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ABSTRACT. We consider the one-dimensional generalized forest fire process: at each site of
Z, seeds and matches fall according to i.i.d. stationary renewal processes. When a seed falls
on an empty site, a tree grows immediately. When a match falls on an occupied site, a fire
starts and destroys immediately the corresponding connected component of occupied sites.
Under some quite reasonable assumptions on the renewal processes, we show that when
matches become less and less frequent, the process converges, with a correct normalization,
to a limit forest fire model. According to the nature of the renewal processes governing
seeds, there are four possible limit forest fire models. The four limit processes can be
perfectly simulated. This study generalizes consequently previous results of [14] where
seeds and matches were assumed to fall according to Poisson processes.
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Part 1

Introduction



1. Introduction

Consider a graph G = (5, A), S being the set of vertices and A the set of edges. Introduce
the space of configurations E = {0,1}°. For n € E, we say that n(i) = 0 if the site i € S
is vacant and (i) = 1 if ¢ is occupied by a tree. Two sites are neighbors if there is an edge
between them. We call forests the connected components of occupied sites. For i € S and
n € E, we denote by C(n,4) the forest around 4 in the configuration n (with C(n,i) = 0 if
n(z) = 0). We consider the following (vague) rules:

e vacant sites become occupied (a seed falls and a tree immediately grows) at rate 1;
e occupied sites take fire (a match falls) at rate A > 0;
o fires propagate to neighbors (inside the forest) at rate = > 0.

Such a model was introduced by Henley [36] and Drossel and Schwabl [27] as a toy model
for forest fire propagation and as an example of a simple model intended to clarify the concept
of self-organized criticality.

The order of magnitude of the rate of growth is much smaller than the propagation rate,
m > 1. We will focus here on the limit case where the propagation is instantaneous: when a
tree takes fire, the whole forest (to which it belongs) is destroyed immediately. The model is
thus:

e vacant sites become occupied (a seed falls and a tree immediately grows) at rate 1;

e matches fall on occupied sites at rate A and then burn instantaneously the corresponding
forest.

The features of the model depend on the geometry of the graph; we only consider in this
paper the case S = Z (with its natural set of edges). They also depend on the laws of the
processes governing seeds and matches; the standard case is when these are Poisson processes
so that the forest fire process is Markov. We deal here with the most general (stationary)
case; Poisson processes are replaced by stationary renewal processes.

Our main preoccupation is the behavior of this model in the asymptotic of rare seeds,
namely when A — 0. We present four possible limit processes (depending on the tail properties
of the law of the stationary processes governing seeds) arising when we suitably rescale space
and accelerate time while letting A — 0. This is a considerable generalization of the results
obtained in [14].

This introduction consists of six subsections.

(i) In Subsection 1.1, we briefly recall the concept of self-organized criticality and recall a
certain number of models supposed to enjoy self-organized critical properties.

(ii) We present in Subsection 1.2 a quick history of the forest-fire process, its other possible
interpretations and its links with other models.

(iii) Subsection 1.3 explains the importance of the geometry of the underlying graph G
and the links of the forest-fire model with percolation.

(iv) In Subsection 1.4, we recall what has been done for the (Markov) forest-fire process
on Z from a rigorous mathematical point of view.

(v) Subsection 1.5 is devoted to a brief exposition of the main ideas of the present paper.

(vi) Finally, we give the plan of the paper in Subsection 1.6.
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1.1. Self-organized criticality. One of the successes of statistical mechanics is to ex-
plain how local interactions generate macroscopic effects through simple models on lattices.
Among the most striking phenomena are those observed around so-called critical values of
the parameters of such models, such as scale-free patterns, power laws, conformal invariance,
critical exponents or universality.

1.1.1. Paradigm. The study of self-organized critical systems has become rather popular
in physics since the end of the 80’s. These are simple models supposed to clarify temporal
and spatial randomness observed in a variety of natural phenomena showing long range cor-
relations, like sand piles, avalanches, earthquakes, stock market crashes, forest fires, shapes of
mountains, clouds, etc. It is remarkable that such phenomena reminiscent of critical behavior
arise so frequently in nature where nobody is here to finely tune the parameters to critical
values.

An idea proposed in 1987 by Bak-Tang-Wiesenfeld [5] to tackle this contradiction is,
roughly, that of systems growing toward a critical state and relaxing through catastrophic
events: avalanches, crashes, fires, etc. If the catastrophic events become more and more
probable when approaching the critical state, the system spontaneously reaches an equilibrium
close to the critical state. This idea was developed in [5] through the study of the archetypical
sand pile model.

This paradigm was used to investigate various phenomena, from physics to sociology
through biology, epidemiology or economics. The pertinence of the conclusions are not always
convincing. Discussion to decide if whether or not there is self-organized criticality in nature
or in one or another model, or even to decide what self-organized criticality should exactly be,
is beyond our purpose. Anyhow let us summarize the usual features of these models:

e local dynamics but with possibly very long range effects (at high speed) through a simple
mechanism;

e macroscopic states with scaling invariance properties, a priori related to the critical
state of a well-known system,;

e long range spatial correlations and power laws for natural observables at fixed times;

e presence of 1/f or 1/f*-noise in the temporal fluctuations of natural observables. We
are not experts on this topic, but it seems to be one of the main motivation of self-organized
critical systems. It is the subject of the original article of Bak-Tang-Wiesenfield [5] and of
considerably many physical papers.

One of the specificities of these models is that the interaction is formally non local; it is
local in general, but may, when close to the critical region —whatever this means— have long
range effects. This, together with a lack of monotonicity, yields mathematical difficulties that
justify a careful treatment.

To understand, explain or illustrate these phenomena, a multitude of models have been
proposed to explore various mechanisms that would produce these effects. Simple models,
non necessarily realistic, are nice for they try to catch the underlying mechanisms. They have
often been treated numerically, in the spirit of Bak-Tang-Wiesenfield [5]. Forest fire models are
among them and still need a mathematical rigorous study. Sand pile models, while somehow
more complicated, have been more studied.

1.1.2. Sand pile models. Let us explain in a few words what a sand pile model is. First,
we assume that we have a definition of what a stable sand pile is. Sand grains fall at random



on sites. When a grain falls, if the new pile is unstable, it is immediately re-organized to
become stable, through (possibly many) successive elementary steps. Such events are called
avalanches. This model was introduced by Bak-Tang-Wiesenfeld [5] and studied by Dhar
[24]. Since, there has been a huge amount of results and we will not try to be exhaustive;
for surveys see for instance Holroyd-Levine-Meszaros-Peres-Propp-Wilson [38], Goles-Latapy-
Magnien-Morvan-Phan [33] or Redig [56].

Let us give a slightly more precise description of the so-called Abelian sand pile model.
The state of the system is described by 1 € Z5, representing local slopes of the sand pile. For
instance, when S = Z, think that n(¢) = h(i+1) — h(i) where k(i) is the height of the sand pile
on the site i. A dynamic is defined on Z° using a matrix A indexed by S x S, called toppling
matriz. It has positive entries on the diagonal (think of A;; = v constant), negative entries
when 4, j € S are neighbors and null entries elsewhere. It is dissipative if A;;+ ot A <0.

Then define the toppling of a site i as the mapping T : Z° — Z° defined by

Tim(G) = n()—Ai; VieS if n(i) > Ay
T;(n) = n otherwise.

Toppling at i consists, whenever the slope is too big at i, of spreading grains on neighboring
sites (possibly in a non conservative way). A pile is stable if for all ¢ € S, n(i) < A;; (then, no
toppling has any effect). Observe that successive topplings at different sites commute (which
explains the term Abelian).

Now consider the situation where sand grains fall at random, on each site, at rate 1. Each
time a grain falls, immediately topple (possibly many times) until stability is reached. Some
dissipativity assumptions guarantee that this is always possible.

At first glance, arrival of a new sand grain on a site has only a local effect: a non trivial
toppling at ¢ may occur. But there can be a chain reaction creating an avalanche. And indeed,
the action may, in general, have a long range effect.

These systems have a nice underlying group structure that depends on the size and ge-
ometry of the underlying lattice, see e.g. Le Borgne-Rossin [44] for such an algebraic point of
view. The thermodynamic limits of the sand-pile models have been investigated. In particular,
existence and uniqueness of a stationary measure have been proved. See for instance Maes-
Redig-Saada [47] when S = Z and Jérai [41] when S = Z?. Some features of self-organized
criticality have been observed for d > 1, at least numerically, in the physical literature, see
e.g. Liibeck-Usadel [46]. For instance, they have studied the sizes of avalanches (number of
topplings necessary to stabilize after a grain has been added). A scaling limit was obtained
recently by Diirre [30].

1.1.3. Other models. The Abelian sand pile seems to be the most popular sand pile model.
However it has a lot of variants: Zhang sand pile model (see Zhang [65], Pietronero-Tartaglia-
Zhang [51]), Oslo model (see Christensen-Corral-Frette-Feder-Jossang [19], Amaral-Lauristsen
[4]), Oslo rice pile model (see Brylawski [17]), chip firing game (see Tardos [62]), etc.

Moreover, various different models have been introduced and studied with the eyes of
self-organized criticality. There is of course the forest fire model that we are going to dis-
cuss in this paper. Let us mention briefly some other models: rotor-router model (intro-
duced by Priezzhev-Dhar-Dhar-Krishnamurthy [52] under the name Fulerian walkers model),
loop-erased random walks (Majumdar [48]), diffusion/aggregation models (Cafiero-Pietronero-
Vespignani [18]), Scheidegger’s model of river basin (Scheidegger [57]), models describing
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earthquakes (Olami-Feder-Christensen [50]) or crashes in stock markets (Staufer-Sornette
[61, 59]), etc.

As we already mentioned those systems have often been subjected to numerical experi-
mentations and studies. Of course this is a difficult task and it has sometimes been misleading:
long range effects need huge simulations, the interpretation of which is not always meaningful.

For surveys on self-organized criticality, see Bak-Tang-Wiesenfeld [6], Dhar [25], Jensen
[42] and the references therein.

1.2. Forest fire models. Here we consider the classical forest fire model on G = (S, A).
Recall that on each site of S, seeds are falling at rate 1 and matches are falling at rate A,
according to some Poisson processes. A seed falling on a vacant site makes it immediately
occupied, and a match falling on an occupied site makes instantaneously vacant the whole
corresponding occupied connected component. Thus the forest fire process is Markov (at least
if one is able to prove that it exists and is unique).

1.2.1. History and numerical studies. The forest fire model was introduced independently
by Henley [36] and Drossel-Schwabl [27]. In the literature, it is generally referred to as the
Drossel-Schwabl forest fire model. In their original paper, they consider the case where S is a
cube in Z%. They are interested in scaling laws and critical exponents for this model. Orders
of magnitude of relevant quantities are derived by analytical computations using essentially
mean field considerations. The results are confirmed by computer simulations. In Drossel-
Clar-Schwabl [26], the asymptotic behavior of the density of vacant sites in the limit A — 0 is
obtained when S = Z (using heuristic arguments, see Subsubsection 1.4.3 below). After this
work, numerous numerical or semi-analytical studies have been produced. Among others, let
us mention Henecker-Peschel [39] and Pruessner-Jensen [53]. Numerical studies were handled
again by Grassberger [34], who computes, when S = Z2, the density of occupied sites, the
fractal dimension of fires and the distribution of the fire sizes, in the limit A — 0.

The first rigorous probabilistic treatment of this model is the paper by van den Berg and
Jéarai [9]. They give a rigorous description of the asymptotic density of vacant sites in the
limit A — 0 for the forest fire process on Z. To our knowledge, all the rigorous results about
the forest fire process concern the case where seeds and matches fall according to Poisson
processes. See Diirre [28, 29, 30] (existence and uniqueness of the process on Z¢ with A\ > 0
fixed), van den Berg-Brouwer [7] (behavior of the process near the critical time in dimension
2, as A — 0) and Brouwer-Pennanen [16] (estimates on the cluster size distribution in the
asymptotic A — 0, in dimension 1). See also the papers by the authors [13] (study of the
invariant distribution when A = 1 in dimension 1) and [14] (scaling limit of the one dimensional
forest fire process in the asymptotic A — 0). We will discuss all these results more specifically
in this introduction.

1.2.2. Real forest fires. Real forest fires in nature are also a subject of preoccupation and
of study from different point of views. In particular there are various statistical studies of
sizes (and sometimes shapes) of real forest fires in different regions (see for instance Holmes-
Hugget-Westerling [37]). One of the recurrent observations is that the distributions of those
fires have heavy tails (power laws) and pleasant scale invariance properties. Another one is the
tentative description of the (fractal) geometry of fires (see for instance Mangiavillano [49]).
For references, connection with real life and practical interest of these studies, see Cui-Perera
[22]. A few studies relate the dynamics of real fires in a given region with theoretical models.
One natural task was to compare real data and numerical experiments done with the toy
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models we have. On this aspect, let us mention the recent (and encouraging) works by Zinck-
Grimm-Johst [66, 67]. Other studies focus on the propagation of the fire itself, but this is not
our main preoccupation here since we have assumed that the propagation is instantaneous.

A direction of study suggested by works on real forest fires is to consider fires in in-
homogeneous, for instance random, media. To our knowledge, this aspect has not yet been
investigated. Another one, that we address here, is to consider the non Markov case: seeds
and matches may not (and actually should not) fall according to Poisson processes.

1.2.3. Other interpretations and variations. The forest fire model has a very simple (and
natural) dynamic. It may accept a variety of interpretations. And various modifications
can make it fit the description of other phenomena. Indeed, we initially thought of it as a
simplification of the avalanche process: snow flakes fall on each site, a snow flake falling on a
vacant site makes it occupied, and a snow flake falling on an occupied site makes vacant the
whole connected component of occupied sites (such an event being called avalanche). This is
nothing but the forest fire process with A = 1, see [13]. More generally, the forest fire process
may be used to model phenomena involving geometric relations and a common behavior on
connected components; natural examples arise e.g. in epidemiology (change fire by wvirus).
From these points of view, some natural modifications could be explored such as making the
growth process have effect only on sites which are neighbors of occupied sites (in the spirit
of the so-called contact process). Such variants should be dominated by the standard contact
process and by the forest fire process and may enjoy interesting features.

In a different spirit, a directed version of the forest fire model has been studied as a toy
model for neural networks. Roughly, the idea is to think of growth as activation and of fire as
signal emission. The signal is transmitted along the (directed) connected component which is
at the same time deactivated. The difference is that the underlying graph is a directed graph
(usually a tree) and that the signal is (instantaneously) sent according to the directed edge
(instead of all the connected component). Let us mention the work of van den Berg-Brouwer
[7], which include remarks about this model, and the work of van den Berg-Téth [10].

1.2.4. Coagulation/Fragmentation. A slight change of point of view about the forest fire
model makes explicit a parallel with a class of coagulation/fragmentation processes. Assume
e.g. that S = Z. Say that each edge (7,7+ 1) has mass 1, and that two neighbor edges (i —1,1)
and (4,74 1) are connected (or belong to the same particle) if (i) = 1. Then each time a seed
falls on a vacant site, this glues two particles (preserving the total mass). And each time a
match falls on a site (say, belonging to a forest containing k > 1 sites), this breaks a particle
of mass k + 1 into k + 1 particles with mass 1.

We used this remark in [13] to study the evolution of the sizes of particles when neglect-
ing correlation, using a deterministic coagulation-fragmentation equation. Of course, similar
considerations can be handled on any graph G.

1.2.5. Recent results for related models in dimension 1. Let us mention two recent results
about one-dimensional forest fire processes with a somehow different flavor.

In [64], Volkov considers a version of the forest fire process on N where ignition occurs
only at 0. He studies the weak limit of the distribution of the (suitably normalized) delay
between to fires involving n, as n — co.

In [12], Bertoin considers a modified version of Knuth’s parking model where random fires
burn connected components of cars. On a circle of size n, cars arrive at each site at rate 1.
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When a car arrives, it occupies the first vacant site (turning clockwise). Molotov cocktails fall
on each site at rate n~® where 0 < a < 1 is fixed. Bertoin studies the asymptotic behavior of
the saturation time as n — oo and observes a phase transition at o = 2/3.

1.2.6. Specific difficulties. As we already mentioned, one of the difficulties with forest fire
models (and with self-organized critical systems in general) is that the interaction is not local.
The process, whenever it is Markov, is not Feller and some classical results fail. In dimension
one, this difficulty does not yield real problems for the questions of existence and uniqueness
of the process. This is essentially due to the fact that obviously, the sizes of the forests
always remain finite (even when X is very small). This difficulty is more important in higher
dimensions, because in the absence of fires, clusters would become infinite in finite time (due
to the fact that in dimension d > 2, percolation occurs). Fires prevent us from the existence
of infinite clusters. But these arbitrarily huge clusters burning make difficult the control of
the range of interactions. This difficulty also makes the usual proof of existence of stationary
measures using compactness arguments fail (because indeed there is a lack of continuity).

The lack of monotonicity of these models, although not fundamental, makes the use of
standard intuitions and techniques impossible. Monotonicity allows one to compare the pro-
cesses started from two different ordered initial configurations (coupled in a suitable way).
Monotonicity cannot hold here, because a configuration with more trees will burn sooner.

1.3. Geometry of the lattice. The geometry of the underlying lattice is crucial in
statistical mechanics. Recall for instance that phase transition for the Ising model on Z%
appears only for d > 2 (see Velenik [63]). For the forest fire models, the influence of the
geometry clearly comes through the behavior of the lattice with respect to percolation. This
geometrical influence was already striking in numerical studies. See Grimmett [35] for a very
complete book on percolation.

1.3.1. Growth without fires/Percolation. Consider a graph G = (S, A). Forall 0 <p <1
consider an ii.d. family {n(i),s € S} of Bernoulli random variables with parameter p (a
percolation trial with probability p). It is well known that there is 0 < p. < 1, depending
on the graph, such that for all p < p., there are a.s. no infinite connected components of
occupied sites, while for p > p., there is at least one infinite connected component with
probability 1. The real number p, is called percolation threshold of G. It is rather natural to
consider (dynamical) percolation processes on G, that are couplings of percolation trials for all
0 < p < 1. For instance, consider a family {7;,7 € S} of i.i.d. random variables on Ry with
exponential distribution with parameter 1. Put n:(i) = 0 if ¢ < T; and n:(i) = 1 if ¢t > T;.
Then for all t > 0, {n:(i),i € S} is a percolation trial with probability P(T; < t) =1 — e’
Thus an infinite cluster appears at time t. defined by 1 — e~ = p,.

It clearly appears that the percolation threshold plays a crucial role in understanding the
behavior of the forest fire process on a given lattice. The simple observation is that the growth
process, i.e. without fires (A = 0), is exactly a percolation process on the lattice. For A small,
and a fortiori for A — 0 its study is a necessary preliminary. For instance, one aspect is the
formation of infinite clusters (although in general those clusters will never appear since, taking
fires into account, they must burn before they become infinite). Recall that the percolation
threshold is 1 in dimension 1. It is 0 < péd) < 1 on Z® and once there is an infinite cluster, there
is a unique one. While, for instance on a d-regular tree, just after the percolation threshold,
there are infinitely many infinite clusters: these situations are rather different and should yield
different behaviors for the corresponding forest fire processes. Observe that though, for all
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A > 0, the forest fire process is easy to define for small times, things turn out to be more
complicated when we reach the critical time t.. Even in dimension 1 the separate study of the
percolation process makes sense as we shall see further, Subsection 1.4.4.

1.3.2. Modified percolation models. It has also been fruitful to study modified (for in-
stance dynamical) versions of percolation processes. Models like frozen percolation (Aldous [3],
see also Brouwer [15]), invasion-percolation (see for instance Damron-Sapozhnikov-Vagvolgyi
[23]), or self-destructive percolation (see van den Berg-Brouwer [7] and more recently van den
Berg-Brouwer-Végvolgyi [8]) are closely related to the forest fire processes. Let us focus one
moment on this last example since it has direct implications on forest fire processes.

A typical configuration for the self-destructive percolation model on Z? with parameter
(p,0) is generated in three steps: first generate a configuration for the ordinary percolation
model with parameter p. Next, make all sites in the infinite occupied cluster vacant. Finally,
make occupied each vacant site with probability §. Let 6(p,d) be the probability that 0
belongs, in the final configuration, to an infinite occupied cluster. In a recent paper [8], van
den Berg, Brouwer and Vagvdlgyi prove that this function is continuous outside of a set of
the form {(p¢,d) : § < do}. It is conjectured that this function has a discontinuity, roughly
meaning that there is 6 > 0 such that for any p > p., the model with parameter (p,d) is
sub-critical (there a.s. is no infinite cluster).

In [7], van den Berg and Brouwer have proved that assumption of a strongly related
conjecture yields a result for a 2-dimensional forest fire process after the critical time: there
is t > t. such that for all m > 1,

e a tree in [—m, m]? burns before ¢ 1
liminfliminf Pr | . 5 | £ =
A0 m—oo in the forest fire process on S, = [—n,n] 2

1.3.3. Thermodynamic limit. The forest-fire process on a finite graph is a finite state space
continuous time Markov chain (if matches and seeds fall according to Poisson processes). Ex-
istence and uniqueness of the process thus come for free. Existence of an invariant measure as
well. A basic argument also yields uniqueness of the invariant measure (because the configu-
ration with all sites vacant is recurrent). Hence interesting phenomena may arise only when
we let the size of the lattice tend to infinity.

When S = Z, it is not very expensive to go directly to the limit: the process is naturally
uniquely defined on Z. This is easily seen through a graphical construction of the process (see
[14]), see also Proposition 2.4 below.

In dimension d > 1 the situation is more delicate. On Z¢ (and actually on any graph with
bounded vertex degree) existence has been proved recently by Diirre [28]. He also proved
uniqueness, but in two steps: firstly, in [29], he shows that, for A > 0 large enough (the bound
is related to the percolation threshold), the forest-fire process is unique. Only very recently
the same author, in [30], tackled the same question on a graph with bounded vertex degree
and for all A > 0. This is a much more subtle task. To prove this result he has to introduce
the so-called blur processes, to show that the influence of matches falling far away from 0 is
negligible.

1.3.4. Mean field model. The mean field case is slightly different. Indeed, one has to adopt
the dual point of view (on edges). Furthermore, the process cannot be defined directly on an

infinite lattice since we consider the complete graph. The point of view developed by Réath
and Téth in [55] is based on the Erdés-Rényi construction [31]. For all n > 1, let S, be
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a set (of vertices) with |S,| = n, and consider the complete graph G, = (Sp, A,). Start
initially with all edges vacant. Then edges appear independently at rate 1/n. Matches fall at
rate A\, on each site and destroy instantaneously the whole corresponding occupied connected
component. We consider the asymptotic n — oco. The various regimes (see Rath-T6th [55])
are quite illuminating.

o (I) If A, << 1/n, then fires are (asymptotically) negligible. Thus we have the same
asymptotics as in the Erdos-Réyni model: a giant component appears after some time Ty
(the critical time in this formalism).

e (IT) If A\, ~ A/n, then a giant component appears, but is destroyed after some time.
Only the giant component may burn: there are no matches enough to burn finite size forests.

o (IIT) If 1/n << Ay << 1, there are not enough fires to burn finite size forests, but too
many to let any infinite forest appear. Hence no giant component appears.

o (IV) If \,, ~ A, then matches may kill finite forests, so that of course, no giant component
emerges.

To formalize these statements rigorously, Rath-Téth [55] consider the cluster size distri-
butions: vy, k(t) is the number of vertices belonging to a connected component of size k at
time t divided by n. Consider also the concentrations c, i (t) = vpk(t)/k. As n — oo, the
limit concentrations (cx(t))r>1 should satisfy a system of differential equations closely related
to Smoluchowski’s coagulation equations with multiplicative kernel and mono-disperse initial
condition:

e}

AR
—~
(e
=

\

—_

> 0O

#(0)=0, k=2,
—cn(t) = % i(k —i)ei(t)ee—i(t) — ken(t) Y _ici(t), k> 1.

=1 i=1

Such equations, discussed in details in Aldous [2], have been introduced by Smoluchowski [58]
in 1916. These equations are subjected to a phase transition known as gelation: some mass is
lost at some positive finite instant T,¢;, due to the emergence of a giant particle. For ¢t > Ty,
we have to decide what to do with the giant particle. It can e.g. interact with finite particles
(Flory’s equation) or be removed from the system (Smoluchowski’s equation). See Aldous [1]
and [32] for such considerations.

In the regime (I), the limit equations are the Flory equations: a giant particle appears
at time Ty, and then coexists with other particles (finite particles do coalesce with the giant
particle). In the regime (II), the limit equations are closer to the Smoluchowski equations:
a glant particle appears at time Ty (the same one as previously) but once it is giant, it is
replaced by particles with mass 1 (in a conservative way). In the regimes (III) and (IV), some
other modifications of the Smoluchowski equations appear.

The most interesting results obtained by Rath-Téth in [55] are that in the regime (III),
the modified Smoluchowski coagulation system has a unique solution which is the classical
one for all t < Ty and has a particular (critical-like) form for ¢ > Tye, and (cn .k (t))e>0,6>1
converges to this unique solution as n — oo. This shows that the complete graph exhibits
self-organized criticality in the sense that beyond T, it remains critical forever: no giant
component appears but, after Ty¢;, the size-distribution is, in some sense, critical.
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1.3.5. Stationary measures. The existence of invariant measures for the forest-fire process
in Z% (with any A > 0 fixed) has been proved by Stahl [60]. For the case of Z the situation is
simpler, see the next subsection.

1.4. Forest fire on Z. Let us review in details known results about the forest fire pro-
cesses in dimension 1. We still focus on the usual case where seeds and matches fall according
to i.i.d. Poisson processes, with respective rates 1 and A > 0. We denote 1 € {0,1}% the
configuration at time ¢ and, for i € Z, C(n},7) is the connected component of occupied sites
around i. Observe that (possible) infinite clusters in the initial configuration would immedi-
ately disappear.

From the point of view of self-organized criticality, the interesting regime is the asymptotic
behavior of the forest-fire process as A\ — 0: then fires are very rare, but concern huge occupied
components.

1.4.1. Stationary measures. Existence of a stationary measure does not immediately fol-
low from standard compactness arguments since the process is not Feller. However, in [16],
Brouwer and Pennanen prove the existence of a stationary measure for all fixed A > 0. In [13],
we proved the uniqueness of this invariant distribution, as well as the exponential convergence
to equilibrium in the special case where A = 1. We also proved that the invariant distribution
is (spatially) exponentially mixing and can be graphically constructed. The methods in [13]
should be easily extended to the case where A > 1 (and actually to A > 1 —¢( for some rather
small €p > 0) but our proof completely breaks down for small values of A > 0.

1.4.2. Asymptotic density. Van den Berg and Jdrai study in [9] the asymptotic density of
vacant sites in the limit A — 0. Their result states that there are two constants 0 < ¢ < C
such that for any initial configuration, for any A > 0 small enough, for ¢ large enough (of order
log(1/X)), .

¢ A
ogti/n = PO =0 < gy
This is coherent with the intuition that the rarer fires are, the more space is occupied by trees
(although because of the lack of monotonicity, this is not straightforward). We mentioned that
such result was stated in Drossel-Clar-Schwabl [26]. But the proof in [26] is not rigorous: it
is based on the ansatz that the cluster sizes were following a cutoff power law, for cluster-sizes

up to some s, defined by s . logs) .. =1/ ie.
1
A

Smaz = Nog(1/A)’

In [9], van den Berg and Jarai also show that the cluster sizes cannot follow the predicted
power law.

1.4.3. Sizes of clusters, first results. In [16], Brouwer and Pennanen show that this last
ansatz holds true up to 3717{,1335 More specifically, they show that there are constants 0 < ¢ < C
such that for all 0 < A < 1 and all stationary measures py (invariant by translation) of the

forest fire model on Z with parameter \, for all z < (s),,,)">

max Y

c c

(1+z)log(1/X) (1+z)log(1/X)

Observe that this estimate is valid for relatively small clusters that will not be seen after
rescaling (microscopic clusters).

<pa(|C(0,0)] = x) <
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1.4.4. Kingman’s Process. We detail a classical construction related to the Smoluchowski
equation with constant kernel which is quite close to our point of view. Most ideas and
references for proofs can be found in Aldous [2]. Let us consider the following percolation
process on Z. Starting from the vacant configuration, we let appear trees at each site at some
rate r(t), that allows us to control the speed of the process. Say that each edge (i,7 + 1) has
mass 1 (see Subsubsection 1.2.4). Let a seed fall on each site i at some random time T; with
P(T; > t) = 2/(t + 2) independently (this corresponds to the rate r(t) = 1/(t + 2), because
then exp(— fot r(s)ds) = 2/(t + 2)). Call D(t,4) the particle containing the edge (i,7 + 1) at
time ¢ (say that two neighbor edges (j — 1,7) and (j,j + 1) are glued if n,(j) = 1). At time ¢,
the particle containing a given edge (e.g. (0,1)) has mass m with probability

(52 (1)

and hence the concentration of clusters with mass m per unit length is nothing but

- () ()

We recognize the solution to Smoluchowski’s equation with constant coagulation kernel and
mono-disperse initial condition, see Aldous [2].

Now consider a standard construction of the so-called Kingman coalescent process. Take
independent exponential random variables {&, k > 2} of rates (i) Since E[Y_pe 5 &k = 2, we
can define random times 0 < -+ < 73 < 7o < 7 < 00 by 7; = ZZO:Z.H &k Take {U;,1 > 1}
independent random variables uniformly distributed on (0,1). For each i draw a vertical
segment from (U;, 7;) to (U;,0). At time ¢ this construction splits (0,1) into ¢ intervals, where
7, <t < Ti—1. Write X(¢t) for the list of the lengths of these subintervals. This is a version
of the stochastic coalescent called Kingman’s coalescent. Observe that we also could have put
the marks {(U;,7;),7 > 1} using a Poisson measure on [0, 1] x Ry with a well-chosen intensity
measure.

Straightforward computations show that Kingman’s coalescent is a limit of the previously
defined percolation process in the following sense: consider the list of (distinct) normalized
clusters AD(t/A, |z/\]) when z runs along [0,1] (cutoff the boundary clusters at 0 and 1)
at time t. When A — 0, it converges to X(¢) in law (in an appropriate topology). This
construction shows how the growth process behaves in the large scales. In some sense we have
identified {0,...,nx} C Z with [0,1] C R (here ny = 1/\) and obtained a limiting process for
the rescaled percolation process.

We stress the fact that the convergence holds globally only for the specific speed r(t) =
1/(t+2) of the percolation process. This fact is related to the self-similarity of the percolation
(coalescent) process. In particular, for a constant rate (exponential times for seeds), there
is no hope for such a convergence to Kingman’s coalescent: after normalization, the size of
clusters at time t is of order A\'~* and converges to 0 or oo according to whether ¢t < 1 or
t > 1. Conversely, if the rate of growth has a polynomial decay, there is a hope to have a limit
process.

1.4.5. Asymptotic regime: relevant space/time scales. As already mentioned, we are in-
terested in the behavior of the system in the large space and time scales in the limit A — 0.
Hence the first difficulty is to decide what the relevant scales are. Let us recall the heuristic
developed in [14]. We need a time scale for which tree clusters see about one fire per unit of
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time. But for A very small, clusters will be very large just before they burn. We thus also
have to rescale space, in order that just before burning, clusters have a size of order 1.

Consider the cluster C(n;',0) around the site 0 (for example) at time t. For A > 0 very
small and for ¢ not too large, one might neglect fires and consider only the growth process; it
follows that |C(n;\,0)| ~ et for ¢ not too large (because since seeds fall according to Poisson
processes with rate 1, each site is vacant at time ¢ with probability e~*). Then the cluster
C(n},0) burns at rate A\|C(n;\,0)] ~ Ae!, so that we decide to accelerate time by a factor
ay := log(1/A). By this way, A\|C(n2,,0)| ~ 1.

Now we rescale space in such a way that during a time interval of order ay, something like
one match falls per unit of (space) length. Since matches fall at rate A on each site, our space
scale has to be of order ny := 1/(Aay): this means that we will identify {0, ..., n)} C Z with
[0,1] € R. Observe that there holds ny ~ s),,., where s}, . was introduced in Subsubsection
1.4.2.

Consider now the time/space rescaled cluster around 0
1
A A
Dt (0) = n) C(nakta 0)

The same difficulty as in Subsubsection 1.4.4 appears: neglecting fires (which is roughly valid
for small values of t), we see that

|D}0)] ~ nj te® = A log(1/)),

which goes to 0 for ¢ < 1 and to oo for ¢ > 1. For ¢t > 1, we hope that fires will be in effect,
which will limit the size of clusters. But for ¢ < 1, |D;(0)| will indeed tend to 0. This means
that we have lost some information. To describe the limit process, we have to keep in mind
more information and thus introduce another quantity (a sort of degree of smallness) which
measures the order of magnitude of the microscopic clusters, that is clusters that we can not
see at macroscopic scales (of which the sizes are much smaller than ny).

1.4.6. Limit processes. We have proved in [14] that in the asymptotic of rare matches, the
forest fire process converges, under the previously described normalization, to some limit forest
fire process. We described precisely the dynamics of this limit process and have shown that
it is unique, that it can be built by using a graphical construction and thus can be perfectly
simulated. Using the limit process, we have also estimated the size of clusters. Very roughly,
we have proved that in a very weak sense, for A small enough and for ¢ large enough (of order
log(1/X)), the cluster-size distribution resembles

P — | et
T (z+ 1)log(1/)) T<<m n,

where a,b are two positive constants. Very roughly, we are able to replace the condition
r < (8),.)13 of [16] by the condition z < (s)),,,) " for any ¢ € (0,1) (but our result is
weaker, in the sense that it holds when integrated in x, and we have to take the limit A — 0).
This means that there are two types of clusters: microscopic clusters, described by a power-
like law and macroscopic clusters, described by an exponential-like law. This shows a phase

transition around the critical size ny.

Pr[C(n}',0) =

1.4.7. No self-organized criticality. From the qualitative point of view the conclusion is
rather different from that of Rath and Téth [55] (presented in Subsubsection 1.3.4). Here,
the (asymptotic) cluster-size distribution does not exhibit self-organized criticality features.
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We proved the presence of a power law, but this power law describes clusters which are much
smaller than the critical size. Large clusters (clusters near the critical size) have a law with
fast decay.

1.5. Main ideas of the present paper. From the modelling point of view, the Pois-
son assumption is quite reasonnable for ignitions, but clearly not well justified for recoveries
(seeds). Thus it seems interesting to study what happens when seeds and matches are driven
by other renewal processes. The goal of this paper is to extend the previous study [14] de-
scribed above to a more general class of renewal processes. We assume that the renewal
processes are stationary for simplicity, but this can be more or less justified by the fact that
it is the only way that time 0 does not play a special role.

We thus consider the case where seeds (respectively matches) fall on each site of Z inde-
pendently, according to some stationary renewal processes, with stationary delay distributed
according to some law vg (respectively v3,). This means that for any time ¢ > 0 and on any
site ¢ € Z, the time we have to wait for the next seed is a vg-distributed random variable. We
have an assumption saying that as A\ — 0, matches are rarer and rarer. We also assume that
vs has a bounded support or a tail with fast or regular or slow variations. We prove that,
after re-scaling, the corresponding forest fire process converges, as A — 0, to a limit process.
And we show that there are four classes of limit processes, according to the fact that

e vg has a bounded support (HS(BS)),

e vg has a tail with fast decay (HS(c0)),

e g has a tail with polynomial decay (HS(8)),
e vg has a tail with logarithmic decay (HS(0)).

As we will see, the limit forest fire process built in [14] is quite universal: it describes
the asymptotics of a large class (roughly exponential decay for vg) of forest fire processes.
A similar limit process arises when vg has bounded support. But some quite different limit
processes arise when vg has a heavy tail. We also develop the necessary tools to study the
cluster size distributions. Let us mention at once that there is indeed presence of a critical size
under (HS(BS)) and (HS(o0)) but not under (HS(8)) or (HS(0)). In the latter situation,
there are only macroscopic clusters. This is related to Subsubsection 1.4.4.

It is striking that in [14] we made repeated use of the Markov property of Poisson processes
while it turns out the result still holds without this assumption (and with no significant
increase of the complexity). Indeed, proofs remain essentially elementary except maybe from
the combinatorial and computational point of view.

From the qualitative point of view, the main novelty is the rise of a new class of pro-
cesses (those corresponding to polynomial tails), reminiscent of the Kingman coalescent (with
deaths). But for this case as for the others, the conclusion is that, as expected, self-organized
criticality features do not show up for this model in dimension 1.

Let us finally insist on the fact that surprisingly (in view of the complexity and length
of the proofs), our assumptions are really light. Consider e.g. the case where vg has an
unbounded support and a fast decay, which means (for us) that for any ¢ > 0,

Cus(@oo)
A (o)

)
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where t° =0if t < 1, 1° =1, and t*° = co if £ > 1. We do not need the least additional
condition.

1.6. Plan of the paper. Part 2 is devoted to a complete exposition of our results. We
start in Section 2 with notation and with the definitions of the objects under study, and we
state our assumptions. In Section 3, we explain the heuristic scales and the relevant quan-
tities (rescaled macroscopic clusters and measure of microscopic clusters). Then we describe
precisely our results in Sections 4 (case with fast decay), 5 (case with bounded support), 6
(case with polynomial decay) and 7 (case with logarithmic decay). We conclude this part with
a quick discussion about our modeling choices and with a short list of open problems and
perspectives. Part 3 (Sections 10 to 20) contains all the proofs. In part 4 we handle a few
numerical simulations to illustrate our results. Finally, Part 5 contains an appendix about
regularly varying functions and coupling.



Part 2

Notation and results



2. Definitions, notation and assumptions

2.1. Stationary Renewal processes. We first fix notation about stationary renewal
processes. We refer to Cocozza-Thivent [20] for a book on renewal processes.

DEFINITION 2.1. For p a probability measure on (0,00) with finite expectation my,,,
set vy (dt) = my; ' p((t, 00))dt, which is also a probability measure on (0,00). Let Ty be a v,-
distributed random variable and let (Xj)r>1 be a sequence of i.i.d. random variables with law
u, independent of Ty. Set Tiyy1 = T + X for allk > 1 and Ny = Zk>1 Lir.<y for allt > 0.
We say that (Ny)i>0 is a stationary renewal process with parameter p, or a SR(u)-process in
short.

It is well-known, see e.g. [20, Corollaire 6.19 p 169], that for (N¢);>0 a SR(u)-process in
the sense of Definition 2.1, the law of T,+1 — ¢ (i.e. the time we have to wait for the next
mark at time t) is v, for all ¢ > 0. Another possible definition is the following.

DEFINITION 2.2. For p a probability measure on (0,00) with finite expectation my,,
set vy, (dt) = my ' p((t,00))dt and (,(dt) = m, "tu(dt), which are also probability measures on
(0,00). Consider a collection of random variables (X;);ez\ {0y with law p. Consider also X
with law ¢, and U uniformly distributed on [0,1]. Assume that all these random variables are
independent. Define Ty = —(1 — U)Xy, Ty = UXg and then, forn > 1, T41 =T, + X,, and
T_p=T_(n—1)— X_pn. Then we say that (T )nez is a SR(u)-process.

If (Th)nez is a SR(u)-process in the sense of Definition 2.2 and if one considers the
associated counting process Ny = > - 1y7, <4}, it is indeed a SR(u)-process in the sense of
Definition 2.1. This can be checked immediately: it suffices to observe that the law of T} is

Uy
If we have a SR(p)-process (Ni)i>o as in Definition 2.1 and if we denote by (T),),>1 its
successive instants of jump, one can easily build (7, )n<o in such a way that (T,)nez is a

SR(u)-process as in Definition 2.2.

For (Ty)nez a SR(u)-process as in Definition 2.2, for any ¢ € R, the random sets U,,ez{T,},
Unez{—T»} and Upez{T, +t} have the same law. Thus if we introduce n; such that T,,, +¢ <
0 < T,,+1 +t, the process (T, +n + t)nez is a SR(u)-process. By the same way, the process
(=T1—n)nez is a SR(u)-process.

2.2. The discrete model. Next, we introduce the forest fire model. For a,b € Z with
a < b, we set [a,b] = {a,...,b} C Z. For n € {0,1}* and i € Z, we define the occupied
connected component around ¢ as
. 0 if @) =0
C(n,i) = . . . . ’
@0 ={ B yrmar * o)1
where [(n,i) = sup{k < i: n(k) =0} + 1 and r(n,7) = inf{k >i: n(k) =0} — 1.
DEFINITION 2.3. Let ps and pps be two laws on (0,00) with finite expectations. For
each i € Z, we consider a SR(ug)-process (N£(i))e>o0 and a SR(upr)-process (NM(i))i>o0, all
these processes being independent. A {0,1}-valued process (n:(i))iezt>0 such that (n:(i))i>o0
is a.s. cadlag for all i € Z is said to be a FF(us, par)-process if a.s., for allt >0, all i € Z,

t t
Wt(i)Z/O1{n57<i>:0}dN§(i)—Z/0 Lijec(m. i dNS (9)-
JEZ
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Formally, we say that n:(i) = 0 if there is no tree at site ¢ at time ¢t and (i) = 1 else.
Thus the forest fire process starts from an empty initial configuration, seeds fall according to
iid. SR(us)-processes and matches fall according to i.i.d. SR(uas)-processes. When a seed
falls on an empty site, a tree appears immediately. When a match falls on an occupied site,
it burns immediately the corresponding connected component of occupied sites. Seeds falling
on occupied sites and matches falling on vacant sites have no effect.

Assume for a moment that the support of pg is unbounded (thus so is that of v,,;). Then
the FF(us, par)-process can be shown to exist and to be unique (for almost every realization
of (N7(i), NM(i))icz.t>0), by using a genuine graphical construction. Indeed, to build the
process until a given time 7' > 0, it suffices to work between sites ¢ which are vacant until time
T (because N3 (i) = 0). Interaction cannot cross such sites. Since such sites are a.s. infinitely
many (because Pr(N2(i) = 0) = v, ((T,00)) > 0 by assumption), this allows us to handle a
graphical construction. This is illustrated by Figure 1. See Liggett [45] for many examples of
graphical constructions.

We will also study the more complicated case where pugs has a bounded support and this
will lead to the following general result.

PROPOSITION 2.4. Let pug and pps be two laws on (0, 00) with some finite expectations.
For each i € 7, we consider a SR(us)-process (N (i))i>0 and a SR(uar)-process (NM ()0,
all these processes being independent. Almost surely, there exists a unique FF(us, i )-
process.

This proposition is proved in Section 10.

2.3. Assumptions. We now state the assumptions we will impose on the laws ug and
war- First, we want to express the fact that matches are less and less frequent. To do so, we
consider a family of laws p},, for A € (0,1], as follows.

i 1 i t=T
[ |
® L *
® [ |
o
[ |
[ |
[ |
[ |
u [ |
o
[ | [ |
[ | [ ]
" [ |
t=0
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

FIGURE 1. Graphical construction of the FF(ug, piar)-process.

Matches are represented as bullets and seeds as squares. On the sites —5 and 6, no seed fall during
[0, T7], so that these sites remain vacant until 7. One can thus clearly deduce the values of the process
in [—5, 6] during [0, T] using only the bullets and squares inside [—5, 6].
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(Hys): For each \ € (0,1], u3, is the image measure of u}, by the map ¢ — ¢/ and
the probability measure i}, on (0, 00) satisfies [~ tuj, (dt) = 1. We set

v (dt) = v, (dt) = My (£, 00))dt = Mk (X, 00)).

The idea we have in mind is that we slow down matches: for (NM);>o a SR(u},)-process,
(NM)>0 is a SR(u),)-process.

Assume that [~ tu}, (dt) =k € (0,00). Then iy, = phy} satisfies (Hps). We thus may of
course assume that x = 1 without loss of generality.

Next, we put some conditions about ug.

(Hs): The probability measure ps on (0,00) has a finite mean mg = [ tus(dt).
We set

vs(dt) = ve (dt) = m ps((t, 00))d.
Either pus has a bounded support or ug has an unbounded support and

. VS((‘T’OO))
Vit>0, mli)ngom

€ [0,00) U {oo} exists.

Surprisingly, we will consider these assumptions in full generality: no supplementary tech-
nical condition is needed. In the whole paper, we admit the following convention:

0 if te(0,1)
1 if t=1
oo if te(l,00).

tOO

As proved in Lemma 22.1, (Hg) implies either

(Hs(BS)): The probability measure pus on (0,00) has a bounded support. We

denote by mg the expectation of ug and define Ts = max supp pugs and vg(dt) =
mg' s ((t,00))dt. Observe that supp vg = [0, Ts).

or, for some g € [0, 00) U {00},

(Hs(5)): The probability measure ug on (0, 00) has an unbounded support, a finite
mean mg and for vg(dt) = mg'us((t,00))dt,

vi>0 lim ZS@X) s
200 g ((tw, 00))

We finally introduce the following notation.

NOTATION 2.5. (i) Assume (Hg(B)) for some € [0,00). We denote by ¢s the inverse

function of t — t/vs((t,00)). Note that ¢g : (0,00) — (0,00) is an increasing continuous
bijection.

(ii) Assume (Hg(00)). We denote by ¢s the inverse function of t — t/vs((t,00)) and
by s the inverse function of t — vg((0,t)). The functions ¢s : (0,00) — (0,00) and g :
(0,1) — (0,00) are increasing bijections.

(iii) Assume (Hg(BS)). We denote by 1g the inverse function of t — vs((0,t)). The
function ¥g : (0,1) — (0,Ts) is an increasing continuous bijection.
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2.4. Examples. Concerning (Hjs), the situation is clear. The Poisson case studied in
[14] corresponds to ph,(dt) = e '1{s0ydt, whence py, (dt) = vy (dt) = Ae M1y oydt. We
study here a much more general case. However, this is not the main point of the paper, since
it will not generate some very interesting behaviors. Concerning (Hg), we present here four
classes of examples, that will lead to different behaviors.

Example 1. If ug = oy, whence vg(dt) = Ts_lll[ojs](t)dt, then (Hg(BS)) holds and
Ys(z) = Tsz.

Example 2. Assume that ug((t,00)) ~ e™*" for some a > 0, so that vg((t,00)) ~
ct'=®e~". Then (Hg(c0)) holds. Furthermore, ¢5(2) ~ (logz)'/® and 1s(2) A [log(1/(1 —
2))]M

Example 3. Assume that pg((t,00)) ~ t~1=# for some 8 > 0, whence vg((t,00)) ~ ct 5.
Then (Hs(B)) holds and ¢g(z) ~ (cz)Y/(P+1),

Example 4. If pg((t,00)) ~ t~!(logt)™*~7 for some v > 0, then vg((t,00)) =~ c(logt) ™7,
so that (Hg(0)) is satisfied and ¢5(2) ~ cz(logz)™".
The Poisson case treated in [14], which corresponds to the case where pug((t,00)) = e™t =

vs((t,00)), is thus included in Example 2. Example 1 might seem slightly strange from the
modelling point of view, but it can happen e.g. if seeds are thrown by a machine.

Observe that (Hg) is not very restrictive, since it is satisfied by all reasonable laws.
Anyway, our results (not only the proofs) clearly break down without such an assumption.

It is not so easy to build a law pg not meeting (Hg), because the function ¢t — vg((¢,00))
is automatically quite smooth (Lipschitz continuous, decreasing and convex). One can how-
ever verify that (Hg) is not holding for ps(dt) = 1503[20 — 3coslog(l + t) + sinlog(1 +
)]/19(1 +t)3)]dt, for which vg((t,o0)) = [10+sinlog(1+¢)]/[10(1 +¢)]. One easily checks that

vs((z,00))/vs((xe™?,00)) has no limit as # — oo, choosing e.g. the sequences z,, = "™ and
Ty = 62n7r+7r/2-

2.5. Notation. In the whole paper, we denote, for I C Z, by |I| = #I the number of
elements in I. For I = [a,b] = {a,...,b} CZ and a > 0, we will set al := [aa,ab] C R. For
a > 0, we of course take the convention that af) = 0.

For J = [a, b] an interval of R, |J| = b — a stands for the length of J and for o > 0, we set
aJ = [aa, abl.

For x € R, |z] stands for the integer part of .

We denote by Z = {[a, b],a < b} the set of all closed finite intervals of R. For two intervals
[a,b] and [c,d], we set

6([a,b], [c,d]) =|la—c|+1b—d|, &(a,b],0)=1]b—al

For two functions I, J : [0,T] — Z U {0}, we set

T
or(I,J) = / 8(Ly, J,)dt.
0
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For (z,1),(y,J) in D([0,T],Ry x Z U {@}), the set of cadlag functions from [0,7] into
Ry x ZU {0}, we define

dr((x,1), (y, J)) = S |(t) = y(®)| + &7 (1, J).

3. Heuristic scales and relevant quantities

For s, uy, satisfying (Hg) and (Hpy), we consider the F'F(ug, p13,)-process (0 (i))e>o0,icz.-
We look for some time scale for which tree clusters see about one fire per unit of time. But for
A very small, clusters will be very large just before they burn. We thus also have to rescale
space.

Time scale. For A > 0 very small and for ¢ not too large, one might neglect fires, so that
roughly, each site is vacant with probability vg((¢,00)). Indeed, the time we have to wait for
the first seed follows, on each site, the law vs. Thus C(n},0) ~ [-X,Y], where X,Y are
geometric random variables with parameter vg((t,00)). Consequently, for ¢ not too large,

Under (Hg(BS)), |C(n;,0)| becomes infinite at time Ts, so there is no really need to

accelerate time: we are sure that |C(n;',0)| will be involved in a fire before Ts. We will
accelerate time by a factor Ts (in some sense, this allows us to assume that Ts = 1).

Next we assume (Hg(8)) for some 5 € [0,00) U {oco}. We observe that thanks to (Hp),
v ((t,00)) ~1— )\fot phs(As,00))ds ~ 1 — \t. Hence the probability that at least one match
falls in the cluster C(n*,0) during [0, ] is roughly similar, under (Hy), to

L= (0((8,000)) “ N o MO 0)] = At s (1, 00)).

We decide to accelerate time by a factor ay, where ay solves Aay = vg((ay, 00)). By this way,
the probability that a match falls in C(n*,0) during [0,a,] should tend to some nontrivial
value.

To summarize, we have set, recalling Notation 2.5 for the definition of ¢g,
(3.1)
under (Hg(BS)), ay =Ts,
under (Hg(8)) with 8 € [0,00) U {00}, ax = ¢g(1/N), which solves Aay = vs((ax,00)).
Under (Hg(B)) for some 3 € [0,00) U {o0}, one easily checks that

lim ay = oo and thus lim Aay = lim vg((ax,o0)) = 0.
A—0 A—0 A—0

Space scale. Now we rescale space in such a way that during a time interval with length of
order ay, something like one fire starts per unit of (space) length. Since on each site, the proba-
bility that (at least) one match falls during [0, ax] equals var((0,ax)) = X [ ph; (A, 00))dt ~
Aay, our space scale has to be of order
(3.2) ny = [1/(Aay)].

This means that we will identify [0,n,\] C Z with [0,1] C R. We always have limy_,o n) = oo.

Rescaled clusters. We thus set, for A € (0,1), t > 0 and « € R, recalling Subsection 2.5,

(3.3 D(w) = o -Clid, s [maal) < B.
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Using the computation handled in paragraph Time scale, we see that roughly, when neglecting
fires,
1 Aay
nyvs((axt,)) ~ vs((axt,o0))’
Under (Hg(B)) for some S € [0,00) U {o0}, one gets

D} (z)] ~

D) (o)) = 28U s
vs((axt, o))
Under (Hg(BS)), we obtain roughly (assume that ¢ # 1)
| D} ()| =~ t*°.
Indeed, vg((axt,0)) = vg((Tst,o0)) does not depend on A and is positive if and only if ¢ < 1.

Case B € [0,00). In this case, everything is fine: for all times of order ayt, the good space
scale is indeed ny. Thus we will describe the FF(ugs, uy,)-process through (D (2))zer,i>0-

Case € {o0, BS}. Then we have a difficulty as in [14]: the previous estimate (neglecting
fires) suggests that for all z € R, for t < 1, |D}(z)| — 0 and for t > 1, |D(x)| — oo. For
t > 1, fires might be in effect and we hope that this will make finite the possible limit of
|D(z)|. But fires can only reduce the size of clusters, so that for ¢ < 1, the limit of |D}(z)]
will really be 0.

Since we would like to have an idea of the sizes of microscopic clusters, we have to keep
some information about the degree of smallness of microscopic clusters. We adopt a different
strategy than in [14], which is more adapted to the case where 8 = BS and which leads us to
a slightly more direct proof (even in the Poisson case). We consider a function my : (0,1] — N
satisfying

(3.4) limyomy = 0o, limy_o(my/ny) =0, A+— m, is non-increasing
' and additionally, under (Hg(00)), Vz € [0, 1), limy_,o myvg((arz, o)) = .

Such a function exists: under (Hg(c0)), see Lemma 22.2 and under (Hg(BS)), choose for
example my = [/1/A].

Of course, there is no uniqueness of my, but that does not matter: the only thing we
need is that the scale my is smaller than the macroscopic scale ny ~ 1/vg((ay, 00)) and larger
than all the microscopic scales 1/vg((axz,o0)) (for all z € (0,1)). Since only these scales will
appear to be relevant, any choice of such a function my will be suitable.

We introduce, for A > 0, z € R, t > 0, recall Subsection 2.5 and that by Notation 2.5, 1
is the inverse of t — vg((0,t)),

— Hl € [|naz] —my, [nyz| +my] : 772”(1') = 1}’

\ 2my +1
ZMx) = %:(x)) A1e[0,1].

K x) e [0,1],

(3.5)

Observe that K;'(z) stands for the local density of occupied sites around |nyz| at time axt.
This density is local because m) << ny. We hope that for ¢ < 1, neglecting fires, K;*(x) ~
vs((0,axt)), whence Z (z) ~ t.

The quantity Z(z) has no physical interpretation. We use it to transform the local
density K})(z) (which depends on ¢ in a complicated way involving vg) in a quantity of which
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the behavior does not depend too much on vg (at least for ¢ < 1 and neglecting fires). This
will allow us to describe the limit process in an unified way (not depending on vg).

For all A > 0 small enough (we need that 2my + 1 < ny), we have Z(z) = 1 if and only if
K} (z) = 1, i.e. if and only if all the sites are occupied around |nyz|. Indeed, under (Hg(BS)),
Z)Mx) = 1 implies that 1g(K} (z)) = Ts, so that K () = v5((0,Ts)) = 1. Under (Hg(c0)),
ZMx) = 1 implies that ¢g(K} (x)) > ay, so that K} (z) > vs((0,ay)) = 1 — vs((ax,00)) =
1 —Aay > 1—1/ny, whence K;*(x) = 1. This last assertion comes from the facts that K;(z)
takes its values in {k/(2my + 1) : k € {0,...,2my + 1} and that 2my + 1 < n,.

Since the scale my is larger than all the microscopic scales, Z(z) = 1 will imply, roughly,
that the cluster containing |nyz| is macroscopic, i.e. has a length of order ny.

We will study the FF(us, 1), )-process through (D) (), Z} (%)) zer +>0. The main idea is
that for A > 0 very small:

o if ZMz) = z € (0,1), then |D}(z)| ~ 0 and the (rescaled) cluster containing z is
microscopic (in the sense that the non-rescaled cluster is small when compared to ny), but
we control the local density of occupied sites around x, which resembles vg((0,ayz)). Observe
that this density tends to 1 as A — 0 for all z € (0,1) under (Hg(o0)), while it remains
bounded as A — 0 for all z € (0,1) under (Hg(BS)).

e if Z)(x) = 1 and D}(x) = [a,b], then the (rescaled) cluster containing z is macroscopic
and has a length equal to b — a, or |C(n3, ;. [nxz])| ~ (b — a)ny in the original scales.

Summary. Assume (Hg(83)) for some g € [0,00) U {00, BS}.

o We accelerate time by the factor ay, defined by Aay = vg((Aay,00)) if 8 € [0, 00) U {oo}
and by a) =Tg if 5 = BS.

e Our space scale is ny = [1/(A\ay)].
o If 3 €[0,00), we will only study the rescaled clusters (D} (z))i>0.z¢r, see (3.3).

o If 8 € {c0, BS}, we will study the rescaled clusters (D (z))i>0.z¢r, as well as the local
densities of occupied sites (Z(z))i>0.2cr, see (3.4-3.5).

4. Main result in the case =

4.1. Definition of the limit process. We describe the limit process in the case where
B = oo. It is exactly the same process as in the Poisson case studied in [14]. We con-
sider a Poisson measure m(dt, dz) on [0,00) X R, with intensity measure dtdz, whose marks
correspond to matches.

Before stating a precise definition, let us describe briefly the limit process. Initially, all the
sites are vacant. Matches fall according to mps. All the zones remain microscopic (meaning
roughly that vacant sites are dense in R) until time 1. When a match falls at some time
t € (0,1) at some place x € R, it destroys a microscopic zone, that will be filled again after
a delay ¢ (at time 2t). Hence there is a barrier at = during (¢,2¢). At time 1, all the sites
become occupied, except sites where there is an active barrier. Hence if a fire falls, just after
time 1, it destroys a macroscopic zone, delimited by some active barriers. Such a destroyed
macroscopic zone will need a delay 1 to be completely filled again. During this delay, matches
produce again some barriers. And so on. See Figure 2 below for an illustration.

The precise definition of the limit process is as follows.
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DEFINITION 4.1. A process (Zi(x), Di(x), Hi(x))i>0,0er with values in Ry x T x Ry
such that a.s., for all x € R, (Zy(x), Hi(x))i>0 is cadlag, is said to be a LFF(c0)-process if
a.s., for allt >0, all z € R,

t t
Zy(z) = / Lz, (x)<1yds — / / Lz, (2)=1yeD._ (2)y™n (ds, dy),
(4.1) 0, o JR

t
Ht(l') = / ZS,(SC)]l{Zsi(I)<1}7TM(dS X {:C}) 7/ 1{H3(1)>0}ds,
0 0

where Dy(x) = [L¢(x), Re(x)], with

Li(z) =sup{y <z : Zi(y) <1 or Hy(y) > 0},
Ri(z) =inf{ly > 2 : Z:(y) <1 or Hy(y) > 0}

and where D;_(x) is defined in the same way.

4.2. Formal dynamics. Let us explain the dynamics of this process. We consider T" > 0
fixed and set Ap = {x € R: mp([0,T] x {x}) > 0}. For each t > 0, € R, D;(x) stands for
the occupied cluster containing . We call this cluster is microscopic if Di(x) = {«}. We have
D:(z) = Di(y) for all y € Dy(x).

1. Initial condition. We have Zy(z) = Ho(xz) = 0 and Dg(x) = {z} for all € R.

2. Occupation of vacant zones. We consider here x € R\ Ar. Then we have Hi(z) =0
for all ¢t € [0,7]. When Z;(z) < 1, then Dy(x) = {z} and Z;(x) stands for the local density
of occupied sites around x (or rather for a suitable function of this local density). Then Z;(x)
grows linearly until it reaches 1, as described by the first term on the RHS of the first equation
n (4.1). When Z;(z) = 1, the cluster containing z is macroscopic and is described by D;(z).

3. Microscopic fires. Here we assume that € Ap and that the corresponding mark
of my; happens at some time ¢ where Z;_(x) < 1. In such a case, the cluster containing x
is microscopic. Then we set Hi(x) = Z;_(x), as described by the first term on the RHS of
the second equation of (4.1) and we leave unchanged the value of Z;(x). We then let H;(x)
decrease linearly until it reaches 0, see the second term on the RHS of the second equation in
(4.1). At all times where Hy¢(z) > 0, the site x acts like a barrier (see Point 5. below).

4. Macroscopic fires. Here we assume that x € Ar and that the corresponding mark
of mpr happens at some time ¢ where Z;_(x) = 1. This means that the cluster containing
x is macroscopic and thus this mark destroys the whole component D;_(z), that is for all
y € Dy_(x), we set Dy(y) = {y}, Zi(y) = 0. This is described by the second term on the RHS
of the first equation in (4.1).

5. Clusters. Finally the definition of the clusters (D:(x))zer becomes more clear: these
clusters are delimited by zones with local density smaller than 1 (i.e. Z(y) < 1) or by sites
where a microscopic fire has (recently) started (i.e. Hy(y) > 0).

For A > 0, we call (Z(z), D{(z), H{*(2))i>0,5e[-a,4] the finite box version of the
LFF(oc0)-process: it has the same dynamics as the true LFF(oco)-process, but we restrict
the space of tree positions to x € [—A, A]. See Section 19 for a more precise definition. On
Figure 2, a typical path of this finite box LFF(oo)-process is discussed. See also Algorithm
15.3 (with the function Fs(z,v) = z) below.
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4.3. Well-posedness. The existence and uniqueness of the LF F(co)-process has been
proved in [14, Theorem 3]. We will provide here a simpler proof, which also works for the
case where § = BS.

tsX 15 @
64X py ' t5.X 5
X : :
: e Y LTEST
t10’X10
19, X9 @
t=1
: Ly L%,
P LX, 5 (X
l Pl
t,,X 5 l
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: : : : : H t=0
—A 0 A

FIGURE 2. LFF(oo)-process in a finite box.

The marks of 7y (matches) are represented as e’s. The filled zones represent zones in which Z (z) = 1
and HtA (z) = 0, that is macroscopic clusters. The plain vertical segments represent the sites where
Hp(z) > 0. In the rest of the space, we always have Z/(z) < 1. Until time 1, all the clusters are
microscopic. The 8 first matches fall in that zone. Thus at each of these marks, a process HA starts
and its life-time equals the instant where it has started. For example the segment above (t1,21) ends
at time 2t1: we draw a dotted segment from (0,z1) to (t1,21) and then a plain vertical segment
above (t1,x1) with the same length. At time 1, all the clusters where there has been no mark become
macroscopic and merge together. But this is limited by vertical segments. Here we have at time 1
the clusters [—A, z¢], [v6, 4], [T4,x8], [x8, 5], [v5, 7] and [z7, A]. The segment above (t4,24) ends
at time 2t4 and thus at this time the clusters [z, z4] and [z4, vg] merge into [ze,zg]. The 9-th mark
falls in the (macroscopic) zone [z¢, zg] and thus destroys it immediately. This zone [z¢, xg] will become
macroscopic again only at time tg + 1. A process HA starts at z12 at time t12: we draw a dotted
segment from (tg,z12) to (t12,z12) and then a plain vertical segment above (¢12,z12) with the same
length (Z{jz_(xlg) = t12 — tg because ZtA9 (z12) has been set to 0). The segment [xg,z7] has been
destroyed at time t19 and thus will remain microscopic until 19 + 1. As a consequence, the only
macroscopic clusters at time tg + 1 are [— A, z12], [z12, 28] and [z7, A]. Then the zone [zg, 7] becomes
macroscopic (but there have been marks at x13,x14), so that at time t10 + 1, we get the macroscopic
clusters [—A, z12], [z12,%14], [T14, z13] and [z13, A]. These clusters merge by pairs, at times 2t12 — to,
2t13 — t10 and 2t14 — t10, etc.

Here we have 0 € (z11,715) and thus Z3(0) = ¢ for ¢ € [0,1], ZA(0) = 1 for t € [1,t10), then
Z{‘(O) =t —t1o for t € [t10,t10 + 1), then Z;“(O) = 1for t € [tio + 1,t15),... We also see that
DA(0) = {0} for t € [0,1), DA(0) = [ws,x5] for t € [1,2t5), D{A(0) = [ws,x7] for ¢ € [2t5,t10),
D?(O) = {0} for t € [tlo,tlo +1), D?(O) = [1‘12,1‘14] for t € [tlo +1,2t12 — tg), D?(O) = [—A,$14]
for t € [2t12 — tg9, 2t14 — t10), ... Of course, HtA(O) =0 for all ¢ > 0, but for example HtA(mu) =0 for
te [0,1511)7 H{x(xll) = 2t11—t1g—tfort € [tll, 2t11—t10) and then H{x(xll) =0fort € [2t11 —t10,00).
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THEOREM 4.2. For any Poisson measure my(dt,dz) on [0,00) X R with intensity
measure dtdz, there a.s. exists a unique LF F(00)-process. Furthermore, it can be constructed
graphically and its restriction to any finite box [0, T] X [—n,n| can be perfectly simulated.

The LFF (oco)-process (Zi(x), Di(x), Hi(x))i>0,zer is furthermore Markov, since it solves
a well-posed time homogeneous Poisson-driven S.D.E.

4.4. The convergence result. Recall Subsection 2.5.

THEOREM 4.3. Assume (Hpr) and (Hs(00)). Recall that ax, ny and my were defined
in (3.1)-(3.2)-(5.4). Consider, for each A € (0,1], the process (Z}(x), D} (x))i>0.zcr asso-
ciated with the FF(us, uy,)-process, see Definition 2.3, (3.3) and (8.5). Consider also the
LFF(c0)-process (Zy(x), Di(x), Hi(2))t>0,zeR-

(a) For any T > 0, any finite subset {x1,...,xp} C R, (Z}(x:), D} (@i))teo,r),i=1,...p
goes in law to (Z(x;), Di(4))icio,1),i=1,....p, 0 D([0,T],R x ZU{B})?, as A tends to 0. Here
D([0,0),R x ZU {0}) is endowed with the distance dr.

(b) For any finite subset {(t1,21),..., (tp,xp)} C [0,00) x R, with ty #1 fork=1,...,p,
(Z2 (i), D (24))i=1,....p goes in law to (Z, (x;), Dy, (%;))i=1,....p in (RxZU{})P. Here ZU{0}
is endowed with 6.

(¢) Recall Notation 2.5-(ii). For allt >0,

s (1-1/|C(n2,+,0)))
( a . Liomy.ozn | AL

goes in law to Z(0) as A — 0.

Point (c¢) will allow us to check some estimates on the cluster-size distribution. Since we
deal with finite-dimensional marginals in space, it is quite clear that the process H does not
appear in the limit, since for each = € R, a.s., for all t > 0, H(z) = 0. (Of course, it is false
that a.s., for all x € R, all ¢t > 0, H(z) = 0).

We cannot guarantee the convergence in law of D}(0) to D;(0) at time ¢ = 1. This is due
to the fact that when neglecting fires, the probability that a macroscopic zone is completely
occupied at time ayt, tends to 1 if ¢t > 1, but to a nontrivial value if ¢t = 1.

For example, in the absence of fires, a zone with length n) is completely occupied at time
a)t with probability vs((0,axt))™ =~ exp(—nyvs((axt,c0))), which tends to 1 if ¢ > 1 and to
1/eif t =1.

We believe that this is really not important and we decided to keep this definition of the
LFF(o0)-process despite this light defect.

4.5. Heuristic arguments. Let us explain here roughly the reasons why Theorem 4.3
holds true. We consider, for A > 0 very small, a FF(ug,u3,)-process (1;\(i))¢>0.icz and the
associated processes (Z;(z), D (%))1>0.2¢R-

0. Matches. The times and positions at which matches fall will tend, in our scales, to the
marks of a Poisson measure with intensity measure 1. A hint for this is the following. Consider
e.g. the domain [0,7] x [0, 1], which corresponds to [0,a,T] x [0,n,]. The probability that
two matches fall on the same site during [0,a,7] is very small. Thus the number of matches
falling in [0, a7 x [0, n)] has approximately a Binomial distribution with parameters ny and
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v ([0, axT]). Since

1 a)T
vy ([0, a\T]) ~ — / Meds(Nant,00))dt| — T
0

- /\aA
as A — 0, the asymptotic number of matches falling in [0,7] x [0,1] should have a Poisson
distribution with parameter 7.

1. Initial condition. For all x € R, (Zj(z), D{(z)) = (0,0) ~ (0,{z}) (recall that
¥s(0) = 0).

2. Occupation of vacant zones. Assume that a zone [a, b] becomes completely vacant at
some time ¢ (because it has been destroyed by a fire).

(i) For s € [0,1) and if no fire starts on [a,b] during [t,t + s], we have D} (z) ~ [z +
1/(mavs(ars,0))] =~ {z} and Z}, (x) ~ s for all z € [a,b].

Indeed, D}, (z) ~ [z — X/ny,z + Y/n,], where X and Y are approximately geometric
random variables with parameter vg((axs,c0)). (Recall that for any ¢ > 0 and for any site,
vg is the law of the time we have to wait until the next seed falls). Thus D}, (z) ~ [z +
1/(mavs((ars,00))] ~ {z} due to (Hg(o0)), since vg((ars,o0)) >> vg((ax,o0)) ~ 1/ny. For
the same reasons, K} () ~ vg((0,a,s)), whence Z},  (z) ~ s.

(ii) If no fire starts on [a,b] during [t,¢ + 1], then Z}; (z) ~ 1 and all the sites in [a, b] are
occupied (with very high probability) just after time ¢ + 1.

Indeed, we have (b — a)ny sites and each of them is occupied at time t + 1 + ¢ with
approximate probability vs((0,ay(1+ ¢)]), so that all of them are occupied with approximate
probability (vs((0,ax (1 +£)))) = = exp(—(b — a)vs((ar(1 +¢), 00)),/vs((ax, 50))), which
tends to 1 as A — 0 for any € > 0 by (Hg(c0)).

3. Microscopic fires. Assume that a fire starts at some place z at some time ¢, with
Z} (x) = 2 € (0,1). Then the possible clusters on the left and right of 2 cannot be connected
during (approximately) [¢,t 4 z], but can be connected after (approximately) ¢ + z.

Indeed, the match falls in a zone with approximate density vs((0,a)z)), so that it should
destroy a zone A of approximate length 1/vg((arz,00)) << ny. The probability that a fire
starts again in A after t is very small. Thus the probability that A is completely occupied at
time ¢ + s is approximately (vg((0,ays]))/¥s(@x2:2) ~ exp (—vg((ars, 00))/vs((arz, 00))).
When A — 0, this quantity tends to 0 if s < z and to 1 if s > z thanks to (Hg(c0)).

4. Macroscopic fires. Assume now that a fire starts at some place =, at some time ¢ and
that Z* () ~ 1, so that D} (z) is macroscopic (that is its length is of order 1 in our scales,
or of order n in the original process). This will thus make vacant the zone D} (x). Such a
(macroscopic) zone needs a time of order 1 to be completely occupied, see Point 2.

5. Clusters. Fort > 0, z € R, the cluster D}(z) resembles [z+1/(nyvs((ayz,0)))] =~ {z}
if Z})(z) = 2 € (0,1). We then say that = is microscopic. Macroscopic clusters are delimited
either by microscopic zones, or by sites where there has been recently a microscopic fire.

Even if the above arguments are (hopefully) quite convincing, the rigorous proof is long
and tedious. The main idea is that even if each isolated event is easily treated (for example,
the fact that a vacant macroscopic zone needs a delay 1 to be completely filled again relies on
an immediate computation; estimating the delay needed to fill again the zone destroyed by a
microscopic fire is not difficult, etc.), it is quite hard to follow the process during an arbitrary
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large time interval. Indeed, we have to check that the small errors due to one such event do
not become large errors after some time. For example, if a macroscopic zone is not filled at
time 1, but slightly after (say at time ¢y > 1), this could reduce consequently the impact of
a match falling in this zone between 1 and ¢y, etc. The main ideas of the proof are however
quite simple and really rely on the above heuristic arguments.

4.6. Cluster-size distribution. We will deduce from Theorem 4.3 the following esti-
mates on the cluster-size distribution.

COROLLARY 4.4. Assume (Hp) and (Hg(00)). Recall that ay and ny were defined in
(3.1) and (3.2). Let (Zi(x), Di(x), Hi(x))t>0,0er be a LFF(c0)-process. For each A € (0,1],

let (0 (i))i>0.icz be a FF(us, p),)-process.
(i) For some 0 < ¢1 < cg, for allt>5/2, all0 <a<b<1,

lim Pr (|00, , )] € [1/v5((axa, o)), 1 /s ((axb,o0))])
=Pr(Z,(0) € [a,b]) € [e1(b — a),ca(b — a)].
(i) For some 0 < ¢1 < ca and 0 < k1 < Ka, for all t > 3/2, all B > 0,
lim Pr (IC(m2,+,0)| = Bny) = Pr(|D¢(0)| > B) € [cre™"F, coe™ "1 F].
This results shows that there is a phase transition around the critical size ny: the cluster-

size distribution changes of shape at ny.

Consider the case of Example 2, where us((t,00)) <~ e~*". Then ay ~ (log(1/)))*/® and
ny ~ 1/[A(log(1/A))/*]. Very roughly, Corollary 4.4 proves that when A\ — 0, the law of
|C(n*,0)], for large times, resembles

log(1 + 2)]"/> !
(14 2)[log(1/A)]!/«

The first term corresponds approximately to the law of 1/vg((ayU, o)), for U uniformly
distributed on [0, 1] and the second term is an exponential law with mean nj.

Liaefonyd + (1/nx)e™ "™ 1z 0yda.

The main idea is that two types of clusters are present: macroscopic clusters, of which the
size is of order ny ~ A~ ![log(1/\)] =1/, with an exponential-like distribution; and microscopic
clusters, of which the size is smaller than ny, with a law with shape log(1 + z)/*~1/(1 + ).

5. Main result in the case g = BS

This case is slightly more complicated than the case 8 = co. The limit process is essentially
the same, except that the height of the barriers (vertical segments in Figure 2) are more
random.

5.1. Law of the heights of the barriers. Start at time 0 with all sites vacant. Let
u € (0,1). Assume that a match falls at site 0 at time Tsu and neglect all other fires. Call
O, the time needed for the destroyed zone to be completely regenerated and 6, the law of
©,/Ts. Clearly, 6, is supported by [0, 1]. We will show in Lemma 18.1 below that 6,, can be
defined as follows.

DEFINITION 5.1. Assume (Hg(BS)). Fort,s € [0,00), we denote by

gs(t,s) = Pr[N,, >0, N’ﬁg(t-{-s) > N7,
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where (N )i>0 is a SR(us)-process. Foru € (0,1), we consider the probability measure 0, on
[0,1] defined by

VS((TSU,TS)) 2
- h).

T gs(un) ) N
Finally, we consider a function Fs : [0,1] x [0,1] — [0, 1] such that for each u € [0,1] and for
V' a uniformly distributed random variable on [0, 1], the law of Fs(u,V) is 8,,. We can choose
Fg in such a way that for each u € [0,1], v — Fs(u,v) is nondecreasing.

Vhe01], 0u(0.]) = vs((Tsu,Ts)) + (

Let u € [0, 1] be fixed. Since ps([0,Ts]) = 1, there holds gs(u,1) = vg([0, Tsu]), whence
0,([0,1]) = 1. To check that h — 6,([0,h]) is nondecreasing, it suffices to observe that
h — g(u,h) is nondecreasing. Notice that 6,,({0}) = vg((Tsu,Ts)): this corresponds to the
situation where nothing has been destroyed because the match has fallen on an empty site.
For Fg(u,.), one can e.g. use the generalized inverse function of 6,,([0,.]).

5.2. Definition of the limit process. Let my/(dt, dz) be a Poisson measure on [0, 00) x
R with intensity measure dtdx, whose marks correspond to matches. We also consider an i.i.d.
sequence (Vi)g>1 of uniformly distributed random variables on [0, 1], independent of 7ps. If
T (dt, dx) =), < 07y, x,), We (abusively) write mps (dt, dx,dv) = 3, <1 d(1, x,,v,)- Observe
that my;(dt, dz, dv) is a Poisson measure on [0, 00) x R x [0, 1] with intensity measure dtdzdv.

DEFINITION 5.2. A process (Zi(x), Di(z), He(x))i>0,5er with values in Ry x T x Ry
such that a.s., for all x € R, (Zy(x), Hi(z))i>0 is cadlag, is said to be a LFF(BS)-process if
a.s., for allt >0, all z € R,

t t
Zy(x) = / Lz (x)<1}ds —/ / iz, (2)=1,yeD,_ (237 (ds, dy),
0 0 R
t 1 t
Hy(x) Z/ / Fs(Zs—(x),v)l{z,_(x)<137m(ds x {x} x dv) —/ Lip, (z)>01ds,
0 0 0

where Dy(x) = [L¢(x), Re(x)], with
Li(z) =sup{ly <z : Zi(y) <1 or Hi(y) > 0},
Ri(z) =inf{ly > 2 : Z:(y) <1 or H(y) > 0}

(5.1)

and where D;_(x) is defined in the same way.

The difference with the LF F'(oo)-process is that when a match falls at (¢, z) with Z;_(z) <
1, we choose H;(x) according to the law 0, (), instead of simply setting Hy(x) = Z;—(x).

5.3. Formal dynamics. Let us explain the dynamics of this process. We consider T' > 0
fixed and set Ap = {x € R: mp([0,T] x {x}) > 0}. For each t > 0, x € R, D;(x) stands for
the occupied cluster containing . We call this cluster is microscopic if Dy(x) = {x}. We have
Dy(z) = Dy(y) for all y € Dy(x).

1. Initial condition. We have Zy(x) = Ho(x) =0 and Dg(x) = {«} for all € R.

2. Occupation of vacant zones. We consider here x € R\ Ap. Then we have H(z) = 0
for all t € [0, T]. When Z;(x) < 1, then D;(x) = {«} and Z;(x) stands for the local density of
occupied sites around z (or rather for a suitable function of this density) Then Z;(z) grows
linearly until it reaches 1, as described by the first term on the RHS of the first equation in
(5.1). When Z;(x) = 1, the cluster containing x is macroscopic and is described by Di(x).
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3. Microscopic fires. Here we assume that € Ar and that the corresponding mark of
myp happens at some time ¢ where Z;_(2) < 1. In such a case, the cluster containing x is
microscopic. Then we set Hy(z) = Fs(Z:—(z), V), for some uniformly distributed V' on [0, 1]
as described by the first term on the RHS of the second equation of (5.1). We then let H;(z)
decrease linearly until it reaches 0, see the second term on the RHS of the second equation in
(5.1). At all times where Hg(x) > 0, the site = acts like a barrier (see Point 5. below). All
this means that at x, there is a barrier during [t, ¢+ Hy(z)), where Hi(x) is chosen at random,
according to the law 07, ().

4. Macroscopic fires. Here we assume that x € Ar and that the corresponding mark
of mpr happens at some time ¢ where Z;_(x) = 1. This means that the cluster containing
x is macroscopic and thus this mark destroys the whole component D;_(z), that is for all
y € Dy_(x), we set Dy(y) = {y}, Zi(y) = 0. This is described by the second term on the RHS
of the first equation in (5.1).

5. Clusters. Finally the clusters (D¢(z)),er are delimited by zones with density smaller
than 1 (i.e. Z:(y) < 1) or by sites where a microscopic fire has (recently) started (i.e. Hy(y) >
0).

A typical path of a finite-box version (Z;*(z), Di*(x), H{*());>0,0¢[— 4, 4] of the LFF(BS)-
process is discussed on Figure 3. It is very similar to Figure 2: the only difference is that each
time there is a bullet falling at some (¢, ) in a white zone, the height of the segment above
(t,x) is chosen at random, according to the law 6z, (,). And Z;_(x) equals the time passed
since « was involved in a macroscopic fire (the case LF F(co) corresponds to the law 0, = §,).
See also Algorithm 15.3 below.

5.4. Well-posedness. We will prove the following result.

THEOREM 5.3. For any Poisson measure 7y (dt, dz, dv) on [0,00) x R x [0, 1] with
intensity measure dtdxdv (and for wy(dt,dx) = fvE[O,l] myp (dt, dx, dv)), there a.s. exists a
unique LFF(BS)-process. Furthermore, it can be constructed graphically and its restriction
to any finite box [0, T] x [—n,n] can be perfectly simulated.

The LFF(BS)-process (Zi(x), Di(x), Hi(2))t>0,zer is furthermore Markov, since it solves
a well-posed time homogeneous Poisson-driven S.D.E.

5.5. The convergence result. We are now in a position to state the main result of this
section. Recall Subsection 2.5.

THEOREM 5.4. Assume (Hp) and (Hg(BS)). Recall that ay = Tg, ny = [1/(A\Ts)]
and let my satisfy (3.4). Consider, for each A € (0,1], the process (D} (x), Z}(z))t>0.zcr
associated with the FF(us,uy,)-process (n\(i))i>0.icz, see Definition 2.3, (3.3) and (3.5).
Consider also the LE'F(BS)-process (Zi(xz), D¢(x), Hi(x))t>0,0eR-

(a) For any T > 0, any finite subset {x1,...,zp} C R, (Z](2:), DM @i))reo,),i=1
goes in law to (Z(x:), Di(%4))icio,),i=1,...p» 0 D([0,T],R x ZU {B})?, as X tends to 0. Here
D([0,00),R x ZU{0}) is endowed with the distance dr.

(b) For any finite subset {(t1,x1), ..., (tp,zp)} C [0,00) xR, (Z{ (z:), D} (25))i=1,...p goes
in law to (Zy,(x;), Dy, (xi))i=1,...p in (R x ZU{0})P. Here T U{0} is endowed with d.

(c) For anyt > 0, any k € N,

lim Pr [1C (07, 0)| = k] = E [q1(Z:(0))],
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where, for z € [0,1],

q0(2) = vs((2Ts,Ts)),
(52 { ‘JZ(Z) = k[vs((zTs, Ts))?[vs((0, 2Ts)]* if k>1.

Here we have no problem with ¢ = 1: for the discrete process (in the absence of fires), all
the sites are occupied at time Ts (which corresponds to time 1 after normalization). Point (c)
will be useful to prove some estimates about the cluster-size distribution. Observe that for
z € (0,1), gx(2) is the probability that the cluster around 0 has the size k at time Tsz, in the
absence of fires, if seeds fall according to i.i.d. SR(ug)-processes.

5.6. Heuristic arguments. Let us explain roughly the reasons why Theorem 5.4 holds
true. We consider a FF(ug, 3, )-process (n)(i))i>0:ez and the corresponding processes
(Z)Mx), DMx))i>0.2er. We assume below that A is very small.

0. Matches. As in the case = oo, the times and positions at which matches fall will
tend, in our scales, to the marks of a Poisson measure with intensity measure 1.

1. Initial condition. We have, for all x € R, (Zg(x), D} (z)) = (0,0) ~ (0, {z}).

2. Occupation of vacant zones. Assume that a zone [a, b] becomes completely vacant at
some time ¢ (because it has been destroyed by a fire).
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X l
t14’ 14 : tl3’X]3

(X s g
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FIGURE 3. LFF(BS)-process in a finite box.

The marks of 75; (matches) are represented as o’s. The filled zones represent zones in which Z (z) = 1
and HtA (z) = 0, that is macroscopic clusters. The plain vertical segments represent the sites where
H{(z) > 0. In the rest of the space, we always have Z{*(z) < 1.
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(i) For s € [0,1) and if no fire starts on [a,b] during [t,t + s] (or [Tst,Ts(t + s)] in
the original scales) the density of vacant sites in [a,b] at time ¢ 4+ s should clearly resemble
vs((0,Tss)). Hence for = € [a,b], Z{(z) ~ ¥s(vs((0,Tss))) = s and Dy, (z) ~ {xz}.

(ii) If no fire starts on [a, b] during [¢,t+ 1] (or [Tst, Ts(t+ 1)] in the original scales), then
all the sites of [a, b] become occupied at time ¢ + 1 (recall that vs((0,Ts]) = 1).

3. Microscopic fires. Assume that a fire starts at some place z at some time ¢, with
Z} (x) = 2 € (0,1). Then the possible clusters on the left and right of 2 cannot be connected
during (approximately) [t,¢ + ©.Ts], but can be connected after (approximately) t + 6,7,
where O, follows approximately the law 6,. Indeed, 0, is designed for that: consider a zone
where the density of occupied sites is z and assume that the sites are exchangeable in this
zone. Pick at random a cluster in this zone. The law of its size depends on z. Then 6, is the
law of the time needed for a seed to fall on each sites of this cluster (divided by T%s).

4. Macroscopic fires. Assume now that a fire starts at some place =, at some time ¢ and
that Z} (x) ~ 1, so that D} (z) is macroscopic (that is its length is of order 1 in our scales,
or of order n in the original process). This will thus make vacant the zone D} (x). Such a
(macroscopic) zone needs a time of order 1 to be completely occupied, see Point 2.

5. Clusters. For t > 0, z € R, there are some vacant sites in the neighborhood of zx if
Z)Mx) < 1 (then we say that x is microscopic), or if there has been (recently) a microscopic
fire at  (see Point 3). Now macroscopic clusters are delimited either by microscopic zones,
or by sites where there has been recently a microscopic fire.

To transform these heuristic arguments into a rigorous proof, we have essentially the same
difficulties as when 8 = co (see Subsection 4.5): each isolated event is easily treated, but it is
quite hard to put everything together.

5.7. Cluster-size distribution. We will deduce from Theorem 5.4 the following esti-
mates on the cluster-size distribution.

COROLLARY 5.5. Assume (Hpr) and (Hg(BS)). Recall that ay and ny were defined in
(3.1) and (3.2). Let (Z¢(x), Di(x), Hi(x))t>0,zer be a LEF(BS)-process. For each A € (0,1],

let (U,g\(i))tzo,z'ez be a FF(us, u%)—pmcess.
(i) For some 0 < ¢1 < co, for allt >5/2, all k € {0,1,...},

}\112) Pr (|O(n’3\"st7 0)| = k) € [CIQk, Cqu]a

where qo = [ vs((Tsz, Ts))dz and qi = k [ [vs((Tsz, Ts))?[vs((0,Ts2))|*dz for k> 1.
(i) For some 0 < ¢1 < c2 and 0 < k1 < Ka, for allt > 3/2, all B > 0,

lim Pr (C (1, 0)] > Bi) = Pr(IDy(0)] > B) € [ere ™7, cpe 15

Consider the case of Example 1, where us = d1, Ts = 1 and vs(dt) = 19 q)(t)dt. Then
ny ~ 1/X and one can check that go = 1/2 and q = 2k/[(k + 1)(k + 2)(k + 3)] for k& > 1.
Corollary 5.5 shows the presence of two regimes: for A > 0 very small, there are some
finite (uniformly in A) clusters, as described in Point (i) and some clusters of order 1/, as
described in Point (ii). Roughly, for A > 0 very small, the cluster-size distribution resembles,
for large times,
Z qr0k(dz) + )\e_’\lll{xzo}dx.
k>0
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6. Main results when 3 € (0, 00)

6.1. Definition of the limit process. Surprisingly, the limit process in this case is
more natural than in the previous cases, in the sense that there are only macroscopic clusters
and thus no microscopic fires: heavy tails can sometimes produce natural objects. This is due
to the fact that for 8 < oo, the scale space ny is correct for all times. We describe the limit
forest fire process by a graphical construction. The limit forest fire process (Y;(2))zer,1>1 will
take its values in {0,1}. In some sense, Y;(x) = 0 means that there is no tree at x at time ¢.

For (Y (z))gzer with values in {0, 1}, we define the occupied component around = € R as
(6.1) C,z) = [I(Y,z),r(Y,2)]

where [(Y,z) =sup{y <z : Y(y) =0} and r(Y,z) = inf{y > z: Y(y) =0}. fY(x) =0,
this implies C(Y, z) = {x}.

We consider a Poisson measure 7y (dt,dz) on [0,00) x R with intensity measure dtdz,
whose marks correspond to matches. We also introduce a Poisson measure wg(dt, dz,dl) on
[0, 00) x R x [0, 00), independent of 7,7, with intensity measure dtdzS3(8+1)I~?~2dl. Roughly,
when 7mg has mark (7, X, L), this means that no seed fall on X during [r — L,7]|. In all the
other zones, seeds fall continuously.

Before handling the precise construction of the limit process, let us say roughly what
happens. Matches fall according to mp;. Draw a vertical dotted segment at X between 7 — L
and 7 for each mark (7, X, L) of wg. Start from time 0. All the sites become immediately
occupied, except sites for which there is a dotted vertical segment crossing ¢t = 0. These sites
remain vacant until the height of these segments. Thus we overwrite in plain the parts of
these segments above zero. When there is a fire at some time tg, it destroys a zone delimited
by some active plain segments. But all the sites in this zone are immediately occupied again,
except those for which there is a dotted vertical segment crossing ¢ = to. Such sites will
remain vacant until the height of these segments, so that we overwrite in plain the parts of
these segments above tg. And so on. Of course, plain segments represent vacant sites. See
Figure 4 for an illustration.

We now handle the rigorous construction on a fixed time interval [0, T7].

First, we set Y2(2) = Ling({(s,2.0) : s>t,s—1<0h)=0} for all ¢ € [0,T], all 2 € R. Observe
that for all z € R, t — Y,?(z) is non-decreasing on [0,77]. Since fooo fooo Lissrs—i<0yB(B +
1)I=#=2dlds > 0, one can clearly find an unbounded family {x;};cz C R such that for all
t € [0,7], all i € Z, Y,°(x;) = 0. We take the convention that for all i € Z, x; < Xi+1,

Xo <0 < x1, lim; oo x; = —00 and lim; ;o X; = 00.
We now handle the construction on each box [0,7] x [x;, Xi+1] separately. Let thus ¢ be
fixed. The Poisson measure my; has a.s. a finite number n; of marks (pi, a}),..., (p},,,3,,) in

[0, 7] % [Xs, Xi+1], ordered in such a way that 0 < p} <--- < p}, .

We consider the occupied cluster I{ = C’(Ypoii,aﬁ) (which is included in [x;, Xi+1] by

1

construction). For (t,x) € [0,T] % [xi, Xit+1], we set Y;'(2) = Ling({(s,0,0): s>t,5—1<pi =0} 1f
(t,2) € [}, T) x If and ¥;!(z) = Y2 () else.

Assume that for some k = 2,...,n,, (Y;k_1 ())te]0,7],2€]xi,xs.1] Das been built and consider
the occupied cluster I}, = C(Yp’ff, i) (which is still included in [x;, xi+1]). For (£, z) € [0, T]x

k
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[Xia Xi-l-l]a we define Y;Ek (:E) by setting Y;Ek (‘T) = ]l{ws({(s,z,l): s>t,s—I<pi})=0} if (ta .Z‘) € [p}ca T] XIIZ
and Y¥(z) = Y71 (x) else.

We finally set Y;(z) = V" (x) for all t € [0,T1], all « € [xi, xi+1]- Doing this for each i,
this defines a process (Y;(x))ico,1],2er-

A typical path of the LFF(f3)-process is drawn and discussed on Figure 4, from which
the following remark is clear.

fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff t=T
,,,l,.,i ,,,,,, \ ,,,,,,,, t:p;)
,,,,‘ ,,,,,,, J,,,,',,L,L tng
,,,,,,,,,, R ,,,,,,,,.,,,,,,L,J,, t= p0
1
|| ‘ ‘ | t=0
Xy X1

FIGURE 4. LFF(fB)-process with 5 € (0, 00).

The plain segments represent vacant sites and the occupied clusters are delimited by these segments.
The marks of m); (matches) are represented as e’s.

Step 0. First, we draw on the whole space [0, c0) X R all the o’s and we draw a vertical dotted segment
from (7 — L, X) to (7,X) when mg has a mark at (7, X,L). Of course, such segments are infinitely
many so that it is not possible to draw all of them on a figure.

Step 1. For each of these dotted segments that encounter the axis ¢ = 0, we overwrite in plain its part
above t = 0. Then we denote by xo and x1 the first places on the left and right of 0 such that plain
segments go beyond T'. At this stage, we have built (Y} (®))te(o0,1), k-

Step 3. At time p(l)7 we consider the component I? (between plain segments) where the match e falls.
Then, for each dotted segment (lying in I?) that encounters the axis t = p(l)7 we overwrite in plain its
part above t = pJ. At this stage, we have built (V;! (®))tel0,17,2€x0,x1]"
Step 3. At time pg, we consider the component IS (between plain segments) where the match e falls.
Then, for each dotted segment (lying in Ig) that encounters the axis t = pg, we overwrite in plain its
part above t = pJ. We have built (YtQ(x))te[O,T],ze[
And so on...

Remark. If we draw a vertical dotted segment from (7 — L, X) to (7, X) when 7g has a mark at
(1, X,L) only if L > §, and if § > 0 is smaller than min{p?, p9 — p9, pY — p3}, then we get the exact
values of Y;(z) for all = € [x0, x1] and all t € [0,7]\ ([0,8] U [p?, p9 + 8] U [p3, p + 6] U [p3, p3 + 3]).

X0,x1]"
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REMARK 6.1. (i) If we build the process using some larger final time T' > T, this
does not change the values of the process on [0,T] x R. Thus the process can be extended to
[0,00) x R.

(ii) For § > 0, denote by 7% the restriction of ws to [0,00) x R x [§,00). The sequence
(Xi)iez clearly depends only on ﬂ'g. Then for each i € 7Z, we denote by 77&T ={te[0,7T] :
ma ({t} X [Xis Xit+1]) > 0)U{0} and by d; 7 = infS,tGT;/[’T,S#t [t—s|. Then for all§ € (0,8; 7AT),

all x € [Xi, Xit+1] and allt € [0, T]\U, .7 [s,s+0], the value of Yi(x) depends only on mr, 3.
M

Observe that for all ¢ > 0, {Y; = 0} is countable and for all ¢ > 0 such that 7y, ({t} xR) = 0,
{Y; = 0} is discrete (it has no accumulation point).

PROPOSITION 6.2. Let 7, mg be two independent Poisson measures on [0,00) X R
and [0,00) x R x [0,00) with intensity measures dtdr and dtdzB(B + 1)I=°=2dl. There a.s.
exists a unique LEF(B)-process (Yi())i>0,zer- It can be simulated exactly on any finite box
[0,T] X [=n,n]. For each t >0 and xz € R, we set D¢(x) = C(Yy, x), recall (6.1).

This proposition is obvious from the previous construction. Of course, we can build
exactly the process on any finite box, but we cannot draw it ezactly: when a match falls in
some occupied cluster I at some time ¢, the set {x € T : Yi(x) = 0} is dense in I (but
{z € I: Yiye(x) =0} is finite for all small € > 0).

Note that it would have been more natural to set Y;(x) = 0 for all z € I when a match
falls in some occupied cluster I at some time t. However, since then I becomes occupied
almost everywhere immediately after ¢, the present definition (which only implies that {z €
I: Yi(z) =0} is dense in I) is simpler for mathematical purpose.

6.2. On the Markov property. The LFF(f3)-process (Y:(x))>0 is clearly not Markov,
in particular because the heights of the barriers are not exponentially distributed. The aim of
this subsection is to build a Markov process that contains more information than (Y;(z))i>o.

Let the Poisson measures my; and mg be given. Write mg = Zk>1 5( y and introduce

le, T,k
ﬂé = ZkZI 5(tk—lk,$kalk)]1{tk—lk>0} and Wg’ = Zkzl 5(tk,$k,lk)l{tk—lk<0}' Observe that Wg and
mg are independent. Furthermore, 7§ has a mark (7, X, L) if and only if there is a dotted
vertical segment from (7,X) to (7 + L, X) (with 7 > 0) and 7% has a mark (7, X, L) if and
only if there is a dotted vertical segment from (7 — L, X) to (7, X) (with 7— L <0 < 7). One
can easily check that 7% is a Poisson measure on [0,00) x R x (0,00) with intensity measure
dtdzB(B + 1)I7P~2dl. We set, for = € R,

o) = [ [ sn(ds x (o} x ),

which represents the height above 0 of the dotted (or plain) vertical segment at x that crosses
the axis t = 0, with of course T'g(x) = 0 if there is no such dotted segment. We then introduce,
forx € Rand t > 0,

t fe'e] t
Ti(z) = To(x) +/0 /0 max{l — Fs_(l'),O}ﬂ'};(dS x {x} x dl) —/O Lir, (2)>01ds,

which represents the height above ¢ of the dotted (or plain) vertical segment at = that crosses
the horizontal axis with ordinate ¢, with I's(2) = 0 if there is no such dotted segment. Indeed,
T'(z) clearly decreases linearly when it is positive, and jumps from I';_ () to max{Ts_(x),}
when 7} has a mark at (s,,l). Using the fact that a.s., for all z € R, there is at most one
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dotted segment at x, it is possible to replace max{l — I's_(z),0} by l. Finally, we define, for
reRandt >0,

t
Hy(x) // (velo_ o)} S—(‘T)ﬂ-M(dsady)_/O1{H5(1)>0}d3a
}/t( ) = ]l{H,,(m)fo}v

where (7 (Ys—,z) stands for the interior of C(Y,_,x). Then Hy(x) is the height above ¢ of the
plain segment at x that crosses the horizontal axis with ordinate ¢ (with H;(z) = 0 if there is
no such plain segment), and thus (Y;(x))>0 is the LEF(5)-process. Indeed, since we overwrite
in plain all the dotted segments that cross the axis ¢ = 0, we clearly have Hy(x) = T'o(x).
Then Hy(z) decreases linearly when it is positive, and jumps to I's_ (z) when « is involved in
a fire at some time s (whence necessarily H,_(2) = 0): recall that we then overwrite in plain
the dotted segment at x that crosses the horizontal axis with ordinate s, of which the height
above s it given by I's_ (z).

The process (T'¢(x), Hi(x), Yi(2))t>0.0er is Markov, since it solves a well-posed homoge-
neous Poisson-driven S.D.E.

6.3. The convergence result. We now state our main result in the case § € (0, c0).
We use Subsection 2.5.

THEOREM 6.3. Assume (Hpr) and (Hg(B)) for some 8 € (0,00). Consider, for each

A € (0,1], the process (D)Mx))i>0.zer associated with the FF(us, uy,)-process, see Definition
2.3 and (3.3). Consider also a LFF(B)-process (Yi(x))i>0,zer and set Dy(z) = C(Yy, z) for
allt >0, all x € R as in Proposition 6.2.

(a) For any T > 0, any finite subset {x1,...,xp,} C R, (D} :))iefo,1),i=1,....p go€s in law
0 (Di(i))tef0,17,i=1,....p @ D([0,T],Z)?, as X — 0. Here ]D)([O T ,I) is endowed with d.

(b) For any finite subset {(t1,1), ..., (tp,xp)} C (0,00) X R, (D (%;))i=1,...p goes in law
0 (D¢, (4))i=1,...p in IP, T being endowed with 6.

6.4. Heuristic arguments. We assume below that A > 0 is very small.

0. Matches. Exactly as in the case 8 = oo, we hope that matches will fall, in our scales,
according to a Poisson measure with intensity 1 (in mean, 1 match per unit of time per unit
of space, which corresponds to 1 match per ny sites during [0, a,] in the original scales).

1. Occupation of vacant zones. Consider a zone [a,b] (or [|any], |bny]] in the original
scales). At time 0, this zone is completely empty. In this zone, each site will be empty at time ¢
if no seed has fallen during [0, ¢] (or [0, axt] in the original scale). This occurs with probability
vs((axt,00)). Thus in the absence of fires, the number of empty sites in [a, b] at time ¢ follows
a binomial distribution with parameters (b—a)ny and vg((axt,c0)). Recalling (3.1), (3.2) and
(Hs(B)), we see that (b — a)nyvs((axt,00)) ~ (b — a)vs((axt,00))/vs((ax,00)) — (b—a)t=".
Hence the number of empty sites in [a, b] at time ¢ follows approximately a Poisson law with
parameter (b — a)t~? (when neglecting fires).

The link with the LFF(8)-process is simple: for any a < b and any ¢ > 0, the random
variable mg({(s,z,l) : = € [a,b],s > t,s — 1 < 0)}) follows a Poisson law with parameter

[ ds [P dw [ BB+ 1)IP~2dl = (b— a)t=P.
2. Fires. Now when a match falls at some place, this destroys the whole occupied cluster.
The destroyed cluster is then treated as in Point 1.
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The rigorous proof is, as usual, not so easy. The first step is to find a suitable coupling
between the seed processes (N;(i));>0 and the Poisson measure 7g describing times/places
where seeds do not fall in the limit process. Next, we have to find a (necessarily complicated)
event on which the normalized discrete process resembles the limit process and to show that
this event occurs with high probability. For example, this event has to guarantee us that for
sites on which seeds fall continuously in the limit process, seeds fall sufficiently often in the
discrete process. We also need that a small error in the time/place where a fire starts (or
where a seed falls) does not produce large errors after some time, etc.

6.5. Cluster-size distribution. We aim here to estimate the law of the occupied cluster
around 0. No phase transition occurs here.

COROLLARY 6.4. Let § € (0,00). Assume (Hps) and (Hg(8)). Recall that ay and
ny were defined in (3.1) and (3.2). Consider the LFF(f)-process (Yi(x))i>0,zer and the
associated (Dy(x))i>0.cer. For each A € (0,1], let (n}(i))i>0.ez be a FF(us, uyy)-process.
There are constants 0 < ¢1 < ca and 0 < k1 < kg such that for allt > 1 and all B > 0,

lim Pr [|C(12,,,0)| > Bny] = Pr{|D;(0)] > B] € [ecre™"2", coe™ 7],
A—0

7. Main results when =0

7.1. Definition of the limit process. In this case, the limiting process is trivial: we
consider a Poisson measure g on R with intensity measure dx and we put, for all ¢ > 0, all
z € R,

Yi(z) = ]I{Trs(z):O}'
Denote by {x;}iez the marks of mg with the convention that - -+ < x_1 < xo <0 < x1 < x2 <
. Then for all ¢ > 0, all i € Z, recalling (6.1), C(Yz, x) = [xi, xi+1] for all © € (x4, Xi+1)
and C(Yz, xi) = {x:i}. Matches fall according to a Poisson measure mys(dt, dz) on [0,00) x R
with intensity measure dtdz.

The LFF(0)-process (Yi())i>0,zer is obviously Markov and the following statement is
trivial.

ProproSITION 7.1. Let mg be a Poisson measure on R with intensity measure dx.
There a.s. exists a unique LEF(0)-process (Yi(x))i>0,zer- It can be simulated exactly on any
finite box [0,T] x [-n,n]. For each t > 0 and z € R, we will denote by Dy(x) = C(Yy, x) the
occupied cluster around x (see (6.1)).

Of course, fires do not appear in the construction. Hence it is not necessary to introduce
mar. However, it allows us to keep in mind that fires do occur. But these fires generate empty
zones that are immediately regenerated. The main idea is that in our scales: on the great
majority of sites, seeds fall almost continuously for all times; but there are rare sites where
the first seed will never fall. Hence when there is a fire, this always concerns a zone where
seeds fall continuously, so that one does not observe the fire at the limit. A typical path of
the LFF(0)-process is commented on Figure 5.

7.2. The convergence result. We now state our last main result, using Subsection 2.5.

THEOREM 7.2. Assume (Hys) and (Hg(0)). Consider, for each X € (0, 1], the process
(D)Mx))t>0.0er associated to the FF(us, p)y,)-process, see Definition 2.3 and (3.3). Consider
also the LEF(0)-process (Yi(z))t>0,0er and the associated (Dy())t>0,zeRr-
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(a) For any T > 0, any finite subset {x1,...,2,} CR, (D} (.Z'l Jtelo,T p goes in law
0 (D¢())ief0,17,i=1,....p @ D([0,T],Z)? as A — 0. Here ]D)([ ,00),T) is endowed with 0.
(b) For any finite subset {(t1,1), ..., (tp, xp)} C (0,00) X R, (D (x;))i=1,...p goes in law

0 (Dy;(z))i=1,...p in IP, T being endowed with 6.

7.3. Heuristic arguments. The only difference with the case 8 € (0,00) is the follow-
ing. In some sense, for each site i, in our scales, either seeds fall continuously on i, or the first
seed never falls on 4. A first hint for this is the following.

Consider a zone [a,b]. At time 0, this zone is completely vacant. Fix T' > 0. Then in
the absence of fires, the number of vacant sites in [a,b] at time T (or in [|any |, [bny]] at
time a,7T in the original scales) follows a binomial distribution with parameters (b — a)ny
and vg((axT,00)). Observe now that for any value of T' > 0, using (Hs(0)), (3.1) and (3.2),
(b—a)nyvs((axT, 0)) ~ (b—a)vs((axT, 0))/vs((ax,o0)) — (b—a). Hence the number of sites
that are still vacant at time T follows approximately a Poisson distribution with parameter
(b — a). Since this parameter does not decrease with T', this means that in our scales, sites
are either immediately occupied or vacant forever.

Here the rigorous proof is rather simple, but it still needs some care. We have essentially
the same difficulties as in the case where 8 € (0,00) (see Subsection 6.4), but they are more
easily treated.

7.4. Cluster-size distribution. Since the LFF(0)-process is very simple, we obtain of
course some more precise information on the asymptotic cluster-size distribution.

t=

X—l XO X] XZ

FIGURE 5. LFF(0)-process.

The marks of 7ps (matches) are represented as o’s. We draw a plain vertical segment above each mark
of mg. For all times, the occupied clusters are delimited by these vertical segments. In some sense, fires
have an instantaneous effect, represented as dotted horizontal segments, that we decided to neglect for
obvious practical reasons.
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REMARK 7.3. Assume (Hys) and (Hg(0)). For each A € (0,1], let a FF(us, u))-
process (N (i))i>0,icz be given, see Definition 2.3. Consider the LF F(0)-process (Yi())i>0,zer
and the associated (D¢(x))t>0,zer. Then fort >0, B >0,

lim Pr [[C(13,+,0)] = Bny] = Pr[|D,(0)| > B] = / re %dr = (B +1)e 5.

- B
No proof is needed here: xze™"ly,50y is just the density of |D;(0)] = x1 — xo. The
convergence in law of [C(n2,;,0)|/nx = |D}(0)| to |D¢(0)| follows from Theorem 7.2.

8. On some other modelling choices

For p a probability law on (0,00), we say that Ny = > - Irx, 4.4 x,<s is a natural
renewal process with parameter p, or a NR(u)-process in short, if the random variables X
are 1.i.d. with law p. When extending the traditional forest fire model (where all the renewal
processes are Poisson), we had to make some choices.

1. Matches can fall according to i.i.d. (i) SR(u},)-processes, (ii) N R(u)},)-processes.
2. Seeds can fall according to i.i.d. (i) SR(us)-processes, (ii) NR(js)-processes.

3. When a fire destroys an occupied component [a,b], we can (i) keep the i.i.d. renewal
processes governing seeds as they are, (ii) forget everything and make start some new i.i.d.
renewal processes governing seeds in the zone [a, b].

Recall that when dealing with Poisson processes, choosing (i) or (ii) in Points 1, 2, 3 does
not change the law of the FF(ug, j13;)-process.

From the point of view of modelling, it seemed more natural to choose (i) in Points 1 and
2: this is the only way that time 0 does not play a special role. We also decided to choose
(i) in Point 3, because its seems more close to applications. Let us discuss briefly what could
happen with other choices.

First, for matches (Point 1), choosing (i) does not play a fundamental role. Indeed, in
our scales, only 0 or 1 match can fall on each site. Thus our results should extend, without
difficulty, to the choice 1-(ii), replacing (Hps) by the assumption pj,((0,t)) ~ At as A —
0 (together with some additional regularity conditions if we want a strong coupling as in
Proposition 11.1).

Next, we believe that in Point 2, our results should still hold if choosing (ii) when 8 = cc.
In the case where pg has a bounded support, one would have to assume some regularity on pg
(the case ug = 01 is trivial) and to modify the dynamics of the LF F(BS)-process (the law 6,
should also depend on time). Our study would completely break down when 3 € [0, 00). In the
latter case, the situation would be quite intricate and we are not able to predict scales (and, a
fortiori, to predict some limit process). Let us explain briefly the situation. If § = oo, then vg
and pg have a similar tail (see example 2). Thus the time and space scales we have considered
will fit both vg and pg. On the contrary, if 8 € [0,00), the tails of pug and vg are really
different. Consequently, if we accelerate time according to pg (in order that for a NR(us)-
process, the cluster containing the site 0 burns before time 1 with a positive probability), then
this will be too slow for larger times (when a fire destroys a cluster (a,b), this zone (a,b) will
never regenerate).

Finally, in Point 3, we also believe that choosing (ii) would not change our results when
B = oo and not change too much the situation when pg has a bounded support. When
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B € [0,00), we expect that this would not change time/space scales, but we would have to
modify the limit processes. For example if 8 = 0, we expect that each time a fire burns a zone
(a,b), this zone would regenerate immediately, ezcept in a random number of sites, that follows
a Poisson distribution with parameter (b — a). Next if 8 € (0,00), then when a fire burns a
zone (a,b) at some time ¢, we would have to pick another Poisson measure ﬁga’b)’t(ds, dz,dl)
on [t,00) x (a,b) x (0,00), independent of everything else and use this Poisson measure above

(a,b) instead of the original 7g.

9. Open problems and perspectives

Of course, the main interesting problem is to find a scaling limit of the forest-fire process,
e.g. when seeds and matches fall according to Poisson processes, in dimension 2 or more. We
believe that the 2-dimensional limit process should enjoy self-organized criticality. However,
it is highly probable that our work, though quite complete in dimension 1, does not give the
least hint of what could happen in dimension 2. Indeed, all our study is based on the fact
that connectedness is very simple in dimension 1: a vacant site is sufficient to stop a fire. One
immediately get convinced that the situation is much more complicated in higher dimension.
A possible intermediary step, that we investigate, is to study the case where the underlying
lattice is a tree, in which connectedness is much simpler than in Z2.

A much easier problem, on which we also work, is to study (e.g. in the Poisson case)
the possible scaling limits of the forest-fire process, in dimension 1, when fires propagate at
finite speed. We then expect that several limit processes should arise: (i) if fires propagate
sufficiently fast, then we should recover the same limit process as when fires propagate at
infinite speed, (ii) when fires propagate at some precise speed (to be determined as a function of
A), then we should find a modified limit process, in which the microscopic fires are unchanged,
but in which the macroscopic fires propagate at finite speed, (iii) when fires propagate slowly,
a quite different limit process should arise.

Other possible variants could be studied. First, one could consider the case where the
processes governing seeds are not independent. It should not be too difficult to get some
results (probably with the same scaling limits as in the present paper), under a suitable
ergodicity assumption. We could also study the case where seeds fall in a random media. For
example, choose (independently) for each site some parameter A; > 0 at random, and assume
that seeds fall on this site according to a Poisson process with rate \;. In the case where the
support of the law governing the );’s is bounded from below, a scaling limit could reasonably
be found and should not differ much from the LFF(oo)-process. More subtle phenomena
could occur if there are some sites with arbitrarily small rate (on which seeds will fall very
rarely). And so on.

It also would be very interesting to study the existence and uniqueness of invariant prob-
ability measures for the four limit processes, as well as their convergence to equilibrium. The
case 8 = 0 is obvious, since the limit process LFF(0) is stationary. But the three other
cases seem quite intricate. Finite-box versions of these processes obviously converge in law
to a unique invariant probability measure. However, we have no idea of how to check that
correlations do not become longer and longer when time increases for the true limit processes.
Although this problem seems hard, it is probably less difficult to study invariant distributions
for the limit processes than for the original forest-fire processes.
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Finally, it might be possible (possibly using the ideas of the present paper), to give much
stronger versions of Corollaries 4.4, 5.5, 6.4 and Remark 7.3 concerning the asymptotics of the
cluster-size distribution. For example in the Poisson case (use Corollary 4.4 with pgs((¢,00)) =
e™t), we deduce from our convergence result that the probability that the cluster containing
0 is of size x, in the original scales and for sufficiently large times, resembles

1

(14 2)[log(1/N)
in a very weak sense. It would be interesting to prove a stronger version of this claim.
For example, it was proved rigorously in Brouwer-Pennanen [16] that there are constants
0 < ¢ < C such that for all 0 < A < 1 and all stationary measures uy (invariant by translation)
of the forest fire model on Z with parameter \, for all x < (1/[Alog(1/\)])'/?,

c C
Ao oe i/ = UCM Ol =2) < G507

Our result shows that at least a weakened version of such inequalities extends to much higher

values of z, possibly to all z < 1/[Alog®(1/A)]. It would be very interesting to prove that
these inequalities really hold true for such values of x.

] L(aco,1/(Mog(1/a)]} + Alog(1/A)e™ "M BN gy



Part 3

Proofs



10. Graphical construction of the discrete process

The goal of this section is to prove Proposition 2.4 by using a graphical construction.
Proof of Proposition 2.4. Our aim is to prove that for any 7' > 0, a.s., the values of the
FF(us, par)-process (1(i))eeo,),icz are uniquely determined by (N (i), NM(i))¢>0,icz. Re-
call that vg(dz) = mg' ps((z,00))dz and va(dz) = my) v ((z,00))dx, where mg and mas
are the expectations of pug and pps. We consider hg > 0 such that vg([2hg,00)) > 0 (if vg has
an unbounded support, any value of hg is possible) and we put ¢y = vg((2ho, 00))var((0, ho)) >
0. We also set K = |T'/ho].

For n € Z, we consider the event (2, 7, on which the following conditions are satisfied:
(i) N (n) = 0,
(i) Vi€ [1, K], NGy, (n+13) = NGy, (n+ 1),
(iif) Vi € [1, K], Njji (n+14) > NGy, (n+1).
We first observe that for any n € Z, using the stationarity of the renewal processes,
Pr[Q,.7] = vs((ho,o0))ct =: er > 0.
Next we prove that necessarily,
Qpr C{Vt€[0,T],3i € [n,n+ K],n(i) = 0}.

This is not hard: (i) implies that n:(n) = 0 for t € [0, hgl, since no seed falls on n during this
interval. Point (iii) implies that for ¢ € [1, K], a match falls on n+: during ((i —1)hg, ihg] and
Point (ii) guarantees us that no seed falls on n+ ¢ during ((z — 1)k, (i + 1)ho], whence the site
n + 14 is necessarily vacant during (at least) (iho, (i + 1)ho]. Consequently, on €, 7, there is
always at least one vacant site in [n,n + K] during [0, ho] U (Uj=1,... x (¢ho, (i + 1)ho]) D [0,T]
(with our choice for K, we have (K + 1)hy > T).

Hence conditionally on €, 7, during [0, T, the fires starting on the right of n + K do not

affect the values of the forest fire process on the left of n; and the fires starting on the left of
n do not affect the values of the forest fire process on the right of n + K.

.....

Since Pr[Q, 1] = ¢ > 0, we can find -+ < n_1 < ng < 0 < ny < ng... such that
Nz, 1 is realized (use that €2, 7 is independent of Q,, r if |m —n| > K).

We deduce that for any i € Z, the values of (1:(i))¢cjo,7 are entirely determined by
the values of (N7 (j), NM(4))e(o,(c+1)ho] for a finite number of j’s, namely (at most) j €
[ng, ni + K], where k < I satisfy ny + K < i < ny.

We have shown that for any T' > 0, (7¢(2))¢>0.4cz is entirely and uniquely defined by the
values of (N (i), N (4))ie(o,(k +1)ho) icz- O

11. Convergence of matches

In this section, we consider any function A — a) bounded from below and such that
ny = [1/(Aay)] — oo. For A > 0, we set Ay = |An, | and I} = [~ Ay, A)]. For i € Z, we set
ix = [i/my, (i + 1)/n)y). The following result will be used to prove our four main theorems.

PROPOSITION 11.1. Assume (Hps). Let A >0 and T > 0 be fized. We can find, for
any A € (0,1], a coupling between a Poisson measure wys(dt, dx) on [0,00) X R with intensity
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measure dtdz and a family of i.i.d. SR(u),)-processes (NM(i))iezis0 such that for

M) == {Vt € [0,7], Wi € I, ANMA@) £ 0 iff mar ({t) x iy) # o}

azt
limy ¢ Pr[Q%T()\)] =1.

This means that in our scales, with a high probability, the matches used in the discrete
processes can be prescribed by a Poisson measure, as in the limit processes.

PROOF. We divide the proof into several steps. Observe that
By = Uielz‘iA = [714,\/11,\, (A,\ + 1)/11)\)
(which is approximately [—A, A]). It of course suffices to build 7y, restricted to [0,7] x By

and the family (N}*(i)) for i € I} and t € [0, a\T).

Step 1. First, we observe that a possible way to build 7y (restricted to [0,T] x By) is
the following;:

(i) Consider a family of i.i.d. r.v. (Zf‘)ielj1 following a Poisson distribution with parameter
T|’LA| = T/Il)\.

(ii) For each i with Z > 0, pick some i.i.d. r.v. (Tf’k, X{"’\) (T;;\, X* >‘) with uniform
law on [0,7] x iy (conditionally on Z2).

A

Set finally mp = Ziep‘ Zf;l (S(T%,A7Xi‘,>\).

Step 2. Next, we note it is possible to build the family (N} (i ))ie1) teo,art] 28 follows:
introduce g (A, T) = Pr[Na T( i) = k] and C,? T(dty, ..., dty) the law of the k jump instants of
NM:A(3) in [0,a,T] conditionally on {NM 2i) = k.

(i) Consider a family of i.i.d. r.v. (Zi)\)ielﬁ with law (gx (A, T))k>o0-

(i) For each i with Z} > 0, pick (T, ... ,TZZ;\) according to § "dty, ..., dtZi)\) (condi-
tionally on Z).

Set finally NM (i) = o240 Lysgiy for t € [0,a3T), i € I).

Step 3. We show in this step that for each i € I}, one can couple Z; (as in Step 1-(i))
and Z (as in Step 2-(i)) in such a way that

Pr[Z} =Z} =0]>1-XayT(1 +er())) and Pr[Z} = Z} =1] > dayT(1 — er())),
where limy_,g e7()\) = 0. Below, the function e may change from line to line.
It is classically possible (see Lemma 22.3-(i)) to build a coupling in such a way that
22 = 0] APx[Z} = 0],
(2 =1 APr[Z} =1].

3 K2

Pr[Z} = Z}) = 0] >Pr
1] >Pr
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We now use (Hpy): recalling that [ ph,((s,00))ds = 1,

Pi{Z) = 0] =y (@T.00) = A [ °°T phe (O s = [ °°Tu1M<<u,oo>>du

/\a)\T
=1- / ph(u,00))du > 1 — dayT.
0

Since Pr[Z} = 0] = e~ 7/?x = e~ T/11/(Can)] = 1 — \ayT(1 + e7())), this concludes the proof
of the first lower-bound. Next, recalling Definition 2.1 and (Hyy),

a T
PiZ) = 1] = / 1(axT — 5,00))2y (ds)
-/ T A (M@ T — 5),00) ik (As, 00))ds

Aa)T
- / iy ((NaxT — w, 00)) ik (1, 00) ) = AayT(1 — er(N)),

since Aay — 0 as A — 0. But now Pr[Z} = 1] = (T/ny)e~ T/ = \a,T(1 — e7())), because
ny = [1/(Aay)] and this concludes the step.

Step 4. We now check that for each i € I}, conditionally on {Z} = ~Z-)‘ = 1}, we can
couple T} and T (see Steps 1-(ii) and 2-(ii)) in such a way that for

rr(N) = Pr [T1* = T{2 Jay | 2} = 2 =1]

limy_,o r7(A) = 1. We first recall that 77" is uniformly distributed on [0, T'] (conditionally on
{Z} = 1}). We next remark that the conditional law of T} knowing {Z} = 1} (which we
called ¢;"7) is nothing but

CA,T(dt) 7’/1)&(dt)ﬂﬁ4((a>\T —t, OO))]I{tE[O,aAT]}
1 - a T
Jo’ i ((@xT — s,00))vy; (ds)
:M}w(()‘(aAT — ), OO)))\N}VI((M, OO))]l{tE[O,aAT]
)\a)\T(l - ET(A))
vyhere we used the~same computations as in Step 3. Consequently, the conditional law of
Ti* /ay knowing {Z} = 1} has a density gy 7 of the form
1+ep(A
grr(®) = TN (Gan(r - 0,00 b (st 00D Lo -
Observe that limy_,o gx r(t) = T’l]l{te[O,T]}, since Aay — 0. Hence, classical arguments (see
Lemma 22.3-(ii)) show that conditionally on {Z} = Z} = 1}, we can couple Tf’)‘ and Tf’)‘ in
such a way that

T
. - - 1
Pr [lev\ = va/\/a,\ | 2} = 7} = 1] > / min (T’g/\’T(t)) dt,
0

Y at,

which tends to 1 as A — 0 by dominated convergence.
Step 5. We finally may build the complete coupling.
(i) For each i € I, we consider some coupled random variables (Z}, Z})) as in Step 3.

(ii) For i € I} such that Z} = Z} = 0, there is nothing to do.
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(iii) For i € I} such that Z} = Z} = 1, couple T7"* and T7"* as in Step 4 and pick X
uniformly in 7.
(iv) If i € I} does not meet one of the two above conditions (ii) and (iii), then we build

(T XM, (T;;\, XlZi‘) and Ti, ... ,T;f‘ in any way (e.g., follow the rules of Step 1-(ii)

and Step 2-(ii) independently).
7> A 2 .
(v) Set mp = Zielﬁ Dorig (S(T;,A7Xi,>\) and NMA@) = S0, Lisginy fori € I}, t €
[OvTaA]'
Step 6. Define the event
G0 = ({2 =20 =0pu{z} = 2} =1, TP =T} an}).
i€l
Then we have Q%T()\) C QN 1(N) (where Q) (\) was defined in the statement). Indeed, on
QX (M), for any i € I}, t € [0,T], we have ANYMA@) # 0iff (Z) =1 and axt = T}?) iff
(Z} =1 and t = T} iff 7pr ({t} x ix) > 0.
Finally, using Steps 3 and 4 and that |I}| = 24, + 1,

~ ~ - 2AN+1
Pr[Y (V)] > (Pr[Z{)\ =20 =0+Pr|2) =20 =1, T = T{”/aAD ’

2(1 —da\T(1+er(N) + da T(1 — ET(}\))TT()\))QA)\JFl.

Recall that limy_,0 e (A) = 0, that limy_,o r(A) = 1 and that Ay < A/(Aa,). Hence for some
(other) function ep with limit 0 at 0,

PriQA (V)] > (1 — AayTer(N)>/ a0+
This last quantity tends to 1 as A — 0, which concludes the proof. 0

12. Convergence proof when S € (0, c0)

We split this section into three parts. First, we handle some preliminary computations
on SR(ug)-processes. Next, we show how to couple the set of times/locations where no seed
fall (in the discrete model) with the Poisson measure mg. Then we conclude the convergence
proof. In the whole section, we assume (Hy) and (Hg(f)) for some 8 € (0,00). We recall that
ay and n, are defined in (3.1) and (3.2). For A > 0, we set Ay = [Any | and I} = [— A\, A,].
For i € Z, we set iy = [i/ny, (i + 1)/ny).

12.1. Preliminary computations. First, we will need the following estimate.
LEMMA 12.1. For any I € (0,00) fized, ps((axl, 00)) ~ mgBl P71\ as X — 0.

PROOF. Recall that pg((t,00))dt = mgvg(dt). For a > 0, one may write, using the
monotonicity of z — ug((z,0)),

MS((aAl,OO)) . 1 /ax(lJra)

A “alay

s ((z,00))dx
ayl
mgs )

= h\ [ S (a)\l,OO))*VS((a)\(l‘i’O‘)aOO))]
aAa)

vs(
_ms [VS((aAlaOO)) ~ vs((an(l + @), 00))
a [ vs((ax,00)) vs((ax,00))
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For the last equality, we used that by definition, vg((ax,00)) = day. Due to (Hs(f)), we
deduce that for any a > 0,
l
liminf M > ms [l*ﬁ —(l+ a)fﬁ] > msB(l+ a)fﬁfl_
— A o
One gets an upper bound by the same way: for any « € (0,1),

ps((axl, ) 1 /a”

lim sup < lim sup
A0 A A0 QAN Ja, (1—a)

ps((x,00))dr < mgB(l — a)fﬁ*l.

We have proved that for any a € (0,1),

msB(l+ )1 < limint 2L o o ps(@LO) g gy-p-1,
A—0 A A—0 A
Making o tend to 0 allows us to conclude. O

Next, we compute the asymptotic probability that on a given site, no seed fall during
some large time interval. By large, we mean with a length of order a,.

LEMMA 12.2. Let (Ty,)nez be a SR(ps)-process (see Subsection 2.1). For A > 0,t >0
and l > 0, we set

SM)=#{ne€Z: T, c|0,axt], T, — Tn_1 > axl},

which represents the number of delays with length greater than ayl that end in [0, axt].

(i) For t >0 and 1 > 0 fized, as A — 0, Pr[S}(I) = 1] ~ tha Bl =1,

(ii) Fort >0 and | > 0 fized, limsupy_,o(Aax) "2 Pr [SP(1) > 2] < .

(i) On the event {SM1) = 1}, we put 7 := T, and L = T, — T,_1, where n is the
unique index such that T,, € [0,t] and T,, — T,—1 > apl. For all s € [0,t], all z € (I,00),
limy_,o Pr[r/ay < s, L/ay > x| SP() = 1] = (s/t)(z/1)~5#71 .

PROOF. Let us recall that the SR(ug)-process (Ty,)nez is built as follows: one considers
an ii.d. sequence (X;)jez\ (o} of us-distributed r.v., Xo a zus(dr)/ms-distributed r.v. and
U uniformly distributed on [0, 1]. Then we set Top = —(1 — U)Xy, T1 = UX, and for alln > 1,
Thi1=Th+X,and T, =T_, 11 — X_,,. We also introduce, for A > 0,l>0and 0<s <t

Syl =#{n€Z : T, € [ars,axt], Tn — Tn_1 > anl}.

Step 1. First assume that [ > t. Then by construction, S} (1) € {0,1} and {S}(I) =1} =
{T1 <ayt, Ty —Tp > ayl} = {UX, < axt, Xo > ayl}. Hence

E[S}(1)] =Pr[UX, < axt, Xo > ayl]

® ous(dz) /
[ s\ g,
/axl ms 0 fuosaxt}

7/00 rus(dr) axt  axt
a

l .
SR = (. o0)

Al
We used here that since [ > ¢, for x > al, there holds axt/x < 1.
Step 2. We now show that for any [ > 0, any ¢t > 0,

E[S}(1)] = ;—fus«aﬂ,oo».
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Consider n > 1 such that ¢t/n < [ and observe that S}(1) = Y1 18’1);/” +1yen(D)- By
stationarity, we have E[Sft/n (ir1ye/n (D] = [St)‘/n( )] for i =0,...,n — 1, which is nothing but
na'ri\zts s ((axl,00)) by Step 1. The conclusion follows by linearity of expectation.

Step 3. We now check Point (ii). Let p; = inf{T}, : n € NJT,, — T,,_1 > a)l,T,, > 0}
and po = inf{T,, : n € N,T,, —T,,_1 > axl, T, > p1}. Then Pr[S}(I) > 2] = Pr[ps < ayt]. We
also observe that Pr[p; < axt] = Pr[S}(1) > 1] < E[S}(1)] = artus((arl, o0))/ms. Denote by
Cx, the law of py/ay. Then a renewal argument shows that

Prish) 2 2= [ Cald)f Lt — 1),
0

where
fNLs)=Pr[3n>1;X, >a; X1+ -+ X, <ays].
We can rewrite this as (recall that Ty = UXy ~ vg)

FONLs)=Pr[3n>1;X, >a;UXo+ X1+ -+ X, <axs+ UXy]
I‘[E|TL>O X, >a;UXog+ X1+ - +Xn§a,\(8+1)]+PI‘[UonaA]
=Pr s+1( ) > 1] +VS((a/\700))

S
a>\(s +1)

Ms((axl, 00)) + Aay
mg

thanks to Step 2. As a conclusion,

at+l) C,\l (dr)
0

us((a)\l, OO Jr Aay

Pr[SN(1) > 2] < <

us((axl,00)) + Aay | Prlp1 < ayT)

VRS

o

>

s|=

a |+

=
\/\/\_/

a)t
m—sﬂs((a/\laoo))-

Due to Lemma 12.1, this last term is equivalent to (Aay)?[(t + 1)B178~1 + 1]tBI=#~1, from

which Point (ii) follows.

Step 4. Steps 2 and 3 imply Point (i). Indeed, we clearly have Pr[S} (1) = 1] < E[S}(I)] =
2L s ((anl, 00)) ~ thayfl~P~1 by Lemma 12.1. Next, using that S (1) < 1+1¢/1 by construc-
tion,

—~

Pr[SP(1) = 1] =E[S? (D152 y=13] = E[S? (D] = B[S} (D153 (1) >2y]
azt
> 25 (@t o) — (14 /) PrlSA D) > 2.
Point (ii) allows us to conclude easily.
Step 5. It remains to check (iii). We thus fix 0 < s <t and 0 <! < . Then as A — 0,

Pr[SXz) =1]  siayBz—P! - )
Pr[Spy=1] tAaiﬂHm = (s/t)(x/1)

due to Point (i). O

Pr(r/ay <s, Ljay >z |Sp() =1] =
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12.2. Coupling of seeds. We aim to couple the Poisson measure mg(dt,dz,dl) used
to define the LFF(f3)-process with times/places where seeds do not fall in the FF(us, u3,)-
process. We would like that roughly, wg({t} x iy x {l}) = 1 if and only if no seed falls on
¢ during [ay(t — 1), axt] (and if this is the maximal interval, that is seeds fall in ¢ at times
a)(t — 1) and ayt). We have to consider the finite Poisson measure mg restricted to the set
{l > &}, for some arbitrarily small § > 0.

PROPOSITION 12.3. Let A >0, T >0, a > 0 and § > 0 be fixed. For any X € (0,1], it
is possible to find a coupling between a Poisson measure wg(dt, dz,dl) on [0, 00) xRx[0, 00) with
intensity measure B(3 + 1)I=P2dtdxdl and an i.i.d. family of SR(us)-processes (T)icz.nez
(recall Subsection 2.1) in such a way that for

57(6,1) = ws([0,T] x ix x [6,00)),
SX8,1) = # {n >1: T e0,a\T], T8~ T, > aﬂs},

setting
0 raaN) = () ({5200) = 536.) = 0} U {83,) = S2(8,3) = 1,
iel)
ZI0X) L2(6,1)
ké‘-iTT(’ LA(;‘fT’
7_T( 71) a + T( aZ) ay Oé}),

there holds
lim Pr(Q3 75,(\) = 1.

A—0
On the event {S(6,1) = S)(0,i) = 1}, we have denoted by (7(6,7), L3(5,4)) the unique
element (t,1) € [0,T] x [6,00) such that ws({t} x iy x {I}) =1 and we have put 75(5,i) = T?
and L(6,i) = TP —T!_,, where n > 1 is the unique element of N such that T € [0,a\T)] and
T,fl — zj—l Z aAé.

Proor. We fix T'> 0, A >0, > 0 and a > 0. We divide the proof into several steps.
Observe that By := Ujepyin = [—Ax/ny, (Ax +1)/ny) (which is approximately [—A4, A]). It
of course suffices to build 7g restricted to [0,7] x By x [d,00) (we abusively still denote by
7g this restriction) and the family (77%) for i € I} and n > 0 (with our notation, we have
TE<0<TY.

Step 1. A possible way to build mg (restricted to [0,T] x By x [d,00)) is the following.

(i) Consider a family of i.i.d. r.v. (S%((S,i))ielz following a Poisson distribution with
parameter T'|ix| [;~ B(8 + 1)I78~2dl = B6~F~1T/n,.

(i) For each i € T} with S}(8,4) > 0, pick some iid. r.v. {(Tp* Xp™ LM bsr sas
with density ]l{te[O,T],zeiA,l>6} (ﬂ =+ 1)n)\5ﬂ+1liﬁ72/T.
Put mg = ZS%(&Z.)(S EA y i A 7oA
S i€l Lak=1 (TP XN L)
Step 2. Next, we note it is possible to build the family (Té)ielj,,nzo as follows: denote
by qr(\) = Pr[S}(8,4) = k] and by A} the law of (T?),>0 conditionally on {S3(d,7) = k}.
(i) Consider a family of i.i.d. r.v. (S2(4, i))iery with law (gx(A))e>0-
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(ii) For each i € I}, pick (T%),>o according to A (conditionally on S(d,1)).

52.(6,4)
Step 3. For each i, it is possible to couple S3(d,7) and S’%(é,i), distributed as in Step
1-(i) and Step 2-(i), in such a way that
Pr[S7(8,4) = S7(3,i) = 0] >1 — Xay B P~ 'T(1 + er.5(N),
Pr[S}(6,7) = S7(8,1) = 1] >XaxBd P17 (1 — e 5(N)),

where limy_,oe7,5(A) = 0. It is classically possible (see Lemma 22.3-(i)) to build a coupling
in such a way that

Pr[S)(8,4) = S7(6,4) = 0] > Pr(S2(d,4) = 0) A Pr(
Pr[S5(6,1) = S (0,4) = 1] > Pr(SH(8,1) = 1) A Px(

(6,4) = 0),

(0,1) = 1).

First, we infer from Lemma 12.2 that Pr(S2(d,7) = 0) > 1 — Aax6 21T (1 + er,5()\)) and
Pr(S(6,i) = 1) > XaxB6 P~ 1T (1—er,s()\)). Next, since S3(d,1) follows a Poisson distribution
with parameter 36~#~1T/ny ~ AayB6~#~1T, we have Pr(S)(6,i) = 0) = ¢80 "'T/nx >
1—ayB6~A~1T(14e14(N)) and there holds Pr(SX(6,i) = 1) = [36A~1T/nyJe= A 'T/nx >
AayB6 P~1T(1 — e7.5()\)). This concludes the step.

Step 4. We now check that for each i € I3}, conditionally on {SH(6,7) = SH(6,i) = 1},
we can couple (77, L* X4 1) and (T%),,>0 in such a way that for (see the statement)
(0,4) Lp(0,9)| _

an ay

QA
T
QA
T

rrs,a(N) =Pr | |1(5,4) — + |L3(8,4) — =70 =1

3

1im,\_,0 TT,57Q()\) =1.

To this end, consider (T7),>o with law A} (recall Step 2). Denote by p(;)"T(dt, dl) the law
of (72(8,1)/ax, L3 (3,7)/ay) (under A}). We know from Lemma 12.2-(iii) that pgT(dt, dl) goes
weakly, as A — 0, to ps,r(dt,dl) := T8 + 1)6° P21 ¢(0 171563 dtdl. Indeed, observe
that ps.7([0, 5] x [x,00)) = (s/T)(2/5) P~ for s € [0,T] and = > 4.

But ps7(dt, dl) is nothing but the law of (7(6, ), L}(8,4)) = (Ti*, L) conditionally on
{S2(8,7) = 1} (recall Step 1-(ii)). We easily conclude: first, we couple (72(d,1)/ax, L(0,7)/ay)
and (72(6,4), L7:(d,1)) in such a way that they are close to each other (with a distance smaller
than o) with high probability (tending to 1 when A — 0), using Lemma 22.3-(iii). Then we
choose X {”\ at random, uniformly in iy, independently of everything else and finally, we pick
(T%),>0 conditionally on {S3(d,1) = 1} and (7(6,4), L7:(d,1)).

Step 5. We finally may build the complete coupling.

(i) For each i € I}, consider some coupled r.v. (S}(d,7), S(d,7)) as in Step 3.

(i) For i € I} such that S)(6,i) = S)(0,4) = 1, couple (T7*, L»*, XY and (T7),>0 as
in Step 4.

~ (iii) Fori e I 4 not meeting the above condition (ii), follow the rules of Step 1-(ii) to build
(T, X0, LZ’/\)lgkgsk (s,) and the rules of Step 2-(ii) to build {T?},>0 (e.g. independently).

This defines {17 tn>0,iery and mg == Ezef)‘ ZST(5 %) 5(T“ XX i)
: v g
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Step 6. With this coupling, using Steps 3 and 4 and that |I}| = 24, + 1,
PrQS 5] 2(Pr [ S3(8,0) = 53(0,3) = 0] + Pr[$2(6,1) = S3(8,0) = 1,

- 245 +1
[72(6,4) = 76, ) /x| + L3 (6,1) — L3(8,)/an] < o] )
> (1= XaxB6° T (1 + ers(N) + Aax B8P 1 T(1 — 7 5(\)rrs.a (V) >
Recall that limy_,o e7,5(A) = 0, that limx_,o 77,50 (A) = 1 and that Ay < A/(Aay). Hence for
some function €7, with limit 0 at 0,

_ 2A/(hay)+1
Pr0S 1 5.0] > (1 - AanB6° 1 Teq g 4(1) /O

This last quantity tends to 1 as A — 0, which concludes the proof. 0

12.3. Convergence. We are now able to conclude. Intuitively, the situation is clear:
using Proposition 11.1, we couple the time/positions at which matches fall in the LFF(3)-
process with those of the FF(ug, u},)-process; and using Proposition 12.3, we couple the
time/positions at which no seed fall in the LF F(/3)-process with time/positions at which no
seed fall during a time interval of length of order ay in the FF(ug,p),)-process. Then we
only have to show carefully that this is sufficient to couple the FF(ug, ,u;\w)—process and the
LFF(B)-process in such a way that they remain close to each other. But there are many
technical problems: our couplings concern only finite boxes [0,T] x [—A, A], do not allow to
treat small time intervals with no seed falling, etc. We thus have to localize the processes in
space and time and to work on an event (with high probability) on which everything works
as desired.

Proof of Theorem 6.3. We fix T > 0, 1 < --- < xp and t1,...,t, € [0,T]. We introduce
B > 0 such that —B < 27 < 2, < B. We fix ¢ > 0 and @ > 0. Our aim is to check that for
all A > 0 small enough, there exists a coupling between a F'F (g, j13,)-process (n(i))i>0.icz
and a LFF(B)-process (Yi(z))i>0,zer such that, recalling (3.3) and Proposition 6.2,

p

(12.1) Pr > 8r(D ax), D(xk)) + Y 8(D) (x1), Dy, (ax)) > a| <e.
k=1 k=1

This will of course conclude the proof.

Step 1. Consider two independent Poisson measures mg(dt, dz, dl) with intensity measure
B(B + 1)~ P~ 2dtdxdl and 7y (dt, dz) with intensity measure dtdz. Set, for A > B,

Oy ={rs({(t,z,0) : x € [B, At >T+1,1>t+1}) >0}
N{rs({(t,x,1) : € [-A,—B],t >T+1,1>t+1})>0}.

A simple computation shows that

A [eS) [eS)
Pr[Qi’,lT] >1-—2exp (—/B dx /T+1 dt " BB+ 1)l_ﬂ_2> ,

so that we can choose A large enough in such a way that Pr[Qi”lT] > 1—¢/6. This will ensure
us that there are x4 € [-A, —B] and x4 € [4, B] with Y;(x,) = Yi(xa) =0for all t € [0, +1]
(recall Figure 4). This fixes the value of A for the whole proof.
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Next we consider Ty > T + 1 large enough, so that for
Qg = {ms({(t,z,0) : t>To,t —1<T+1,2€[-A A]}) =0},

Pr[Qiﬁ,QT,TO] >1—¢/6. This is possible, because

A ) )
Pr[Qi?T,Tg] = exp </ dx/ dt/ BB+ 1)lﬁ2dl> ,
—A To t*(TJrl)

which clearly tends to 1 as Ty increases to infinity. This will ensure us that all the dotted
vertical segments in [—A, A] that intersect [0,T + 1] end before Ty (see Figure 4). This fixes
the value of Ty for the whole proof.

Next we call Xy = {z € [-A4,A4] : 7pm([0,T] x {z}) > 0} and Ty = {¢t € [0,T] :
mam({t} x [-A4, A]) > 0} U {0}. Classical results about Poisson measures allow us to choose
Kpr > 0 (large) and cpr > 0 (small) in such a way that for

M,1 . . .
QKM,CM = {|TM| < Ky, tyse%lﬁs;ﬁt [t —s| > e, teTMr%m p|t —tg| > e,

min |x—zk|>CM},
xeX N k=1,..., vy

Pr [QMJ } >1—¢/6.

Knrsem

We can now fix § > 0 for the whole proof, in such a way that
0 <eym/4 and 0 <a/(8ApKy).

We use this § to cutoff the Poisson measure g (in order that it has only a finite number of
marks) without affecting the values of the LF F(S)-process in the zone under study.

Next, we consider the finite Poisson measure ﬂg’é’TO defined as the restriction of 7g to the
set [0,7p] x [—A, A] x [§,00). We define X3 = {z € [-A, A] : 75([0,Tp] x {z} x [§,00)) > 0}
and

T2 = U {t,t =1} | N[0, 7).
(t,xz,l)€ supp wg"s'TO

Then for Kg > 0 large enough and cg > 0 small enough, the event

Qps :{TJ<K min |t—s|>c min t—tg| >c
Ko.cs.0 = Ts| < Ks, teTM,seTg| | > cs, teTg,k:L___7p| K| > cs,
min |z —y|>cs, min |z —y|>cs, min |z — k] >cs}.
z,yeX xty TEXJ,yEX N 2€Xl k=1,....p

: 5,3
satisfies Pr{Qg. .. 5] > 1—¢/6.
Finally, we fix a > 0 in such a way that
a<cs/d, a<ey/d, a<l1/2 and a<a/(8Ap(2Kgs+ Ku)).

Step 2. Using Proposition 11.1, we know that for all A > 0 small enough, it is possible
to couple a family of i.i.d. SR(u},)-processes (NtM”\(i))tzoﬂ-eZ with 7, in such a way that

ayt

QN (N) = {\ﬁ € [0,7], Vi € I3, ANMMi) £ 0iff mag({t} x i) 2 o}
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satisfies Pr[Q}(A)] > 1—¢/6. We infer from Proposition 12.3 that for all A > 0 small enough,

it is possible to couple an i.i.d. family of SR(ug)-processes (Tﬁ)iez,nzo with g in such a way
that for

2, (8,3) = ms ([0, To] x {ir} x [6,00)),
S (6,1) = # {n >1:Tie0,a\To], 70 —Ti_, > a,\(S} ,

setting
150 = () ({50,0.0) = S2,0,9) =0} U { s, 6,) = 53, 0,9) = 1,
iel}
..,A . ~)\ .
Ao o TM,9) Ao oo LM0,9)
R et A L =\
rN68) = T | D) — T < al ),

Pr(Q3 1, 54(A) = 1 —¢/6. On the event {S, (6,i) = g%o(é,i) = 1}, we have denoted by
(72(68,4), L*(d,1)) the unique element (¢,1) € [0,Tp] x [, 00) such that wg({t} x iy x {I}) =1
and we have put 72(8,4) = T and L*(8,4) = T — T?_,, where n > 1 is the unique element
of N such that T € [0,ayTp] and T — T?_, > axd. We put N7(i) = D1 Uiy for all
1 €Z,allt >0, which is a family of i.i.d. SR(us)-processes in the sense of Definition 2.1, see
Subsection 2.1.

Step 3. We work with the FF(usg, j13;)-process (1, (i))¢>0.icz built from (N2 (i))i>0.icz
and (NM*(i))1>0.icz and the LFF(B)-process (Y;());>0.zcr built from mg and 7y, all these
processes being coupled as in Step 2. We consider the associated clusters (D} (z))i>0 zer and
(Di(x))t>0,zer, see (3.3) and Proposition 6.2. We will work on the event

S,1 S,2 M,1 S,3 M S
QA :QA,TOQA,T,TO OQ OQ SQQA,T()\)OQA,TO,(Z&()\)‘

Knem Ks,cs,
Thanks to the previous steps, we know that Pr[Qy] > 1 — ¢ for all A > 0 small enough. We
introduce
S = (Uter [t t + 6+ o)) U (Uperslt — .t + al).
We will prove in the next steps that for A > 0 small enough, on 2, for all kK = 1,...,p, for
all t € [0, 7],

(12.2) §(DNzk), Di(zx)) < 4/mx + 241 ey,

which will imply that

5T(D)\($k); D(mk)) < 4T/n,\ + 2A|8|
This will conclude the proof. Indeed, on ), we know that ¢;,...,¢, do not belong to &
(thanks to Q}g(’z,cs,a and Q%’\iCM and since cg > « and ¢y > 0 + «) and that the Lebesgue
measure of S is smaller than K, + (2Kg + Kar)a. Thus on Qy, since 6 < a/(8ApKjs) and
a <a/(8Ap(2Ks + Kur)),

> 87(DMax), D(xx)) + Y 8(Dy, (xx), Dy (2x))
k=1

k=1
<p2A(Knd + (2Ks + Kpy)a) + 4T /ny + 4/ny] < a/2 + (4T + 4)p/ny,

which is smaller than a for all A > 0 small enough. This implies (12.1) for all A > 0 small
enough.
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Step 4. Here we localize the processes, on the event Q). Due to Qi’,lT, we know that
7s has some marks (74, X4, Lg) and (74, Xd, La) such that —A < x; < —B, B < xq < A4,
Tg >T+1,74>T+1, Ly > 75+ 1and Ly > 74 + 1. This implies, by definition of the
LFF(f)-process, that Y;(xg) = Yi(xa) = 0 for all ¢ € [0,T+1]. Consequently, for all ¢ € [0,T]
and all z € [xg, xa] D [—B, B], we have Dy(z) C [xg, Xdl-

Set now gx = |naxg) and dx = [nxxa]. These are those sites of I} C Z such that
Xg € (92)x and x4 € (dr)x. We claim that on Qy, for all t € [0,a,7T], i (g9x) = 7 (dy) = 0.
Consequently on 2y, we clearly have C(n} ;i) C [gx + 1,dx — 1] for all ¢ € [0,T] and all
i€ gx+1,dy—1].

Indeed, consider e.g. the case of dy. Due to Qi1T07510¢(>\) and since S7, (6, dx) > 0 (because
g has the mark (74, xa, La) that falls in [0, Tp] X (dx)x X [6,00)), we deduce that S7, (6, dy) =
S’%U (8,dy) = 1 and that [72(6, dy)/ay — 74| +|L*(3,dr)/ax — La| < o < 1. But no seed falls on
dy, by definition, during (7*(0,dy) — L*(8,dy), 7(8,dy)). This last interval contains [0, axT7:
since a < 1/2, 7A(8,dy) > ax(1qg — @) > ax(T + 1 —a) > ayT and 7(0,dy) — l~/\(5, dy) <
ay(7g — Lqg +2a) < ay(—1+ 2a) < 0. This proves that n;'(dy) = 0 for all ¢ € [0,a)\7.

Using furthermore Qi’%To (0), we deduce that on Qy, (Yi(x), Di())icjo,1],0€[x,,xa] 1S COM-

pletely determined by the values of g and 7y restricted to the boxes [0, Tp] X [xg, Xa] X (0, 00)
and [0,T] X [xg, Xa)- By the same way, (1*(i))ic(0,a,7],ic[gx,ds] 1S completely determined by
(NS (@), N2 (6))tef0,anT] icgr,da]- And we recall that [—B, B] C [xg, xa) C [~ 4, A].

Step 5. In this whole step, we work on ). We denote by (p;, ;)i=1,...,n the marks of
7w in [0,T] X [xg, xal], ordered chronologically (0 = py < p1 < -+ < p, < T). For each
k, we recall that in the FF(ug, ,u;\\/[)-process7 there is match falling at time aypx on the site
[nyap] (recall Q%T()\) and that « € iy iff i = |nyz]). Furthermore, these are the only fires
in [0,axT] x [gx,dx]. For kK =0,...,n, let us consider the properties

(Hy): Vi€ [gx da], n;\xpk (i) = ;22 Yy, (2);

(Hp): Vi€ lgndl VEE o) \S, md(i) = inf Yi(x).

TETN

We observe that (Hp) holds: for any i € Z, n)(i) = 0 and inf ,¢;, Yo(z) = 0 because the
set {x € R : Yy(z) = 0} is a.s. dense in R. Indeed, recall that Yy(z) = 0 as soon as
ms({(t,x,1) : 1 >1t})>0and that [;°dt [~ B(B+ 1)I7F~2dl = .

We are going to prove that for k € {0,...,n—1}, (H) implies (H}) and (Hg41). Assume
thus that (Hy) holds for some k € {0,...,n — 1}. We first prove that (H;) holds.

We recall that for all i € [gx,dx], S7,(6,1) = 5‘%0 (6,4) is either 0 or 1. On {S3, (4,i) =
S’%U (6,1) = 1}, we have |72(3,) — 72(6,7)/ax| < a and |L*(d,4) — L(6,7)/ay| < a. Recalling

furthermore Q%’V},CM and Q}g(z 5,87 using that « < ¢pr/4, we deduce that:

e cither 7*(8,4) and 7*(d,7)/a, both belong to the same interval (pg(;), pg(i)+1) for some
q(#) € {0,...,n — 1} or are both greater than p,, (then we say that ¢(i) = n);

o cither 72(8,1) — L*(8,4) and (7}(0,1) — L*(4,1))/ax both belong to the same interval
(P (i)> Pt (i)+1) for some ¢'(i) € {0,...,n —1} or are both greater than p, (then we adopt the
convention that ¢'(i) = n), or are both smaller than 0 (then we say that ¢'(i) = —1).
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We next observe that since d < cr, the values of (Y;(2), Dt(2))te[0,7\U.c 7, [5.5+6],2€[xgxa]
depends on g only through its restriction to [0, 7o] X [xg, Xa] X [, 00). Furthermore, for any
t €[0,T]\ UseTy [5, 8 + 6] and any x € [x,, xa], D+(x) has its extremities in X$. Have a look
at Figure 4 and use the fact that all the dotted segments with length smaller than § cannot
concern two fires. See also Remark 6.1-(ii).

We now distinguish several situations to prove (H}). We use, in all the cases below, that
there are no fires in the time interval (pg, px+1) in the LEF(3)-process in the box [x4, x4 and
no fire during (axpk, axpr+1) for the FF(us, uy,)-process in the box [gy, d,], recall Q%T()\).
Let i € [gx, dA].

Case (a): 7,,,,(i) = 1. Then by (Hy), infyeq, Yy, () = 1. An obvious monotonicity
argument shows that for all t € (p, pr+1), Ma,+(i) = infaes, Ye(z) = 1.

Case (b): 72,,, (i) = 0 and S (6,4) = S, (6,4) = 0. Then infye;, Vi(z) = 1 for all
t € [pr + 6, prt+1), because in iy, there is no dotted segment with length greater than § that
intersect [0,7] (see Figure 4). Next, S’%O (0,7) = 0 means that all the delays we wait for a
seed (on the site ¢ during [0,a,Ty]) are smaller than ayd. Consequently, 73 ,(i) = 1 for all

t € [pk + 8, pr+1). Hence 12,(i) = infye;, Ye(a) = 1 for all t € [pg + 8, prs1) D (prs pit1) \ S

Case (c): 13, ,, (i) = 0 and Sp, (6,i) = S’%U (6,i) =1 and ¢q(i) < k. Then inf,¢;, Yi(z) =1
for all t € [pr + I, pr+1), because the only dotted segment in i) with length greater than §
that intersects [0, 7] has ended before py (because ¢(i) < k). Next, the only delay (between
two seeds on i during [0,a,7]) greater than a,d is ended before aypy (because ¢(i) < k),
so that n} (i) = 1 for all ¢ € [py + 0, pr+1). Hence n ,(i) = infye;, Yi(z) = 1 for all
t € [pre + 0, pe41) O (pr, Pr41) \ S

Case (d): 0}, (i) =0, S, (6,i) = S, (6,i) = 1 and ¢'(i) > k. Then inf,e;, Yi(z) = 1
for all t € [px+ 6, pr+1). Indeed, the only dotted segment in ¢y with length greater than § that
intersects [0, T'] starts (strictly) after py, (because ¢'(¢) > k). Next, the only delay (between two
seeds on 4 during [0,a,T]) greater than ayd will start strictly after aypy (because ¢'(i) > k),
so that n} (i) = 1 for all ¢ € [py + 0, pr+1). Hence n ,(i) = infye;, Yi(z) = 1 for all
t € [px + 6, pp41) D (Pr, Pr41) \ S.

Case (e): 03, ,, (i) = 0 and S}, (6,) = S’%U (6,i) =1 and ¢'(i) < k < q(i). Then np ,(i) =
0 for all t € [pk, (F(6,7)/ar) A prg1) and 03 (i) = 1 for all ¢ € [(F2(6,7)/ar) A prt1, Pr+1)
(because no seed fall on i during [7*(8,7) — L*(6,1),7*(8,1)) > pr and a seed falls on i at
time 7*(4,)). By (Hy), we also know that inf,e;, Yy, (z) = 0. Calling (77(8,4), zo, L*(3,1))
the only mark of 7g that falls in [0, 7o) X iy x [0, 00), we claim that necessarily, Y,, (zo) = 0.
Indeed, all the other dotted segments in 4y that intersect [0, 7] have a length smaller than
0 < em < pr — pr—1. Thus if infe;, Y, —(z) = 0, necessarily, Y,, _(x¢) = 0 and thus
Y,, (zo) = 0. If now inf,¢;, Y,, —(x) = 1, then i) is connected at time time pyp—, whence the
fire at time p, burns completely iy (because infge;, Y, () = 0 by assumption), so that in
particular, Y, (xo) = 0. Then we have to separate two situations.

o If 72(6,4) < pi + 0, then we easily deduce that inf,e;, Yi(z) = 1 for t € [p + 6, pri1)-
Recalling that 12 ,(i) = 1 for all ¢ € [(72(6,7)/ax) A pe+1,pe+1) and that [F2(6,4)/ax —
7(6,1)| < a, we easily conclude that 1} (i) = 1 for t € [px + o + 8, pey1). Thus 3, (i) =
infoei, Yi(x) for t € [pr + 0 + o, pe41) O [pk; prt1) \ S
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e If now 7*(d,i) > pi + J, then we have, by construction, inf,e;, Yi(x) = 0 for ¢t €
(o, TN(6,4) A prr1) and inf e, Yi(x) = 1 for t € [72(0,4) A prs1, prsr1)- Recalling the values of
na,+(7) and that |7X(8,7)/ax — 72(6,1)| < a, one easily concludes that 7} (i) = infreq, Yi ()
for t € [p, pr+1) \ S (because 72(4,i) € TS whence [72(6,4) — a, 72(6,4) + a] C S).

We have proved (H}) and this implies that

Vi€ [gndal, 2, -(0) = inf Y, (x).

TETN

It remains to prove (Hyy1).

Consider the ignited cluster [a,b] = D, —(axs1) in the LFF(j3)-process. Then the
ignited cluster in the FF(ug,p),)-process at time aypri1 (due to a match falling on the
site |[nyag41]) is nothing but I}, = {i € [ga,dr] : ix C Dy ,—(ars1)}, at least if A
is small enough (such that 1/ny < ¢g). Indeed, we have n;\kpk_“f(i) = infeeiy Y —(7) =
1 for all i such that iy C D, ,—(aks1) and (on the two boundary sites) ng‘wkﬂ_(i) =
infyei, Yy, ,—(x) = 0 for i such that ix ¢ D,, ., —(cq1) with ixND,, ., —(og1) # 0. And for
A > 0 small enough (such that 1/ny < cg), [myaws1] € I, (because [a+1/ny,b—1/n,] C
II?—H by the previous study, because D,, ., _(ars1) = [a,b] has its extremities a,b in 3,
because ay+1 € Xy and because the distance between Xg and Xy is greater than cg, recall

9%2705,5, so that actually, ag+1 € [a + cs,b — ¢s]).

Then on the one hand, for all i € [gx,d\], we have inf,eq, Yy, ., (2) = infocq, Yy —(2)
if ix N Dy, ,,—(ars1) = 0 and infeeq, Yy, () = 0 if ix N Dy, —(apy1) # 0: the first case
is obvious and the second one follows from the fact that a.s., ms({(¢t,z,l) : ¢t > prpt1,2 €

ixN Dy —(arg1),t —1 < pry1}) = oo (but this concerns marks (¢,,1) with a very small
length [ > 0).

On the other hand, for all i € [gx,d,], we have nf’}kﬂ(i) = n;)\k+17(i) if i ¢ I, and
Moo (1) = 0if i € I},

As a conclusion, for all i € [gy,d)],

e if ix C Dy, ,—(aps1), ie. if i € I}, then we have seen that néwk_ﬂ(i) =0 =
infee;, Y;Jk+1 (l‘),

o if ixN Dy, —(arp1) = 0 (hence i ¢ I),,), then we have seen that néwk_ﬂ(i) =
Mayp 1 (1) = infrciy Yo, - (2) = infoci, Yy, ., (2);

eifi ¢ I} | but ixN Dy, —(cks1) # 0, then we have seen that infye;, Y, ., (x) =0 and
ng‘erl (1) = 0 because n;\kpkﬂf(i) =0 (since then ¢ lies at the boundary of I, ;).

Hence (Hy41) holds.

Step 6. We finally can prove (12.2) on ) and this will conclude the proof. First, we
know from Step 4 that for all t € [0,T], all k = 1,...,p, Di(zx) C [xg, xd] C [—A4, A] and that
Cna,e laxz]) C [ga+1,dx —1] whence D (zx) C [—A, A] (because (g +1)/ny > x4 > —A
and (dy — 1)/ny < xa < A). This obviously implies that §(Dy(x), D} (zx)) < 2A4.

Next, Step 5 implies that for all ¢ € [0,7]\ S (or rather for all ¢t € [0, p,) \ S, but the

extension is straightforward), for all i € [gx,dx], 13, (i) = infzeq, (Y2(x)). This implies that
forall t € [0,T]\ S, for all k = 1,...,p, §(D(zx), Di(z1)) < 4/n) as desired.
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Indeed, assume that Dy (xx) = [a,b] C [xg, Xa] for some t € [0, T]\S. Recall that a,b € X7J.
We have Y;(y) = 1 for all y € (a,b) and Y;(a) = Y;(b) = 0. Hence we deduce that n (i) = 1
for all i € [[any|+1, [bny|—1] and that ) ,(lanx]) = 72, ,([bnx]) = 0. Next, we observe that
for A > 0 small enough, |any| < |zxny| < [bny]. Indeed, on Qy, we have, since a,b € X3,
|2k — al > ¢s and |b— x| > ¢g. We finally obtain C(n, 4, |zxkna]) = [lany] + 1, [bny] — 1],
whence D} (z;) = [(lany] + 1)/ny, (|bny] — 1)/ny]. Recalling that D;(z) = [a, b], one easily
deduces that §( D) (wg), Di(z1)) < 4/ny. O

13. Cluster-size distribution when 3 € (0, 00)

This section is entirely devoted to the

Proof of Corollary 6.4. We thus fix 8 € (0,00) and assume (Hys) and (Hg(f)). For each
A > 0, we consider a F'F(ug, uj,)-process (n(i))i>0,icz. Let also (Yi(7))i>0.2cr be a LEF(B)-
process. We know from Theorem 6.3 that |C(n;,0)|/ny goes in law to |D;(0)], for any ¢ > 0.
In Step 1 below, we will check that for ¢ > 0, the law of |D¢(0)| does not charge points. Thus
for any B > 0, t > 0, we will have lim_,o Pr[|C(n},0)| > nyB] = Pr[|D.(0)| > B]. In Steps
2 to 6, we will check that there are some constants 0 < ¢; < ¢ and 0 < k1 < ko such that if
t > 1, for any B > 2, Pr[|D;(0)| > B] € [cre™"28 cye *1B]. One immediately checks that this
implies Pr[|D;(0)| > B] € [cre™2"2e7 %28 (cg v e2"1)e™"18] for all t > 1, B > 0 and this will
conclude the proof.

Step 1. The goal of this step is to check that for any ¢ > 0 fixed, the law of |D;(0)| does
not charge points.

Consider the first mark (Ty, X4, Lq) of ms on the right of 0 (x4 > 0) such that [0,t] C
[Tq — Lq,Ty). Consider a similar mark (7, x4, Ly) of mg with x, < 0.

Then Y;(x4) = Ys(xq) = 0 for all s € [0,t], so that fires falling outside [x4, xa] cannot
affect 0 during [0, ¢].

Next, denote by (T, Xar) the instant /position of the last match falling before ¢ in [x4, xa-
Then a.s., t — T > 0, and D(0) is of the form [a, b], for some marks (Tg, a, L,) and (Ty, b, Lp)
of mg satisfying xg < a <0 <b < xq, Ta — Lo < Ty, Ty — Ly < Ty, Tq >t and Ty > ¢
There are a.s. a finite number of such marks (because a.s., ftoo ds stjTM BB+ 1)=52dl =
(t —tar) P < 00), and their (spatial) positions clearly have densities, whence the result.

Step 2. For t > 1, a € R, we consider the event Q, , defined as follows, see Figure 6:

(i) was has exactly one mark (T, Xpr) in [t —1,¢] X [a, a+ 1] and there holds (T, Xnr) €
[t—2/3,t—1/2] x [a+ 1/4,a+ 3/4];

(ii) mg has one mark (T,, Xy, Ly) such that Ty — L, <t—1 <t < T, and X, € [a,a+1/4]
and one mark (Ty, Xg,Lg) such that Ty — Ly <t —1 <t < Ty and Xy € [a + 3/4,a + 1]
(recalling Figure 4, there are dotted vertical segments in [a,a 4+ 1/4] and in [a + 3/4,a + 1]
that run across [t — 1,]);

(iii) all the other marks (7, X, L) of mg with X € [a,a+ 1] and [T — L, T)N[t — 1,¢] # 0
satisfy L < 1/4 (recalling Figure 4, all the other vertical dotted segments in [a,a + 1] that
intersect [t — 1,¢] have a length smaller than 1/4).

Step 3. In this step, we prove that on € 4, we have either Y;(X,) = 0forall s € [t—1/2,¢]
or Y5(Xg) =0 for all s € [t —1/2,¢]. We distinguish two situations.
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o First assume that [X,, Xg4] is connected at time Th;— (that is Yp,,_(z) = 1 for all
x € [Xg4, Xa]). Since Xy € [X,4, X4), the fire destroys the cluster and thus we deduce that
Ys(Xy) = 0 for all s € [T, Ty) D [t —1/2,t] and that Y;(X4) = 0 for all s € [T, Ty) D
[t —1/2,1].

o Next assume that [X,, X4] C [a,a + 1] is not connected at time Tps— (that is, there
is some zg € [X4, Xq] such that Yr,,_(x¢) = 0). Then we claim that either Yr,,_(X,) =0
(then Y;(X,) =0forall s € [T, Ty) D [t—1/2,1]) or Y7,,—(Xq) = 0 (then Y;(X4) = 0 for all
s € [T, Tq) D[t —1/2,t]). Indeed, recall that all the dotted segments that intersect [t — 1,¢]
in (X4, Xq) have a length smaller than 1/4. Thus if [X,, X4] is disconnected at time Thr—
due to a fire that started before ¢t — 1, it can be only with o = X, or g = X4, whence the
conclusion. But if now [Xg,Xd] is disconnected at time Thy— due to a fire that started at
some time 7 € [t — 1,Ths) at some place x ¢ [a,a + 1] (since there are no fires in [a,a + 1]
during [t —1,Ths)), this necessarily also concerns one of the extremities Xy or X4 of [X,, X4].
Thus in any case, we obtain either Yp,,_(X,) = 0 or Yr,,_(X4) = 0 as desired.

Step 4. Let us prove that p := Pr[Q; ,] > 0. This value will obviously does not depend on
a € R, t > 1, by homogeneity in (s,z) of the Poisson measures 7y (ds, dz) and wg(ds, dzx,dl).

(TyX
(T,X,) 3
1 ; : ‘ ‘ l t
— f - =12
o | o A
SR @ X)
I | | M M I
T R = t-2/3
e A -1
a 1 atl/4 1 ag34r 0 atl
T :L X (Td_Ld’Xd)
(T LX)
FIGURE 6. The event € 4.
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Define the zones

Ay =@t —2/3,t—1/2) x (a+1/4,a+ 3/4),

By = ((t—1,¢) x (a,a+ 1)) \ Aar,

As ={(s,z,1), z € (a,a+1/4),s >t >t —1>s—1},

Bs ={(s,z,1), v € (a+3/4,a+1),s >t >t—1>s—1},

Cs={(s,z,]), x € (a+1/4,a+3/4),s >t >t—1>s—1},

Ds ={(s,z,1), v € (a,a+1),[s—1,s]N[t —1,t] #0,l > 1/4} \ (As U Bs UCg).
The zones Ay and By are disjoint and for (pr(ds,dz) = dsdx, (p(Aym) = 1/12 and
Cv(Bar) = 11/12. The zones Ag, Bg, Cs, Dg are also disjoint and simple computations show
that, for (s(ds,dz,dl) = B(3 + 1)l 2dsdzdl, (s(As) = (s(Bs) = 1/4, ¢s(Cs) = 1/2 and

¢s(Dg) = 45(58 4+ 1) — 1. Consequently, recalling that my; and g are independent Poisson
measures with intensity measures (3 and (g,

Pr[Q 4.5 = Pr(mpm(An) = 1, (Bar) = 0,ms(As) = ms(Bs) = 1,m5(Cs) = mg(Dg) = 0)
= g(AM)e—CM(AM)e—CM(BM)Q“S(As)e—Cs(AS)<S(BS)6—45(BS)6—CS(Cs)e—Cs(Ds)
— (1/12)671/126711/12(1/4)2671/267413(5[34»1)4»1 =p > 0

Step 5. We clearly have, for any ¢t > 1, any B > 2,
{|D:(0)] > B} c {Vx €[0,B/2], Yi(z) =1} U{Vx € [-B/2,0], Yi(z) =1},
whence Pr[|D;(0)] > B] < 2Pr[V x € [0, B/2], Yi(x) = 1] by symmetry. Furthermore, Step 3
implies that
{Vzel0,B/2], Yi(z) =1} C Q0N N NQY ga_q)-
Using then Step 4 (and some obvious independence arguments), we get
Pr(|Dy(0)] = B] < 2(1 —p)lP/27 1+ < 2(1 - p) PN

Consequently, for all t > 1, all B > 2, Pr[|D:(0)| > B] < cae "B with ¢3 = 2/(1 — p) and
r1 = —[log(1 —p)]/2.

Step 6. Next, we consider the event QLB on which:

(i) mp ([t — 1/2,¢] x [0, B]) = 0;

(ii) all the marks (T, X, L) of mg with X € [0, B] satisty either T <tor T — L >t —1/2)
(this means that there is no dotted vertical segment running across [t — 1/2,¢] in [0, B]).

An easy computation as in Step 4 implies that

t B 00 B o]
Pr[Q: 5] =exp 7/ / dsdz—/ ds/ d:c/ diB(B + 1)I=P2
t—1/2J0 t 0 s—t+1/2

=exp(-B/2-2°B).

We claim that on €; _1 N QLB N Q¢ g, we have [0,B] C D;(0), whence |D:(0)] > B.
Indeed, we know from Step 3 that there is xo € [-1,0] and x;1 € [B,B + 1] such that
Ys(x0) = Ys(x1) = 0 for all s € [t —1/2,1]. Thus the fires starting outside [xo, x1] do not
affect the zone [xo, x1] during [t — 1/2,t]. Furthermore, there are no fires starting in [xo, x1]
during [t — 1/2,t]. At last, since all the dotted segments in [0, B] intersecting {¢} have started
after t — 1/2. We easily conclude that Y;(z) =1 for all = € [0, B].
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Using finally some obvious independence arguments, we get
Pr[|D;(0)| > B] > Pr[Q% 1 N Qe 5 N Q5] > pPexp (—B/2 — 2°B) = cje "2,

with ¢; = p? and kg = 1/2 + 25, O

14. Convergence proof when g =0

This case is simpler than the case 8 € (0, 00), but a little work is however needed. We also
divide the section into three parts: preliminaries, coupling of seeds and convergence proof.
In the whole section, we assume (Hps) and (Hg(0)). We recall that ay and n) are defined
in (3.1) and (3.2). For A > 0, we set Ay = [Any] and I} = [~A\, A,]. For i € Z, we set
ix=[i/my, (i +1)/ny).

14.1. Preliminaries. The proof will use the following estimate.
LEMMA 14.1. For any l € (0,00) fized, we have limy_0 A" pg((axl, 00)) = 0.

PRrROOF. Using the monotonicity of pg((z,00)) and since pg((z, 00))dz = mgvg(dx),

a o0 axd
s (( ;l, ) S)\il/ l/QHS((z,oo))d:E
:i%j[l/s((akl/Q, OO)) - VS((a)\la OO))]
_Qms

== [rs((axl/2,00)) /vs((ar, 00)) = vs((arl, 00))/vs((ax, 0))] -
For the last equality, we used that by definition, vg((ax, c0)) = Aay. Using (Hg(0)), we easily
conclude. 0

The following statement contains some crucial facts about accelerated SR(ug)-processes
under (Hg(0)).

LEMMA 14.2. Let (T),)n>1 be a SR(us)-process (see Subsection 2.1). For A > 0,t >0
and l > 0, we set

RMI)=#{n>1: T, €0,axt], Tni1 — Tn > ayl},

which represents the number of delays with length greater than axl that start in [0, axt].
(i) For any T > 0, Pr[Ty > a)T] = vs((ayT,00)) ~ Aay as A — 0.
(ii) For any T > 0, any | > 0, E[R}(1)] = axTus((axl,00))/ms = o(Aay) as A — 0.

PROOF. Point (i) is immediate: vg is the law of T and since Aay = vg((ax,00)) by defi-
nition, one has vg((arT, o00)) = Aayvs((arT, o)) /vs((ax, 00)). One concludes using (Hg(0)).
Point (ii) is slightly more delicate. First, we complete the SR(ug)-process (T, )n>1 in (T )nez,
see Subsection 2.1. Then we observe that since Ty < 0 < 17,

Ry)=#{neZ: T,c[0,a\T), Tps1 — Ty > anrl}.
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Next, we set 7, = axT — T_, and we introduce ng such that 7,, < 0 < 7,,41. We put
T = Tnog+n- Then (T))nez is also a SR(ug)-process (see Subsection 2.1). We have

Ry1) =#{n€Z : ayT — T, € [0,axT], (axT — Tp,) — (axT — Tuy1) > anl}
=#{n€Z : Ty €[0,a\T), Topong — Tn—1-ny > arl}
—#{neZ: T, cl0,a\T], T, — Tp_1 > arT}
=#{n>1: T, €[0,a\T], T — Tr_1 > anl} =: Sp(1).
We used that Ty < 0 < Ty by construction. But SH(1) is the number of delays with length
greater than ayl that end in [0,a,7], for the SR(ug)-process (T, )nez. Thus exactly as in

the proof of Lemma 12.2 (Steps 1 and 2), we get E[S}(1)] = mg'a T us((axl,)), so that
E[R}(1)] = mg'ayTus((axl, 00)). Finally, Lemma 14.1 implies that E[R)(1)] = o(Aay). O

14.2. Coupling of seeds. We aim here to couple the Poisson measure mg(dz) used to
build the LFF(0)-process with a family of SR(ug)-processes, in such a way that roughly:

o if mg(ix) > 0, then the first seed never falls on 4;

o if mg(ix) = 0, then seeds fall almost continuously on 1.

The precise statement is as follows.

PROPOSITION 14.3. Let A >0, T >0, § > 0 be fized. For any X\ € (0,1], it is possible
to find a coupling between a Poisson measure mg on R with intensity measure dx and a family
(NZ(i))t>0.iez of SR(us)-processes in such a way that for

05,50 = [ ({mstin) =0, _inf NS00 = N2, () > 0}
iel) ’
U {ms(in) = 1, N5, p(3) = 0} ),
limy 0 Pr[Qf 7 ;(A)] = 1.
ProOF. We split the proof in several steps. As usual, it suffices to build 7g on By =
Uieryia = [-4, A] and to build N7 (i) for t € [0,a\T] and i € I}.

Step 1. Denote by (N;)i>0 a SR(us)-process and by (T5,),>1 its jump instants. Recall
the notation of Lemma 14.2. Then we observe that {NaiT =0} ={T1 > a\T} and

: S S _ A —
{tG[é{g(ﬂ [Nax(t-i-é) - Na;t] > O} - {Tl < a>\67 RT(é) - O}

These two events are furthermore disjoint. By Lemma 14.2, we deduce that for some functions
er(A) and ep s(N) tending to 0 when A — 0
Pr Le[é%f_a}wi(”ﬁ - N3 > o} > 1 —Pr[Ty > ayd] — E[R}(6)] > 1 — dax(1 +e7.5()\))
and
pr(\) == Pr[NZ 1 = 0] = Pr[Ty > ayT] = Aay (1 + 7 (V).
Step 2. Next, we prove that it is possible to couple a family (Z')\)ielj, of i.i.d. Poisson-

K2

distributed random variables with parameter |ix| = 1/n) and a family of (Z{\)ielj, of ii.d.
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Bernoulli random variables with parameter pr(A) (see Step 1) in such a way that for
Qra(\) ={vie I}, 2} = 2} € {0,1}},

there holds limy_,o Pr[Q7 4(\)] = 1. As usual, this follows from Lemma 22.3-(ii) and relies on
the straightforward computations (here the function er changes from line to line)

Pr(Z} = 0] APr[Z} = 0] = (e 7™ ) A (1= pr(N) > 1= dax(1+er(V),
recall that ny ~ 1/(Aay), and
PHZ} = 1] APHZY = 1) = (=™ ) A pr(A) = Aax(1 - er(A)
from which
PriQra(N)] = [1— Aaxn(1 +er(A) + Aax(1 — ex(\)]"3l > [1 = dayer ()74l

This last quantity tends to 1 as A — 0, because |I3| ~ 24/(\ay).

Step 3. We finally build the complete coupling.

(a) Consider (Z3, Z-)‘)iejﬁ as in Step 2.

K2

(b) For each i € I} such that Z} > 0, pick some i.i.d. random variables (XA 7XZZ;\)

. .. . z> . . 1 s .
uniformly distributed in iy. Then g = > i > i1 Oxin is a Poisson measure with intensity
A - k
measure dx on By = Uielzi,\.

(c) For each i € I} such that Z} =1, set N3 1(i) = 0. For each i € I’} such that Z} =0,

pick (N7 (i))teo,ay)] conditionally~on NgiT(i) # 0. This defines a family of i.i.d. SR(us)
processes on [0,ayT] (because Pr[Z} = 1] = pp(X) = Pr[NZ 1(i) = 0]).

Step 4. With this coupling, we have Q7 _4(\) N Qi,T,é()‘) C Qim&()\), where

s = () (it I8 (D) = V2] > 0 0r M) =0).
ier} '

It thus only remains to check that limy_,o Pr[Qi1T75(/\)] = 1. But using Step 1 and recalling
that |I}] ~ 24/(\ay), we get

— A
Pr[0F 15(V)] > [1 = Aax(1+ers(N) + Aax (1 +er (V)] A
which tends to 1 as A — 0, as usual, since |I}| ~ 24/(\ay). O

14.3. Convergence. We may now prove the convergence result in the case § = 0.

Proof of Theorem 7.2. We fix T > 0, &1 < --- < zp and t1,...,t, € (0,7]. We introduce
B > 0 such that —B < 27 < zp, < B. We fix ¢ > 0 and @ > 0. Our aim is to check that for
A > 0 small enough, there exists a coupling between a FF(us, uy,)-process (0 (i))i>0.icz and
a LFF(0)-process (Y;(2))i>0,zer such that, recalling (3.3) and Proposition 7.1, there holds

P

(14.1) Pr | " 67(D ak), D(wx)) + Y 8(D}) (x1), Dy, (z1)) > a| <e.
k=1 k=1

This will conclude the proof.
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Step 1. Consider two independent Poisson measures wg(dx) and 7/ (dt, dx) with intensity
measures dr and dtdx. First, we consider A > B large enough, in such a way that for

05" = {rs([~A,~B]) > 0,7s([B, A]) > 0},

there holds Pr (Qi’l) >1—¢/4. This fixes the value of A.

Next we call Xg = {z € [-A, A],7s({z}) > 0}, T = {t € [0,T] : mas({t} x [-A4,4]) >
0} U {0} and Xy = {z € [-A, Al, 7 ([0,T] x {z}) > 0}. Classical results about Poisson
measures allow us to choose K > 0 (large) and ¢ > 0 (small) in such a way that for

Qe = {|Tu| + |Xs| < K, min [t —tg]| > ¢, min |z —y| > ¢,
teTm,k=1,....p z,y€EXsUX M ,x#Y

min
rEXsUX )\ ,k=1,...,
there holds Pr[Qx ] > 1 —¢e/4.

Step 2. Next, we know from Proposition 11.1 that for all A > 0 small enough, it is
possible to couple a family of i.i.d. SR(u},)-processes (NtM’A(i))tzo,ieZ} with 7y in such a
way that for

QN L (A) = {w € [0,T], Vi € I, ANMA (i) # 0iff mar ({1} x iy) # o} ,

azt
there holds Pr[Q%T()\)] >1—¢/4
We now fix 6 > 0 such that
d<c¢/4 and ¢ <a/(4AKDp).

Proposition 14.3 tells us how to couple, for all A > 0 small enough, a family of i.i.d.
SR(us)-processes (N7 (i))i>0,icz With mg in such a way that for

5500 = () ({rstio) =0 _f (N300 - N300 > 0
ier} '

U{ms(in) = 1, NS2(i) =0} ),
there holds Pr[Qi7T76()\)] >1—¢e/4

Step 3. We consider mys, g, (Nts(i))tzo,ieZ} and (thw)\(i))tzo,iez} coupled as in Step
2. Then we build the corresponding FF (s, u},)-process (n(i))i>0,icz and the associated
rescaled clusters (D) (7))i>0.2¢r, see (3.3) and we build the LFF(0)-process associated to mg
and the corresponding clusters (D¢(z))i>0,zer. We will work on the event

O = Q3 N Qg N QL) N QS 75N,
We know that for all A > 0 small enough, Pr[Q,] > 1 —e. We introduce
S = Uey, [t, t + 9]

We will prove in the next step that on Qy, for all A\ > 0 small enough, for all k € {1,...,p},
for allt € [0,T]\ S,

(14.2) 8(DM(wr), Di(w)) < 4/mx + 241 ey,

which will imply that
d7(Dxy), D(zy)) < 4T /ny + 24[S|.
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This will conclude the proof, since for k = 1,...,p, tx ¢ S (recall Q. and that 6 < ¢) and
since the Lebesgue measure of S is smaller than K¢ (recall Qg . and that 6 < ¢). Thus (14.2)
implies, since ¢ < a/(4AKp),

S 00 (D @r), D) + > 6(DA (21), Dy, (2)) <p AT /0y + 24K6 + 4/n)]
k=1 k=1
<a/2+4p(T + 1)/ny,

which is smaller than a for all A > 0 small enough. Thus (14.1) holds for all A > 0 small
enough.

Step 4. It remains to check (14.2). In the whole step, we work on Q). Let thus k €
{1,...,p} be fixed. Consider the first marks x,, xa of s on the left and right of ;. Then by
definition, we have Dy(z1) = [x4, xq) for all ¢ € [0,T]. By Qi’l and since z3 € (—B, B), we
know that —A < x4 < xa < A. Define gx = [nyx,| and dx = [nyxq]. Due to QiT_(;(/\) and
since ms({xq}) = ms({xq}) = 1 and 7ws((xg, xa)) = 0 by construction, we know that

(i) kaT(g,\) = NfAT(d,\) =0 (because x4 € (gx)r and x4 € (da)a),

(ii) for all ¢ € [gr+1,dr—1], inf,ep0,7-5) [Nai(t”) (i)fNaSAt(i)] > 0 (because ix C (Xg, Xd))-

Observe now that for A > 0 small enough (it suffices that 1/n) < ¢), there holds g\ <
|zpnn] < dy (use that xg4, x4 € Xs and that x4 < zx < xq so that due to Qg ¢, Xg+¢ <z <
Xd =€)

Point (i) implies that 73 ,(gx) = 12, ,(dx) = 0 for all ¢ € [0,a\T]. Consequently, for all
t € [0, 7], there holds C(n2,;, [#xnx]) C [ga + 1,dx — 1]. This implies that D} () C [(gr +
1)/ny, (dx —1)/n] C [xg, xa)- Recalling that Dy(zx) = [xg, xa] and that —A < x4 < xa < 4,
we deduce that §(D;(zy), D (1)) < 2A for all ¢ € [0, T).

Another consequence is that the matches falling outside [gx,dx] (and a fortiori outside
I}) have no influence on |zxn, | during [0,a\T].

It only remains to check that for t € [0, T]\S, if A > 0 is small enough, §( Dy (), D} (xx)) <
4/ny. We thus fix t € [0,T]\ S and counsider ¢ty = max{s € Tps : s < t}. Then by definition
of §, t —tg > ¢. Consequently, point (ii) guarantees us that for all i € [gx + 1,dx — 1],
N$, = N2, > 0: aseed falls on each of these sites during [arto,axt]. Furthermore, there
are no matches falling on [gx + 1,dx — 1] during [axt, axt], by definition of ¢y and due to
Q%T()\). Consequently, we have n3 ,(i) = 1 for all i € [gx 4+ 1,dx — 1]. All this implies
that C(n2,, [zkmn]) = [gr + 1,dx — 1], whence D} (zx) = [(ga + 1)/mx, (dx — 1)/ny] =
[(Imaxg] + 1)/ny, (|naxa] — 1)/n,]. Recalling that Dy(zx) = [xg, Xa], We easily conclude. O

15. Well-posedness of the limit process when € {o0, BS}

The aim of this section is to prove Theorems 4.2 and 5.3, and to localize the limit processes.
All the results below have already been proved in [14] for the LFF(co)-process. We provide
here a consequently simpler proof, that allows us to treat simultaneously the cases § = BS
and 8 = oc.

REMARK 15.1. Under (Hg(c0)), we put 8, = 6, and Fs(u,v) = u for allu € [0,1], all
v € [0,1]. Using this function Fg, the LE'F(BS)-process is nothing but the LF F(c0)-process.
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We consider a Poisson measure s (dt, dx, dv) on [0, 00) X R x [0, 1] with intensity measure
dtdzdv and abusively write ma(dt, dz) = [ c0.1] ™™ (dt,dx, dv), which is a Poisson measure
on [0,00) x R with intensity measure dtdz.

DEFINITION 15.2. Let 8 € {c0, BS}. If 8 = oo, consider Fs as in Remark 15.1. If
B = BS, consider Fs as in Definition 5.1. Let A > 0 be fired. A Ry x T x Ry -valued process
(Z{ (), D (), HY (%))1>0,0e|—4,4] Such that a.s., for all v € [ A, A], (Z{(x), H*(2))i>0 is
cadlag, is called a LEFa(f3)-process if a.s., for all t >0, all x € [—A, A],

t t
Z{M () :/ Liza@)<1yds —/O /[_A . Liza (2)=1,yeDA (x)yTM(ds, dy),

t
/ / Fg(Z (2),v)1z4 (o)<1ymam(ds x {a} x dv) — / Lima(@)>0yds,
0

where D{*(x) = [L{(x), R (x)], with

{ Li(x) = (=A) Vsup{y € [-A,a]; Z{!(y) <1 or Hi'(y) > 0}
Ri(z) = AAinf{y € [z, Al; ZA(y) <1 or HA(y) > 0}

and where D{* (x) is defined similarly.

(15.1)

Observe that for 8 € {co, BS}, for any A > 0, the LF F4(8)-process is obviously well and
uniquely defined and can be built as follows.

ALGORITHM 15.3. Consider the marks (Ty, Xi, Vi)k=1,....n of mas in [0, T] x [—A, A] x
[0, 1], ordered chronologically and set Ty = 0.

Step 0. Put Z§'(z) = H(z) = 0 and D§(x) = {z} for all 2 € [~ A, A].

Assume that for some & € {0,.....n— 1}, (Z{(x), DA (), H (@))1efo,).ve(4.4) has been
built.

Step k+1. Then for t € (T}, Ty1) and z € [—A, A], put Z*(x) = min(1, Z‘T4k (x)+t—Ty),
set HA(z) = max(O,Hf‘k (z) — t + Tx) and then define Di'(z) as in (15.1). Finally, build
(23, (x),D4  (x),Hy,  (x)) as follows.

+1 k41

Trt1
o If Zﬁ+17(Xk+1) =1, set H?Hl(:c) = Hﬁﬂf( x) for all x € [-A, A] and consider
[a,b] = D?Hl_(XkH) Set Z{}Hl( x) =0 for all z € (a,b) and Z‘T“Hl(:c) = Z‘T“k+1 (z) for all

€ [-A, A]\ [a,b]. Set finally ZA 1( a) =0 if ZA 17( a) =1 and ZA‘ 1( a) = Z{}Hﬁ( a) if
(a) <1 and Tk“(b)foleA (b)fland 72 (b) = Z4 (b) if ZA (b) < 1.

Thy1— Thia Thoy1— Thoy1—
o If 77 | (Xpt1) < 1,set Hy,  (Xpi1) = Fs(Z7,,,_ (Xk+1), Virr), put 27, (Xpp1) =
Z3, .~ (Xiq1) and (Z7 (@), Hﬁ+1($)) = (Z3,,,-(2), Hf, , _(2)) for all z € [-A A\
{Xk41}-
e Using the values of (Zﬁﬂ(x),Hﬁ+l($))I€[,A7A], compute (Dﬁ+1(35))ze[—A,A] as in
(15.1).

ZA

Tiy1—

We now state a refined version of Theorems 4.2 and 5.3.

PROPOSITION 15.4. Let 8 € {o0, BS}. Let mp be a Poisson measure on [0,00) X R X
[0, 1] with intensity measure dtdzdv.
(i) There exists a unique LFF(B)-process (Zi(x), Di(x), Hi(x))t>0,zeR-
(i) It can be perfectly simulated on [0,T] x [-n,n] for any T > 0, any n > 0.
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(iti) For A > 0, let (Z{(x), D{(z), H{ ())t>0,2e[—a,4] be the unique LEFa(B)-process.
There holds

(15.2) Pr [(Zt(w),Dt(iﬂ), Hi(x))te(0,1),0e[-A/2,4/2]
= (Z{(x), D (%), H(2))tejo,1),0e[-A/2,4/2) | = 1 — Cpe T4,
for some constants ar > 0 and Cr > 0 not depending on A > 0.

To prove this result, we need a lower-bound of the length of the barriers.

LEMMA 15.5. Let 8 € {oco0,BS}. If B = oo, consider Fs as in Remark 15.1. If
B = BS, consider Fs as in Definition 5.1. There exists vy € [0,1) such that for all z € [3/4,1),
all v € [vy, 1], F(z,v) > 1/2.

PROOF. If 8 = oo, the result is obvious with vy = 0, since Fs(z,v) = z > 1/2 for
all z € [1/2,1], v € [0,1]. Consider now the case 8 = BS. First observe that gg(t,s) <
Pr[NZ, o — Nige > 0] = vs([0, Tss]). Hence for all z € [3/4,1),

0.(10.1/2)) < ws(3Ts/4. 1) + 2T (0,752

< vs([0,Ts/2] U [3Ts/4,Ts]) =t vo < 1,
since supp vg = [0, Ts]. We deduce that for z € [3/4, 1],

1
/ dv]l{Fs(z,v)<1/2} =6,([0,1/2)) < vp.
0

Recalling that v — Fg(z,v) is nondecreasing, we deduce that Fg(z,v) > 1/2 for v € [vg,1]. O

Proof of Proposition 15.4. We split the proof into several steps. We work on [0, T7.

Step 1. We observe that for a mark (7, X, V) of mp; with X € [-A, A] and V' > vy (see
Lemma 15.5), we have H(X) > 0 or Z/(X) < 1 for all t € [r, 7 + 1/4] (and the same result
applies to the LFF(f)-process if it exists).

Indeed, assume first that Z4 (X) € [0,3/4). Then ZA(X) = Z2A
telr,T+1/4].

Assume next that Z2 (X) € [3/4,1). Then H,(X) = Fs(Z2 (X),V) > 1/2 due to
Lemma 15.5, so that Hy(X) = H,(X)—t+7>0fort € [r,7+1/2) D [r,7 + 1/4].

If finally Z2 (X) = 1, then ZA(X) = 0, whence Z}(X) =t—7 < 1fort € [r,7+1) D
[7,7 + 1/4].

Step 2. For a € R, we consider the event Q, defined as follows: for {(T%, Xk, Vi) }k=1....n

the marks of 7 restricted to [0,7] X [a,a + 1) X [vg, 1] ordered chronologically, for Ty = 0,
Thi1 =T, we put Q, = {max;—g,_»n(Ti+1 — T;) < 1/4}.

We immediately deduce from Step 1 that for any @ € R, any A > |a| + 1,
Qo Cc{Vte[0,T], 3z € (a,a+ 1),H*(z) > 0 or Z{(z) < 1}.

(X)+t—7 <1 for

Thus on €, clusters on the left of a cannot be connected to clusters on the right of a + 1
during [0, T]. Hence matches falling at the right of a + 1 (resp. on the left of a) do not affect
the zone (—o0,a) (resp. (a + 1,00)) during [0, 7T7].
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Step 3. Obviously, gr := Pr(Q,) is positive and does not depend on a. Furthermore, Q,
is independent of €, for all a,b € Z with a # b. Hence there are a.s. infinitely many a € Z
such that €, is realized.

Then it is routine to deduce the well-posedness of the LFF(S)-process. The perfect
simulation algorithm on a finite-box [0, T X [—n, n] is also easy: simulate mps on [0, 7] X [a1, as]
in such a way that Qg,, N Q,, is realized and that a; +1 < —n < n < a2. Then apply
the same rules as for the LFF4(8)-process. This will give the true LFF()-process inside
[a1 + 1, as] D [—n, n], because matches falling outside [a1, as + 1] have no effect on the process
in the box [a1 + 1, az] during [0, T.

Finally, we can clearly bound from below the left hand side of (15.2) by
Pr [(Uae=a,—a/2-1]128%) N (Uaease,a—1j020%) | = 1 — 2Pr[Q] LA]=14/2]-2
>1-2(1—qp)*

whence (15.2) with Cr = 2/(1 — ¢r)* and a7 = —log(1 — qr)/2. 0

16. Localization of the discrete processes when § € {co0, BS}

We recall that ay, ny and my are defined in (3.1), (3.2) and (3.4). For A > 0, we set
Ay = |Any| and I} = [~Ax, A)]. For i € Z, we set iy = [i/ny, (i + 1)/ny).

For n € {0, 1}12& andi €1 2, we define the occupied connected component around i as
. 0 if ni)=0
C = . . . . ’
200 ={ Tt iratnl i) -0
where l4(n,7) = (—Ax) V (sup{k < i: n(k) =0} +1) and ra(n,i) = Ax A (inf{k > i: n(k) =
0} —1).

DEFINITION 16.1. Assume (Hpr) and (Hs(B)) with 8 € {oco,BS}. Let A € (0,1]
and A > 0 be fived. For each i € I}, we consider a SR(us)-process (N (i))i>0 and a
SR(u},)-process (NN (0))i>0, all these processes being independent. Consider a {0,1}-valued
process (n?’A(i))ieI£7t20 such that a.s., for all i € I}, (" (i))i>0 is cadlag. We say that

(ng\’A(i))ieI£7t20 is a FFa(us, pyy)-process if a.s., for all i € I}, all t > 0,

¢ ¢
Al _ |
) /0 L =0y T 6) = 3 /0 Lo,y N ()

Jjery
For x € [-A, A] and t > 0, we introduce
1
(16.1) D}(x) :n_)\CA(ni;?a [naz]) C [=Ax/ny, Ax/my] = [-A, 4],
v {ie [Insz] — my, [nye) + ma] NI ng;‘?(z):l}’
Ki (:C) = hy € [Oa 1]5
H[Ln,\xj —my, [nyz| +my]N IA|
K)\,A
(16.2) zZ)M(x) :M Ale[0,1].
A

We generalize [14, Proposition 11], with a consequently less intricate proof.
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PROPOSITION 16.2. Assume (Hyps) and (Hg(8)), for some € {oco,BS}. Let T > 0
and X € (0,1). For each i € Z, we consider a SR(us)-process (N (i))¢>0 and a SR(u);)-
process (N} (i))i=0, all these processes being independent. Let (n}(i))i>0.icz be the corre-
sponding FF(us, uy,)-process, and for each A > 0, let (U?’A(i))tzo,ielg be the corresponding

FFa(us, ), )-process. Recall (3.3)-(3.5) and (16.1)-(16.2). There are some constants ar > 0
and Ct > 0 such that for all A > 1, all X € (0,1] small enough,

NA
Ao (m; (Z))te[O,aAT],ielﬁ/Za

Pr (nt)\(i))te[o,aAT],ieI

(ZMx), D}M2))te01),0e(—A/2,4/2) = (Z15/\7A(-T)aD£\7A(x))tG[O,T],ze[fA/Q,A/2]}

>1— CTeiaTA.

Proof in the case where f = oo. It of course suffices to prove the result for all A large enough
(we will assume that A > 87T). We consider the true FF(us, uy,)-process (n(i))i>0,icz. For
a € R, we introduce

J) = [lany], [(a + 1)ny] — 1].

Step 1. We show here that for all a € R, there exists an event Qé,m depending only on
(Nf(i)aNy7)\(i))i6J§,se[O,3aA/4] such that

(i) on Q7 , a.s., there is i € J; such that 7} (i) = 0 for all s € [0,3/4];

(ii) limx_o Pr[Q) o] = 1.

This is very easy: consider simply Qg,o ={3i¢€ JéaNsSaAM(i) = 0}. Clearly, point
(i) is satisfied, since there is a site of J2 on which no seed falls during [0,3a,/4]. Since
|J2 =mny ~ 1/(Aay) = 1/vg((ax, )), we deduce from (Hg(00)) that

Pr[) o] =1 — vs((0,3ax/4))™ =1 — (1 - vs((3ar/4,00)))™
~1 — ¢~ vs((3ax/4,00))/vs((ax,)) _y 1

as A — 0, whence (ii).

Step 2. We now check that for all a € R, all t > 1/2, there exists an event €2} ,, depending
only on (N3 (i), NM2(9))ies> sel(t—1/2)ax,(t+1/4)a,] Such that

(i) on Q3 ,, a.s., there is i € J; such that 03, (i) = 0 for all s € [t, ¢ + 1/4];

(ii) gx := Pr[Q2] ;] does not depend on ¢,a and ¢ := liminf_q gx > 0.

This is much more delicate. We put ky = [1/vs((3ax/8,00))|. Observe that due to
(Hs(00)), ka << my = [1/vs((ax; 00))]

We introduce the event Q7 ; on which (see Figure 7):

(a) we have ANM (i) > 0 for some iy € [[(a +1/3)ny], [(a + 2/3)ny]], some ty €

tym
[(t — 1/12)ay, tay] and this is the only match falling in J; during [(t — 1/2)ay, tay];
(b) there are j, € [lana], [(a + 1/4)n,]] and jq € [[(a + 3/4)nr], [(a + 1)ny — 1]] such
that N:i(t-i—l/4) (Jg) — N;i\(t—l/Q) (Jg) = N:)\(t+1/4) (Ja) — N;i\(t—l/2)(jd) =0;

(c) for all i € [ins —Yon,ing +,als NZ (1 /10y (0) = NZ (112 (1) > 05

(d) there is jo € [iar — k. iar +ka] such that N7 ;1,4 (o) = N2 (1 /19)(Jo) = 0.
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We first prove point (i), considering two cases.

o If the zone [ips — ki, i + ki] is completely occupied at time ¢p;—, then it burns at
time tps and since no seed falls on jo, which belongs to this zone, during [tar, ax(t + 1/4)] D
[axt, ax(t 4 1/4)], we deduce that 1 ,(jo) =0 for all s € [t, ¢+ 1/4].

e Assume now that there is ig € [ipsr — ka, i + k] that is vacant at time tp;—. Recall
that there is no fire in J* during [a,(t —1/2),%) and that on each site of i —ky,inr + k],
at least one seed falls during [ax(t —1/2),ax(t — 1/12)] C [ax(t — 1/2),tar). Then necessarily,
a fire starting at some i, ¢ J at some time t, € [a)(t — 1/2),t)) has made vacant ig.
Assume e.g. that i}, < |an,| and observe that i}, < j, < i9. The fire (t};,7},) has then
also necessarily made vacant j,. Since no seed falls on j, during [ax(t — 1/2), ax(t +1/4)], we
deduce that j, remains vacant during [th,, ax(t + 1/4)] D [axt, ax(t + 1/4)].

We now prove (ii). The quantity Pr[Qé)t] does obviously not depend on a € R nor
on t > 1/2 by invariance by spatial translation and by time stationarity. We infer from
Proposition 11.1 that for ms(ds, dx) a Poisson measure on [0,00) X R with intensity measure
dsdzx, the probability of (a) tends, as A — 0, to

q:=Pr (W([t —1/12,4] % [a + 1/3,a +2/3]) = 1,

mar (1t = 1/2, % [a,a+ ID\([E = 1/12,8) x [a+1/3,a+2/3])) = 0),

a, (t+1/4)
at
O (tyiy)
a, (t-1/12)
! ! a,(t-1/2)
an, \ (a+1/3) nx\ (a+2/3)n, \ (a+D)n,
jg [iv— kx vt k;\] Jd
FIGURE 7. The event Qj})t.
A match falls on ip7 at time ¢y, no seed fall on jg and jgq during [ay(t — 1/2),ax(t + 1/4)]. All the
sites of [ipr — ki, iar + k] receive at least one seed during [ay(t — 1/2), a5 (t — 1/12)]. Finally, there
is at least one site of [ins — ki, ias + k] on which no seed falls during [ay(t — 1/12), ay (¢t + 1/4)].
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which is clearly positive. Next, the probability of (b) tends to 1. Indeed, treating e.g. the
case of j4, there holds, recalling that ny ~ 1/vg((ax, )),

Pr|3j € [lany], [(a+ 1/40r]], N, (14170 (1) = Ni(tﬂ/z)(j)} ~1—vs((0,3a,/4))™/*
~ ] — e vs((3an/400))/[dvs (@r.00)]

which tends to 1 as A — 0 due to (Hg(c0)). The probability of (¢) (conditionally on (a)) also
tends to 1. Indeed, its value is nothing but

Vs((o, 53/\/12))2kx+1 ~ e—2ys((5a)\/12,oo))/u5((3a)\/8,oo))
which tends to 1 due to (Hg(o0)), since 5/12 > 3/8. Finally, the probability of (d) (condi-
tionally on (a)) also tends to 1, since it equals

1— (1/5((0, a/\/3)))2kx+1 ~1_ 6721/3((ax/3,00))/vs((3a>\/8700)),

which tends to 1 due to (Hg(0)), since 1/3 < 3/8.
Step 3. Let now T > 0 be fixed. Set K = |4T']. For a € R, we set

K
W r =00 ﬂ Qi+(k71),k/4'
k=2

Then it is clear from Steps 1 and 2 (observe that (K/4 +1/4 > T)) that
(i) on Q;T, for all ¢ € [0,7] there is i € [lany |, [[(a + K)ny — 1]] such that n} ,(i) = 0;
(ii) px = Pr[Qg‘yT] does not depend on @ and p := liminfy_.opy > ¢~ > 0;
(iii) Q:}’T depends only on (N2

. VP
20, NG (D)eeo, 1417 i€ lan | Lo+ Koy |11

Step 4. We deduce that for all a € Z, conditionally on Q:}’T, clusters on the left of
lany | — 1 are never connected (during [0, a,7) to clusters on the right of [(a + K)ny]. Thus
on Q) p, fires starting on the left of [any] — 1 do not affect the zone [[(a + K)ny|,00) NZ

and fires starting on the right of |(a + K)ny | do not affect the zone (—oo, |any| — 1] N Z.
We deduce that for A > 2K, the FF4(us,p),)-process and the FF(ug, i), )-process

coincide on 12/2 during [0, a5T] as soon as there are a1 € [-A, —A/2—K]and as € [4/2, A—K]

with Q>‘ 7N QA . realized. Furthermore, Qa o is independent of Q o for all a,b € Z with

la — b] > K. Thus we can bound the probablhtles of the statement from below, for A > 2K
and A > 0 small enough (so that Pr[Qg, | >p/2), b

LA/(2K)] LA/(2K)]
1—Pr ﬂ (Q[\—AJHK,T)C —Pr ﬂ (QI\A/QHZK,T)C
=1 =1

>1—2(1 — p/2)lA/ K]
>1—2(1 —p/2)A/ER-1,
This concludes the proof: choose Cr = 2/(1 — p/2) > 0 (p depends only on T') and ar =
—log(1—p/2)/(2K) > 0. O
When g = BS, the proof is similar, but consequently simpler.

Proof when 3 = BS. Recall that ay = Tg and consider the true FF(ug,u),)-process
(02 (i))i>0.icz- For a € R, let J) = [lany], [(a + 1)ny] — 1].
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Step 1. We show here that for all a € R, there exists an event Q{},O, depending only on
(N2 (i), NM2(i));e T2 s€0,3a, /4] such that

(i) on Q7 4, a.s., there is i € J such that 7} (i) = 0 for all s € [0,3/4];
(ii) limy_yo Pr[Q) ol =1

This is done as in the case where 8 = co. Consider simply €2 0 ={3ieJ} N?ik/z;(.) =

0}. Clearly, (i) is satisfied. To check (ii), recall that |J;| = ny — oo, whence Pr[2} ]
1 —vg((0,3Ts/4))™» — 1, because vs((0,3Ts/4)) < 1 (recall that supp vs = [0,Ts]).

Step 2. We now check that for all a € R, all ¢ > 1/2, there exists an event ngt, depending
only on (N7 (i), NMA(9))iesn sel(t—1/4)ar, (t+1/4)a,] Such that
(i) on Q7 ,, a.s., there is i € J; such that n2 (i) =0 for all s € [t,t + 1/4];

(i) gr := Pr[Q) ;] does not depend on t,a and ¢ := liminfy_g g > 0.

This is much easier than in the case where 8 = oco: simply set

. , M M
Oy = {30 € T NE (1110 (i0) = N -1y (i), Nat io) > N22 4 (o) }
Point (i) is obviously checked since no seed fall on g during [ay (¢t — 1/4 ,ar(t+1/4)] and a

match falls on ig during [ax(t — 1/4),axt]. Next, Pr(Q},) =1— T‘J |
any t > 1/4)

rxi=Pr {Ni(t+1/4)(i0) > NJ a, (t— 1/4)( 0) or Nakt (i0) = Ni(t 1/4)( )}
=Pr[Ng 5(i) > 0 or N2, (i) = 0]
=vs([0,Ts/2]) + var(Ts/4,00)) — vs([0, Ts/2])var (Ts /4, 0)).-

Due to (Hur), v3(Ts/4,00)) = 1= A [/ ud; (A, 00)dt = 1 — ATs(1 + £())/4, for some
function e such that limy_,o 5()\) = 0. Setting a = 1/5([0 Ts/2]) € (0,1), we deduce that

ry=a+1—ATs(1+¢e(N)/4—a(l —Ts(1+e(N))/4)
=1-A1—-a)Ts(1+e(N))/4.
Recalling that |J}| ~ ny ~ 1/(ATs), we finally conclude that

, where (for any i € Z,

Pr (Qé ) ~1- /(/\Ts) 1= Uma/d . q > 0.
Steps 3 and 4 are exactly the same as when § = oco. O

17. Localization of the results when § € {oco, BS}

We recall that ay, ny are defined in (3.1) and (3.2). For A > 0, we set as usual Ay = | An, |
and I} = [-Ax, A)]. For i € Z, we set iy = [i/ny, (i +1)/ny).

In the next sections, we will prove the following localized version of Theorems 4.3 and 5.4,
separating the cases 8 = co and 5 = BS.

PROPOSITION 17.1. Let 8 € {o0, BS}. Assume ( M) and (Hg(B)). Let A > 0 be

fized. Consider, for each X € (0,1], the process (Z;*(x), D}" (x))t>0 ze[—A,A] associated with
the FFa(ps, ), )-process and the LFF4(B)-process (Z{*(x), D{ (x), Hf (x T))i>0,2€[-A,A]-
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.....

n law to (Z{‘(:Ci),D{‘(:I:i))te[oyT]’i:l ,,,,, ps i D0, T,R x ZU{0})P, as X\ tends to 0. Here
D([0,00),R x ZU{0}) is endowed with the distance dr.

(b) For any {(t1,z1),...,(tp,xp)} C [0,00) x [—A, A] (assume also that ty # 1 for k =
1,...,p if B = o0), (Zt’\i’A(xi),D,f‘i’A(xi))i:L“,m goes in law to (Z{(x;), D{(2;))i=1,...p in
(RxZU{0})P. Here ZU{D} is endowed with §.

(c)-(i) Assume first that B = oo. For allt > 0,

vs (1-1/1Cam32,0)))

& Lcamt o1y

A1l

goes in law to Z(0) as A — 0.
(c)-(ii) Assume next that 8 = BS. For anyt >0, any k € N, there holds

: A A
lim Pr [|Ca(np,0)| = k| = E [a(Z£(0))]
where q(2) was defined, for k>0 and z € [0,1], in (5.2).

Assuming for a moment that this proposition holds true, we conclude the proofs of The-
orems 4.3 and 5.4.

Proof of Theorem 4.3. Let us first prove (a). Consider a continuous bounded functional
U :D([0,T],R x ZU{0})? — R. We have to prove that limy_o G(¥) = 0, where

GA() =E [¥ ((Z}2:), D} @) )ieo,1i=1,....0)] — E [¥ ((Ze(2:), De(2i) )iepo,10i=1,...0) ] -

Using now Propositions 15.4 and 16.2, we observe that for any A > 2max;—;
A € (0,1] small enough,

[GA (D))
<2[|¥||oo Pr [(ZE\’A(ZE), DE\’A(x))te[o,T],ze[—A/z,A/m # (Z{\(fc)v Dg\(z))tE[O,T],zE[—A/Q,A/Q]}
+ 2/[¥||oe Pr [(Z{ (), D (%))tejo,1) 0l A/2,4/2) # (Ze(), De(2))1efo,7),0e[—A/2,4/2)]
T; DZ\’A

+ ’IE [\Il ((Z?’A( ), (zi»te[O,T],i:l,...,p)} —-E [‘P ((ZtA(zz‘)a D;‘(zi»te[O,T]ai:Lm,p)} ’
<4|| || Cre T4

p |xi|, for all

.....

Thus Proposition 17.1-(a) implies that limsupy_,q |GA (V)| < 4/||¥||ocCre~*T4. We conclude
by making A tend to infinity.

Point (b) is checked similarly. The proof of (c) is also similar, since D}(0) = Dg\’A(O)
implies that C(n},,0) = Ca(n}7,0). 0
Proof of Theorem 5.4. 1t is deduced from Propositions 15.4, 16.2 and 17.1 exactly as Theorem
4.3. g

18. Convergence proof when § = BS

The aim of this section is to prove Proposition 17.1 in the case where § = BS and this
will conclude the proof of Theorem 5.4. In the whole section, we thus assume (Hps) and
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(Hs(BS)). The parameters A > 0 and T > 0 are fixed and we omit the subscript/superscript
A in the whole proof.

We recall that ay, ny and m) are defined in (3.1), (3.2) and (3.4). For A > 0, we set as
usual Ay = [Any | and I} = [—Ay, A,\]. For i € Z, we set iy = [i/ny, (i + 1)/ny). For [a,b]
an interval of [—A, A] and X € (0, 1), we introduce, assuming that —A < a < b < A,

(18.1) [a,b]x =[|nra + my] 4+ 1, |[nxb— my] — 1] C Z,
[—A,b], =[—Ax, [n\b—m,]| — 1] C Z,
la,A], =[[nrxa+m,|+1,A,] C Z,
For z € (—A, A) and A € (0,1), we introduce
(18.2) zx =[|nrzr —my |, [nyz+my|] C Z.

18.1. Height of the barriers. We need the following lemma. It describes the time
needed for a destroyed (microscopic) cluster to be regenerated. Below, we assume that the
zone around 0 is completely vacant at time Tstg. Then we consider the situation where a
match falls on the site 0 at some time Tsty € (Tsto, Ts(to + 1)) and we compute the law of
Oty,t,, which is the delay needed for the destroyed cluster to be fully regenerated (divided by

Ts).

LeEMMA 18.1. Consider a family of i.i.d. SR(us)-processes (N2 (i))i>0.icz. Let 0 <
to < ti < to+1 be fived Put (i) = min(Ng () — Nig, (0),1) and G (i) =
min(N3 (i) = N2, (i),1) for all t > 0 and i € Z. Define

Ts (t1+t)
eto,tl = inf {t >0 :Vie C(Cto,h—toao)a Ctl,t(i) = 1} S [0, 1]
The the law of Oy, +, 15 O, —4,, recall Definition 5.1.

PrROOF. We can assume that ¢ty = 0 by stationarity. We put u = t; = t; — tp and write,
for h € [0, 1],

k—1
Pr[O44, < B =Pr [N7,(0)=0] + > > Pr [Niu(j —k)=NZ,(i+1)=0,
k>15=0
Vieli—k+17] NELG) >0 Ni () > NiLG)].
This yields, since gs(u, h) = Pr[Ng,, >0, N, oy > N2,

Pr [0y, < h] =vs([Tsu, Ts]) + > klvs([Tsu, Ts])*[gs (u, h)]*

k>1
[vs([Tsu, Ts]))? B
:VS([TSU7 TS]) + mgs(ua h) - Hu([oa h])a
recall Definition 5.1. O

18.2. Persistent effect of microscopic fires. Here we study the effect of microscopic
fires. First, they produce a barrier, and then, if there are alternatively macroscopic fires on
the left and right, they still have an effect. This phenomenon is illustrated on Figure 8 in the
case of the limit process.

We say that R = (e;¢0,t1,...,tk;s) satisfies (PP) (like ping-pong) if
(i) K >2,e€{-1,1},
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{)0<typ<ty < - <tg <s<tg+1,

(iif) for all k = 0,..., K — 1, tjeq — tg < L,

(iv)ta—to>1land forall k =2,..., K — 2, tj1o —t > 1.

We set e, = (—1)¥e for k > 0.

Consider a family of i.i.d. SR(us)-processes (N;(i))i>0.icz.-

We introduce, for each A € (0,1), the process (C,{\’R(i))tzto_,ie[[,m%mkﬂ defined as follows:
o for all t € [to, t1), all i € [-my, m,], (% (6) = min(NZ (i) — N2, (i), 1),

o for all i € [-my, m,], (VR(i) = ggv?(¢>n{igc@,m},

efork=1,... K—1,

(x) for all t € (ty, tys1), i € [-my,my], (i) = min (V7 (6) + N3, (1) — Ng., (i),1),
. R . AR .
(*) for all i € IIimA; mA]]a C&i (7’) = Ctkﬂ*(Z)]lﬁc(C?k’fl,-,ekmx)’

o for all t € (tx,00), i € [-my, my], % (6) = min (7 (i) + NE, (i) — N&,, (i), 1).

Roughly, we start at time Tsty with an empty configuration and seeds fall according to
(N7 (i))t>0.icz. At time Tsty, there is a (microscopic) fire at 0. Then alternatively on the left
and right, far away from 0 (at —my) or at my), there is a (macroscopic) fire at time Tsty.

t3+l

tr+1

3 @
ti+ O

ol

FIGURE 8. Persistent effect of a microscopic fire. Here R = (1;tg, t1, to, t3,t4; S).
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Consider the event
QRN ={3-my <iy <iy<iz<my : Qi) = R(is) =0, R (in) =1}

LEMMA 18.2. Let R = (e;to,t1,-..,tk;s) satisfy (PP). Consider ©y, ., defined in
Lemma 18.1 and (Q;"R(i))tztmie[[,mbmx]] defined above. There holds

lim Pr (QRN)] Oy >t —t1) = 1.

PROOF. We assume that ¢ = 1 and that K is even for simplicity. Fix a = 1/K.

First fire. We put C' = C(C?lj_z, 0). Since t1 —tg < 1 (so that each site is vacant with proba-
bility vs((Ts(t1 —to), Ts)) > 0 at time ¢1), the probability that C' C [—|amy |, |amy]] clearly
tends to 1. Thus the match falling at time ¢; at 0 destroys nothing outside [—|amy |, |amy |]
(with probability tending to 1).

Second fire. Since ta —to > 1 (so that Ts(ta — to) > Ts), at least one seed has fallen,
during [to,t2) on each site of [|amy | + 1, m,]. Thus the fire at time ¢2 destroys completely
this zone, but does not affect [-my, —|amy ]| — 1], because t2 < t1 + Oy, 4, and because by
definition of ©y, 4, there is an empty site in C' C [—|am, |, [amy |] during [t1,t1 + Oy ¢, ]-

Third fire. Since ts —t2 < 1, the probability that there is a vacant site in [|amy] +
1, [2amy |] at time t3 tends to 1 as A — 0.

Next, all the sites of [-my, —|amy] — 1] are occupied at time t3— (because they have
not been affected by a fire and because t3 —tg > to —to > 1). Thus the fire at time t3 destroys
the zone [—my, —|[am) | — 1] and does not affect the zone [|2am, |, m,].

Fourth fire. Since t4 — t3 < 1, the probability that there is (at least) a vacant site in
[—[20my |, —|amy] — 1] at time ¢4 tends to 1 as A — 0.

Next, all the sites of [|2am, |, m,] are occupied at time t,— (because they have not been
affected by a fire during (t2,t4) with t4 — to > 1). Thus the fire at time ¢4 destroys the zone
[|2amy |, m)] and does not affect the zone [—my, —|2am, |].

Last fire and conclusion. Iterating the procedure, we see that with a probability tending
to 1 as A — 0, the fire at time ¢x destroys the zone [[(K«/2)my ]|, my] = [[m,/2], m,].

Then one easily concludes: since 0 < s — tx < 1, the probability that there is at least
one site in [|my/2], [2m,/3|] with no seed falling during [tx, s] tends to 1, the probability
that there is at least one site in [|2my /3] + 1, |5m,/6]] with at least one seed falling during
[tx, s] tends to 1, and the probability that there is at least one site in [|5my /6] + 1, m,] with
no seed falling during [tx, s] tends to 1. O

18.3. The coupling. We are going to construct a coupling between the FF4(us, p3,)-
process (on the time interval [0, TsT]) and the LF F4(BS)-process (on [0,T1]).

First, we couple a family of iid. SR(u),)-processes (N'*(i));>0.icz with a Poisson
measure 7y (dt, dz) on [0,T] x [—A, A] with intensity measure dtdz as in Proposition 11.1.

We call n := mpr ([0, T x [— A, A]) and we consider the marks (T, Xy)q=1,... n of mas ordered
in such away that 0 < Ty < --- < T, <T.

Next, we introduce some i.i.d. families of i.i.d. SR(us)-processes (Nts’q(i))tzoyiez, for
qg=0,1,..., independent of 7w; and (NtM’)\(i))tzo,z'eZ-
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Then we build a family of ii.d. SR(us)-processes, independent of (N}*(i));>0.icz and
of mps, as follows.

e For g € {1,...,n}, for all i € (X,)x (recall that (Xg)x = [|nr\ Xy —m, |, [0y X, +my]])
set (N7 (0)ez0 = (N7 — 13X )))ezo-

(We have a problem if ¢ belongs to (Xg)x N (X,)x for some ¢ < r. Then set e.g.
(NtS’A(i))tZO = (Nts’q(i — |nxXg]))e>0. This will occur with a very small probability, so
that this choice is not important).

e For all other i € Z set (N(i))i0 = (N°(i))eo0.

The FFa(us, p1);)-process (n; (4))¢0,iery is built upon the seed processes (NZM0))e>0.iez
M- B
and match processes (N; 7 (4))¢>0,icz-

The advantage of the previous construction is the following. When a match falls at some
X, for the LFF4(BS)-process, it will fall at [nyX,| in the discrete process, and thus if it is
microscopic, it will involve the same seed processes for all values of .

It also considerably simplifies the dependence/independence considerations.

Finally, we build the LF F4(BS)-process. We consider the Poisson measure 7y previously
introduced, and for all 0 < ty < t; < t9+1, forallg=1,...,n, we consider Ggo,tl defined from

(Nts’q(z‘))tzoyiez as in Lemma 18.1. We define (Z;(x), D¢(z), H¢()):e[0,1),x€[-4,4] as follows:

ALGORITHM 18.3. Consider the marks (T, Xg)k=1,...n of mar in [0,T] x [—A, 4],
ordered chronologically and set T = 0.

Step 0. Put Zy(z) = Ho(x) = 0 and Dy(z) = {z} for all € [-A, A].

Assume that for some k € {0,...,n — 1}, (Zi(x), Di(x), Hi())icjo,1,),2€[-4,4] has been
built.

Step k+1. For t € (T, Tk+1) and = € [—A, A], put Z;(z) = min(1, Zg, (z) + ¢t — T),
set Hi(z) = max(0, Hr, () — t + Tx) and then define Di(x) as in (15.1). Finally, build
(Z1,1 (x), D1,y (), Hry (2)) as follows.

(i) If Zp ., —(Xp41) = 1, set Hp,, (x) = Hr,,,—(x) for all z € [-A, A] and consider
la,b] := D7, ., —(Xpy1). Set Zg ., (x) = 0 for all x € (a,b) and Z7,,,(x) = Zr,,, () for all
x € [-A,A]\ [a,b]. Set finally Z7,, (a) =0if Zr,,,—(a) =1 and Zr,,,(a) = Z1,,,—(a) if
ZTk+1,(a) <1 and ZT;C+1 (b) =0if ZTkJrl,(b) =1 and ZTkJrl (b) = ZTkJrl,(b) if ZTkJrl,(b) < 1.

(11) It ZTk+1*(Xk+1) < 1, set HTk+1 (Xk+1) = ®k+1 ZTk+1 (XkJrl) =

Tet1— 21y — (Xig1), Tht1”
{ZTk+1_}(Xk+1) and (Z1,,, (#), Hr,oy1 (2)) = (Z10- (@), Hripy - (1)) for all 2 € [=A, 4]\
Xi1f-

( (311) Using the values of (Z7, ., (), Hr,, (7))ze[-a,4], compute (D7, (2))ze[—a,4] as in
15.1).

LEMMA 18.4. The process (Zi(x), Di(x), Hi())tejo,1],0e[-A,4] built in Algorithm 18.3
is a LFF4(BS)-process.

PRrROOF. The only difference between algorithms 15.3 and 18.3 is that in Step k + 1, point

(ii), we use 61,}:—:1_ZT,€+1—(XI€+1);TI€+1 instead of Fis(Z1,,,~ (Xk41), Vat1). But due to Lemma

18.1 and Definition 5.1, these two variables have the same law GZTHr( Xis1) (conditionally
on Tyy1, Xgy1 and (Zy(w), Di(x), He(7))ic0,Tp41),0e[-A,4])- Indeed, it suffices to use that in
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Algorithm 15.3, Vi1 is independent of Zz, ,_(Xk41), while in Algorithm 18.3, the family
(N1 (4))i0,i¢2 is independent of (Tyi1, Z7,,,— (Xit1))- O
Finally, we observe that (Z;(z), D¢(x), H¢(2))te[0,7],2€[-4,4] depends only on mp; and on
((Nts’q(i))te[o,T],iez)qzl- It is independent of (Nts’o(i))te[o,T],ieZ'
18.4. A favorable event. First, we know from Proposition 11.1 that
QM (N) = {Vt € [0,T), Vi € I}, ANMA) # 04 mar ({t} x i) # o}

satisfies limy_s0 Pr[Q%T()\)] = 1. Next, we recall that the marks of 7, are called (71, X7),
..., (T, X,) and are ordered chronologically. We introduce Ty = {0,71,...,Tn}, By =
{X1,...,X,}, as well as the set Cps of connected components of [—A, A] \ By (sometimes
referred to as cells).

For a > 0, we consider the event

QM(a):{ min |t —s| > a, min |$—y|2a,},
$,tE€Tnr,s#£t z,yeEBMU{—A, A}, z#y
which clearly satisfies limqy—,0 Pr[Q2yr(a)] = 1. Observe that for any given a > 0, there is

Aa > 0 such that for all A € (0, Ay), on Qs (),

o for all z,y € Byy U{—A, A} with z # y, xx Nyx =0,

e the family {cx,c € Car} U {zx, 2 € Bar} is a partition of 1)) (recall (18.1) and (18.2)).

Indeed, it suffices that supq ,_)[my/ny] < a/4.

Let g € {1,...,n}. We call U, the set of all possible R = (g, o, ..., tx; s) satisfying (PP)
with ¢ € {—~1,1}, with {to,...,tx,s} C Ty and with ©f , > to —t;. We introduce, for
g=1,...,n and R € Uy, the event Q%q(A) defined as in Subsection 18.2 with the SR(us)-
processes (N;9(i))¢>0.ez. Then we put

Qf()‘) = Ng=1 NReu, Q'/Séq()‘);
which satisfies limy_,o Pr (€2 ()) = 1 thanks to Lemma 18.2 (since for each g, (Nts’q(i))tzoﬁiez
is independent of mys and since conditionally on ms, the set Uy is finite).

We also consider the event €25 (\) on which the following conditions hold: for all ¢, € Tas
with 0 < to —t; < 1, for all g =1,...,n, there are

—my < i1 <ig<-—my/2<iz<0<iy<my/2<is<ig<my
such that

o for j =1,3,4,6, Np? (i;) — N4 (i) =0,

st1
. S, . S.q /-
o for J= 2,5, NTSZQ(’LJ) - NTsil(lj) > 0.
There holds limy_.q Pr (QQS (/\)) = 1. Indeed, it suffices to prove that almost surely,
limy_,o Pr (QQS(/\)|7T1\/[) = 1. Since there are a.s. finitely many possibilities for q,t1,t2 and

since 7y is independent of (N;"9(i));>0.icz, it suffices to work with a fixed ¢ € {1,...,n} and
some fixed 0 < t9 —t1 < 1.

Observe that for each i, Pr(N% (i) — N2 (i) = 0) = vs((Ts(t2 — t1),Ts)) < 1 and

Pr(NZ4 (i) — N4 (i) > 0) = vg((0, Ts(ta —t1))) < 1 by definition of T and since t; —¢1 < 1.
Recall also that m) tends to infinity. Thus during [Tst1, Tsto], the probability that a seed
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falls on each site of [-my + 1,—|m)/4]|] tends to 0, the probability that no seed at all
falls on [—|my/4] + 1,—|my/2| — 1] tends to 0, the probability a seed falls on each site of
[—|mx/2], —1] tends to 0, etc.

We finally introduce the event
Qa, A) = QN 1(A) N () NQF(N) NQS(A).
We observe that Q(a, A) is independent of (Nts’o(i))tzoﬁiez and that for any ¢ > 0, choosing
a > 0 small enough, Pr[Q(a, \)] > 1 — ¢ for all A > 0 small enough.
18.5. Heart of the proof. We now handle the main part of the proof.

Consider the LFF4(BS)-process. Observe that by construction, we have, for ¢ € Cj; and
x,y € ¢, Zy(x) = Zi(y) for all ¢ € [0, T], thus we can introduce Z;(c).

If x € By, it is at the boundary of two cells c_, ¢y € Cps and then we set Zi(z_) = Zi(c-)
and Zy(z4) = Zy(eq) for all t € [0, 7.

If x € (A, A) \ By, we put Zy(z_) = Zy(x4) = Zi(x) for all t € [0,T].
For z € By and t > 0 we set Hy(z) = max(H,(z),1 — Zy(z),1 — Zi(x-),1 — Zi(z4)).
Observe that z is microscopic or acts like a barrier at time ¢ if and only if Hy(z) > 0.

Actually Z;(x) always equals either Z;(z_) or Z;(xz4) and these can be distinct only at
a point where has occurred a microscopic fire (that is if z = X, for some ¢ € {1,...,n}, if
Zr,—(Xq) < landift > T,).

For all x € (—A, A) and ¢ € [0,T], we put
Ti(x) =sup{s <t : Zs(x4) = Zs(x_) = Zs(x) =0} € [0,¢] N T
For ¢ € Cpy and t € [0,T], we clearly have i(x) = 7(y) for all z,y € ¢, so that we can also
define 74(c).

Observe, using Algorithm 18.3, that
(18.3) for x ¢ By, Zi(x) = min (t — 1¢(x),1) for all ¢ € [0,T],

(18.4) forg=1,...,n, Zy(Xy) =min(t — 7,(X,),1) for all t € [0,T).

Indeed, 7¢(z) stands for the last time before ¢ where x was involved in a macroscopic
fire (with the convention that a macroscopic fire occurs at time 0). Thus for x ¢ By, if
t—m(x) > 1, Zy(z) =1, and if t — 7(z) < 1, Zy(x) = t — 7(x). For x = X, the same
reasoning holds during [0, T).

We also define for all t € [0,T], all ¢ € Cpy and all € (—A, A) here (cy is defined by
(18.1) and zy by (18.2))

7 (c) =sup {s <t : Vi € cx,mpy, (i) = 1 and n7,(i) = 0} € [0,4]
pr(c) =sup {s <t : Ji € cx,npy,_ (i) = 1 and 97, (i) = 0} € [0,1]
77 ()

(v) =sup{s <t : Vi€ xx,npy,_ (i) = 1 and n7,(i) = 0} € [0,1]
with the convention that 7y (i) = 1 for all i € I}. Observe that on Q) ()), we have
c), p(c), 7 (x) € [0,8] N Tas for all t € [0,77], all ¢ € Cpy and all z € (—A, A).
For t € [0,T], consider the event
Q) = {Vs €0,t],Vc e Car, 72 (¢) = pi(c) = 7s(c) and Va € By, 70 () = Ts(z)} .



82

We define Q) similarly, replacing [0,¢] by [0,#). The aim of the subsection is to prove the
following result.

LEMMA 18.5. For any a > 0, any A € (0,\y), Q3 a.s. holds on Q(a, \).

PRrROOF. We work on Q(a, \) and assume that A € (0,\,). Clearly, 7o(z) = 70(z) = 0
and 7o(c) = 13 (c) = pj(c) = 0 for all z € By, all ¢ € Cyy, so that ) a.s. holds. We will show
that for ¢ =0,...,n —1, Q%q implies Q%{Hl. This will prove that Q%n holds. The extension

to Q2 will be straightforward (see Step 1 below).

We thus fix ¢ € {0,...,n — 1} and assume Q%q. We repeatedly use below that on the
time interval (T, T,+1), there are no fires at all (in [—A, A]) for the LF F4(BS)-process and
no fires at all (in 1)) during (TsTy, TsTy41) for the FF(us, iy )-process (use Q4 (X)),

Step 1. To start with, we observe that since there are no fires between TsT;, and T'sTy1,
we have 7 (z) = T%q (z), (c) = T%q(c) and p}(c) = p%q(c) for all € By, all ¢ € Cyy,
all t € [Ty, Ty41) (because 17,,(i) is nondecreasing on [Ty, Ty41) for all i € I}). By the
same way, 7¢(x) = 7r,(z) and 7(c) = 77,(c) for all x € Bay, all ¢ € Cpy, all t € [T, Ty41)
(because Z;(x), Z(x4), Zi(x—) are nondecreasing on [Ty, Tyy1) for all x € [—A, A]). Hence for
t€ Ty, Tyr1), Q) = Qi\q. Thus Q%q implies Q%ﬁr'

Step 2. Let ¢ € Cps. Observe that on Q%qﬂf, there holds, for all i € ¢y,

. . s, . S, .
(18.5) W, - (i) = min (NTSOTW_(Z) = N2 o) 1) .

Indeed, seeds are falling on i according to (N;(i));>0. Furthermore, we know from Step 1
that p%qﬂ_(c) = T%q+1_(c) = 71,,,-(c) = 71,(c). By definition of T%q+1_(c), Mrp (i) = 0 for
all i € cx. And by definition of p%qﬂf(c), no fire affects ¢, during (Tsp%q+17(c), TsTyt1).

Step 3. We show here that if Z7, (X 41) < 1, there exist ji, jo2,j3, j4 € (Xq41)a such
that ji < j2 < [MxXg41] <Js <ja and mgyq,,,(j2) = n3yr,,, - (j3) = 0 and ng q, ,_(j1) =
U%STHI—(JQL) =1

Recall that for ¢ € (Xg441)x, the seeds fall according to (Nts’qﬂ(i — |mxXg+1]))e>0. Recall
also that T%q+17(Xq+1) = 71,,,—(Xg+1) (by Step 1), so that by definition, (X44+1)x is com-

i
pletely vacant at time T's7r, " (X¢+1)- Recall finally that 77, ,, —(X44+1) € Tas (and so does
Tq+1)-

Observe that by (18.4), Z7,,, — (X441) < 1 implies that Ty1 — 77, — (X¢+1) < 1. Since we
work on Q5 ()\), we know that there are some sites i1 < iz < i3 < [nyX,11] < is < i5 < ig in
(Xg+1)x such that at least one seed has fallen on i2 and i5 and no seed has fallen on i1, i3, 44, 46

during [Ts7r,,, —(X¢41), TsTy4+1). All this implies that 77%qu+1—(¢2) = 77%qu+1_(2'5) =1 and

+1—

77%qu+1 _(i3) = 77%qu+1— (i4) = 0 (because the vacant sites i1, ig protect the occupied sites iz, i4
from fires falling outside (X,41)x and because no fire falls on (Xq41)x during [0, TsTy41)).

Step 4. Next we check that if Z7, ,_(c) = 1 for some ¢ € Cps, then n%qu+1—(i) =1 for
all i € ¢y.

Recalling (18.3), we see that Zz,,, _(c) = 1 implies that T, 11 — 77,.,—(c) > 1 and thus

Ty41 — 71,(c) > 1 by Step 1. Using (18.5), we conclude that for all i € cy, U%STQH_(i) =
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min(N‘TgéOTq+1 _(7) —N‘TgéOTTq (©)(0)’ 1) =1 (at least one seed falls on each site during a time interval

of length greater than Ts).

Step 5. We now prove that if f[TqH_(x) = 0 for some x € By, then for all i € x,,
n%qu+17(i) = 1

Preliminary considerations. Let k € {1,...,n} such that £ = X}, which is at the bound-
ary of two cells c_,cy € Cy. We know that Hr,,,_(z) = 0, whence Hr,,, (z) = 0 and
Zry—(x) = Zr, . —(cq) = Zr,,,—(c—) = 1. This implies that T, 1 > 1, because Z;(x) =t
forallt <1, all x € [-A, A].

No fire has concerned (¢_)y during (Tsp%qﬂ_ (=), TsTy+1) (by definition of p%qﬂ_(c,)).
But Step 1 implies that p%qﬂ_(c,) = 17,,,-(c=) < Typ1 — 1, because Zr,,,—(c—) = 1, see
(18.3). Using a similar argument for ¢4, we conclude that no match falling outside (Xj)x can
affect (Xi)a during (Ts(Ty+1 — 1), TsTy+1) (because to affect (Xi)x, a match falling outside
(Xk)x needs to cross c_ or cy).

Case 1. First assume that &k > ¢+ 1. Then we know that no fire has fallen on (Xj),
during [0,TsT4+1). Due to the preliminary considerations, we deduce that no fire at all has
concerned (Xy)x during (Ts(Tg41 — 1), TsTy+1). This time interval is of length greater than
Ts. Thus (X)» is completely occupied at time TsTyy1—.

Case 2. Assume that k < ¢ and Zp,_(Xx) = 1, so that there already has been a macro-
scopic fire in (X)x (at time ayT}y). Since then Zz, (X3) =0 and Zr,,, - (X%) = 1, we deduce
that Ty41 — Ty > 1. We conclude as in Case 1 that no fire at all has concerned (Xj)s during
(Ts(Ty+1 — 1),TsTy+1), which implies the claim.

Case 3. Assume that k < g and Zp, _(Xj) < 1 and Tyq1 — T > 1. Then there already

has been a microscopic fire in (X)) (at time TsTy). But there are no fire in (X)) during
(TsTy, TsTy+1) and we conclude as in Case 2.

Case 4. Assume finally that k < ¢ and Zp,— (Xj) < 1 and Ty41 — Tx < 1. There has been
a microscopic fire in (X)x (at time TsTy). Since Hr, ,—(Xy) = 0, we deduce (see Algorithm
18.3) that Tp + O, 5 (x,) 1, < Tos1.

+1—

Consider the zone C(np. 7, _, [n1xX}]) destroyed by the match falling at time T'sTy. This
zone is completely occupied at time Ts(T} + ®Tk_ZTk—(Xk),Tk) < TsTy41 by definition of
Op, Zry — (Xk),Ty> S€€ Lemma 18.1, using here again the preliminary considerations.

We deduce that C (17,7, _, [mxXy]) is completely occupied at time TsTy;1—.

Consider now i € (Xp)x \ C(n3y7, —» [nxXx]). Then i has not been killed by the fire
falling on [n»Xj]|. Thus ¢ cannot have been killed during (Tg(T4+1 — 1), TsTg+1) (due to the
preliminary considerations) and is thus occupied at time TgTy11—. This implies the claim.

Step 6. Let us now prove that if ﬂTqH,(x) >0and Z7,,,(z4) = 1 for some x € By,
there are i1,is € x) such that i1 < is and n%STq+17(i1) =1, n%STq+17(i2) =0.

Recall that z is at the boundary of two cells c_,cy . We have either Hr, , _(x) > 0 or
Zr,,,—(c-) <1 (because Zr,,, (cy) = 1 by assumption). Clearly, 2 = X}, for some k < g,
with Zr, _(X%) < 1 (else, we would have H(x) = 0 and Z;(c_) = Zi(cy) for all ¢t € [0, Ty41)).
Thus, recalling (18.4), Ty — Z1,—(Xi) = 71, —(Xx) = 7, _(Xk), so that (X)x is completely
empty at time Ts(Ty, — Z1, - (Xk)).
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Case 1. Assume first that Hr, ,_(x) > 0. Then by construction, see Algorithm 18.3,
Ty + el'lcﬂk—Zka(Xk),Tk > Tgp1 > Ty

Consider C' = C(ny, 1, _, [mxXy]). By Q35 ()\), we have
C C [H_n,\Xk - m)\/ZJ, Ln,\Xk +1’I’1,\/2J]],

because Ty, — Z1, — (X)) and T, belong to Ty and 0 < Zp, (X)) < 1.

The component C' is destroyed at time Ts7);. By Definition of 6%_ Zr, (Xp),Tpr 5€€
o= ,
Lemma 18.1, we deduce that C is not completely occupied at time TsTy,41 < Ts(Tk +

@;kszki(Xk)ka). Consequenty, there is iz € [[n\Xr — my /2], [ny\Xx + my/2]] such that
n%qu+17(i2) = 0

Finally, using again Q5(\) there is necessarily (at least) one seed falling on a site in
[ Xk — my + 1], [0y X, —my/2 — 1]] C (Xg)a during (TsTy, TsTy+1). This shows the
result.

Case 2. Assume next that Hr,,, (z) = 0 and that T, 11 — [Tk — Z7,— (X%)] < 1. Recall
that (X)a is completely empty at time Ts(Tx — Z1,—(X&)). Since Ty — Zp,— (Xi) and Ty41
belong to Tas and since their difference is smaller than 1 by assumption, Q5 ()\) guarantees us
the existence of iy < ia < i3, all in (Xj),, such that (at least) one seed falls on is and no
seed fall on i1 nor on i3 during (Ts(Tx — Z1,— (Xk)), TsTy+1). One easily concludes that is is
occupied and i3 is vacant at time TsTy41—, as desired.

Case 3. Assume finally that Hr,,, _(x) = 0 and that Tyy1 — [Tk — Z7;,—(Xg)] > 1. Since
Hr,,, (x) =0, there holds Zr, |, (c_) <1=Zrg,,,(cy) and T} + G)%rszi(Xk)ka <Tyta.
We aim to use the event Q7 ()\). We introduce

to =Tk — Z1,—(X1) = T1— (X&) = 79, _(X).

Observe that 71, —(c—) = 71, —(c4+) = 71, — (z) because there is no match falling (exactly) on
x during [0, Ty). Thus Zi,(x) = Zi,(c—) = Zy,(cy) = 0.

Set now t; = T and s = Ty41. Observe that 0 < t; — ¢y < 1 (because Zr, —(Xi) <
1). Necessarily, Z;(c_) has jumped to 0 at least one time between to and Tyy1— (else, one
would have Zr,,, _(c—) = 1, since Tg41 — to > 1 by assumption) and this jump occurs after
to+ 1 > t1 (since a jump of Z;(c_) requires that Z;(c_) = 1, and since for all t € [to,to + 1),
Zi(e_) =t —1to < 1).

We thus may denote by to < t3 < - < tg, for some K > 2, the successive times of jumps
of the process (Z:(c—), Zi(cy)) during (to + 1,s). We also put € = 1 if ¢5 is a jump of Z;(c4)
and e = —1 else. Then we observe that Z;(c—) and Z;(cy) do never jump to 0 at the same
time during (¢o, s] (else, it would mean that they are killed by the same fire at some time u,
whence necessarily, H,(u) = 0 and Z,(c_) = Z,(cy) for all r € (u, s]).

Furthermore, there is always at least one jump of (Z:(c—), Z¢(cy)) in any time interval of
length 1 (during [tg + 1, s)), because else, Z;(c;) and Zi(c_) would both become equal to 1
and thus would remain equal forever.

Finally, observe that two jumps of Z;(c_) cannot occur in a time interval of length 1 (since
a jump of Z;(c_) requires that Z;(c_) = 1) and the same thing holds for .

Consequently, the family R = {e,to, ..., tx; s} necessarily satisfies the condition (PP).
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Next, to —t1 < @%FZT (X0) T = ©F ., because else, we would have Hy, (X;) = 0 and
o (X3), T :
thus the fire destroying ¢4 (or c¢_) at time t2 would also destroy c_ (or c4), we thus would
have Zy,(cy) = Zi,(c—) = 0, so that Z;(c4) and Z¢(c_) would remain equal forever.

(CRF G+ [n2Z]))t>t0,icay, this last process

being built with the family of seed processes (N%Iz(i))tzto,iem as in Subsection 18.2. Both
are empty at time to. Seeds fall according to the same processes. In both cases, a first match
falls on [nyz] at time ¢1. In both cases (say that € = 1) a fire destroys the occupied connected
component containing [nyx| + my at time to (by definition for (*® and since Z;,_(c;) =1
implies, exactly as in Step 4, that n%stz_(i) =1 for all 4 in (c¢4)y, so that the fire destroying
¢4+ at time to also destroys the occupied connected component around |nyz| + my, which is
at the boundary of c¢y). And so on.

Finally, we check that (n},(i))t>tyicay =

We thus can use Q7 (\) and conclude that there are some sites i; < ip in ) with
n%quHf (t1) =1 and 77%qu+17 (i2) = 0 as desired.

Step 7. We finally conclude the proof. We put z := Zr,, _ (Xq41) and consider separately
the cases where z € (0,1) and z = 1. Observe that z = 0 never happens, since by construction,
ZTqul,(Xqul) = min(ZTq (Xqul) + (Tqul — Tq), 1) > 0 and since Tq+1 > Tq.

Case z € (0,1). Then in the LFF4(BS)-process, see Algorithm 18.3, Zr, () =
Zr,—(x) > 0 for all x € [-A, A], whence 77, () = 77,,,—(¢) and 71, (¢c) = 77,,,-(c)
for all x € By, all ¢ € Cyy.

Using Step 3, we see that the match falling on [nyX,41| at time T'sT1 destroys nothing
outside [j2+1, j3—1]. As a conclusion, we obviously have 7z (z) =77, _ (=) and p3,  (c) =
T%Hl (c) = T%qﬂ_(c) for all x € Basr \ {Xq41} and all ¢ € Cps. There also holds T%(Hl (Xg4+1) =
T%q+1_($) because ji (see Step 3), which is occupied at time TsT,41— and not killed at time

TsTy+1 (thanks to jo), does belong to (Xg41)a-
We conclude that when z € (0,1), Q%{Hl_
Q3. implies Q3. when z € (0,1).

Case z = 1. Then there are a,b € By U {—A, A} such that Dz, _(Xg41) = [a,b]. We
assume that a,b € B, the other cases being treated similarly. Recalling Algorithm 18.3, we
know that for all ¢ € Cps with ¢ C (a,b), Z1,,,-(c) =1, for all z € ByyN(a,b), Hr,,,—(z) =0,
while finally Hr,,,—(a) > 0 and Hr,,,_(b) > 0. For the LFF4(BS)-process, we have
(i) 77, (c) = Tyq1 for all c € Cpy with ¢ C (a,b),

(i) 77,,, (x) = Ty41 for all z € Bar N (a,b),

(iii) 77,,, (¢) = 71,.,—(c) for all ¢ € Cps with ¢ (a,b) =0,

implies Q%{Hl. Using Step 1, we deduce that

(iv) 77, () = 77, — () for all z € B \ (a,b).

Next, using Steps 4, 5, using Step 6 for a (and a very similar result for b), we immediately
check that the fire occurring at [nyXg11] at time TgT, 14

e destroys completely all the cells ¢ € Cp with ¢ C (a,b),
e destroys completely all the zones x) with x € By N (a,b),

e does not destroy at all the cells ¢ € Cpy with ¢ N (a,b) = () and the zones z) with
x € B\ [a,b],
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e does not destroy completely ay nor by.

Consequently, we have

(i) p%ﬁl(c) = T%qﬂ(c) = Ty41 for all ¢ € Cpp with ¢ C (a,b),

(i) T%Hl () = Ty4q for all x € By N (a,b),

(iii) p%qﬂ (c) = p%qﬂ_(c) and Tq/\ﬂq+1 (c) = T%(Hl_(C) for all ¢ € Cpy with ¢ (a,b) =0,

(iv) T%q+1 (x) = T%LHI?(.T) for all x € By \ (a,b).

We conclude that when z = 1, Q%ﬁlf implies Q%ﬁl. Using Step 1, we deduce that Q%q
implies Q%ﬁl when z = 1. ]

18.6. Conclusion. To achieve the proof, we will need the following result.

LEMMA 18.6. Let (N2 (i))i>0.icz be a family of i.i.d. SR(us)-processes.
(i) Put K} = (2my + 1) '{i € [-my,my] : N2, (i) > 0}| and

Us(K7)

U = Al

t ( TS ’

recall Notation 2.5. Then for any T' > 0, supjy 1 |U} —t A 1] tends a.s. to 0 as X tends to 0.
(ii) For any k > 0, Pr[|C(min(N7,,,1),0)| = k] = qe(t A1), where qi(z) was defined (5.2).

ProOF. We start with (i). First observe that ¢ — U} and ¢ + ¢ A 1 are nondecreasing
and t — t A 1 is continuous. By the Dini Theorem, it suffices to prove that for all ¢ € [0, T],
a.s., imU} = t A 1. To do so, observe that (2m) + 1)K} has a binomial distribution with
parameters 2m)y + 1 and vg((0,Tst)). Thus K;' tends a.s. to vg((0,Tst)). Hence U tends
a.s. to (Ys(vg((0,Tst)))/Ts) A1 =tA1 by definition of ¢g.

We now check (ii). If ¢ > 1, then obviously, min(NZ_,(i),1) = 1 for all i € Z, whence
|C(min(N£St, 1),0)| = oo a.s. Consequently, Pr[|C(min(N£St, 1),0)| = k] =0 = qx(1).

For ¢ < 1, the result relies on a simple computation involving the i.i.d. random variables
min(N7,, (i), 1), which have a Bernoulli distribution with parameter vs((0,Tst)): if k = 0,
there holds

Pr(|C(min(N7;, 1),0)| = 0] = Pr[Nre(i) = 0] = vs((Tst, Ts)) = qo(t).

For k > 1,
Pr[|C(min(NZ,,,1),0)| = k]
k—1
=3 Pr[Ni,(G—k)=Ni,G+1)=0Vie[j—k+1,4], NZ,(i) = 1]
j=0
=k[vs((Tst, Ts))*[vs((0, Tst)]* = qr(t),
which ends the proof. O

We finally give the

Proof of Proposition 17.1 when 8 = BS. Let us fix zg € (—A, A), top € (0,T] and ¢ > 0. We
will prove that with our coupling (see Subsection 18.3), there holds

(a) limx—o Pr [8(D2 (o), Dy, (w0)) > €] = 0;
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(b) limy_, Pr [(sT D/\ (z0), D(w0)) > 5} =0
(c) limx—o Pr supg 7 | Z}M(w0) — Z(x0)] 25} =0;

(d) limx—o Pr [[C(nyy,, [mamo])| = k] = Elgr(Ze(w0))].

Recall that gx(z) was defined, for k¥ > 0 and z € [0,1] in (5.2). These points will clearly
imply the result.

First, we introduce, for ¢ > 0, the event Q7’7 (¢) on which zo ¢ Uy_;[Xy —, Xg+(]. The
probability of this event obviously tends to 1 as { — 0.

On Q31 (¢), for A > 0 small enough (say, small enough such that 4my/ny < (), [n\zo| ¢
Up—1(X¢)x. We then call ¢y € Cps the cell containing xo.

Step 1. We first show that (a) (which holds for an arbitrary value of ¢y € (0,T]) implies
(b). Indeed, we have by construction, for any ¢ € [0, 7], §(D;(zo), Di(70)) < 4A. Hence by
dominated convergence, (a) implies that limy_oE [5(D;\(:I:0), Dt(:no))] = 0, whence again by
dominated convergence, limy_,oE [JT(DA (20), D(aco))] =0.

Step 2. Due to Lemma 18.5, we know that on Q(a, A) N Q%7 (¢), we have Mco) =
o2 (co) = Ti(wo) for all t € [0, T]. This implies that for all i € (co)y, for all t € [0, 7],

M () = min(NZ5 () = N2, (0), 1),

Tsti(zo)
We also recall that by construction, (7¢(z¢)):>0 is independent of (Nf’o(i))tzoﬁiez.
Step 3. Here we prove (d), for some fixed & > 0. Let § > 0 be fixed. We first consider
ag > 0, (o > 0 and Ag > 0 such that for all A € (0, Ag), Pr [Q(ao, A)N QZU,T(CO)} > 1—4. Then

we consider Ay < Ag in such a way that for A € (0, A\), [[nazo] —k—1, [nxzo|+Ek+1] C (co)a
on 5°7(Co) (it suffices that 2k < (ony for all A € (0, Ax)).

We easily conclude: for A € (0, \), recalling (18.3), using Lemma 18.6-(ii) together with
a (spatial and temporal) stationarity argument, using Step 2 and that (Nf’o(i))tzoﬁiez is
independent of Q7.(¢) N Q(a, A) and 7¢(x0), we obtain

|Pr [|C (g [mrzo))| = k] — E[qr(Ze(x0))]]
= |Pr [|C (s> [mrzo))| = k] — E[gi(min(t — 7¢(x0), 1))]|
(

<Pr[(Qa, ) N9%1(0) }
This concludes the proof of (d).

Step 4. We next prove (c). For § > 0 fixed, we consider ag > 0, (o > 0 and A9 > 0 be
as in Step 3. Consider the successive values 0 = so < 51 < --- < 5y < T of (7¢(20))¢ejo,7]- Set
also 541 = T. Recall the definition of Z}(x), see (3.5), and compare to Lemma 18.6-(i).

Let k € {0,...,1} be fixed. Denote by (U}"*)y¢ the process defined as in Lemma 18.6-(i)
with the seed process (Ni’?TSH(if [nyzo])— Ni?TS (i—[nazo]))t>0.icz (this is indeed a family

of SR(us)-processes by stationarity and since s1, ..., s; are independent of (NtS’O(i))tzoﬁiez).
Then due to Lemma 18.6-(i), for all A > 0 small enough, say A € (0, A1),

Pr< sup |Uf’§k(tsk)/\1|2€>§5.
[

Sk75k+1)
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But on Q(a, ) N Q5°7+(¢), we have ZMxo) = Utkf\Sk_ for all t € [sg, sk+1), see Step 2. It also
holds, recall (18.3), that Z:(xg) = (t — sk) A1 for ¢ € [sg, Sk+1). As a conclusion, for all A > 0
small enough,

Pr < sup |Zt)‘(z0) — Zi(xo)| > 5) <Pr ((Q(a, A)N QZO,T(C))C)

[5k75k+1)

+Pr< sup |Utk_’>§k —(t—sk) A1l > 5) < 26.

[5k15k+1)

Observing finally that I < mp([0,T] x (—A, A)) and that E[mp([0,T] x (—A, A))] = 2T A, we
easily deduce that for all A > 0 small enough,

Pr (sup |Z} (w0) — Zi(20)| > 5) < 2T Aé.
[0.7]

Point (¢) immediately follows.

Step 5. It remains to prove (a). Let 6 > 0. Put 7,7 = Ta U {to}. Define the events
Q1 (a), () and Q5% (A) as Qpr(a), QF(A) and Q5 (N), replacing Tas by T;;. Define also
Q* (A, ) = QM () NQL (o) NQT*(A) N QY™ (N). Clearly, choosing oy > 0 and ¢; > 0 small
enough, we have Pr[Q*(\, a1) NQY°7+(¢1)] = 1 =6 for all A > 0 small enough, say A € (0, A2).

On Q*(\,a1) N QY 7p(¢1), we can argue exactly as in the proof of Lemma 18.5 to check
that

(i) if Zy,(z0) < 1, then Dy (z0) = {zo} and C(ny,, [mrzo]) C (zo)x (see Step 3 of
the proof of Lemma 18.5), whence D} (zo) C [zo — my/ny, o + my/ny]. We deduce that
8(Dry (20), Dy (20)) < 2my /ny;

(1) if Zy,(z0) = 1 and Dy (x0) = [a, b] for some a,b € By, U{—A, A}, then

e for all ¢ € Cyy with ¢ C [a,b], 7, (i) = 1 for all i € ¢\ (sce Step 4 of the preceding
proof);

o for all z € By N (a,b), Ny, (i) = 1 for all i € 2 (see Step 5 of the preceding proof);

e there are i € ay and j € by such that 3, (i) = 197,,(j) = 0 (see Step 6 of the preceding
proof);

so that

[[naa) +my + 1, [n3b] — my — 1] € C(n3y,, [nrz0]) C [[nra) — my, [nxb] +m,],
and thus [a+my/ny,b—my/ny] C D (z9) C [a—my/ny, b+ m,/n,], whence as previously,
5(Dt0($0),Di:’(l'0)) S 2m>\/n>\.

Thus for all A € (0, A2), on Q*(A, 1) N QY 7#(C1), we always have 8(Dyy (o), Dy (20)) <
2m)y /ny. We conclude that for § > 0, for all A € (0, A2) small enough (so that 2my/ny < ¢),
there holds

Pr [5(Dt0 (z0), D,f:’ (z9)) > 6} < Pr[(Q* (N, )N Q'Z‘)’T(O)C] < 0.

This concludes the proof. O
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19. Convergence proof when 8 = oo

The aim of this section is to prove Proposition 17.1 in the case where 8 = oo and this will
conclude the proof of Theorem 4.3. This section generalizes consequently [14, Section 4] and
the proof we present here is quite different and slightly less intricate. We follow essentially the
ideas of the previous section. Some points are easier (because the height of the barriers are
deterministic in the limit process), but some other points are more complicated (in particular,
the height of the barriers are not constant as a function of \).

In the whole section, we assume (Hjys) and (Hg(co)). The parameters A > 0 and T > 0
are fixed and we omit the subscript/superscript A in the whole proof.

We recall that ay, ny and m) are defined in (3.1), (3.2) and (3.4). For A > 0, we set as
usual Ay = [An,]| and I} = [~A\, A,]. For i € Z, we set iy = [i/ny, (i + 1)/ny). For [a,b]
an interval of [—A, A] and X € (0, 1), we introduce, assuming that —A < a < b < A,

(191) [a,b])\ :[[LnAa + m)\J +1, Ln,\b — m)\J — 1]] C 7,
[—A,b], =[-Ax, [nxb—my]| — 1] C Z,
la,A], =[[nrxa+m,y|+1,A,] C Z,

For z € (—A, A) and X € (0,1), we introduce as usual

(19.2) Ty :[[Ln)\:c — m)\J , Ln,\l‘ + m)\“] C Z.
19.1. Speed of occupation. We start with some easy estimates.

LEMMA 19.1. Consider a family of i.i.d. SR(us)-processes (N2 (i))i>0.icz. Leta < b.
(i) For t <1, limy_ Pr[Vi € [[am,], [bm,]], N5 (i) > 0] = 0.
(it) For t > 1, limy_,o Pr[Vi € [lam,], [bmy]], NS (i) > 0] = 1.
(iii) Fort < 1, limy_o Pr[Vi € [lany), [bny]], NS, (i) > 0] = 0.
(iv) For t > 1, limx_,o Pr[Vi € [|any [, [bny]], NS (i) > 0] = 1.
(v) Fort >0 and i € Z, limy_,0 Pr[NS (i) > 0] = 1.

PROOF. To check points (i) and (ii), it suffices to note that
vs((0, a,\t))(b_a)m* ~ e_(b_a)m)\us((axt,oo)),

which tends to 0 if ¢ < 1 (see (3.4)) and to 1 if ¢ > 1 (because then myvg((art,o0)) <
myvs((ax,o0)) ~ my/ny — 0). To check points (iii) and (iv), observe that

l/s((o,akt))(b_a)n)‘ ~ e—(b—a)nxus((axt,oo)) ~ e—(b—a)l/s((a;t,oo))/lls((a)\,oo))
tends to 0 if t <1 and to 1 if ¢ > 1 due to (Hg(o0)). Finally, (v) follows from the fact that

1 —vg((axt, 00))

obviously tends to 1. O

19.2. Height of the barriers. We describe here the time needed for a destroyed (mi-
croscopic) cluster to be regenerated. Roughly, we assume that the zone around 0 is completely
vacant at time aytg. Then we consider the situation where a match falls on the site 0 at some
time axt; € (axto,ax(to + 1)) and we denote by O} , the delay needed for the destroyed
cluster to be fully regenerated (divided by ay). We show that ©7, ; ~t; —to when X is small.
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LEMMA 19.2. Consider a family of i.i.d. SR(pus)-processes (N (i))i>o0.icz. Let 0
to < t1 < to+ 1 be fized. Put C{\U’t(i) = min(ka(tOH)(i) — Naxto() 1) and C{\ht(i)
min(NS (t2 +t)( i) — N2, (i),1) for all t > 0 and i € Z. Define

Oy, =inf{t >0 : Vie C(Q,,_4,0), (1) =1} €[0,1].
Then for all § > 0,

IIA

. A
lim Pr 1641, — (t1 —to)| > 6] = 0.
PROOF. We can assume that tg = 0 by stationarity. We put v = t; = t; — t9. Exactly as
in the case where = BS (see Subsection 18.1), we obtain, for h > 0,

Pr [@?Ml < h] = vs((anu, o)) + M S(u, h),

- g3 )2
where
93 (u, ) [Naw > 0,N5 (i (0) > N ,(0)].
For h > u, we observe that g2(u,h) > 1 — vs((axh,00)) — vs((aru,00)), whence
2
Pr(6d, <> (s OS‘;‘“ ) 1 vsllanhoo) — s(anus o)l

which tends to 1 as A — 0 due to (Hg ( )), since ay increases to infinity and since h > w.

For h < u, there holds g2 (u, h) <1 —vg((axh,00)), so that

Pr (60,0, <] < vs((anuoa)) + () 1L vs((anh o),

which tends to 0 due to (Hg(oo)) and since h < u. This concludes the proof. O

19.3. Persistent effect of microscopic fires. We handle a study similar to subsection
18.2.

Recall that R = (g;t,t1,...,tKk; s) satisfies (PP) if

(i) K >2,¢€{-1,1},

{)0<top<t; < - <tg <s<tg+1,

(iii) for all k = 0,..., K — 1, tpor — tp < 1,

(iv)ta—tp>1land forall k =2,..., K — 2, tp4o —ty > 1,

and that we set e = (—1)*¢ for k > 0.

For a family of i.i.d. SR(us)-processes (N7 (i))i>0.icz, we introduce, for each A € (0, 1),
the process (¢ (i ))t>to,ic[-m,m,] defined as follows:

o for all t € [to, 1), all i € [-my, my], (M7() = min(Ng ,(6) — N2 4 (i), 1),

o for all i € [—my, my], (V7@) = D g™ 0

efork=1,... K—1,

(4) forall € (1, 1), € [—ma,mal, 6(0) = min (G0) + N3, (0) ~ M0, 0,

(x) for all i € [-my, m,], Ct/\,;+1( ) = Ctk#»l*(.) €O T _exmy)’

o forall t € (tx,00), i € [~my,my], (i) = min (G () + N2, (6) = NS, (8),1)-



19. CONVERGENCE PROOF WHEN 3 = oo 91

Consider the event
QF(\) = {3-my <iy <iz<iz<my : COR (i) = R (is) = 0,0 (in) = 1}.

LEMMA 19.3. Let R = (e;to,t1,...,tk;s) satisfy (PP). For each A € (0,1], consider
the process (C{\’R(i))tz,f”e[[_mMmA]] defined above. If to —t1 <ty —tg, there holds
lim Pr (Q%())) = 1.
e r( 2 (V)

Compare to Lemma 18.2: the condition Oy, > t2 — t; is replaced by the condition
t1 —to > to — t1. This is very natural, in view of Lemma 19.2.

PRrROOF. In view of Lemma 19.1, the proof is very similar to that of Lemma 18.2. We
assume that ¢ = 1 and that K is even for simplicity. Fix a = 1/K.

First fire. We put C' = C(gﬁl’?,O). Since t; —to < 1, C C [—|am, ], [am,|] with
probability tending to 1 (use Lemma 19.1-(i) and space/time stationarity). Thus the match
falling at time t; destroys nothing outside [—|am, |, [am) |].

Second fire. Since ty — tg > 1, at least one seed has fallen, during [to,t2) on each site of
[lamy] 4+ 1, m,] with probability tending to 1 (use Lemma 19.1-(ii) and space/time station-
arity). Thus the fire at time ¢2 destroys completely the zone [|amy | + 1, m,]. Furthermore,
it does not affect [-my, —|am, | — 1] with probability tending to 1, because ¢3 < ¢1 + 6?0,161
with probability tending to 1 (6?0,,51 ~ t; —to by Lemma 19.2 and t3 —t1 < t; —tp by assump-
tion) and because there is an empty site in C' C [—|am, ], [amy]] during [t1,t, + O}, ] (by
definition of ©7, ;).

Third fire. Since ts —t2 < 1, the probability that there is a vacant site in [|amy] +
1, [2amy |] at time ¢35 tends to 1 as A — 0 (use Lemma 19.1-(i) and space/time stationarity).

Next, all the sites of [-m), —|amy | —1] are occupied at time ¢3— with probability tending
to 1 (because they have not been affected by a fire during [to, t3) and because t3 —tg > to—to >
1, see Lemma 19.1-(ii)). Thus the fire at time t3 destroys the zone [-m), —|am,| — 1] and
does not affect the zone [|2amy |, m,].

Last fire and conclusion. Iterating the procedure, we see that with a probability tending
to 1 as A — 0, the fire at time ¢x destroys the zone [|(K«/2)my ], my] = [|mx/2], m,].

Then one easily concludes: since 0 < s —tx < 1, the probability that there is at least one
site in [|my/2], [2m,/3|] with no seed falling during [tk, s] tends to 1 (by Lemma 19.1-(i)),
the probability that there is at least one site in [|2my/3] + 1, [5m,/6]] with at least one
seed falling during [tk s] tends to 1 (by Lemma 19.1-(v)), and the probability that there is at
least one site in [|5my/6] 4+ 1, m,] with no seed falling during [tx, s] tends to 1 (by Lemma
19.1-(i)). O

19.4. The coupling. We are going to construct a coupling between the FFa(us, j13)-
process (on the time interval [0, a)T"]) and the LF F4(o0)-process (on [0,T]).

First, we couple a family of iid. SR(u),)-processes (NM*(i));>0.icz with a Poisson
measure 7y (dt, dz) on [0,T] x [—A, A] with intensity measure dtdz as in Proposition 11.1.

We call n := mpr ([0, T x [— A, A]) and we consider the marks (T, Xy)g=1,... n of mps ordered
in such away that 0 < Ty <--- < T, <T.
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Next, we introduce some i.i.d. families of i.i.d. SR(us)-processes (N;*4(i))s>0.icz, for
qg=0,1,..., independent of my; and (Ny’)‘(i))t207iez.

Then we build a family of i.i.d. SR(ug)-processes (independent of (N*(i))¢>0.iez and
) as follows.

eForqge{l,...,n}, forallie (X,)x (recall that (X,)x = [[naXy—my], [0y X, +m,]]),
set (N (0)ez0 = (N6 — [m3X)))ezo-

(In the rare case where 4 belongs to (Xg)x N (X,)x for some g < r, set e.g. (Nts’)‘(i))tzo =

(N9(i — [nxX4]))e>0. This will occur with a very small probability, so that this choice is
not important).

e For all other i € Z set (N(i))i0 = (N°(i))eo0.
The FFa(us, i1y )-process (ni\(i))tzo,z'elj, is built from the seed processes (N (i))i>0.icz
and from the match processes (N (i));>0.icz.

Finally, we build the LF Fs(co)-process (Z:(x), D¢(x), H¢())seo,1),5e[—a,4] from mas (use

Algorithm 18.3 replacing egjjl_ZTk+l—(Xk+l);Tk+l by Zr1, ., —(Xk41)) and observe that it is

independent of (Nts’q(i))te[o,T],ieZ,qzo-
19.5. A favorable event. First, we know from Proposition 11.1 that
QN (0) = {w € [0, T, Vi € I}, ANMA (i) # 0ff mag ({t} x i) # o}

satisfies limy o Pr[Q}(X)] = 1. Next, we recall that the marks of 7 are called (71, X1),
..., (T, X,) and are ordered chronologically. We introduce Ty = {0,71,...,Tn}, By =
{X1,...,X,}, as well as the set Cps of connected components of [—A, A] \ By (sometimes
referred to as cells).

We also introduce Sy = {2t — s : s,t € Tar, s < t}, which has to be seen as the possible
limit values of t + ©), ~ ¢+t — s, recall Lemma 19.2.

s,t —

For a > 0, we consider the event

Qarla) = { min  ft—s/>a, min _Jt—(s+1)|>a,
StETMUS M, 57t 5,t€TaUSh, s7#t
min |z —y| > CY}7
z,y€EBpU{—A, A} z#y

which clearly satisfies lim, o Pr[Qas(«)] = 1. As in the case § = BS, for any given a > 0,
there is Ay > 0 such that for all A € (0, \,), on Qur(a),

o for all z,y € Byy U{—A, A}, with = # y, zx Nyy = 0,
e the family {cx,c € Car} U {zx, 2 € Bar} is a partition of I (recall (19.1) and (19.2)).
Let g € {1,...,n}. We call U, the set of all possible R = (¢, o, ..., tx; s) satistying (PP)
with e € {—1,1}, with {to,...,tx,s} C Tar and with ¢; — t9 > t2 — t;. We introduce, for
g=1,...,n and R € Uy, the event Q%q()\) defined as in Subsection 19.3 with the SR(us)-
processes (N7 9(i))¢>0.ez. Then we put
Q7 (\) = Ny Nreu, QRN

which satisfies limy_,o Pr (27(A)) = 1 thanks to Lemma 19.3.
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We also consider the event Qg (M) on which the following conditions hold: for all ¢1,ts €
Tar USy with 0 <ty —t; <1, forall ¢ =1,...,n, there are

—my < i <ip < -—my/2<iz3<0<iy<my/2<is<ig<my

such that
o for j =1,3,4,6, NJ9 (i) — N4 (i;) = 0,
; S.q /- S.q /-
o for j =2,5, N/, (i) — N3, (i) > 0.

There holds limy_,0 Pr (©25()\)) = 1. Indeed, it suffices to prove that almost surely,
limy_,o Pr (QQS()\)MM) = 1. Since there are a.s. finitely many possibilities for ¢,%;,t2 and

since 7y is independent of (N{q’q(i))tzoyiez, it suffices to work with a fixed ¢ € {1,...,n} and
some fixed 0 < t2 —t; < 1. The result then follows from Lemma 19.1-(i)-(v) together with
space/time stationarity.

Next we introduce the event 5 (\) on which the following conditions hold: for all t1,t, €
T U S,

e forall ¢ € Cpy, if 0 < ty —t1 < 1, there is i € ¢y with N2 (i) — N2 (i) = 0;

ayzta axty
o for all x € By, if 0 < t2 —t1 < 1, there is i € xy with N3} (i) — N33, (i) = 0;
oifty —t; > 1, for all ¢ € Cyy, for all i € ey, NS (i) — N2} (i) > 0.
oifty—t; > 1, for all z € By, for all i € xy, N33 (i) — NO73 () > 0.

There holds limy_,o Pr (25 (X)) = 1. As previously, it suffices to work with some fixed
ti,ta, ¢ € (—A, A) and ¢ = (a,b) C (—A, A). Observing that |z)| ~ 2m) and that |c)| ~
(b — a)ny, Lemma 19.1 and space/time stationarity shows the result.

We also need 25 (7, \), defined for v > 0 as follows: for all ¢ = 1,...,n, for all ty,t; € Tas
with to < t1 < to + 1, there holds |®§;}ft1 — (t1 —to)| < . Here @g(;’,\tl is defined as in Lemma

19.2 with the seed processes family (Nts’q(i))tzoyiez. Lemma 19.2 directly implies that for any
v >0, limy_,o Pr[Q5 (v, \)] = 1.

We finally introduce the event
Qa,7,2) = QLN N Qar(e) NQF(N) NQF(A) N Q3 (A) NQF (7, A).

We have shown that for any € > 0, there exists @ > 0 such that for any v > 0, there holds
liminfy_,o Pr[Q(a, v, A)] > 1 —e.

19.6. Heart of the proof. We now handle the main part of the proof, following closely
Subsection 18.5.

Consider the LFF4(oc0)-process. Observe that by construction, we have, for ¢ € Cj; and
x,y € ¢, Zy(x) = Z(y) for all t € [0,T], thus we can introduce Z;(c).

If € By, it is at the boundary of two cells c_, ¢4 € Cjps and then we set Z(z_) = Z;(c—)
and Zt(1'+) = Zt(C+) for all t € [O,T]

If x € (—A, A) \ By, we put Zy(x_) = Zi(z4) = Zi(z) for all ¢ € [0, T7.
For z € By and t > 0 we set Hy(x) = max(Hy(z),1 — Zi(x),1 — Zi(x_), 1 — Zi(z4)).
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Actually Z:(x) always equals either Z;(z_) or Z;(x4) and these can be distinct only at
a point where has occurred a microscopic fire (that is if z = X, for some ¢ € {1,...,n} with
T, <t and Zr, (X,) < 1).

For all x € (—A, A) and ¢ € [0,T], we put
Ti(x) =sup{s <t : Zs(x4) = Zs(x_) = Zs(x) =0} € [0,¢] N T
For ¢ € Cps and t € [0,T], we can define 7:(c) as usual.

Observe, using Algorithm 18.3, that as when g = B.S,

(19.3) for x ¢ By, Zi(x) = min (¢t — 7¢(x),1) for all t € [0,T],
(19.4) forg=1,...,n, Zy(Xy)=min(t — 7,(X,),1) for all t € [0,T).
We also define for all ¢ € [0,7], all ¢ € Cpy and all z € (—A, A)

pr(c) =sup{s <t : Jiecynny,(i)=1andn (i ) } 1,
Tt)\(l‘) :sup{s <t:Vie x,\,ng‘xt (1) =1 and nakt = 0}

() =sup{s <t : Vi€erm,_(i)=1and n), z)

with the convention that ny_(i) = 1 for all i € I}. Observe that on QAT()\), we have
(), p(c), () € 0,4] N Tas for all t € [0,T), all ¢ € Cpy and all x € (—A, A).
For ¢ € [0, T}, consider the event
Qi‘ = {VS € [0,¢],Vec e CM,’TS/\(C) = p?(c) = 75(c) and Vz € B[\/[,’T's/\(l') = TS(:L')} .
LEMMA 19.4. Let a >~ > 0. For any XA € (0, \a), Q3 a.s. holds on Q(a,v, ).

PROOF. We work on Q(a,v,\) and assume that A € (0, \,). Clearly, 7o(z) = 73'(x) = 0
and 7o(c) = 13 (c) = pj(c) = 0 for all z € By, all ¢ € Cy, so that ) a.s. holds. We will show
that for ¢ =0,...,n — 1, Q%q implies Q%{Hl. This will prove that Q%n holds. The extension

to Q) will be straightforward (see Step 1 below).

We thus fix ¢ € {0,...,n — 1} and assume Q%q. We repeatedly use below that on the
time interval (T, T,+1), there are no fires at all (in [—A, A]) for the LFF4(BS)-process and
no fires at all (in 1)) during (axTy, axTy41) for the FFa(us, py,)-process (use Q4 1 (X)).

Step 1. Exactly as in the proof of Lemma 18.5-Step 1, QA implies (27, v —

Step 2. Exactly as in the proof of Lemma 18.5-Step 2, we observe that for ¢ € Cys, on
Q%ﬁl_, there holds, for all ¢ € ¢y,

S, . S, .
(19.5) ni‘ATﬁr(z) min (NaAOTqu(’) - NaﬁTq(C)( i), 1) .

Step 3. If Z7, , (Xq41) < 1, there exist ji,jo2,j3,J4 € (Xgy1)r such that j; < jo <

[\ Xg41] < Jj3 < js and n:ATqu(Jé) = UékTﬁﬁ(jB) =0 and n:ATqu(jl) = n;\ATqH,(JA) =
1. The proof is the same as Lemma 18.5-Step 3.

Step 4. Next we check that if Z1,,,(c) = 1 for some ¢ € Cys, then nzAuTqH—
all 7 € cy.

Recalling (19.3), we see that Zz,,, _(c) = 1 implies that T, 11 — 77,.,—(c) > 1 and thus
Tyr1—71,(c) > 1 by Step 1. Using Qps () and that T, 41,77, (c) € Tar, we deduce that Ty 1 —

(1) =1 for
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7r,(c) > 1. Using (19.5), we conclude that for all i € cy, n;\kTqu(i) = min(NfA’OTqH_(i) -
NS5O 1) =1 by Q5(\).

axTr, (c)(i)’
Step 5. We now prove that if f[TqH_(x) = 0 for some x € By, then for all 7 € x,,
UQ\ATQH_(Z') =1
Preliminary considerations. Let k € {1,...,n} such that £ = X}, which is at the bound-
ary of two cells c_,cy € Cy. We know that Hr,,,_(x) = 0, whence Hr,,,_(z) = 0 and
Zryo—(x) = Z7,,,—(cy) = Z1,,—(c—) = 1. This implies that Ty41 > 1 (because Z;(x) =t
for all t < 1 and all z € [—A, A]) and thus Tg41 > 1+ « due to Qar(a).

No fire has concerned (c— ), during (aAp%qH_(c,), axTy41) (by definition of p%qﬂ_(c,)).
But Step 1 implies that p%qﬂ_(c,) = 17,,,-(c=) < Tgy1 — 1 because Zr,,, (c—) = 1,
see (19.3). Recalling Qps(«), we deduce that p%qﬂ_(c,) < Ty4+1 — 1 — o Using a similar
argument for ¢4, we conclude that no match falling outside (Xj)x can affect (Xx)» during
(ax(Ty41 — 1 — @), anTg41) (because to affect (Xj)x, a match falling outside (Xj)x needs to
Cross c_ Or cy).

Case 1. First assume that k > ¢+ 1. Then we know that no fire has fallen on (X}),
during [0,a)\T4+1). Due to the preliminary considerations, we deduce that no fire at all has
concerned (Xj)y during (ax(Ty+1 — 1 — a),axTy+1). Using Q5 (X), we conclude that (Xj)y is
completely occupied at time ayTg41—.

Case 2. Assume that k < g and Zg, _ (X)) = 1, so that there already has been a macro-
scopic fire in (X})x (at time axT%). Since Zr, (Xy) = 0 and Z7, ,  (Xx) = 1, we deduce that
Ty+1—Tr > 1, whence Tg11 —Tj > 14« as usual. We conclude as in Case 1 that no fire at all
has concerned (Xj)y during (Ts(Ty4+1 — 1 — ), TsT,+1), which implies the claim by Q5()).

Case 8. Assume that k < gand Zp, — (Xy) < Land Ty41—T) > 1, whence Tyy1—T > 1+«
due to Qps(a). Then there already has been a microscopic fire in (X%)x (at time ayT}). But
there are no fire in (X)) during (axTk, axTg+1) O (Ts(Ty+1—1—a), TsTy+1) and we conclude
as in Case 2.

Case 4. Assume finally that £ < ¢ and Zp,_(Xy) < 1 and Ty41 — T < 1, whence
To+1 — Tk < 1—a due to Qpr(a). There has been a microscopic fire in (X3)x (at time axTk).
Since Hr,,,—(Xx) = 0, we deduce (see Algorithm 18.3 and recall that @;kszki(Xk)ka is
replaced by Zp, _ (X)) that Ty + Zp,— (Xk) < Ty41, whence Ty, + Zr, - (Xi) < Ty+1 — a by
Qur(a) (Sar was designed for that purpose).

Consider the zone C = C(n 1, _, [nxX4]) destroyed by the match falling at time ayT}.

kA
)

ToZr, — (Xp), T3 )} this follows from the

This zone is completely occupied at time ay(Ty + ©

definition of @%:‘7 T, (Xp), Ty > S€€ Lemma 18.1 and from the preliminary considerations. Using
K= \k)

Q7 (7, ), we deduce that T}, + G?k)\*ZTk—(Xk)qu < Ty + Zp,— (Xk) +v < Ty41, since v < a.
Hence C'is completely occupied at time ayTg41—.

Consider now i € (Xj)x \ C. Then i has not been killed by the fire starting at [nyXy|.
Thus ¢ cannot have been killed during (ax(Ty+1 — 1 — @),axTy+1) (due to the preliminary
considerations) and we conclude, using Q5()\), that i is occupied at time a)T,+1—. This
implies the claim.
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Step 6. Let us now prove that if f[TqH_(x) > 0and Z7,,,—(r4) = 1 for some x € By,
there are i1,i2 € x) such that i1 < i and 772qu+1—@1) =1, nQATqH_(iQ) = 0. Recall that z
is at the boundary of two cells c_, c4.

We have either Hr,,,_(z) > 0 or Zr,,,—(c—) < 1 (because Z7,,,_(cy) = 1 by assump-
tion). Clearly, x = X}, for some k < ¢, with Z7, _ (X}) < 1 (else, we would have H;(z) = 0 and
Zi(c—) = Zi(cy) for all t € [0,T441)). Thus, recalling (19.4), T, — Z7,—(Xi) = m1,— (Xi) =
77, — (X&), so that (Xj)x is completely empty at time ax (T — Z, - (Xx)).

Case 1. Assume first that Hr,,, () > 0. Then by construction, see Algorithm 18.3 (with
®Tk_ZTk—(Xk)7Tk replaced by Zp, — (X)), there holds Ty + Zr, - (Xx) > Ty41 > Tk, whence by
QM(Oz), Ty + Zka(Xk) > Tygy1 +a > Ty + 2a.

Consider C' = C(n} 1, _, [naXx]). By Q35 ()\), we have C' C [|nxyXx — my/2], |nx Xy +
m)y/2]] (because (X)x is completely empty at time a)(Ty — Z7,— (X)), because T) —
Zr,— (X)) and Ty, belong to Tas and because 0 < Zp, —(Xj) < 1).

kA

Tk —Z1,— (Xk),Tx’

Lemma 19.2, we deduce that C' is not completely occupied at time ay (T} + G?kA_ZTk—(Xk),Tk).
kA B

But by Q7 (7, \) we see that eTk_ZTk—(Xk),Tk > Zr, - (X)—7y, whence Tk+®Tk_ZTk—(Xk),Tk >

Ty + Zr,—(Xg) — 7 > Tyt1 since v < a. All this implies that C' is not completely occupied at

time a)Ty41—.

The component C is destroyed at time TsTy. By Definition of © see

Finally, using again Q5(\) there is necessarily (at least) one seed falling on a site in
[[I_l’l/\Xk —m) + 1J, LnAXk - 1’1’1>\/2 - 1J]] C (Xk)/\ during (a,\Tq,aATq_H). This shows the
result.

Case 2. Assume next that Hr,,, (z) = 0 and that T, 11 — [Tk — Z7,— (X&)] < 1. Recall
that (Xx)a is completely empty at time ax(Ty — Zp,— (Xx)). Since Ty, — Zp, — (Xy) and Tyt
belong to Tas and since their difference is smaller than 1 by assumption, Q5 ()\) guarantees us
the existence of i; < ia < i3, all in (X)x, such that (at least) one seed falls on i3 and no
seed fall on i1 nor on iz during (a)(Tx — Zr,— (Xk)),axTy+1). One easily concludes that iz is
occupied and i3 is vacant at time a)T,41—, as desired.

Case 3. Assume finally that Hr, , _(z) = 0 and that T,1y — [T) — Z7,— (X&) > 1,
whence Ty — [Ty — Z7,—(Xk)] > 1+ a by Qp(a). Since Hr, ,—(x) = 0, there holds
ZTHI,(C,) <1= ZTqul,(CJr) and Tk‘i’Zka(Xk) < Tq+1, so that TkﬁLZka(Xk) < Tq+1 — Q.

We aim to use the event Q7 ()\). We introduce tg = Ty — Z1,_(X3) = 71, (X}) =
77, _(Xk). Observe that 77, _(c_) = 71, (c4+) = 7r,—(z) because there has been no fire
(exactly) at = during [0,T%). Thus Z;,—(z) = Zy,—(x—) = Ziy—(z4+) = 1 and Z;,(z) =
Zto(c—) = Zto(c+) =0.

Set now t; = Ty, and s = T,41. Observe that 0 < ¢; —tg < 1. Necessarily, Z;(c_) has
jumped to 0 at least one time between tq and T4y 1— (else, one would have Zr,,,_(c_) =1,
since Ty1+1 — to > 1 by assumption) and this jump occurs after ¢y + 1 > ¢ (since a jump of
Z(c_) requires that Z;(c—) = 1, and since for all ¢ € [tg,to + 1), Ze(c_) =t —to < 1).

We thus may denote by t5 < t3 < -+ < tg, for some K > 2, the successive times of
jumps of the process (Z¢(c—), Z¢(cy)) during (tg + 1,5). We also put ¢ = 1 if ¢5 is a jump
of Zi(cy) and € = —1 else. Then we prove exactly as in Lemma 18.5-Step 6-Case 3 that
R ={e,to,...,tk; s} necessarily satisfies the condition (PP).
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Next, to — t1 < Z7,— (X)) = t1 — to, because else, we would have H, _(Xj) = 0 and thus
the fire destroying ¢4 (or c_) at time to would also destroy c_ (or ¢y ), we thus would have
Zy,(cy) = Zy,(c—) =0, so that Z;(cy) and Z¢(c_) would remain equal forever.

Finally, we check as in Lemma 18.5-Step 6-Case 3 that (12, ,(i))i>t,ican = R+

|nx2]))¢>ty.icas, this last process being built upon the family (N7 (i))¢>¢y.icx, as in Subsec-
tion 19.3.

We thus can use 7(\) and conclude that there are some sites i; < iy in ) with
U%STQH, (i1) =1 and n%quHf (i2) = 0 as desired.
Step 7. The conclusion follows from the previous steps exactly as in the proof of Lemma

18.5-Step 7: it suffices to replace everywhere Ts by ay. O

19.7. Conclusion. To achieve the proof, we will need the following result.

LEMMA 19.5. Let (N2 (i))i>0.icz be a family of i.i.d. SR(us)-processes, and define
G (i) = min(Ng,,(0), 1).
(i) Put K} = (2my + 1)7|{i € [-my,m,] : (i) > 0}] and

recall Notation 2.5. Then for any e >0, any T > 0,

lim Pr
A—0

sup [U} —tAl] >¢e| =0.
(0,77

(ii) Put also C} = C(¢,0) and define

Vit = (a§1¢s(1 - 1/|C?|)1{|cg\>o}) AR
Then for any e > 0, for all t € [0,1),

lim Pr [CtA C [my,my], |V —t| < E] =1.
A—0

PROOF. We split the proof into three steps.
Step 1. Here we show that for ¢ > 0 fixed, limy_,o Pr [[U} =t A 1| > ¢] = 0.

Case 1. Assume first that t > 1. Then Lemma 19.1-(ii) implies that limy_,o Pr[K} = 1] =
1. But K = 1 implies that U} = [¢s(1)/ax] A1 =1 (because 15(1) = 00).

Case 2. Assume next that ¢ < 1. Then the random variable X;* = (2m, + 1)K}* has a
binomial distribution with parameters 2my + 1 and vg((0, axt)). Let € € (0,¢) be fixed. Then,
using Bienaymé-Chebyshev’s inequality,

Pr[K} <vs((0,ax(t - €)))] = Pr(X} < (2my + 1us((0,ax(t — ¢€)))]
< Pr[| X7 — (2my + 1)rs((0,axt))] > (2my + Dvg((an(t —€), axt))]
(2my + 1)vs((0, axt))vs((art, 00))
(2my + 1)?v5((ax(t =€), axt))
< vs((axt, 00))
~ (2my + D) ((ax(t —e),ant))’
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This last quantity tends to 0. Indeed, (Hg(oc0)) implies that vg((ax(t —e),axt)) ~ vs((ax(t —
g),00)) > vs((axt,00)) and it suffices to use that myvg((axt,o0)) — oo by (3.4), since ¢ < 1.

By the same way, for ¢ > 0,
Pr[K} >vs((0,a)(t +¢)))] = Pr[X} > (2my + 1)vs((0,ax(t +€)))]
< Pr[| X7 — (2my + 1)rs((0,axt))| > (2my + Dvg((axt, ax(t +¢)))]
(2my + 1)rg((0,axt))vs((axt, 00))
(2my + 1)2v¢((axt, ax(t +¢)))

< vs((axt, 00))
~ (2my + D)vi((axt,an(t +¢€)))’

which also tends to 0, because (Hg(c0)) implies that vg((axt,ax(t +¢€))) ~ vs((axt, o)), and
because myvg((axt, c0)) — oo, since ¢ < 1.

To conclude the step it suffices to note that for 0 < t —¢ < t < t+¢ < 1, K} €
(vs((0,ax(t — €))),vs((0,a\(t +¢€)))) implies that U} € (t — ¢,t + €) by definition of .

Step 2. Using a well suited version of the Dini theorem, we conclude the proof of (i).
Indeed, let € > 0 and consider a subdivision 0 =tg <t; < --- < t; =T, with t,11 —t; < &/2.
Using Step 1, we see that limy_,o Pr[max;—o,...; |U} —t; A1| > £/2] = 0. Observe that t — U}
is a.s. nondecreasing and that ¢t — ¢ A1 is nondecreasing and Lipschitz continuous. We deduce

.....

Step 3. It remains to prove (ii). Let thus ¢ < 1 and € > 0 be fixed. We can of course
assume that 0 <t —e <t <t+e<1.

First, limy_,o Pr[C} C [-my, m,]] = 1 due to Lemma 19.1-(i).

Next, each site is vacant with probability vs((axt,c0)). It is thus classical that as A — 0,
vs((axt,00))|C| goes in law to a random variable X with density ze %1,~0. Indeed,

e for Y5 a geometric random variable with parameter §, the random variable §Y; goes in
law, as 6 — 0, to an exponentially distributed random variable with parameter 1;

e |C}]| is the sum of two independent geometric random variables, both with parameter
vs((axt, 00));

e xe "1, is the density of the sum of two independent exponentially distributed random
variables with parameter 1.

For 6 > 0, consider 0 < a < 1 < b such that Pr[X € (a,b))] > 1— 4. Then
lim Pr{|C7| € (a/vs((ant, 00)),b/vs((at, 00))] > 1 = 4.
—
But due to (Hs(c0)), |C}| € (a/vs((axt,)),b/vs((axt,c0)) implies, if A is small enough,
that |C}| € (1/vs((ax(t —€),0)),1/vs((ax(t + €),0)), whence finally

V) € (ay s (vs((0,ax(t —€)))), ay " vs(vs((0,ax(t +€)))) = (t —&,t +¢).

We have proved that for all § > 0, liminfy_,o Pr[|[V» — ¢| < €] > 1 — 6, which concludes the
proof. O

We finally give the

Proof of Proposition 17.1 when B = co. Let us fix g € (=4, A), to € (0,7]\ {1} and € > 0.
We will prove that with our coupling (see Subsection 18.3), there holds
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(a) lima—o Pr [8(D2 (20), Dy, (w0)) > €] = 0;
(b) limx_yo Pr [67(D*(x0), D(x0)) > €] = 0;
(¢) limy—so Px [s Plo7 |z (v0) — Zi(0)| > ] = 0
(

d) limy_o Pr [| — Zio(20)| > 5} =0, where

Ps(1—1/[Ca(n2, 4,5 anoJ)|)]1{|CA(n;Ato,anJ)>o}> N

ax

WtAU (z0) = (

These points will clearly imply the result.

First, we introduce, for ¢ > 0, the event Q%’7(¢) on which zo ¢ Uy_;[Xy —(, Xy +(]. The
probability of this event obviously tends to 1 as { — 0.

On Q%°7(¢), we have, for A > 0 small enough (say, such that 4my/n\ < (), [n\zo| ¢
Up—1(X¢)x. We then call ¢y € Cps the cell containing xo.

Step 1. As in the case where 8 = BS, (a) implies (b) (the fact that to = 1 is excluded in
(a) is of course not a problem, because {1} is Lebesgue-negligible).

Step 2. Due to Lemma 19.4, we know that if 0 < v < «a, on Q(a,y,A) N QZ%T(Q,
M (co) = p}(co) = Te(z0) for all ¢ € [0, T]. This implies that for all i € (cg)a, for all ¢ € [0, 77,

S, S, .
U%st( )= Imn(Na;g( ) — Na;‘),—t(xo)(l)v 1).

We also recall that by construction, (7¢(z¢)):>0 is independent of (Nts’o(i))tzoﬁiez.
Step 3. Here we prove (d). Let 6 > 0 be fixed. We first consider oy > 0, 79 € (0, ap),
o > 0 and Ao > 0 such that for all A € (0, \o), Pr [Q(ao,%,)\) mei;jT(go)} >~ 1—4. Then

we consider A\ < )¢ in such a way that for A € (0, A1), [[nrzo] — my, [nxzo| + my] C (co)xr
(this can be done properly by using Q7’7 (¢) and the fact that my/ny — 0).

Introduce C7 and V;} as in Lemma 19.5-(ii), using the seed processes (NH,-Tt(Io)/aA( 1+
[nazo]) — N‘Iﬁ(zo)/a)\ (i + [naz0]))t>0,iez.-

Then by Step 2, we observe that Ct0 ro(wo) C [-m, m,] implies that, on Q(a,v,A) N
QZ‘{T(Q and for A < Aq, CA(ni\Ath |nyzo|) = {i+|nxzo] : i€ C)

to—T¢
VA All this implies, using Lemma 19.5-(ii), that

to—"Teo (o) "

(o)} Whence W (zo) =

li{\ningr [[W (z0) = (to — 7o (20))] < € | to — Tao (o) < 1] > 1—0.
—

Recalling finally (19.3), we deduce that

lin inf Pr [[W (20) — Ziy (w0)| < & | to — 2y (x0) < 1] > 1—04.
—

If now to — 74, (20) > 1, then Step 2 and Q5 (A\) imply that (c)x is completely occupied at time
axto. Hence [C(n}, 4, [mrzo])] = [(co)a| = |clnx > any by Qar (). Consequently, W (zo) >

[3;11/15(1 —1/(amp))] A 1 =~ [a;1¢5(1 —vs((ax,0))/a)] Al. For e > 0, vg((ar,o0))/a <
vs(((1 — €)ay, 00)) for all A small enough: use (Hg(0)).
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Thus for all A small enough, on Q(a,v,A) N QY1 (C), we have W (z0) > [ay sl —
vs(((1 —€)ay,0)))] A1 =1 — ¢ by definition of tg. Thus

liminf Pr [W (20) € (1 —¢,1] | to — T4y (20) > 1] > 1— 0.
A—0

Recalling (19.3), we deduce that
lin inf Pr [[W (20) — Ziy (w0)| < € | to — 2y (x0) > 1] > 1 —34.
—

Finally, we observe that a.s., to — 7, (20) # 1. Indeed, we have excluded to = 1 and the only
value charged with positive probability by 7, (x¢) is 0. Thus

lim inf Pr (W (20) — Ziy (w0)| < €] > 1—06.

Since this holds for any ¢ > 0, this concludes the proof of (d).

Step 4. Next, (c¢) is proved exactly as when § = BS (change the beginning: let first
d>0,ap >0, ¢ € (0,a0) and N\g > 0 be as in Step 3; replace everywhere T's by ay; and
make use of Lemma 19.5 instead of Lemma 18.6).

Step 5. Finally, (a) is also proved as when 5 = BS. The only difference is that when put
a7 = Tar U {to}, we need that ¢ty # 1 (because 0 € Tps and 7%, («) will thus require that for
|t0 — 1| > Oé). ]

20. Cluster-size distribution when j € {c0, BS}
The aim of this section is to prove Corollaries 4.4 and 5.5.

20.1. Study of the LFF(c0) and LFF(BS)-processes. We first extend [14, Lemma
17].

LEMMA 20.1. Let B € {oc0,BS}. Let (Zy(z), Di(x), H(z))t>0,zer be a LFF(B)-
process. There are some constants 0 < ¢1 < c3 and 0 < K1 < ko such that the following
estimates hold.

(i) For any t € (1,00), any x € R, any z € [0,1), Pr[Z;(x) = 2] =

(i) For any t € [0,00), any B > 0, any x € R, P[|D¢(z)| = B

(i1i) For all t € [0,00), all x € R, all B > 0, Pr[|D(z)] > B] < ¢z

(iv) For allt € [3/2,00), all x €R, all B> 0, Pr[|D:(z)| > B] > ¢ _’WB

(v) For allt € [5/2,00), all0 <a <b< 1, allz € R, c1(b—a) < Pr(Zt( ) € [a,b]) <
co(b—a).

0.
0.

—HlB

PROOF. By invariance by translation, it suffices to treat the case x = 0. When 8 = BS,
the function Fg was defined in Definition 5.1. Recall that the LF F'(oo)-process can be viewed
as a LFF(BS)-process with the function Fs(z,v) = z, see Remark 15.1.

We consider a Poisson measure /s (dt, dx, dv) on [0, 00) X R x [0, 1] with intensity measure
dtdzdv. We also denote by myy (dt, dx) = fue[o 1 ma (dt, dzx, dv).

Point (i). For t € [0,1], we have a.s. Z;(0) =¢. But for t > 1 and z € [0,1), Z;(0) =
z implies that the cluster containing 0 has been killed at time ¢ — z, so that necessarily
mm ({t — 2z} x R) > 0. This happens with probability 0.

Point (ii). For any ¢ > 0, |D;(0)] is either 0 or of the form |X; — X;| (with ¢ # j), where
(T3, X;)i>1 are the marks of the Poisson measure 7y (ds, dz) restricted to [0,t] x R. We easily
conclude as previously that for B > 0, Pr(|D;(0)| = B) = 0.
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Point (iii). First if ¢t € [0,1), we have a.s. |D;(0)| = 0 and the result is obvious. Recall
now that vy € [0, 1) was defined in Lemma 15.5 and that for (7, X, V') a mark of 7j; such that
V > wvg, we have Hy(X) > 0 or Z;(X) < 1 for all ¢t € [r,7 + 1/4] (see the proof of Proposition
15.4-Step 1). This implies that for ¢ > 1,

{D:(0) > B} c{[0, B/2] is connected at time ¢ or [-B/2,0] is connected at time ¢}
C{mm ([t —1/4,t] x [0, B/2] X [vo, 1]) = 0}
U{mnm ([t —1/4,¢] x [-B/2,0] X [vg,1]) = 0} .

Consequently, Pr[|D;(0)| > B] < 2e~(1=v0)B/8 a5 desired.

Point (iv). Fix t > 3/2 and B > 0. Consider the event Q; p = Q) p N Q7 N Q} 5,
illustrated by Figure 9, where

o Qf 5 ={mu([t —3/2,t] x [0, B] x [0,1]) = 0};

e Q7 is the event that in the box [t — 3/2,t] x [~1,0] x [0,1], 7mas has exactly 5 marks
(51'75/1',‘/1')1':1,...5 with Y5 <Yy <Y3 <Y, <Yy, mini:L___,g,V; > v and t — 3/2 < S <t-— 1,
S1 < Sy <81 +1/4, S9 < S3<S2+4+1/4, S5 < Sy < S3+1/4, S4 < S5 <S4+ 1/4 and
Ss+1/4>t.

* O} 5 is the event that in the box [t —3/2,] x [B, B4 1] x [0,1], mas has exactly 5 marks

..........

S5 +1/4>t.

We of course have p := Pr(Q?) = Pr(Q?ﬁB) > 0, and this probability does not depend

ont > 3/2 nor on B > 0. Furthermore, Pr(€); z) = e 3#/2. These three events being
independent, we conclude that Pr(,p) > p2€_3B/2. To conclude the proof of (iv), it thus
suffices to check that Q, g C {[0,B] C D;(0)}. But on £ g, using the same arguments as in

Point (iii), we observe that:

e the fire starting at (S2,Y2) can not affect [0, B], because since So € [S1,51 + 1/4),
Hs,— (Y1) >0 or Zg,_ (Y1) > 0, with Yo < Y7 < 0;

e then the fire starting at (Ss,Y3) can not affect [0, B], because since S3 € [Sa, Sz + 1/4),
HSS,(YQ) > 0 or ZSS,(YQ) > 0, with Y5 < Y5 < 0;

: T o b
S5, Yy |@ " @ S5 Ys5)
Y @ @ 5V

$:Y) @ | ‘ ‘ RS

QB et =

S.Y) ® ® .Y
t=3/2
-1 0 B B+1
FIGURE 9. The event () .
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e then the fire starting at (S4, Ys) can not affect [0, B], because since Sy € [S5, S5 + 1/4),
Hs,—(Y3) >0 or Zg,—(Y3) > 0, with Y; < Y3 < 0;

e then the fire starting at (Ss, Y5) can not affect [0, B], because since S5 € [Sy, Sy + 1/4),
Hs,_(Yy) > 0or Zg,_(Yy) > 0, with Y5 < Y3 < 0;

o furthermore, the fires starting on the left at —1 during (1, t] cannot affect [0, B], because
for all ¢ € (S1,t], there is always a site x; € {Y1,Y2,Y3,Ya} C [—1,0] with H(x¢) > 0 or
Zt(.fCt) < 1,

e the same arguments apply on the right of B.

As a conclusion, the zone [0, B] is not affected by any fire during (S; V Si,t]. Since the
length of this time interval is greater than 1, we deduce that for all z € [0, B], Z:(x) =
min(Zg g (z) +t—51 V. S1,1) > min(t — S1 vV S1,1) = 1 and Hy(r) = max(Hg g, (z) — (t —
51V S1),0) <max(1— (t— SV S1),0) =0, whence [0, B] C D;(0).

Point (v). For 0 < a < b < 1 andt > 1, we have Z;(0) € [a,b] if and only there
is 7 € [t —b,t —a] such that Z;(0) = 0. And this happens if and only if X, ., :=

tt__ba Je Liyen. (o3 (ds, dy) > 1. We deduce that
t—a

Pr (Z:(0) € [a,b]) = Pr (X1 > 1) < E [Xp0s] = /t_b E[|D,(0)[}ds < C(b — a),

where we used Point (iii) for the last inequality.

Next, we have {mpr([t — b,t — a] x Dy_(0)) > 1} C {X;.4p > 1}: it suffices to note that
a.8., {Xtap =0} C{Xiap=0,D_4(0) C Ds(0) for all s € [t —b,t —a]} C {mp ([t —b,t —a] x
D;_(0)) = 0}. Now since D;_(0) is independent of 7y (ds, dz) restricted to (¢t — b, 00) x R,
we deduce that for ¢ > 5/2

Pr(Z:(0) € [a,b]) > Prlmp((t — b,t — a] x Di—p(0)) > 1]
> Pr|De-s(0)] 2 1] (1 — e~ Y) 2 ¢(1 — e~ 7%),
where we used Point (iv) (here t —b > 3/2) to get the last inequality. This concludes the
proof, since 1 —e™® > z/2 for all z € [0, 1]. O
20.2. The case § = co. We can now handle the

Proof of Corollary 4.4. We thus assume (Hjs) and (Hg(oo)) and consider, for each A > 0,
a FF(us,py)-process (n)(i))i>0.icz- Let also (Zi(z), Di(z), Hi(2))i>0.2er be a LFF(co)-
process.

Point (ii). Using Lemma 20.1-(iii)-(iv) and recalling that |C(n}, ,,0)|/nx = [D}(0)]
by (3.3), it suffices to check that for all ¢ > 3/2, all B > 0, limy_,o Pr[|D}(0)] > B] =

Pr[|D;(0)| > B]. This follows from Theorem 4.3-(b), which implies that |[D(0)| goes in law
to |D¢(0)] and from Lemma 20.1-(ii).

Point (i). Due to Lemma 20.1-(v) we only need that for all 0 < a <b < 1, all t > 5/2,
lim Pr ((C(3,,0)| € [1/v5((axa, 00)), 1/ (axb, o)) = Pr (Z(0) € [a,b]).
But using Theorem 4.3-(c) and Lemma 20.1-(i), we know that

lim Pr {ws (1-1/|C(12,+,0)]) Licwma, o1} € [awvakb]} = Pr(Z:(0) € [a,b]).
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Using finally the definition of )5 (see Notation 2.5-(ii)), we see that for all¢ € N, all 0 < a < 3,
Vs (1 —1/c)1ge>1y € [o, B] if and only if ¢ € [1/vs5((a, 00)), 1/vs((B,00))].
One immediately concludes. O

20.3. The case = BS. We finally give the

Proof of Corollary 5.5. We thus assume (Hps) and (Hg(BS)) and consider, for each A > 0,
a FF(us,puy;)-process (n)(i))i>0.4ez. Let also (Zy(z), Di(x), Hi(2))i>0.4er be a LFF(BS)-
process.

Point (ii). Using Lemma 20.1-(iii)-(iv) and recalling that |C(n3,,,0)|/nx = |D}(0)]
by (3.3), it suffices to check that for all ¢ > 3/2, all B > 0, limy_,o Pr[|D}(0)] > B] =
Pr[|D:(0)| > B]. This follows from Theorem 5.4-(b), which implies that [D(0)| goes in law
to |D¢(0)] and from Lemma 20.1-(ii).

Point (i). Theorem 5.4-(c) asserts that for all t > 0, all k > 0, limx_,0 Pr[|C(n3,,,0)| =
k] = Elgr(Z:(0))], where gx(z) was defined in (5.2). Using next Lemma 20.1-(v) and recalling
that Z;(0) € [0,1] a.s., we see that for ¢t > 5/2, the law of Z;(0) is of the form

9t(2)Lpo<z<1ydz + ;61 (dz),

for some function g, : [0, 1] — Ry satisfying ¢ < g; < C, where the constants 0 < ¢ < C' do not
depend on t > 5/2. One immediately deduces that for any k& > 0, E[gx(Z:(0))] € [cqr, Cqx)-
Indeed, there holds ¢ = fol qr(z)dz and g (1) = 0. This concludes the proof. O
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21. Simulations

We would like to present some simulations of the discrete forest fire process. In all the
simulations below, we choose p},(dt) = Ae *1;>0dt and we consider different laws pug. We
simulate the FFa(us,u);) process with A = 2.5, for some given value of A. Since there are
too much concerned sites, it is not possible to draw the whole picture. We thus extract a zone
in which some interesting events occur.

In all the pictures below, time evolves vertically, with ¢ = 0 at the bottom. On each site,
we plot white (resp. black) segments when the site is vacant (resp. occupied). Matches are
represented by bullets.

—————

b

T

FIGURE 10. Simulation with 8 = BS.

We used ug = 91, vs(dt) = lyegpo,13dt, ax = Ts = 1 and A = 10~3. Here everything happens,
roughly, as described by the limit process (compare with Figure 3).

At the begining, all the sites are vacant. Many sites remain vacant for a while, but we observe that all
become occupied after some time, except one, which has burnt due to the first match.

This first match produces a microscopic fire, involving very few sites (we cannot see it on the picture
because the bullet is slightly too large, but these sites were occupied just before the match).

The second fire is macroscopic: it concerns many sites. It it is limited on the right by a vacant site,
which is due to the effect of the first (microscopic) fire.

The third fire concerns few sites and is microscopic.

The fourth fire is macroscopic and is limited on the left by the a vacant site, produced by the second
fire (which was macroscopic and destroyed a large zone which is not filled again).

The fifth fire is macroscopic and is limited by a vacant site produced by the third fire, which was
microscopic.

Finally, the last fire is macroscopic, and is limited on both sides by vacant sites let by the two previous
(macroscopic) fires.

Observe that the time needed to completely fill again a macroscopic zone is roughly always the same
(look at the time needed after time 0, after the second fire, after the fourth fire).

Note also that the effect of the first (microscopic) fire persists for quite a long time: it limits the second
fire, which limits the fourth fire, which itself limits the sixth fire.
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FIGURE 11. Simulation with 8 = cc.

Here ps((t,o0)) = e_tz/Q, vg(dt) = (\/Q/W)e_tz/Ql{,»O}dt and A = 1073, We used the approximate
value ay ~ /2log(1/)). The picture is not so far from the limit process (compare with Figure 2), but
there are some defaults.

The first fire is rather microscopic, but has however quite a large length.

The second fire, which is clearly macroscopic, is limited not by a previous microscopic fire, but by a
site where the first seed has needed an unusual large time to fall.

Also, the limit process predicts that the length of the barrier produced by a microscopic fire equals the
delay between the time at which the match falls and the last time where the zone was involved in a
maroscopic fire. We see here that this is roughly the case for the first fire, but the effect of the third
and fourth (microscopic) fires are too long.

FIGURE 12. Simulation with g = 5.

We considered pg((t,00)) = (1+t/8)~P~1 and vg((t,00)) = (1+t/8)~? with B =5, A = 5.1073. We
used the approximate value a) ~ (1/)\)1/(ﬁ+1). This picture resembles much the limit process (see
Figure 4): all the fires involve a macroscopic number of sites and we observe that sites where no seed
fall during a large time interval are rather rare.
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FIGURE 13. Simulation with g = 2.

Same thing as Figure 12 with 8 = 2 and A = 10~3. This picture is in perfect adequacy with the
limit process (see Figure 4), at least from a qualitative point of view: when a fire starts, it burns a
macroscopic zone, which is rather quickly filled again, except for some quite rare sites.

FIGURE 14. Simulation with g8 = 0.
We used pgs((t,00)) = e(e+t) " log(e + )] 72, vs((t,00)) = [log(e +t)] ! and A = 10~7. We used the
approximate value ay ~ 1/[Alog(1/\)]. This picture is quite satisfactory when compared to the limit
process (see Figure 5): there are six sites where the first seed never falls and the fires have quite a low
effect, in the sense that most of the burnt sites become occupied again almost immediately.
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22.1. Regularly varying functions. The proof below is closely related to the theory
of regularly varying functions and is probably completely standard.

LEMMA 22.1. Assume (Hg). Then either (Hg(BS)) holds or there exists 8 € [0,00)U
{o0} such that (Hg(B)) holds.

PROOF. We thus assume (Hg) and that the support of pg is unbounded. Hence, for all
t>0,

. vs((z,00))

t):= lim ——=% € [0,00) U {0

wlt) = lim St o0y € [0 o0) U odd

exists. The function ¢ is clearly nondecreasing and satisfies (1) = 1.

Step 1. We first show that for all ¢ > 0, p(1/t) = 1/¢(t), with the convention that
1/0 = oo and 1/00 = 0. This is not hard:
- vs((z,00)) - vs((yt,0))
1/t) = lim —————— = lim ———*> =1 .
P = B s atoo) ~ ot ws(yooe) Y
Step 2. By the same way, one easily checks that for 0 < s < ¢, one has ¢(st) = p(s)p(t)
as soon as ¢(s) > 0 or p(t) < co. It suffices to write

coovs((@oo)) o vs((,00) vs((ws, 00))
t) = lim ————- = = t).
Plst) = B (estioo)) — o s (s, 00)) s (zstio0)) ~ £8P0
Step 3. We assume first that ¢(s) > 0 for all s € (0,1). By Step 1, one easily deduces
that ¢(s) € (0,00) for all s > 0. We thus have a nondecreasing function ¢ : (0, 00) — (0, 00)
such that ¢(st) = ¢(s)p(t) for all 0 < s < ¢ and such that ¢(1) = 1. One classically concludes
that there exists 3 € [0,00) such that p(t) = t#.

Step 4. We now assume that ¢(«) = 0 for some o € (0,1). We want to show that if so,
then ¢(t) = 0 for all ¢ € (0,1). This will imply that ¢(t) = oo for ¢ > 1 by Step 1, whence
p(t) =t

Let thus a, = sup{a > 0: ¢(«a) = 0}. Suppose by contradiction that a. € (0,1). By
monotonicity, we have p(«) = 0 for all & € (0, ). By Step 1, we know that ¢(s) € (0, 00) for
all s € (ax,1/a). Due to Step 2, we deduce that for all small e > 0, p((ax —€)(1/ax—¢)) = 0.
But for € > 0 small enough, we have (. —¢)(1/a.—¢) > a. (because a, < 1). This contradicts
the definition of av. O

Next, we prove the existence of the scale my satisfying (3.4).

LEMMA 22.2. Assume (Hg(c0)). Recall (3.1), (3.2). There exists a function my :
(0,1] = N satisfying (3.4).

PROOF. Recalling that limy_,pay = oo and using (Hg(c0)), we observe that for any
n > 1, limyovs(((1 — 1/n)ax, 0))/vs((ax,00)) = oo. Thus there exists A, € (0,1] such
that for all A € (0,\,], vs(((1 — 1/n)ax,o0))/vs((ar,00)) > n. We of course may choose
A1 = 1 and choose the sequence (A,),>1 decreasing to 0. Then we define £y : (0,1] — (0,1]
by setting, for all n > 1, ey = 1/n for A € (A4+1, An]. There holds limy_,ge) = 0. Finally, we
put my = [1/vs((ax(1 —ex),00))]. This function is obviously non-increasing. Next, recalling
that ny = |1/vs((ax,00))], we see that for all n > 1, all A € (A\p41, \n),

my vs((ax, ) vs((ar, o))

m = vs(an(1—ex).00)) sl — 1/n)00) = /™
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whence limy_,o(my/ny) = 0. Finally, fix z € (0,1) and consider n large enough, so that
1—1/n> z. Then for A € (0, ), there holds ) < 1/n, whence

N vs((arz, 00)) vs((axz, o)) 0
vsl@rz colJma = e A=), 09) =~ vsllar(— 1/m),00)
as A — 0 due to (Hg(0)), since z <1 —1/n. -

22.2. Coupling. Finally, we recall some well-known facts about coupling.

LEMMA 22.3. (i) Let (pr)r>0 and (gx)k>0 be two probability laws on {0,1,...}. One
can couple X ~ (pr)k>0 and Y ~ (qr)k>0 such that for all k >0, Pr[X =Y = k| > pi A .
(i) For f,g two probability densities on R, one can couple X ~ f(z)dx and Y ~ g(z)dx
in such a way that Pr[X =Y] > [, min(f(z), g(x))dz.
(i) If we have a sequence of laws p, on some Polish space, converging weakly to some
law w, then it is possible to find some random variables X, ~ p, and X ~ u such that a.s.,
lim, o X, = X.

PROOF. First observe that (iii) is nothing but the Skorokhod representation Theorem.

To prove (i), set r, = pr A qr and 7 = > " rg. Consider a Bernoulli r.v. C with
parameter r, a (1 /7)k>o-distributed r.v. Z, a ((px —7%)/(1 — r))k>o-distributed r.v. U and a
((gk — )/ (1 = r))k>o-distributed r.v. V. Assume that all these objects are independent and
put (X,Y)=C(Z,Z)+(1-C)(U,V). Some immediate computations show that X ~ (pr)k>0
and Y ~ (qx)r>0 and for k > 0, Pr(X =Y = k| > ry.

The proof of (ii) is similar: put h = min(f,g) and r = [, h(z)dz. Consider a Bernoulli
r.v. C with parameter r, a r.v. Z with density h/r, a r.v. U with density (f —h)/(1 —r) and
ar.v. V with density (¢ — h)/(1 —r). Assume that all these objects are independent and put
(X,Y)=0C(Z,Z)+ (1 -C)(U,V). Some immediate computations show that X ~ f(x)dz,
Y ~ g(y)dy and Pr[X =Y] > r. O
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