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Abstract

We compute the speed of convergence of the canonical Markov approximation of a chain

with complete connections with summable decays. We show that in the d-topology the approx-

imation converges at least at a rate proportional to these decays. This is proven by explicitly

constructing a coupling between the chain and each range-k approximation.

Running Head: d-convergence of Markov approximations

1 Introduction

The main result of this paper is an estimation of the speed of convergence —in the d-distance— of

the canonical Markov approximation of chains with complete connections. If the continuity rates

of the chain are summable, we show that the speed of convergence is at worst proportional to these

rates.

Approximations schemes are essential for understanding and handling non-Markovian processes.

The speed of convergence is perhaps the most important characterization of an approximation

scheme. On the one hand it may carry information about regularity properties of the target
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process. On the other hand it can be used as a tool to design efficient numerical approaches, and

to establish tests to determine whether a given process is of some particular type. These facts could

be all the more relevant in relation with some strongly non-Markovian processes and fields of recent

interest [see eg. van Enter, Fernández and Sokal (1993)]. Nevertheless, published results on non-

Markovian random processes deal only with the issue of existence of Markov approximations, and

properties inherited from this fact. There appears to be no result so far on speed of convergence.

The existence results apply to stationary processes that either

(a) are the d-limit of k-step Markov processes, or

(b) have a continuous dependence on past history;

where d is the distance introduced by Ornstein (see Definition 3 below and Ornstein (1974) for

more details).

Stationary process of type (a) inherit the property of being Bernoulli if the approximating

Markov chains are aperiodic [Friedman and Ornstein (1970)]. The use of the distance d is definitory.

Indeed, every process can be approximated in the vague topology by the so-called canonical k-step

Markov approximations, defined so to have the same transitions from k to k + 1 states as the

original process (Definition 2 below). This fact, however, is of little use, because weak limits do

not convey information on long-range properties. A more revealing issue is whether the canonically

defined Markov chains provide also an approximation scheme in the finer d topology. The class

of processes for which this is true has been completely characterized by Rudolph and Schwarz

(1977). In particular, totally ergodic processes have this property if and only if they are Bernoulli

[Friedman and Ornstein (1970)].

Stationary processes of type (b) have been studied under the stronger hypothesis of log-

continuity. Following Lalley (1986), we shall call them chains with complete connections [Lal-

ley’s definition differs from the one introduced by Doeblin and Fortet (1937)]. Each process with

exponential rates of (log-)continuity is in correspondence with the unique Gibbs measure of a

one-dimensional system with an exponentially decaying interaction. If the continuity rates are

summable, the process is weak Bernoulli [Ledrappier (1974)]. This implies, by Ornstein theorem

[Ornstein (1974)], that the process is the d-limit of its canonical k-step Markov approximations.

Curiously, this indirect argument appears to be the only published proof of such d-convergence. In

contrast, our construction below yields an explicit and direct proof.

We mention two further developments. Lalley (1986) has proposed a regenerative representation

of chains with complete connections, in terms of what he calls list processes. These are processes

which at some random times “forget the past” and “begin from scratch”. The distribution of these

random times depends on the continuity rates of the initial process. It has a finite exponential

moment if the rates are exponential, and only moments up to some finite order if the continuity

rates decay as a power-law. On the other hand, Ornstein and Weiss (1990) have constructed a

remarkable “guessing scheme” for d-limits of aperiodic Markov processes, based on observed data.

Nevertheless, these approaches do not shed light on “how well” the chains can be approximated

by Markov processes.
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In this paper we analyze precisely this issue for the chains with complete connections and the

less sophisticated of the approximation schemes: the canonical k-step Markov. Our results show

that the continuity rates of the chain directly determine —in the summable case— an upper bound

on the speed of convergence of the approximation.

Our method is constructive and straightforward. We exhibit explicit couplings between the

original chain and each of its k-step approximations. The couplings are such that: (i) if the two

component processes have been equal for a certain number of steps, there is a large probability

that they will remain so in the next step [formula (17)], and (ii) if the components fail to be equal

at some step there is a nonzero probability that they will become equal at the next one [formula

(18)]. As a consequence, the coupled processes tend to coincide most of the time, and separations

do not last too long [formula (22)]. This yields a small d-distance between the original process and

its k-step approximations.

We conjecture that our result is optimal in the following sense. Given a decreasing and

summable sequence, there is a chain with complete connections for which this sequence gives

the continuity rates and, at the same time, the exact rates of convergence of the canonical k-step

Markov approximations.

Analogous questions can be posed for long range Gibbsian fields. We expect the answers to be

similar to those presented here, at least at low temperature. In fact, we expect the corresponding

proof to follow from a construction similar to the coupling used here.

The coupling concept was introduced by Doeblin in 1938 in a hardly known paper published

at the Revue Mathématique de l’Union Interbalkanique. To study the convergence to equilibrium

of a Markov chain, Doeblin let two independent trajectories of the process evolve simultaneously,

one starting from the stationary measure, and the other from an arbitrary distribution. The

convergence follows from the fact that both realizations meet at a finite time. For a description

of Doeblin’s contributions to probability theory we refer the reader to Lindvall (1991). The idea

was only exploited much later, in the sixties, in papers by Athreya, Ney, Harris, Spitzer and Toom

among others. Liggett (1993) reviews the use of the coupling technique for interacting Markov

systems. For a nice presentation of the idea of coupling related to Chen-Stein method, we refer

the reader to Barbour, Holst and Janson (1992). The basic idea of our coupling can be traced

back to Dobrushin (1956), even when there is no coupling in his paper. Other source of inspiration

is Harris’ graphical method [Harris (1978)]. For a pedestrian derivation of Dobrushin’s ergodic

coefficient using coupling we refer the reader to Ferrari and Galves (1997). A coupling approach

related to ours has been used by Marton (1996).

A problem related to the discussion of the present paper is the determination of the relaxation

rate of the chain. In a recent paper, Kondah, Maume and Schmitt (1996) have estimated this rate

for one-dimensional Gibbsian systems, for non-Hölder potentials, using the technique of projective

metrics. In a forthcoming paper [Bressaud, Fernández and Galves (1998)] we shall show that

similar results can be obtained using our coupling approach.

The paper is organized as follows. The main result and relevant definitions are stated in Section

2 while the proof is developed in Section 3.
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2 Definitions and main result

Let X = (Xn)n∈Z be a stationary stochastic process, defined on a probability space (Ω,F ,P),

taking values in a finite set A (the “alphabet”).

Definition 1 We shall say that the process (Xn)n∈Z is a chain with complete connections if it

satisfies the following three properties

• for all a1, . . . , an ∈ A,

P(X1 = a1, . . . , Xn = an) > 0 (1)

• the limit

lim
m→∞

P(X0 = a0|Xj = aj ,−m ≤ j ≤ −1) = P(X0 = a0|Xj = aj , j ≤ −1) (2)

exists for all aj , j ≤ −1,

• there is a sequence (γm)m≥1 with limm→∞ γm = 0, such that, for all aj , bj ∈ A, j ≤ −1 with

aj = bj for − 1 ≥ j ≥ −m,∣∣∣∣P(X0 = a0 |Xj = aj , j ≤ −1)
P(X0 = a0 |Xj = bj , j ≤ −1)

− 1
∣∣∣∣ ≤ γm. (3)

We shall say that the process has summable decay if
∑

γm < +∞.

The next definition follows Ornstein [see for example Ornstein (1974)].

Definition 2 The canonical Markov approximation of order k ∈ N of a process (Xn)n∈Z satisfying

(1) is the stationary Markov chain of order k having as transition probabilities,

P (k)(b | a1, . . . , ak) := P(Xk+1 = b|Xj = aj , 1 ≤ j ≤ k) (4)

for all integer k ≥ 1 and a1, . . . , ak, b ∈ A.

We recall that a coupling of two processes X = (Xn)n∈Z and Y = (Yn)n∈Z taking values in

the alphabet A is any process (X̃, Ỹ ) = (X̃n, Ỹn)n∈Z taking values in A× A such that Law(X̃) =

Law(X) and Law(Ỹ ) = Law(Y ).

Definition 3 The distance d between two stationary processes X and Y is defined as

d(X, Y ) = inf
{
P(X̃0 6= Ỹ0) : (X̃, Ỹ ) stationary coupling of X and Y

}
.

We now state our main result.

Theorem 4 Let X = (Xn)n∈Z be a chain with complete connections and summable decay (γm)m≥1.

Then there is a constant K > 0 such that, for all k ≥ 1,

d̄(X, Y (k)) ≤ K γk ,

where Y (k) = (Y (k)
n )n∈Z is the canonical Markov approximation of order k of the process X.
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3 Proof of the theorem

The proof of the theorem is decomposed in the following way.

• First we introduce some notation.

• In Section 3.1, we prove a lemma showing that the transition probabilities of the approxi-

mating Markov chain are “close” to the transition probabilities of the original chain.

• In Section 3.2, we construct the coupling. We first define an appropriate system of transition

probabilities P̃ using the classical notion of maximal coupling (See Appendix A.1 in Barbour,

Holst and Janson (1992)). We then prove the existence of a stationary process (X̃n, Ỹn)n∈Z

with these transition probabilities.

• In Section 3.3, we obtain lower bounds for the probability of X̃ being equal to Ỹ during a

certain number of steps given the history of the coupling. The more they have been equal

in the past, the greater is this probability. If they were not equal at the previous step, they

keep a positive (bounded away from 0) probability to become equal.

• The final estimation of P(X̃0 6= Ỹ0) is given in Section 3.4.

A sequence x = (xj)j≤−1 of elements of the alphabet A will be called a history. We shall denote

by A the set of all the histories. Given two histories x and y, the notation x
m= y indicates that

xj = yj for all −m ≤ j ≤ −1. For the sake of notational simplicity, we shall denote

P (a|x) = P(X0 = a|Xj = xj ,≤ j ≤ −1). (5)

These objects exist for all x ∈ A and a ∈ A by virtue of (2). They admit three different interpreta-

tions. Firstly they can be seen as (a continuous version of) the conditional probabilities “knowing

all the past” of the event {X0 = a}. This motivates our notation. Secondly, they can be inter-

preted as transition probabilities that to each history associate (continuously) a law for the next

step. Finally, one can think of them simply as functions from A×A onto [0, 1]. Property (2) says

that these functions are continuous while property (3) implies that they are indeed log-continuous.

With notation (5), property (3) becomes

sup
{∣∣∣∣P (a|x)

P (a|y)
− 1
∣∣∣∣ ; x, y : x

m= y

}
≤ γm, (6)

with a ∈ A, x, y ∈ A.

Let P (k) be the transition probability defined by (4). It is natural to use the same notation for

the map from A×A to [0, 1] defined as

P (k)(a | y) = P (k)(a | y−k, . . . , y−1). (7)

With this notation, as soon as x
k= y, we have P (k)(a | y) = P (k)(a |x).
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3.1 Properties of the Markov approximation

We now state the crucial consequences of property (6) for the transition probabilities of the canon-

ical Markov approximation.

Lemma 5 For all integer m > 0,

inf
a∈A,x∈A

P (k)(a |x) ≥ inf
a∈A,x∈A

P (a |x) > 0 (8)

and

sup
x,y: x

m
=y

∑
a∈A

∣∣∣P (a |x)− P (k)(a | y)
∣∣∣ ≤ γm∧k. (9)

Proof Property (6) guarantees that the functions x → log(P (a |x)) are continuous on the com-

pact set A. Hence, they are bounded for all a and the rightmost inequality in (8) follows. The

conditional probability P(X0 = a | Xj = yj ,−k ≤ j ≤ −1) can be written as an integral of

u → P (a|u) over a set on which u
k= y. Hence,

inf
u : u

k
=y

P (a |u) ≤ P(X0 = a | Xj = yj ,−k ≤ j ≤ −1) ≤ sup
u : u

k
=y

P (a |u). (10)

It follows from (4), (7) and (10), that

inf
u : u

k
=y

P (a |u) ≤ P (k)(a | y) ≤ sup
u : u

k
=y

P (a |u). (11)

As inf
u:u

k
=x

(P (a |u)) ≥ inf
u∈A

(P (a |u)), this proves the leftmost inequality in (8).

Let us fix a ∈ A and histories x, y such that x
m= y for some integer m > 0. According to

(11), we have, ∣∣∣∣∣ P (a |x)
P (k)(a | y)

− 1

∣∣∣∣∣ ≤ sup
{∣∣∣∣P (a |u)

P (a | v)
− 1
∣∣∣∣ ; u, v : u

k= x, v
k= y

}
.

Noticing that u
k= x, v

k= y and x
m= y imply u

k∧m= v, and applying (6), we see that∣∣∣P (a |x)− P (k)(a | y)
∣∣∣ ≤ γm∧k P (k)(a | y).

We get (9) by summing over all the possible a. �

Remark 6 In fact, (11) is the only property of the Markov transitions used in the sequel. Thus,

our results apply to any Markov approximation scheme, not necessarily the canonical one, satisfying

(11).

3.2 Construction of the coupling

We first define coupled transition probabilities. These are laws on A×A depending measurably on

double histories, whose projections on each coordinate coincide, respectively, with the transition

probabilities of the original and the approximating process. These transition probabilities are

shown to be continuous and, hence, there exists a process compatible with them. This process is

indeed a coupling of the original process and its canonical Markov approximation.
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Given two distributions µ = (µ(a))a∈A and ν = (ν(a))a∈A we denote by µ×̃ν = (µ×̃ν(a, b))(a,b)∈A×A

the so called maximal coupling of the distributions µ and ν (for more details see Appendix A.1 in

Barbour, Holst and Janson (1992)) that is a coupling which maximizes the weight of the diagonal.

It can be defined as follows.
µ×̃ν(a, a) = µ(a) ∧ ν(a) if a = b

µ×̃ν(a, b) =
(µ(a)− ν(a))+(ν(b)− µ(b))+∑

e∈A(µ(e)− ν(e))+
if a 6= b

The important point here is that the distribution µ×̃ν on A×A satisfy simultaneously,∑
a∈A

µ×̃ν(a, a) =
∑
a∈A

µ(a) ∧ ν(a) = 1−
∑
a∈A

(µ(a)− ν(a))+ = 1− 1
2

∑
a∈A

|µ(a)− ν(a)| (12)

and ∑
a∈A

µ×̃ν(a, b) = ν(b),
∑
b∈A

µ×̃ν(a, b) = µ(a).

Given the past, that is a double history (x, y), we set,

P̃ ((a, b) | (x, y) = P (. |x)×̃P (k)(. | y) (a, b)

We now can state,

Proposition 7 There is a stationary process (X̃n, Ỹn)n∈Z taking values on A×A whose conditional

probabilities satisfy,

P
(
(X̃0, Ỹ0) = (a, b) | (X̃j , Ỹj) = (xj , yj), j ≤ −1

)
= P̃

(
(a, b) | (x, y)

)
. (13)

Moreover, under this probability, Law(X̃) = Law(X) and Law(Ỹ ) = Law(Y )

Proof We consider the functions P̃ as a system of transition probabilities and we ask whether

there exists a stationary process compatible with them. This is a rather classical problem. We

notice that P̃ depends continuously on P and P (k) which in turn depend continuously on (a, b, x, y).

Hence, the transition probabilities P̃ are continuous. A result by Ledrappier (1974) or Keane (1971)

(concerning the so-called g-measures) proves the existence of a process satisfying (13).

Let (X̃, Ỹ ) = (X̃n, Ỹn)n∈Z be such a process. Indeed, it appears from the construction that

its marginal transition probabilities are what we need.

P
(
X̃0 = a | (X̃j , Ỹj) = (xj , yj), j ≤ −1

)
=
∑
b∈A

P̃
(
(a, b) | (x, y)

)
= P (a|x)

does not depend on y. Hence, P(X̃0 = a | X̃j = xj , j ≤ −1) = P (a|x). The transition probabilities

for X̃ satisfy property (6) with summable decay. Ledrappier (1974) implies the unicity of the law

of the processes compatible with these probabilities. As a consequence, Law(X̃) = Law(X).
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The proof that Law(Ỹ ) = Law(Y ) is even simpler: an analogous computation shows that

P(Ỹ0 = b | Ỹj = yj , j ≤ −1) = P (k)(b|y). Hence Ỹ is the only Markov chain compatible with the

transition probabilities P (k)(b|y−k, . . . , y−1). �

Remark 8 The transition probabilities P̃ do not define chains with complete connections because

some of the transitions are zero. Moreover, in some situations, one can find arbitrarily close pairs

of histories (x, y), (x′, y′) such that P̃ ((a, b)|(x, y)) > 0 but P̃ ((a, b)|(x′, y′)) = 0. Anyway, a direct

computation proves that ∣∣∣P̃ ((a, b)|(x, y))− P̃ ((a, b)|(x′, y′))
∣∣∣ ≤ 4γm

holds, for all a, b ∈ A and x, x′, y, y′ ∈ A, with x
m= x′ and y

m= y′.

Let H be an event measurable with respect to the σ-algebra generated by (X̃n, Ỹn)n≥0 and (x, y)

a double history. From now on, we shall use the following short hand notation:

P(H | (x, y)) = P(H | (X̃j , Ỹj) = (xj , yj), j ≤ −1).

3.3 Main estimates

Let x, y be two histories with x
m= y. We want to obtain an estimation of the probability of X̃0

being different from Ỹ0 given these histories. First notice that, according to the consequence (12)

of the definition of the coupling,

P(X̃0 6= Ỹ0 |(x, y)) = 1−
∑
a∈A

P̃ ((a, a) | (x, y)) =
1
2

∑
a∈A

∣∣∣P (a |x)− P (k)(a | y)
∣∣∣ .

Let us define the sequence (γ̃n)n∈N by, γ̃0 = 1− infa∈A,u∈A P (a|u),

γ̃n = min
(
γ̃0,

γn

2

)
,

and let m0 denote the first integer for which γn ≤ 2γ̃0. If m ≤ m0, we use (8), to see that,∑
a

P̃ ((a, a) | (x, y)) ≥ inf
a∈A

P̃ ((a, a) | (x, y)) ≥ inf
a∈A

(
P (a|x) ∧ P (k)(a|y)

)
≥ inf

a∈A,u∈A
P (a|u) ≥ 1−γ̃0.

If m > m0 (provided k > m0), we have, by (9),∑
a∈A

∣∣∣P (a |x)− P (k)(a | y)
∣∣∣ ≤ γk∧m ≤ 2γ̃k∧m.

We have that, for all m ∈ N, and for all histories x, y with x
m= y,

P(X̃0 6= Ỹ0 |(x, y)) ≤ γ̃k∧m. (14)

Let us denote by ∆m,n the sets ∆m,n :=
⋂n

p=m{X̃j = Ỹj} = {X̃j = Ỹj ,m ≤ j ≤ n} and by

∆c
m,n their complementary sets. Notice that ∆−m,−1 is the reunion over all the sequences x, y with

x
m= y of the events {(X̃j , Ỹj) = (xj , yj); j ≤ −1}.

Lemma 9 For all integers m,n and all double histories (x, y) with x
m= y,

P(∆0,n | (x, y)) ≥
n∏

p=0

(1− γ̃k∧(m+p)). (15)
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Proof Let x, y be two histories with x
m= y. We write,

P(∆0,n | (x, y)) = P(X̃0 = Ỹ0 | (x, y))
n∏

p=1

P(X̃p = Ỹp | ∆0,p−1, (x, y))

= (1−P(X̃0 6= Ỹ0 | (x, y))
n∏

p=1

(
1−P(X̃p 6= Ỹp | ∆0,p−1, (x, y))

)
=

n∏
p=0

(
1−P(X̃0 6= Ỹ0 | H

(x,y)

m+p )
)

, (16)

where H
(x,y)

m+p is the event corresponding to the set of double histories (u, v) with u
p
= v and

u−p+j = xj , v−p+j = yj for all j ≤ −1. Notice that u
m+p
= v for all histories (u, v) corresponding

to an element of H
(x,y)

m+p . That is, H
(x,y)

m+p ⊂ ∆−m−p,−1. Using the same kind of arguments that

yield inequality (10), we see that,

P(X̃0 6= Ỹ0 |H
(x,y)

m+p ) ≤ sup
(u,v)∈H

(x,y)

m+p

P(X̃0 6= Ỹ0 |(u, v)) ≤ sup
u

m+p
= v

P(X̃0 6= Ỹ0 |(u, v)).

The lemma follows from this, (14) and (16). �

From this result, we easily deduce,

Lemma 10

P(∆0,k−1 | ∆−k,−1) ≥ (1− γ̃k)k (17)

and

P(∆0,k−1 | ∆c
−k,−1) ≥

+∞∏
p=0

(1− γ̃p). (18)

Proof Using again the arguments yielding inequality (10), we have, for H = ∆−k,−1 and for

H = ∆c
−k,−1,

P(∆0,k−1 | H) ≥ inf
(x,y)∈H

P(∆0,k−1 | (x, y)).

Hence, using Lemma 9 for n = k − 1, m = k, we obtain,

P(∆0,k−1 | ∆−k,−1) ≥
k−1∏
p=0

(1− γ̃k∧(k+p)) =
k−1∏
p=0

(1− γ̃k) = (1− γ̃k)k,

and, using Lemma 9 for n = k − 1, m = 0,

P(∆0,k−1 | ∆c
−k,−1) ≥

k−1∏
p=0

(1− γ̃k∧p) ≥
k−1∏
p=0

(1− γ̃p) ≥
+∞∏
p=0

(1− γ̃p). �

Lemma 11

P(X̃0 6= Ỹ0) ≤
1∏+∞

m=0(1− γ̃m)

P(∆c
0,k−1)
k

. (19)
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Proof For all finite family (Ai)i=1..k of measurable sets, we have the decomposition

∪k
i=1Ai = ∪k

i=1

(
Ai \

(
Ai ∩ (∪k

j=i+1Aj)
))

.

Notice that the last element of this partition is exactly Ak. Hence,

P(∪k
i=1Ai) = P

(
∪k

i=1

(
Ai \

(
Ai ∩ (∪k

j=i+1Aj)
)))

=
k∑

i=1

P
(

Ai \
(
Ai ∩ (∪k

j=i+1Aj)
))

=
k∑

i=1

P(Ai)−
k−1∑
i=1

P
(
Ai ∩ (∪k

j=i+1Aj)
)
.

We use this decomposition to compute the probability of ∆c
i,k−1 = ∪k−1

j=i {X̃j 6= Ỹj},

P(∆c
0,k−1) =

k−1∑
i=0

P(X̃i 6= Ỹi)−
k−2∑
i=0

P
(
{X̃i 6= Ỹi} ∩∆c

i+1,k−1

)
=

k−1∑
i=0

P(X̃0 6= Ỹ0)−
k−2∑
i=0

P
(
∆c

i+1,k−1 | X̃i 6= Ỹi

)
P(X̃i 6= Ỹi)

= kP(X̃0 6= Ỹ0)−
k−2∑
i=0

P
(
∆c

0,k−i−2 | X̃−1 6= Ỹ−1

)
P(X̃0 6= Ỹ0). (20)

Let us now notice that, according to Lemma 9,

P
(
∆0,k−i−2 | X̃−1 6= Ỹ−1

)
≥

k−i−1∏
m=0

(1− γ̃k∧m) ≥
+∞∏
m=0

(1− γ̃m). (21)

Inequalities (20) and (21) yield the lemma. �

3.4 Conclusion of the proof

We now have all the elements to prove Theorem 4. From

P(∆c
0,k−1) = P(∆c

0,k−1 | ∆−k,−1)P(∆−k,−1) + P(∆c
0,k−1 | ∆c

−k,−1)P(∆c
−k,−1)

≤ (1− (1− γ̃k)k) +

(
1−

+∞∏
p=0

(1− γ̃p)

)
P(∆c

0,k−1),

we deduce that

P(∆c
0,k−1) ≤

1− (1− γ̃k)k∏+∞
p=0(1− γ̃p)

. (22)

Using Lemma 11, we get,

P(X̃0 6= Ỹ0) ≤
1

k
∏+∞

p=0(1− γ̃p)
P(∆c

0,k−1) ≤
1(∏+∞

p=0(1− γ̃p)
)2

1− (1− γ̃k)k

k
.

To conclude the proof we notice that, on the one hand,

1− (1− γ̃k)k ∼ 1− ek log(1− γk
2 ) ∼ 1− e−

k
2 γk ∼ k

2
γk,

because, as (γm)m≥0 is deacreasing and summable, kγk → 0, and, on the other hand,

+∞∏
p=0

(1− γ̃p) > 0,

because, log
∏n

p=0(1− γ̃p) =
∑n

p=0 log (1− γ̃p) ∼ −1
2

∑n
p=0 γp and

∑+∞
p=0 γp < +∞. �
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