
The semiclassical Garding inequality

We give a proof of the semiclassical Garding inequality (Theorem 4.1) using as the only black
box the Calderon-Vaillancourt Theorem.

1 Anti-Wick quantization

For (q, p) ∈ Rd × Rd define U(q, p) by

U(q, p)ϕ(x) = eix·pϕ(x− q),

say for ϕ in the Schwartz space S(Rd). Fix then a function η such that

η ∈ S(Rd), ||η||L2(Rd) = 1, (1.1)

and define the family of Schwartz functions (ηq,p)(q,p)∈R2d by

ηq,p = U(q, p)η.

Denote the L2 inner product by

(ψ,ϕ)L2 =
∫

Rd
ψϕ.

Lemma 1.1. For all ϕ ∈ S(Rd), the function Tϕ defined by

Tϕ(q, p) := (ηq,p, ϕ)L2

belongs to S(R2d). Furthermore, the linear map

T : S(Rd)→ S(R2d)

is continuous.

Proof. For all α, β ∈ Nd, we have

∂βp ∂
α
q Tϕ(q, p) = (−1)|α|(−i)|β|

∫
e−ix·p(∂αη)(x− q)xβϕ(x)dx.

If we multiply this expression by qδ, with δ ∈ Nd, and write

qδ = (q − x+ x)δ =
∑

δ′+δ′′=δ

δ!
δ′!δ′′!

(q − x)δ
′
xδ

′′
,

we see that qδ∂βp ∂
α
q Tϕ is a linear combination of∫

e−ix·p(q − x)δ
′
(∂αη)(x− q)xβ+δ′′ϕ(x)dx.
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Finally, by integrations by part we obtain that pµqδ∂βp ∂
α
q Tϕ is a linear combination of∫

e−ix·p∂µx

(
(q − x)δ

′
(∂αη)(x− q)xβ+δ′′ϕ(x)

)
dx

and the result follows easily. �

The formal adjoint T ∗ which maps a priori S ′(R2d) to S ′(Rd) is defined by

(Ψ, Tϕ)L2(R2d) = (T ∗Ψ, ϕ)L2(Rd),

where the inner product in the right hand has to be taken in the distributions sense. However, if
Ψ ∈ S(R2d), this is actually a standard integral for Fubini’s Theorem easily shows that

(Ψ, Tϕ)L2(R2d) =
∫ ∫

Ψ(q, p)
(∫

ηq,p(x)ϕ(x)dx
)
dqdp

=
∫ (∫ ∫

Ψ(q, p)ηq,p(x)dqdp
)
ϕ(x)dx,

hence that
(T ∗Ψ)(x) =

∫ ∫
Ψ(q, p)ηq,p(x)dqdp.

Lemma 1.2. The map T ∗ is continuous from S(R2d) to S(Rd).

The proof of this lemma is elementary and uses the same techniques as Lemma 1.1. It is left
to the reader as an exercise. The important result is the following inversion formula.

Proposition 1.3. For all ϕ ∈ S(Rd),

T ∗Tϕ = (2π)dϕ.

Proof. Fix x ∈ Rd and χ ∈ C∞0 (Rd) such that χ ≡ 1 near 0. The result then follows by dominated
convergence and Fubini’s Theorem since

T ∗Tϕ(x) = lim
ε→0

∫ ∫ ∫
e−ip·yη(y − q)ϕ(y)eip·xη(x− q)χ(εp)dydqdp

= lim
ε→0

∫ ∫
ε−dχ̂

(
y − x
ε

)
η(y − q)η(x− q)ϕ(y)dydq

= lim
ε→0

∫ ∫
χ̂(z)η(x+ εz − q)η(x− q)ϕ(x+ εz)dzdq

=
∫
χ̂× ||η||2L2 × ϕ(x) = (2π)dϕ(x),

using the second assumption in (1.1). �

Corollary 1.4. For all ϕ,ψ ∈ S(Rd),

(ψ,ϕ)L2(Rd) = (2π)−d(Tψ, Tϕ)L2(R2d)

= (2π)−d
∫ ∫

(ηq,p, ψ)L2(ηq,p, ϕ)L2dqdp.

In particular

||ϕ||2L2(Rd) = (2π)−d
∫ ∫

|(ηq,p, ϕ)L2 |2dqdp.
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Proof. The result is obtained either by polarization from ||ϕ||2L2(Rd) = (2π)−d||Tϕ||2L2(R2d) or
by inserting the decomposition ϕ =

∫∫
(ηq,p, ϕ)L2ηq,pdqdp into (ψ,ϕ)L2(Rd) and using Fubini’s

Theorem. �

Now for all a ∈ L∞(R2d),

Ba(ψ,ϕ) := (2π)−d
∫ ∫

a(q, p)(ηq,p, ψ)L2(ηq,p, ϕ)dqdp

is a well defined sesquilinear form on S(Rd)× S(Rd) and Corollary 1.4 together with the Cauchy-
Schwarz inequality show that

|Ba(ψ,ϕ)| ≤ ||a||L∞(R2d)||ϕ||L2(Rd)||ψ||L2(Rd). (1.2)

Therefore there exists a unique bounded operator A on L2(Rd) such that

Ba(ψ,ϕ) = (ψ,Aϕ)L2(Rd),

for all ϕ,ψ ∈ S(Rd).

Definition 1.5. The operator A is the anti-Wick quantization of a and is denoted by

A = OpaW(a).

As a straightforward consequence of (1.2), we see that

||OpaW(a)||L2→L2 ≤ ||a||L∞ . (1.3)

Note that Corollary 1.4 also shows that

OpaW(1) = I.

Next, by writting

(ψ,OpaW(a)ϕ)L2 = Ba(ψ,ϕ) = Ba(ϕ,ψ) = (ϕ,OpaW(a)ψ)L2

we get

OpaW(a)∗ = OpaW(a). (1.4)

The following last property is then straightforward

a ≥ 0 a.e. ⇒ OpaW(a) ≥ 0, (1.5)

and is the most important one. Note that all these properties are independent of η.

2 Wigner’s function

Definition 2.1 (Pseudo-differential operator). Given a ∈ S(R2d), the pseudo-differential operator
of symbol a, Op(a), is the operator defined by

Op(a)ϕ(x) = (2π)−d
∫
eix·ξa(x, ξ)ϕ̂(ξ)dξ,

for ϕ ∈ S(Rd).
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Pseudo-differential operators are actually defined for wider classes of symbols than S(R2d) but
the latter will be sufficient here.

Fix now ϕ,ψ ∈ S(Rd). For any a ∈ S(R2d), a straightforward application of Fubini’s Theorem
shows that

(ψ,Op(a)ϕ)L2(Rd) =
∫ ∫

R2d
aWψ,ϕ,

where

Wψ,ϕ(x, ξ) = (2π)−deix·ξψ(x)ϕ̂(ξ). (2.1)

Definition 2.2. Wψ,ϕ is the Wigner function associated to ϕ and ψ.

In the sequel we fix a single η satisfying (1.1) and set

W (x, ξ) = Wη,η(x, ξ). (2.2)

We further assume that

η is even and real valued, (2.3)

which implies the easily verified property that

W is even. (2.4)

The important relationship between anti-Wick quantization and the Wigner function is the
following one.

Proposition 2.3. For all a ∈ S(R2d), we have

OpaW(a) = Op(a ∗W ).

Proof. By (2.1), (2.3) and (2.4), we have

a ∗W (x, ξ) = (2π)−d
∫ ∫

a(q + x, p+ ξ)e−iq·pη(q)η̂(p)dqdp

so that

Op(a ∗W )ϕ(x) = (2π)−2d

∫ ∫ ∫
eix·ξ−iq·pa(q + x, p+ ξ)η(q)η̂(p)ϕ̂(ξ)dqdpdξ.

On the other hand, using the fact that

(ηq,p, ϕ)L2 = (2π)−d
∫
eiq·(ξ−p)η̂(ξ − p)ϕ̂(ξ)dξ,

where we also used (2.3), we have

OpaW(a)ϕ(x) = (2π)−d
∫ ∫

(ηq,p, ϕ)L2a(q, p)ηq,p(x)dx

= (2π)−2d

∫ ∫ ∫
eiq·(ξ−p)η̂(ξ − p)ϕ̂(ξ)a(q, p)eip·xη(x− q)dqdpdξ

= (2π)−2d

∫ ∫ ∫
e−i(q+x)·pη̂(−p)ϕ̂(ξ)a(q + x, p+ ξ)ei(p+ξ)·xη(−q)dqdpdξ

= (2π)−2d

∫ ∫ ∫
e−iq·p+ix·ξη̂(p)ϕ̂(ξ)a(q + x, p+ ξ)η(q)dqdpdξ

by changing q into q+x and p into p+ ξ to get the third line and using (2.3) for the last one. This
completes the proof. �
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3 Semiclassical scaling

For h ∈ (0, 1], the semiclassical pseudo-differential quantization is given by

Oph(a)ϕ(x) = (2π)−d
∫
eix·ξa(x, hξ)ϕ̂(ξ)dξ.

In other words, if we set
ah(x, ξ) := a(x, hξ)

we have, according to Definition 2.1,

Oph(a) = Op(ah).

Next, if η satisfies (1.1) and (2.3) then so does

ηh(x) := h−d/4η
( x

h1/2

)
,

and the corresponding Wigner function is

Wηh,ηh(x, ξ) = (2π)−deix·ξη
( x

h1/2

)
η̂(h1/2ξ).

Lemma 3.1. For all a ∈ S(R2d) and all h ∈ (0, 1]

(ah ∗W ηh,ηh)(x, ξ) = (a ∗Wh)(x, hξ),

with
Wh(x, ξ) = h−dW

( x

h1/2
,
x

h1/2

)
.

where W is defined by (2.2).

We omit the very simple proof of this lemma which follows from an elementary change of
variable.

If we finally define OpaW
h (a) to be the anti-Wick quantization of a associated to ηh namely

OpaW
h (a)ϕ = (2π)−d

∫ ∫
a(q, p) ((ηh)q,p, ϕ)L2 (ηh)q,p(x)dqdp,

then Proposition 2.3 and Lemma 3.1 show that

OpaW
h (a) = Oph

(
a ∗Wh

)
. (3.1)

4 The semiclassical Garding inequality

Theorem 4.1. There exists C,N ≥ 0 such that, for all a ∈ S(R2d) satisfying

a ≥ 0

we have
Re (ϕ,Oph(a)ϕ)L2 ≥ −Ch max

|α+β|≤N
||∂αx ∂

β
ξ a||L∞ ||ϕ||

2
L2 ,

for all ϕ ∈ S(Rd) and all h ∈ (0, 1].
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The non elementary tool for the proof is the Calderon-Vaillancourt Theorem which we recall
for completeness.

Theorem 4.2. There exists C,NCV ≥ 0 such that, for all a ∈ S(R2d), we have

||Oph(a)ϕ||L2 ≤ C max
|α+β|≤NCV

||∂αx ∂
β
ξ a||L∞ ||ϕ||L2 ,

for all ϕ ∈ S(Rd) and all h ∈ (0, 1].

We now prove Theorem 4.1.

Proposition 4.3. There exists C ≥ 0 such that

||a ∗Wh − a||L∞ ≤ Ch max
|α+β|=2

||∂αx ∂
β
ξ a||L∞ ,

for all a ∈ S(R2d) and all h ∈ (0, 1].

Proof. Set for simplicity Wαβ(x, ξ) := xαξβW (x, ξ) and consider its scaled version

Wαβ
h (x, ξ) := h−dWαβ

(
x

h1/2
,
ξ

h1/2

)
.

Note that

xαξβWh = h
|α|+|β|

2 Wαβ
h . (4.2)

Recall next that
∫∫

Wh = 1 and observe that, since Wh is even,∫ ∫
xjWh =

∫ ∫
ξjWh = 0 j = 1, . . . , d.

Thus, by using the Taylor formula

a(q + x, p+ ξ) = a(q, p) +
d∑
j=1

xj∂xja(q, p) + ξj∂ξja(q, p) +
∑

|α+β|=2

xαξβrαβ(x, ξ, q, p),

where ||rαβ ||L∞(R4d) ≤ C||∂αx ∂
β
ξ a||L∞(R2d), we see that

(a ∗Wh − a)(q, p) = h
∑

|α+β|=2

∫ ∫
W

αβ

h (x, ξ)rαβ(x, ξ, q, p)dxdξ,

using (4.2). The result follows since Wαβ
h is a bounded family in L1(R2d) (as h varies in (0, 1])

because Wαβ ∈ S(R2d). �

Proof of Theorem 4.1. It suffices to write that

Oph(a) = Oph
(
a− a ∗Wh

)
+Oph(a ∗Wh)

= Oph
(
a− a ∗Wh

)
+OpaW

h (a)

by (3.1). The second operator is non negative (and self-adjoint) whereas the first one satisfies the
estimate

||Oph
(
a− a ∗Wh

)
ϕ||L2 ≤ C max

|α+β|≤NCV

||∂αx ∂
β
ξ (a− a ∗Wh)||L∞ ||ϕ||L2

≤ Ch max
|α+β|≤NCV+2

||∂αx ∂
β
ξ a||L∞ ||ϕ||L2

by the Calderon-Vaillancourt Theorem and Proposition 4.3. This completes the proof. �
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