∫

R/Z

(
φω(z)− z

)
dz =

∫
ω+R/Z

(
φω(z)− z

)
dz =

∫
R/Z

(
φω(t+ ω)− t

)
dt− ω.

Thus,

C+
ω :=

∫
R/Z

(
φ+ω (z)− z

)
dz

=

∫
R/Z

(
φω(z)− z

)
dz − φω(0)

=

∫
R/Z

(
φω(t+ ω)− t

)
dt− ω − φω(0)

=

∫
R/Z

(
φ−ω (t)− t

)
dt− ω + φω

(
f(0) + ω

)
− φω(0) = C−ω − ω + τf (ω).

As ω → +i∞, we therefore have

C+ + o(1) = C− + o(1)− ω + τf (ω)

which yields

τf (ω) = ω + C+ − C− + o(1) = ω + Cf + o(1).
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4. Behavior of τf near R/Z

The proof of Theorem 1.2 goes as follows.

Step 1. Recall that a number θ ∈ R/Z is Diophantine if there are constants c > 0
and β > 0 such that for all rational numbers p/q ∈ Q/Z, we have∣∣∣∣x− p

q

∣∣∣∣ > c

q2+β
.

Theorem 4.1 (V. Moldavskis [5]). If ω ∈ R/Z and if rot(fω) is Diophantine, then

lim
y→0
y>0

τf (ω + iy) = rot(fω).

Step 2. If ω ∈ R/Z and rot(fω) is rational, then the conclusion of Theorem 4.1 is
not true. This fact was first proved by Yu. Ilyashenko and V. Moldavkis [4]. We
do not formulate their result since we will use its later generalized version.

Theorem 4.2 (N. Goncharuk [3]). If ω ∈ R/Z, if rot(fω) is rational and if fω is
hyperbolic, then τf extends analytically to a neighborhood of ω.

In the following, we shall denote by τ̄f (ω) this extension of τf at ω.

Step 3. Recall that θ ∈ R/Z is Liouville if it is irrational but not Diophantine. We
use the following result of Tsujii.

Theorem 4.3 (M. Tsujii [7]). The set of ω ∈ R/Z such that rot(fω) is Liouville
has zero Lebesgue measure.

It implies that almost every ω ∈ R/Z satisfies assumptions of either Theorem
4.1, or Theorem 4.2 (note that the set of ω such that fω has a parabolic cycle is
countable).

Step 4. If fω has rational rotation number p/q, we denote by Per(fω) the set
of periodic points of fω : R/Z → R/Z. For x ∈ Per(fω), we denote by ρx the
multiplier of f as a fixed point of f◦q. Our contribution starts with the following
result. It is an analog of the Yoccoz Inequality which bounds the multiplier of a
fixed point of a polynomial in terms of its combinatorial rotation number [2].

Lemma 4.4. Assume that fω is a hyperbolic map with rational rotation number
p/q. Then, τ̄f (ω) belongs to the disk tangent to R/Z at p/q with radius

Rω:=
1

πq ·
∑

x∈Per(fω)

1

| log ρx|

.

In addition, Rω ≤ Df/(πq
2).

The cardinal of Per(fω) is at least q and according to Lemma 2.2, for each
x ∈ Per(fω) we have | log ρx| ≤ Df . This yields the upper bound Rω ≤ Df/(πq

2).

Step 5. Let τ̄f : R/Z→ C/Z be defined by

• τ̄f (ω):=rot(fω) if the rotation number of fω is irrational or if fω has a
parabolic cycle and
• τ̄f (ω):= lim

y→0
y>0

τf (ω + iy) if fω is hyperbolic.
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Lemma 4.5. The function τ̄f is continuous on R/Z.

It is particularly difficult to prove the continuity of τ̄f at points ω ∈ R/Z for
which fω has hyperbolic and parabolic cycles which bifurcate into complex conju-
gate cycles. The other cases follow easily from Theorem 4.2 and Lemma 4.4.

Step 6. The holomorphic map τf : H/Z → H/Z has radial limits on R/Z almost
everywhere, and those limits coincide with the continuous map τ̄f . It follows easily
that τf extends continuously by τ̄f to R/Z.

4.1. The Diophantine case. We include a proof of Theorem 4.1. The proof relies
on the following lemma on quasiconformal maps which is classical.

Lemma 4.6. Suppose that there exists a K-quasiconformal map between two com-
plex tori E1 and E2. Then

distH(τ(E1), τ(E2)) ≤ logK

where distH is the hyperbolic distance in H, and where τ(E1) ∈ H and τ(E2) ∈ H
are moduli with respect to corresponding generators in H1(E1) and H1(E2).

Without loss of generality, we may assume that f : R/Z→ R/Z has Diophantine
rotation number θ ∈ R/Z. A theorem of Yoccoz (see [8]) asserts that there is an
analytic circle diffeomorphism φ : R/Z → R/Z conjugating the rotation of angle θ
to f : for all x ∈ R/Z, we have

φ(x+ θ) = f ◦ φ(x).

Let φ̂ : C/Z→ C/Z be the homeomorphism defined by

φ̂(z) = φ
(
Re(z)

)
+ i Im(z).

Then, φ̂ : C/Z→ C/Z is a K-quasiconformal homeomorphism with

K:= max
(
‖φ′‖∞, ‖1/φ′‖∞

)
.

Now, for any y > 0,

φ̂(x+ θ + iy) = f
(
φ̂(x)

)
+ iy,

and so, φ̂ induces a K-quasiconformal homeomorphism between the complex tori
C/
(
Z + (θ + iy)Z

)
and E(fiy). It follows that for y > 0, the hyperbolic distance in

H/Z between θ + iy and τf (iy) is uniformly bounded and thus,

lim
y→0
y>0

τf (iy) = θ.

4.2. The hyperbolic case. We recall the arguments of the proof of Theorem 4.2
given in [3] . It is based on an auxiliary construction of a complex torus E(f) when
f : R/Z→ R/Z has rational rotation number and is hyperbolic. This construction
will be used again in the proofs of Lemmas 4.4 and 4.5.

Let us assume f : R/Z → R/Z has rational rotation number p/q and has only
hyperbolic periodic cycles. The number m ≥ 1 of attracting cycles is equal to the
number of repelling cycles. Denote by αj , j ∈ Z/(2mq)Z, the periodic points of f ,
ordered cyclically; even indices correspond to attracting periodic points and odd
indices to repelling periodic points. Note that f(αj) = αj+2mp.

Let ρj be the multiplier of αj as a fixed point of f◦q and φj : (C, 0)→ (C/Z, αj)
be the linearizing map which conjugates multiplication by ρj to f◦q:

f◦q ◦ φj(z) = φj(ρjz)
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and is normalized by φ′j(0) = 1. Then,

f ◦ φj(z) = φj+2mp(λj · z) with λj := f ′(αj).

In addition, if ε > 0 is small enough, the linearizing map φj extends univalently to
the strip {z ∈ C : | Im(z)| < ε} and

φj(R) = (αj−1, αj+1).

For each j ∈ Z/(2mq)Z, let xj be a point in (αj , αj+1), so that

• f(xj) ∈ (αj+2pm, xj+2pm) if the orbit of αj attracts (i.e. j is even) and
• f(xj) ∈ (xj+2pm, αj+2pm+1) if the orbit of αj repels (i.e. j is odd).

This is possible since f◦q(xj) ∈ (αj , xj) when j is even and f◦q(xj) ∈ (xj , aj+1)
when j is odd. Similarly, let εj be a point on the negative imaginary axis if j is
even and on the positive imaginary axis if j is odd, so that for all j ∈ Z/(2mpZ),

• |εj | < ε, |λjεj | < ε and
• λjεj is above εj+2mp.

Let Cj be the arc of circle with endpoints φ−1j (xj−1) and φ−1j (xj) passing through
εj and set

γ :=
⋃

j∈Z/(2mqZ)

φj(Cj).

Then, γ is a simple closed curve in C/Z and f is univalent in a neighborhood of γ.

α1

α0

α1

γ

f(γ)

x0x1 x1x0

Figure 1. A possible choice of curve γ for the circle diffeomor-

phism R/Z 3 x 7→ x +
1

4π
sin(2πx) ∈ R/Z. There is an attract-

ing fixed point at α0 := 0 ∈ R/Z and a repelling fixed point at
α1 := 1/2 ∈ R/Z. The basin of attraction of 0 in C/Z is white.

The attracting cycles of f are above γ in C/Z and the repelling cycles are below
γ in C/Z. In addition,

f(γ) =
⋃

j∈Z/(2mqZ)

φj+2mp(λjCj)

and so, f(γ) lies above γ in C/Z.
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For ω sufficiently close to 0, the curve fω(γ) = f(γ) + ω remains above γ in
C/Z. The curves γ and fω(γ) bound an essential annulus in C/Z. Glueing the
two sides via fω, we obtain a complex torus E(fω), which may be uniformized as
Eτ :=C/(Z + τZ) for some appropriate τ ∈ H/Z, the homotopy class of γ in E(fω)
corresponding to the homotopy class of R/Z in Eτ . We set τ̄f (ω) := τ ∈ H/Z.

According to Risler [6, Chapter 2, Proposition 2], the map ω 7→ τ̄f (ω) is holo-
morphic. When ω ∈ H/Z, the complex torus E(fω) is isomorphic to E(fω) and the
homotopy class of γ in E(fω) corresponds to the homotopy class of R/Z in E(fω)
(see [3] for details). As a consequence, τ̄f (ω) = τf (ω) when ω ∈ H/Z is sufficiently
close to 0. This completes the proof of Theorem 4.2 for ω = 0.

4.3. The Liouville case. For completeness, we now present a proof of Tsujii’s
Theorem 4.3 which we believe is a simplification of the original one, although the
ideas are essentially the same. The main argument in Tsujii’s proof is the following.

Proposition 4.7. Let f : R/Z→ R/Z be a C2-smooth orientation preserving circle
diffeomorphism with irrational rotation number θ ∈ R/Z. If p/q is an approximant
to θ given by the continued fraction algorithm, then there is an ω ∈ R/Z satisfying

|ω| < eDf · |θ − p/q| and rot(fω) = p/q.

Proof. According to a Theorem of Denjoy, there is a homeomorphism φ : R/Z →
R/Z such that φ(x+ θ) = f ◦ φ(x) for all x ∈ R/Z.

Without loss of generality, let us assume that θ < p/q and set δ:=p − qθ. Let
T ⊂ R/Z be the union of intervals

T :=
⋃

1≤j≤q

Tj with Tj :=(jθ, jθ + δ).

Since p/q is an approximant of θ, this is a disjoint union of q intervals of length δ.
According to Lemma 4.8 below, we may choose t ∈ R/Z such that the Lebesgue
measure of φ(T + t) is at most qδ.

Now, set x:=φ(t) and for j ∈ Z, set

xj :=f
◦j(x) = φ(t+ jθ) and Ij :=(xj , xj−q) = φ(Tj).

The intervals I1, I2 = f(I1), . . . , Iq = f◦q(I1) are disjoint and the sum of their
lengths satisfies

q∑
j=1

|Ij | ≤ qδ = q2 · |θ − p/q|.

As ω ∈ R/Z increases from 0, the rotation number rot(fω) ∈ R/Z increases from θ,
and there is a first ω0 such that rot(fω0

) = p/q. For j ∈ [0, q], set

yj :=(fω0
)◦j(x) and zj :=f

◦(q−j)(yj).

Finally, for j ∈ [1, q], set

Jj :=
(
f(yj−1), yj

)
=
(
f(yj−1), f(yj−1) + ω0

)
and Kj :=(zj−1, zj).

Then, (z0, z1, . . . , zq) is a subdivision of (z0, zq) (see Figure 2).
As ω increases from 0 to ω0, the point (fω)◦q(x) increases from xq to yq but

remains in Iq since rot(fω) remains less than p/q. Thus, (z0, zq) = (xq, yq) ⊆ Iq
and so,

|Iq| ≥ |zq − z0| =
q∑
j=1

|Kj |.
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x1−q

f◦(q−2)

f

f◦(q−2)

f(y1) J2

J1x1

I1

I2

Iq

xq=z0

K2

z2z1

K1

zq−1 yq=zq

Jq=Kq

x2

x0

x2−q

y1

y2

Figure 2. The intervals Ij , Jj and Kj .

In addition, Jj ⊂ Ij and Kj = f◦(q−j)(Jj). It follows from Denjoy’s Lemma 2.1
that

|Kj |
|Iq|

≥ e−Df
|Jj |
|Ij |

= e−Df
ω0

|Ij |
.

Now, according to the Cauchy-Schwarz Inequality, we have

q2 =

 q∑
j=1

√
|Ij | ·

1√
|Ij |

2

≤

 q∑
j=1

|Ij |

 ·
 q∑
j=1

1

|Ij |

 ≤ q2 · |θ − p/q| · q∑
j=1

1

|Ij |
.

Thus,

|Iq| ≥
q∑
j=1

|Kj | ≥ e−Dfω0|Iq| ·
q∑
j=1

1

|Ij |
≥ e−Dfω0|Iq|
|θ − p/q|

and so,

ω0 ≤ eDf · |θ − p/q|. �

Lemma 4.8. Let φ : R/Z→ R/Z be a homeomorphism. Then, for any measurable
set T ⊆ R/Z, there is a t ∈ R/Z such that

Leb
(
φ(T + t)

)
≤ Leb(T ).
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Proof. Let µ be the Lebesgue measure on R/Z. According to Tonelli’s theorem,∫
t∈R/Z

µ
(
φ(T + t)

)
dt =

∫
t∈R/Z

(∫
u∈T+t

d(φ∗µ)

)
dµ

=

∫
u∈R/Z

(∫
t∈−T+u

dµ

)
d(φ∗µ)

=

∫
u∈R/Z

µ(T ) d(φ∗µ)

= µ(T ) · µ
(
φ(R/Z)

)
= µ(T ).

So, the average of µ
(
φ(T + t)

)
with respect to t is equal to µ(T ) and the result

follows. �

Theorem 4.3 follows easily from Proposition 4.7: for β > 0, let Sβ be the set
of ω ∈ R/Z such that rot(fω) is irrational and such that there are infinitely many
p, q ∈ Z satisfying

∣∣rot(fω)− p/q
∣∣ < 1/q2+β . The set of ω ∈ R/Z such that rot(fω)

is Liouville is the intersection of the sets Sβ . So, it is sufficient to show that the
Leb(Sβ) = 0 for all β > 0. Note that

Sβ = lim sup
q→+∞

Sβ,q

where Sβ,q is the set of ω ∈ R/Z such that rot(fω) is irrational and such that∣∣rot(fω)− p/q
∣∣ < 1/q2+β for some approximant p/q of rot(fω).

Proposition 4.7 implies that Sβ,q is located in the C/q2+β-neighborhood of the
union of q intervals where the rotation number is rational with denominator q,
where C := eDf . So,

Leb(Sβ,q) ≤ 2q · C

q2+β
=

2C

q1+β
.

In particular, for all β > 0,

Leb(Sβ) = Leb

(
lim sup
q→+∞

Sβ,q

)
≤ lim sup

q→+∞

∑
r≥q

2C

r1+β
= 0.

4.4. Back to the hyperbolic case. We now come to our contribution, starting
with the proof of Lemma 4.4. Assume f : R/Z→ R/Z has rational rotation number
p/q and has only hyperbolic periodic cycles. As in Section 4.2, consider a simple
closed curve γ oscillating between the attracting cycles of f (which are above γ in
C/Z) and the repelling cycles of f (which are below γ in C/Z), so that f(γ) lies
above γ in C/Z.

The curves γ and f(γ) bound an essential annulus in C/Z. Glueing the curves
via f , we obtain a complex torus E(f) isomorphic to Eτ := C/(Z + τZ) with
τ := τ̄0(f) ∈ H/Z, the class of γ in E(f) corresponding to the class of R/Z in Eτ .

The projection of R/Z in E(f) consists of 2m topological circles cutting E(f) into
2m annuli associated to the cycles of f . More precisely, each attracting (respectively
repelling) cycle c has a basin of attraction Bc for f (respectively for f−1) and the
projection of H− ∩Bc (respectively H+ ∩Bc) in E(f) is an annulus Ac of modulus

mod Ac =
π

| log ρc|
,

where ρc is the multiplier of c as a cycle of f .
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Those annuli wind around the class of γ in E(f) with combinatorial rotation
number −p/q. It follows from a classical length-area argument (see [2, Proposition
3.3] for example) that there is a representative τ̃ ∈ H of τ ∈ H/Z such that∑

c cycle of f

mod Ac ≤
Im(τ̃)

| − p+ qτ̃ |2
.

As a consequence,

|τ̃ − p/q|2

Im τ̃
≤ Rω :=

1

πq2 ·
∑

c cycle of f

mod Ac
,

which yields Lemma 4.4 since∑
c cycle of f

mod Ac =
∑

c cycle of f

π

| log ρc|
=

1

q

∑
x∈Per(f)

π

| log ρx|
.

Before going further, we shall establish a result that will be used in the proof of
Lemma 4.5. Recall that the curve γ intersects the interval (αj , αj+1) at the point
xj , belongs to the lower half-plane below the segment (xj−1, xj) if j is even and to
the upper half-plane above the segment (xj−1, xj) if j is odd.

Recall that m is the number of attracting cycles of f . The projection of R/Z
in E(f◦q) cuts the torus in 2mq annuli Aj , j ∈ Z/(2mq)Z, which wind around the
class of γ with combinatorial rotation number 0 and have moduli

mod Aj = mj :=
π

| log ρj |
.

Let Sj ⊂ C and Bj ⊂ C/Z be defined by

Sj := {z ∈ C : 0 < Im(z) < mj} and Bj := Sj/Z.
Set

r̃j :=
log φ−1j (xj)

log ρj
and s̃j :=

log |φ−1j (xj−1)|
log ρj

+
iπ

| log ρj |
.

The class rj of r̃j in C/Z belongs to the lower boundary component C−j := R/Z
of Bj and the class sj of s̃j in C/Z belongs to the upper boundary component
C+
j := (R+imj)/Z of Bj . The map z 7→ φj ◦exp(z · log ρj) induces an isomorphism

χj : Bj → Aj which extends analytically to the boundary, sends rj to the class of
xj in E(f◦q) and sj to the class of xj−1 in E(f◦q) (see Figure 3).

Lemma 4.9. We have that

distH/Z

(
qτ,− 1

σ

)
≤ 5Df with σ :=

∑
j∈Z/2mqZ

s̃j − r̃j .

Proof. It will be more convenient to work with f◦q whose rotation number is 0/1.
The diffeomorphism f induces an automorphism of E(f◦q) of order q. The quotient
of E(f◦q) by this automorphism is isomorphic to E(f). The class of γ in E(f) has q
disjoint preimages in E(f◦q) which map with degree 1 to γ. It follows that E(f◦q)
is isomorphic to Eqτ := C/(Z + qτZ), the class of γ in E(f◦q) corresponding to the
class of R/Z in Eqτ .

Set Eσ := C/(Z + σZ). We will now construct a K-quasiconformal map

ψ : E(f◦q)→ Eσ
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r̃j 1+r̃j

xj−1

αj+1

αj xj

sj

rj

s̃j 1+s̃j

z 7→φj◦exp(z·log ρj)

γ

f(γ)

Sj

z∼1+z

z∼f(z)

Bj

χj

Aj

E(f◦q)

Figure 3. The projection of R/Z in E(f◦q) cuts the torus in 2mq
annuli Aj , j ∈ Z/(2mq)Z.

which sends the class of R/Z in E(f◦q) to the class of σR/σZ in Eσ. We will also
show that logK ≤ 5Df . The result then follows from Lemma 4.6.

On the one hand, glueing the lower boundary component C−j of Bj with the

upper boundary component C+
j+1 of Bj+1 via the analytic diffeomorphism

ξj := χ−1j+1 ◦ χj : C−j → C+
j+1,

we obtain a complex torus E which is isomorphic to E(f◦q). Let δj be the projection
of the segment [r̃j , s̃j ] to E. The homotopy class of the simple closed curve

δ :=
⋃

j∈Z/(2mq)Z

δj

in E corresponds to the homotopy class of γ in E(f◦q).
On the other hand, glueing the lower boundary component C−j of Bj with the

upper boundary component C+
j+1 of Bj+1 via the translation by z 7→ z− rj + sj+1,

we obtain a complex torus E′ which is isomorphic to Eσ. Let δ′j be the projection
of the segment [r̃j , s̃j ] to E′. The homotopy class of the simple closed curve

δ′ :=
⋃

j∈Z/(2mq)Z

δ′j

in E′ corresponds to the homotopy class of σR/σZ in Eσ.
The homeomorphism

ψj := ξj − sj+1 + rj : C−j → C−j

fixes rj ∈ C−j . Let ψ̃j : R → R be the lift of ψj : C−j → C−j which fixes r̃j and let
Ψj : Sj → Sj be the extension to Sj defined by

Ψj(x+ iy) :=
y

mj
(x+ imj) +

(
1− y

mj

)
ψ̃j(x).

The homeomorphism Ψj : Sj → Sj restricts to the identity on R+imj and descends

to a homeomorphism ψj : Bj → Bj . By construction, the following diagram
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commutes:

C−j
ψj //

ξj

��

C−j

z 7→z−rj+sj+1

��
C+
j+1 ψj−1

// C+
j+1.

So, the collection of homeomorphisms ψj : Bj → Bj induces a global homeomor-
phism ψ : E → E′. Since Ψj fixes r̃j and s̃j , the homeomorphism ψ sends the
homotopy class of δ in E to the homotopy class of δ′ in E′. The proof is completed
by Lemma 4.10 below. �

Lemma 4.10. The homeomorphism ψ : E → E′ is e5Df -quasiconformal.

Proof. The image of the curves C±j in E are analytic (because the glueing map ξj
is analytic), therefore quasiconformally removable. So, it is enough to prove that
each ψj : Bj → Bj is e5Df -quasiconformal. Equivalently, we must prove that∥∥∥∥∂Ψj/∂z̄

∂Ψj/∂z

∥∥∥∥
∞
≤ k < 1 with distD(0, k) < 5Df ,

where distD is the hyperbolic distance within the unit disk.
For readibility, we drop the index j in the following computation:

∂Ψ/∂z̄

∂Ψ/∂z
(x+ iy) =

∂Ψ/∂x+ i∂Ψ/∂y

∂Ψ/∂x− i∂Ψ/∂y
(x+ iy)

=

(
1− y

m

)
·
(
ψ̃′(x)− 1

)
− i

m

(
ψ̃(x)− x

)
2 +

(
1− y

m

)
·
(
ψ̃′(x)− 1

)
+ i

m

(
ψ̃(x)− x

) .
This last quantity is of the form (a− 1)/(ā+ 1) with

Re(a) = 1 +
(

1− y

m

)
·
(
ψ̃′(x)− 1

)
and Im(a) =

ψ̃(x)− x
m

.

Note that

∣∣∣∣a− 1

ā+ 1

∣∣∣∣ =

∣∣∣∣a− 1

a+ 1

∣∣∣∣ and the Möbius transformation a 7→ a− 1

a+ 1
sends the

right half-plane into the unit disk. So, it is enough to show that a belongs to the
right half-plane

{
z ∈ C ; Re(z) > 0

}
and that the hyperbolic distance within this

half-plane between 1 and a is at most 5Df .
This hyperbolic distance is bounded from above by

∣∣Im(a)
∣∣+
∣∣log Re(a)

∣∣. Since

ψ̃ : R → R is an increasing diffeomorphism which fixes p + Z ∈ R, we have that
ψ̃′(x) > 0 and

∣∣ψ̃(x)− x
∣∣ < 1. In addition, 0 < 1− y/m < 1, and so,

0 < min
R
ψ̃′ ≤ Re(a) ≤ max

R
ψ̃′ and

∣∣Im(a)
∣∣ ≤ 1

m
=
| log ρ|
π

≤ | log ρ| ≤ Df .

The last inequality is given by Lemma 2.2. The average of ψ̃′ on [0, 1] is equal to

ψ̃(1)− ψ̃(0) = 1. So, ψ̃′ takes the value 1 and

−disR(ξ) = −disR(ψ̃) < log min
R

(ψ̃′) ≤ 0 ≤ log max
R

(ψ̃′) < disR(ψ̃) = disR(ξ).

The proof is completed by Lemma 4.11 below. �

Lemma 4.11. For any j ∈ Z/(2mq)Z, the distortion of ξj is bounded by 4Df .
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Proof. The map ξj : C−j → C+
j+1 is induced by the following composition

R
ej−→ (0,+∞)

φj−→ (αj , αj+1)
φ−1
j+1−→ (−∞, 0)

e−1
j+1−→ R + imj+1.

with
ej(z) := exp(z · log ρj) and ej+1(z) = exp(z · log ρj+1).

The distortion of ej on any interval of length 1 is | log ρj | which is at most Df

according to Lemma 2.2. Similarly, the distortion of ej+1 on any interval of length
1 is | log ρj+1| ≤ Df .

Let x be any point in (αj , αj+1) and let I ⊂ R/Z be the interval whose extremities
are x and f(x). To complete the proof, it is enough to show that

disI(φ
−1
j ) ≤ Df and disI(φ

−1
j+1) ≤ Df .

We will only prove this result for φj in the case where αj is attracting. The other
cases are dealt similarly and left to the reader.

On I, the linearizing map φj is the limit of the maps ϕn := (f◦qn − αj)/ρnj .
Since I is disjoint from all its iterates, Denjoy’s Lemma 2.1 yields

disIϕn = disIf
◦qn ≤ Df .

Passing to the limit as n tends to ∞ shows that disIφj ≤ Df as required. �

4.5. Continuity of τ̄f . We now prove Lemma 4.5. It is enough to prove that τ̄f
is continuous at ω = 0. We shall see that when rot(f) is irrational, the continuity
follows from Lemma 4.4, but when rot(f) is rational, the situation is more subtle.

4.5.1. Irrational rotation number. If rot(f) is irrational, then τ̄f (0) = rot(f) due
to the definition of τ̄f .

Let I ⊂ R/Z be a small neighborhood of 0 such that for ω ∈ I, the periods of the
periodic cycles of fω are at least N . For ω ∈ I, either τ̄f (ω) = rot(fω), or according
to Lemma 4.4, ∣∣τ̄f (ω)− rot(fω)

∣∣ ≤ Df

N2
.

Thus, τ̄f (I) is located within Df/N
2-neighborhood of

{
rot(fω), ω ∈ I

}
. The result

follows since ω 7→ rot(fω) is continuous.

4.5.2. Rational rotation number. If f is hyperbolic, then the continuity of τ̄f at 0
follows directly from Theorem 4.2.

Let us assume f has at least one parabolic cycle. We will only prove that

lim
ω>0,ω→0

τ̄f (ω) =
p

q
= τ̄f (0).

Applying this result to the diffeomorphism x 7→ −f(−x) yields

lim
ω<0,ω→0

τ̄f (ω) =
p

q
= τ̄f (0).

There are three different cases.

(1) All q-periodic orbits of f disappear as ω increases, so that, rot(fω) > p/q
for ω > 0. In this case, the proof is literally the same as in the case of
irrational rotation number.

(2) At least one parabolic cycle of f bifurcates into real hyperbolic cycles. In
this case, the multipliers of these real hyperbolic cycles tend to 1 as ω tends
to 0. The result follows from Lemma 4.4.
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(3) All parabolic cycles of f bifurcate into complex conjugate cycles as ω > 0
increases but the rotation number stays unchanged because f has hyper-
bolic cycles.

The rest of the Section is devoted to the treatment of the third case.

Lemma 4.12. Under the assumptions of case (3) above, the curve τ̄f (ω) is tangent
to the segment [0, 0 + ε) ⊂ R/Z; moreover, it is located between two horocycles
tangent to R/Z at 0.

Proof. Our proof relies on Lemma 4.9. According to Lemma 4.4, we know that for
ω > 0 close to ω, τ̄f (ω) remains in a subdisk of H/Z tangent to the real axis at
p/q. So, it is enough to prove that qτ̄f (ω) tends to 0 tangentially to the segment
[0, ε) ∈ R/Z and is located in between two horocycles tangent to R/Z at the point
0.

The notation we introduce now is similar to that of Section 4.2. The main
difference is, that f is not hyperbolic.

Let m be the number of attracting hyperbolic cycles of f and order cyclically
the hyperbolic periodic points αj , j ∈ Z/(2mq)Z. For each j ∈ Z/(2mq)Z, let xj
be a point in (αj , αj+1), so that

• f(xj) ∈ (αj+2pm, xj+2pm) if the orbit of αj attracts (i.e. j is even) and
• f(xj) ∈ (xj+2pm, αj+2pm+1) if the orbit of αj repels (i.e. j is odd).

Note that since the parabolic cycles disappear as ω > 0 increases, the graph of
f◦q− id lies above the diagonal near those points. As a consequence, each parabolic
periodic point lies in an interval of the form (αj , αj+1) with αj repelling and αj+1

attracting.
For ω > 0 close enough to 0, fω has a hyperbolic point αj(ω) close to αj .

We denote by ρω,j the corresponding multiplier and by φω,j the corresponding
linearizing map. Finally, using the points xj chosen above which do not depend on
ω, set

r̃ω,j :=
log φ−1ω,j(xj)

log ρω,j
, s̃ω,j :=

log |φ−1ω,j(xj−1)|
log ρω,j

+
iπ

| log ρω,j |
and

σω :=
∑

j∈Z/(2mq)Z

s̃ω,j − r̃ω,j .

According to Lemma 4.9, the hyperbolic distance in H/Z between qτ̄f (ω) and
−1/σω is uniformly bounded as ω > 0 tends to 0. So, it is enough to show that the
imaginary part of σω is bounded and that the real part of σω tends to −∞.

Since
Im(r̃ω,j) = 0 and Im(s̃ω,j) −→

ω>0,ω→0
Im(s̃j),

we see that the imaginary part remains bounded as ω > 0 tends to 0.
If f has no parabolic periodic point on the interval (αj , αj+1), then φ−1ω,j → φ−1j

on the interval (αj , αj+1). It follows that Re(r̃ω,j) and Re(s̃ω,j+1) remain bounded.
If f has a parabolic periodic point on the interval (αj , αj+1), then αj is repelling

and αj+1 is attracting. Either the two quantities log φ−1ω,j(xj) and log |φ−1ω,j+1(xj)|
tend to +∞, or one remains bounded and the other tends to +∞. Since log ρω,j →
log ρj > 0 and log ρω,j+1 → log ρj+1 < 0, in both cases,

Re(s̃ω,j+1 − r̃ω,j) −→
ω>0,ω→0

−∞. �
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We finish with the following corollary that implies Theorem 1.3.

Corollary 4.13. Assume x− f(x) has two local maxima at points x1 and x2 with
x1 − f(x1) 6= x2 − f(x2). Then, τf is not injective in the upper half-plane.

Proof. Let y1 and y2 be the respective values of x − f(x) at x1 and x2. Suppose
that y1 < y2. Then the map fω for y1 < ω < y2 has zero rotation number, and
it has parabolic fixed points for ω = y1 and ω = y2. When ω increases from y1
to y1 + ε, the parabolic fixed point disappears, thus due to Lemma 4.12, the curve
ω 7→ τ̄f (ω) is tangent to [y1, y1 + ε). When ω < y2 tends to y2, the two hyperbolic
fixed points merge into a parabolic fixed point. Thus, according to Lemma 4.4,
the curve ω 7→ τ̄f (ω) enters any horocycle as ω < y2 tends to y2. But if τf were
injective, the pair of germs of the curve τ̄f |R/Z at y1 and y2 (both passing through
0) would be oriented clockwise. The contradiction shows that τf is not injective in
the upper half-plane. �

4.6. The proof of Theorem 1.2. Note that τf : H/Z → H/Z extends holomor-
phically to +i∞. Thus, it is a holomorphic function on H/Z ∪ {+i∞} which is a

Riemann surface isomorphic to the unit disk D. It takes its values in H/Z. Al-
most everywhere, its radial limits as ω tends to R/Z coincide with the value of the

continuous function τ̄f : R/Z → H/Z. So, Theorem 1.2 is a consequence of the
following classical result.

Lemma 4.14. Let g : D → C be a bounded holomorphic function. Suppose that
almost everywhere, its radial limits as z tends to ∂D are those of a continuous
function h : ∂D→ C:

for almost every t ∈ R/Z, lim
r→1,r<1

g(re2πit) = h(e2πit).

Then, h extends g continuously to D.

Proof. The real and imaginary parts of g are harmonic functions. Due to the
Poisson formula (applied to both Re g and Im g) for |z| < r we have

(4.1) g(z) =
1

2π

∫ 2π

0

g(reiα)P (reiα, z) dα,

where P is the Poisson kernel,

P (reiα, Reiβ) =
r2 −R2

r2 +R2 − 2rR cos(α− β)
.

The integrand in (4.1) is bounded as r tends to 1, and it tends to h(eiα)P (eiα, z)
almost everywhere. Due to the Lebesgue bounded convergence theorem,

g(z) =
1

2π

∫ 2π

0

h(eiα)P (eiα, z) dα.

Due to the Poisson theorem, the right-hand side provides the solution of the Dirich-
let boundary problem for Laplace equation. Thus Re g and Im g satisfy

lim
z→eiα

Re g(z) = Reh(eiα) lim
z→eiα

Im g(z) = Imh(eiα). �
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rotation vérifie une condition diophantienne, Ann. Sci. École Norm. Sup. (4) 17 (1984), no.
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