How regular can the boundary of a quadratic Siegel disk be?

Xavier Buff and Arnaud Chéritat

ABSTRACT. In the family of quadratic polynomials with an irrationally indif-
ferent fixed point, we show the existence of Siegel disks with a fine control on
the degree of regularity of the linearizing map on their boundary. A general
theorem is stated and proved. As a particular case, we show that in the qua-
dratic family, there are Siegel disks whose boundaries are C™ but not C™+!
Jordan curves.

1. Introduction

In 1995, R. Pérez-Marco [PM1] constructed the first known examples of Siegel
disks with C° boundaries. The authors [BC]| discovered later an independent
proof of the existence of Siegel disks with C'>° boundaries in the family of quadratic
polynomials

Py(2) = exp(i2m0)z + 22, 0 € R/Z.
A. Avila formalized, simplified and extended these results in [A] (these two preprints
have now been published as [ABC]). L. Geyer further simplified it in [G].

These smooth Siegel disks were provided by an elementary construction based
on a perturbation lemma (recalled as lemma 2 below), which was unknown at the
time. Here, we describe a procedure which introduces irregularities on the bound-
aries of Siegel disks. For this, we use an old result of Herman (see lemma 1l below).
Combining it with our previous work, it enables us to prove much more: there
exist quadratic Siegel disks for which the regularity of the boundary is anywhere
in the full spectrum between analytic and continuous. Since the possibilities are
numerous, we will formulate our main theorem in a general and abstract form. As
a particular case, we will obtain that for all n € N, there exist quadratic Siegel
disks whose boundaries are Jordan curves which are C™ but not C"*! embedded
curves.

To state the main theorem, let us introduce a few notations. We will denote by
U the set of complex numbers of norm 1. If Py is linearizable in a neighborhood of
its indifferent fixed point z = 0, we denote by Ay its Siegel disk (maximal domain
of linearization) and by ¢p : 79D — Ay the unique conformal map with ¢»(0) = 0
and ¢}(0) = 1. This ¢y is also the linearizing map, and thus satisfies

¢g 0 Rg = Py o ¢g,
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where Ry(z) = exp(i2mf)z. If Py is not linearizable, we set Ay = @ and ry = 0.
Let C° be the space of holomorphic functions from D to C having a continuous
extension to D. This is a Banach space for the supremum norm. Let C* be the
space of functions from D to C having a holomorphic extension to a neighborhood

of D.

DEFINITION 1. Let X and Y be topological spaces and X C Y. We write
X Co Y if the canonical injection X — Y is continuous. If moreover X is a
normed vector space and'Y a Fréchet space, we write X C. Y if every bounded set
in X has compact closure in'Y .

THEOREM 1. Let F be any Fréchet space such that C¥ C F Co C°, and let
Bc.F

be a Banach space. Then, there exists a Bruno number 6 such that

o the map z — ¢g(roz) belongs to F but not to B
o the boundary of Ag is a Jordan curve that does not contain the critical
point of Py.
FEquivalently, one can replace the Banach space B C. F by a countable union of
Banach spaces B,, C. F' or by a countable union of compact sets K,, C F.

There are many Fréchet and Banach spaces or compact subsets that can be
considered here. To give a sample of what can be obtained from theorem (1, we will
restrict ourselves to the following C conditions. Let f : D — C be holomorphic.
If @ = n is an integer, we say that f € C™ if f®) € C% for 0 < k < n. We say
that f € C*> if f € C™ for every integer n. If @« = n + € for some integer n and
some ¢ € |0,1[, we say that f € C"*¢ if f € C" and f™ is e-Holder on D. For
a € [0, +oo[, C* is a Banach space! and for a < f3, the injection of C# in C* is
compact (the proof is similar to the proof of Ascoli’s theorem).

Geometry vs Analysis: we control the regularity of the boundaries of Siegel
disks via the regularity of the linearizing maps. We will need a few results on the
boundary behavior of conformal maps for which we refer the reader to [Po]. For
a > 1, there is a notion of C* Jordan curve (see |[Pol, section 3.3): these are curves
that have a parameterization that is C* with non-vanishing first derivative.

THEOREM 2 (Kellog-Warschawski). Assume « € |1, 4+00] is not an integer and
I' ¢ C is a Jordan curve bounding a simply connected domain U containing 0.
Then, I' is a C* Jordan curve if and only if the conformal map ¢ : (D,0) — (U, 0)

belongs to C'* with non-vanishing derivative on D.

The situation is less simple when a = n is a positive integer. If the conformal
map of a Jordan curve J is in C™ and if the first derivative does not vanish, then
obviously J is a C™ Jordan curve. However, there are C™ Jordan curves whose
conformal maps are not in the space C™.

Yor ¢ € C™*€ and € €]0, 1], we set

ollgnte = Z 6|0 + min {)\ > 0| Az® is a modulus of continuity for qb(")} .
k=0
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In the quadratic family, if the conformal map of a Siegel disk is at least Cct,
then its derivative cannot vanish on D (this is an easy exercise). Theorem [2| has
the following consequence: for a non-integer « € |1, +00],

z— @g(rez) € C% < 9Ay is a C“ Jordan curve.

Let us now state some corollaries of theorem [1.
COROLLARY 1. There exist quadratic Siegel disks with C*> boundaries.
Proof. Take FF = C* and K, = @. ([

In [PZ], C. Petersen and S. Zakeri proved that for almost every 6§ € R/Z, the
quadratic polynomial Py has a Siegel disk whose boundary contains the critical
point, is a Jordan curve but is not a quasicircle. Theorem [1| implies:

COROLLARY 2. There exist quadratic Siegel disks whose boundaries are Jordan
curves that do not contain the critical point, and are not quasicircles.

Proof. The conformal map of a quasidisk is always Holder (see [Pol). So, choose
F=C°and B,, = C'™ (n >2). O

COROLLARY 3. For everyn € N, there exist quadratic Siegel disks whose bound-
aries are Jordan curves that do not contain the critical point, and are C™ but not
C™*1 Jordan curves.

Proof. Take F = C", B = C™*'/2. Then, theorem [1 gives Siegel disks whose
boundaries are C™ but not C"*1/2 Jordan curves. (Note that taking B = C"+!
does not work; see the discussion Geometry vs Analysis above). (]

If Py has a Siegel disk, set
Iy = {a S [0, +OO[ ‘ (bg(’r‘gZ) S Ca}.

This is an interval, either empty or with left bound = 0. It contains 0 if and only
if the boundary of Ay is a Jordan curve (see [M| or [Ro]). However, it is yet
unknown if 0Ay is always a Jordan curve. So, it is unknown if Iy can be empty,
but the following proves that all other cases happen.

COROLLARY 4. For every a > 0, there exists a Bruno number 6 such that
Iy = [0, a] and for every B > 0, there exists a Bruno number 6 such that Iy = [0, 0.

Proof. For the first case, choose F = C® and B,, = C*T!/"_ For the second case,
choose F = ﬂ C*, B=CP. (]
a€l0,8]

Remark. For n € N, let C"T1P be the set of holomorphic functions on I whose
n-th derivative is Lipschitz. The inclusion of B = C*t! in F = C™tMP ig not
compact (it is an isometry). Thus we cannot apply theorem 1. We may wonder
whether there exist (fixed quadratic) Siegel disks whose conformal maps belong
to C"*tHP but not C"*!. In fact, for n > 0, this is impossible by a theorem of
Gottschalk and Hedlund (see [H1]| proposition 4.2 in part IV).
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2. Proof of theorem [1.

It is equivalent to prove theorem (1l for a Banach space B C. F, for a countable
union of Banach spaces B,, C. F or for a countable union of compact sets K, C F,
as shown in the following

ProrosITION 1. If F' is a Fréchet space, then

(1) the image of any Banach space B under a compact injection is contained
in a countable union of compact subsets of F';

(2) any countable union of compact subsets K, of F is contained in the image
of a Banach space by a compact injection.

Proof. For (1), let K,, be the closure in F' of the ball of radius n in the B-norm.
Obviously, B C |J,,cy Kn. Moreover, by the very definition of a compact injection,
K, is compact.

For (2), let us reduce the problem to the case of a single compact set. Let
An > 0 be a sequence so that A\, K, — 0. Let K = {0} U, cy Anfn. Then
K is compact, and any vector subspace of F' containing K will contain | J,, ¢y K-
Next, we replace K by DK = {)\f | N <1, fe K}. Then we can replace K by
the closure of the convex hull of K, which is compact by a well known property of
compact sets in Fréchet spaces (see [Ru], Theorem 3.20). Now K is both convex
and invariant under multiplication by elements of D. Now B = Ute]R+ tK equipped
with the norm || f||z = inf{t € R} | f € tK} is a Banach space that is compactly
injected in F'. O

We will prove theorem [1! for a countable union of compact sets K,, C F. In
fact, we will prove the following stronger version of theorem [1.

THEOREM 3. Let F' be any Fréchet space such that
C¥CFcyCY,

and let (Kp,)nen be any sequence of compact subsets of F. Then, for every Bruno

number 0, every r < rg and every € > 0, there exists a Bruno number 0’ such that
(1) |0 =0 <e

(2) r<rg <r+e

(3) the map z — ¢g (rg:z) belongs to F but to no K,

(4) the distance in F between z — ¢g: (1o z) and z — ¢g(rz) is < €.

Moreover, the continuous extension 1 of ¢g: to re/D, which exists by (3), satisfies

(5) [[¢(roz) — do(r2)|| <& onD
(6) ¥(reU) = 0Ay is a Jordan curve that does not contain the critical point.

It is enough to prove (1)—(4) only. Indeed, (3) implies the existence of the
extension since ' C C°. This extension must be injective (see [M], lemma 18.7),
which shows that the boundary of the Siegel disk is a Jordan curve. Then, (5)
follows from (4) (with a smaller €), by continuity of the inclusion F' C C°. And (5)
implies that for € small enough, the boundary of the Siegel disk does not contain
the critical point.

2.1. Tools. The proof is based on a perturbation lemma 9, that will be stated
in section 2.4. There are two results that make the perturbation lemma possible:
lemma (1] provides irregularity and lemma 2| provides regularity.



HOW REGULAR CAN THE BOUNDARY OF A QUADRATIC SIEGEL DISK BE? 5

Let D5 denote the set of bounded type irrational numbers. For a proof of the
following lemma, see for example [H2].

LEMMA 1 (Herman). Let § € Dy, U be a connected open set containing 0 and
f : U — C be a holomorphic function which fizes 0 with derivative e>™°. Let A
be the Siegel disk of f at O (which exists by a theorem of Siegel). If U is simply
connected and f is univalent, then A cannot have a compact closure in U.

Remark. In fact, Herman’s theorem is stronger: U needs not be simply connected,
and the condition on 6 can be weakened to the so-called Herman-Yoccoz condition.
See |[H2| for a reference. In the case of quadratic polynomials, lemma 1l is a con-
sequence of the following fact: a bounded type quadratic Siegel disk contains the
critical point on its boundary.

For a proof of the following lemma, see [BC] or [ABC].

LEMMA 2. For every Bruno number 6 and every r < ry, there exists a sequence
0., € Dy such that 0, — 0 and ro, — 7.

The references [A] and [G] contain similar statements without requiring 6,, €
Ds. Tt is in fact easy to adapt the proof in [A] and get Dy numbers. We do not
know if [G] can produce Dy numbers.

2.2. Elementary properties of the linearizations. Let us state well known
properties concerning the dependence of ¢y on 6.

LEMMA 3. Let 0,, — 0 be real numbers and assume that r = liminfry, > 0.
Then rg > 1 and ¢g, tends to ¢g uniformly on compact subsets of rD.

Proof. The univalent maps ¢y, all have derivative 1 at 0, hence form a normal
family. It is therefore enough to prove that ¢y is the unique adherence value of the
sequence ¢g, on B(0,7). Let v be the limit of a convergent subsequence (for uniform
convergence on compact subsets of D). Then ¢'(0) = 1, so in particular ¢ is not
constant. Moreover, by passing to the limit in the equation Py, o ¢g, = ¢, o Ry,,,
we have Py o1 = 1) o Ry. Therefore, uniqueness of the linearization implies ry > r
and Y = ¢y on rD. (I

LEMMA 4. Assume r, >0, r, — r > 0,0 € R and 0,, — 0 is a sequence of
real numbers such that ro, > 1y, and the maps z — ¢y, (rnz) converge uniformly on
U to some . Then rg > r, and z — (z) is a continuous extension of z — ¢g(rz)
to the closed unit disk (if rg > r, this just means ¢o(rz) = 9 (z)). Moreover, ¥ is
injective. In the case rg =1, we have Ay = ().

2.3. Preparatory work. Note that C*“ is not a Fréchet space. It is the union
over £ > 0 of spaces C¥ of holomorphic functions on (1+¢)D. Each C¥ is endowed
with the topology of uniform convergence on compact sets (in fact it is a Fréchet
space; if you prefer Banach spaces, take the space of bounded holomorphic functions
on (14 ¢)D and the discussion below will be the same). We do not put a topology
on C¥.

LEMMA 5. Let F Co C° be a Fréchet space and K be a compact subset of .
Assume f, € K tend to some map f : 1D — C uniformly on compact subsets of D.
Then f € K and
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a) dp(fn, f) — 0 where dp is the distance function of the Fréchet space F,
b) lfn = flloc — 0.

Proof. Part b) is a corollary of part a) and the continuity of the injection F' C CY.
Since f;, lies in the compact set K, it has a subsequence f,,, such that dp(f,,,h) —
0 for some h € K. The injection F' C C° being continuous, ||fn, — Allcc — 0.
Since f, tends to f uniformly on compact subsets of I, we must have h = f. This
proves f € K, and that f is the only limit of convergent subsequences of f,, in the
dp-metric. Since f,, lies in a compact set, this gives part a). O

LEMMA 6. Assume F is a Fréchet space with C* C F Cy C°. Then, for all €,
the injection C¥ C F is continuous.

Proof. This is a corollary of the closed graph theorem, since the injection of C¥
in C° is continuous. O

LEMMA 7. There exist subsets D, of C* with C* =|J D,, such that for every
Fréchet space F with C¥ C F Cy C°, D,, is compact in F.

Proof. Let D,, be the set of holomorphic functions in (1 + %H)D whose absolute

value is bounded by n. Each D,, is compact in C*; (Montel’s theorem). According
n+1
to lemma 6, D,, is also compact in F. O

We will consider the following property of a subset A of C°:
(H) For every € > 0, A contains a neighborhood of 0 in C¥.

LEMMA 8. For every Fréchet space F with C* C F Co C°, there exists a
compact subset L of F with property H.

Proof. Consider the D,, from lemma 7. Since D,, is compact in F, AD,, tends to 0
when A — 0. Choose A,, > 0 such that A\, D,, is included in the ball of F' of center
0 and radius 1/(n + 1). Then the set L = |JA,D,, is compact (note that 0 € L)
and has the property H since D,, contains a neighborhood of 0 in C¥. O

2.4. Main lemma.

LEMMA 9 (perturbation). Assume that F' is a Fréchet space with C* C F Cq
C°, and K is a compact subset of F. For every Bruno number 0, every p1 < pz < 7,
and every € > 0 there exists a Bruno (in fact bounded type) number ' and p’ > 0
such that

(1) | -0 <e
(2) p1<p <p2
(3) ror > p'
(4) dr(go(p'z), dor(p'2)) <€
(5) ¢ (p'z) does not belong to K.

Proof. Let p3 = %. If, for some p’ €]p1, p3[, Po(p'z) satisfies (5), then we are
done with §' = 6.

Otherwise, use lemma 2 to find 6,, — 60 such that rg9, — p3. By lemma [3|
¢, tends to ¢y uniformly on compact subsets of psD. According to lemma (6, the
injection C¢ C F' is continuous for all € > 0. On the other hand, there is some
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e > 0 such that the function [p1, p3] — C¥ defined by p — ¢g(pz) is continuous.
Therefore, its image K is compact in C¥, hence compact in F.

Let L be a compact subset of F' with property H as given by lemma 8. Set
K' = (K+L)U(Kp+L). We claim that for large enough n, there exists a p € [p1,rg, [
such that ¢g, (pz) does not belong to K'. Otherwise, by lemma 5l ¢g_(rg, z) would
belong to K'. Lemma 5/ b) would imply that ||¢g, (79, 2) — do(p32)]lcc — 0. Thus
eventually, Ay, would be contained in Ay, contradicting lemma [1] since 68,, € Ds.

Let then p/, be the infimum of the set of p € [p1, 79, [ such that ¢y, (pz) does
not belong to K’. Note that ¢, (p},2) does not belong to K. Otherwise, since L
has property H, ¢g, (pz) would belong to K + L C K’ for all p > p/, sufficiently
close to pl,, which contradicts the definition of p},. This gives () with p’ = p!, for
n large enough.

Let us prove that p/, — p3. Otherwise, for a subsequence, we would have
P, — 1 € [p1, p3[. With the definition of p/,, this would yield a sequence p!! — r
such that ¢y, (prrz) does not belong to K’. The sequence of holomorphic functions
z + ¢, (p,2) would converge uniformly on compact subsets of 221D to ¢g(rz).
Because of property H, the function (¢g. — ¢g)(p!l2) would eventually belong to L,
o ¢y, (pll2z) would belong to L + Ky C K’, which is a contradiction.

As soon as pl, > p1, ¢g, (pl,2) is in K': indeed, for all p € [p1, o[, dg, (pz) is in
K’, and the claim follows from lemma 5.

Lemma 5 a) now implies that dr(¢e, (p),2), de(p3z)) — 0 when n — +o0.
And pl, — p3 implies dp(do(p32), Po(p,,z)) — 0. This gives (4). O

2.5. Proof of theorem (3.
Let D,, be given by lemma (7, and L by lemma 8.

We are going to define by induction on n > —1 a sequence #,, of parameters,
an increasing sequence p], > r, and real numbers &,, > 0.

The induction hypothesis will be H,,:
9, > pl,
e for all £ with 0 < k < n, the F-distance between ¢g, (p,,z) and the set
K, UD, UL is > gy

Let 0_1=6,p =1, e_1 =1 (e_1 will not be used).

Given n > 0, assume that 6, p), €; are defined for —1 < k < n, and that H,_
holds. There exists an 17 > 0 such that for all f € F' and all k with 0 < k < n, the
condition dr(f, ¢o, _, (ph,_12)) < n implies the F-distance between f and K;UD;UL
remains > €. Let p1 = pl,_; and pa such that p1 < p2 <71y close enough to py
so that for every p’ € [p1, p2],

() dr(B0, (0 00, (p12)) < 5 min(a,e/2")

(this is possible since the injection of C¥ C F' is continuous for all € > 0). Let 6,
and p, be provided by lemma 9 such that

o |0, —0,_1] <g/2nt1

e p1 < pp <p2

* 19, > p,

n—17
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b dF(QbGn (P;’LZ), ¢9n_1 (p;LZ)) < % min(na 5/2n+1)
e ¢, (p,,z) does not belong to K, UD, UL

1
We then define ¢, = §dF(Kn U D, UL,y (p,2)). It is easy to check that H,
holds.

Now that the sequences 0, pl, €, have been defined, let 6’ be the limit of the
Cauchy sequence 6,,, and p’ the limit of the increasing sequence p!, (which is
bounded from above by 4). Observe that for all n, rg, > p/, and that by equa-
tion (%) the sequence of maps ¢g, (p},z) (restricted to D) is a Cauchy sequence for
dr, thus converges in F' to some 1) (we use here the completeness of Fréchet spaces).
Convergence in F implies convergence in C°, thus we can apply lemma 4/ to con-
clude that ¥(z) = ¢g/(p'z) on D. Also, dr(K,, U D,, U L,v) > &,, so ¢ does not
belong to any K,, nor to any D,,. Since |J D,, = C*, this implies 1) does not extend
holomorphically to a neighborhood of D, thus 74 = p'. O

3. Concluding remark

All of the above discussion extends to any analytic family for which an analogue
of lemma [2 can be proved.
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