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Bloch orbitals

The electronic ground state of a periodic system is usually described in terms
of Bloch orbitals, i. e. simultaneous generalized eigenfunctions of the peri-
odic 1-particle Hamiltonian

Hper = −∆ + VΓ

where
VΓ(x + γ) = VΓ(x), for all γ ∈ Γ = SpanZ(e1, . . . , ed) ∼= Zd,

and of the lattice translations {Tγ}γ∈Γ

(Tγψ) (x) = ψ(x− γ).

While convenient for many purposes, these �orbitals� (= generalized eigenfunc-
tions) have the disadvantage that are not localized in position space.



. . . and Wannier orbitals

An alternative representation in terms of localized orbitals has been intro-
duced by Gregory Wannier in 1937. The main advantage of this approach
is that Wannier functions are localized in position space. Thus
(i) they provide an intuitive (visual) insight into the structure of chemical

bonds in crystals



Amplitude isosurface contours for maximally-localized Wannier functions
in Si (left panel) and GaAs (right panel). Red and blue contours are for
isosurfaces of identical absolute value but opposite signs; Si and As atoms are
in green, Ga in cyan. Notice that breaking of inversion symmetry in GaAs
polarizes the WFs towards the more electronegative As anion.

(Courtesy of N. Marzari, I. Souza and D. Vanderbilt)



. . . and Wannier orbitals

An alternative representation in terms of localized orbitals has been intro-
duced by Gregory Wannier in 1937. The main advantage of this approach
is that Wannier functions are localized in position space. Thus
(i) they provide an intuitive (visual) insight into the structure of chemical

bonds in crystals



. . . and Wannier orbitals

An alternative representation in terms of localized orbitals has been intro-
duced by Gregory Wannier in 1937. The main advantage of this approach
is that Wannier functions are localized in position space. Thus
(i) they provide an intuitive (visual) insight into the structure of chemical

bonds in crystals
(ii) in computational physics, localized Wannier functions are crucial to de-

velop numerical methods whose cost scales linearly with the size of
the con�ning box [Gödecker]

(iii) they are crucial in the theory of polarization of crystalline solids [King-
Smith & Vanderbilt, Resta] and of orbital magnetization [Ceresoli & Resta,
Thonhauser & Vanderbilt].

All these advantages rely on the assumption that Wannier functions are indeed
exponentially localized.
Is this always the case? Is there an alghoritm to obtain them?



For constant coe�cients di�erential operators one introduces the Fourier
transform, which yields the duality

Position space ←→ Momentum space
Dirac's deltas
{x 7→ δa(x)}a∈Rd

←→ Plane waves
{k 7→ eik·a}a∈Rd

As far as di�erential operators with periodic coe�cients are concerned

Position space ←→ Momentum space
Wannier functions
{x 7→ wn,γ(x)}n∈N,γ∈Γ

←→ Bloch waves
{k 7→ ψn(k, ·)}n∈N



I
Periodic systems and

Bloch-Floquet transform



The Bloch-Floquet transform

Con�guration Momentum
space space

Lattice Γ Γ∗

Fundamental domain Y B

Td
Y = Rd/Γ T∗d = R̂d/Γ∗

Hilbert space Hf = L2(Y )



The Bloch-Floquet transform

Assumption on VΓ: we make the following Kato-type assumption on the
Γ-periodic potential:

VΓ ∈ L2
loc(Rd) for d ≤ 3, VΓ ∈ Lp

loc(R
d) with p > d/2 for d ≥ 4,

to assure that H = −∆+VΓ is self-adjoint in L2(Rd) on the domain W 2,2(Rd).



The Bloch-Floquet transform

The modi�ed Bloch-Floquet transform is de�ned as

Ũ : L2(Rd) −→ L2(B)⊗ L2(Td
Y )︸ ︷︷ ︸

Hf

(Ũψ)(k, y) =
1

|B|1/2
∑

γ∈Γ

e−i(y+γ)·k ψ(y + γ), k, y ∈ Rd.



The Bloch-Floquet transform

Notice that

(Ũψ)(k + λ, y) = e−iy·λ(Ũψ)(k, y) ∀λ ∈ Γ∗

so that the transformed function is determined by the values assumed on k ∈ B.



In modi�ed BF representation H = −∆ + VΓ becomes a �bered operator

Ũ H Ũ−1 =

∫ ⊕

B
Hper(k) dk in L2(B,Hf) ∼= L2(B)⊗Hf,

Hper(k) = 1
2(−i∇y+k)2+VΓ(y) acting on D = W 2,2(Td

Y ) ⊆ L2(Td
Y ) = Hf .

The band structure:
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H      (k)perσ(               ) Solution of the eigenvalue problem:
Hper(k)ϕn(k, y) = En(k)ϕn(k, y)

Eigenvalue: En(k)

Eigenvector: ϕn(k, ·) ∈ Hf = L2(Td
Y , dy)

Eigenprojector: Pn(k) = |ϕn(k)〉〈ϕn(k)|
Total projector: Pn = {Pn(k)}k∈B

Bloch function: ϕn ∈ L2(B,Hf)



De�nition. A (normalized) Bloch function corresponding to the nth Bloch
band is any ϕn ∈ L2(B,Hf) such that

Hper(k)ϕn(k, y) = En(k)ϕn(k, y) ‖ϕn(k, ·)‖Hf
= 1 for a.e. k ∈ B

ϕn(k + λ, y) = e−iy·λ ϕn(k, y) ∀λ ∈ Γ∗, k ∈ ∂B.

The last condition is called equivariance or pseudoperiodicity. It will be-
come crucial when requiring some regularity on the map k 7→ ϕn(k, ·).



II
Wannier functions:

the isolated band case



Wannier functions and gauge freedom

Let ϕn be a Bloch function corresponding to an isolated Bloch band En.
Notice that the choice of ϕn is not unique, since the function

ϕ̃n(k, y) = eiϑ(k)ϕn(k, y)

is also an eigenfunction of Hper(k) corresponding to En(k) (Bloch gauge).

De�nition. The Wannier function wn ∈ L2(Rd) corresponding to a Bloch
function ϕn is the preimage of ϕn by the Bloch-Floquet transform, i. e.

wn(x) :=
(
Ũ−1ϕn

)
(x) =

1

|B|1/2
∫

B
eik·xϕn(k, x)dk, x ∈ Rd.

Note: it is misleading to talk about �the Wannier function for the nth band�.



Some elementary properties of the Wannier functions:

(i) the translated Wannier functions are written as

wn,γ(x) ≡ wn(x− γ) =
1

|B|1/2
∫

B
e−ik·γϕn(k, x) dk, γ ∈ Γ.

(ii) if the norm ‖ϕn(k, ·)‖L2(Y ) is k-independent, then the functions {wn,γ}γ∈Γ

are mutually orthogonal in L2(Rd).

(iii) under this condition the family {wn,γ}γ∈Γ is a complete orthonormal
basis of Ran Pn.

(iv) if In := Ran En ⊂ R is isolated from the rest of the spectrum of H ,
then Ran Pn is the spectral projector of H corresponding to the interval
In ⊂ R.

Globally, the family of all Wannier functions {wn,γ}n∈N,γ∈Γ is a complete
orthonormal basis of L2(Rd).



Question (A): to which extent are the Wannier functions localized?
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Question (A): to which extent are the Wannier functions localized?

Localization in
position space ←→ Smoothness in

momentum space

Decay faster than
any polynomial ←→ In�nite

di�erentiability

Decay faster than
an exponential ←→ Analyticity in a

complex strip



Question (A′): how smooth is the Bloch function ?

The question is ill-posed, it crucially depends on the choice of the phase.

In numerical simulations the phase is random. Therefore one has to readjust
phases a posteriori in order to obtain reasonably localized Wannier functions.

Question (A′′): is it possible to choose the phase (Bloch gauge) of the
eigenfunctions ϕn(k, ·) so that the corresponding Wannier function is expo-
nentially localized?

It seems very easy . . .
Since the band En is assumed to be an isolated band one has that

k 7→ Pn(k) is smooth (even analytic in a complex strip Ωα ⊂ Cd)
k 7→ ϕn(k, ·) can be chosen locally smooth



. . . but a topological obstruction might appear!!



Answer(A): the answer is positive for an isolated Bloch band.

d = 1 W. Kohn (1959)
d > 1 de Cloiseaux (1964) requiring space-re�ection symmetry
d > 1 G. Nenciu (1983), B. Hel�er & J. Sjöstrand (1989).

The result depends crucially on the fact that the Hamiltonian
H = −∆ + VΓ

is real, i. e. the system is time-reversal symmetric (TR).

For a non TR-symmetric operator, e. g.

HB =
1

2
(−i∇x + AB(x))2 + VΓ,

counterexamples appear already for d = 2. [Dubrovin, Novikov, Lyskova].
On the other hand, in some cases one may recover the result by exploiting
magnetic TR symmetry [De Nittis & Lein].



III
Wannier functions:
the multi-band case



Eigenvalue crossings

In dimension d = 3 there are generically no isolated Bloch bands.

However, in insulators there is a spectral gap. Then it is interesting to con-
sider the family of bands which are below the gap.
Let σ∗(k) ⊂ R be an interval including at every k the relevant family of
bands.



The Bloch functions do not have a smooth continuation across the crossing
points (except in dimension d = 1). Thus no hope to obtain directly expo-
nentially localized Wannier functions.

Vision (de Cloiseaux): let us consider the relevant family of bands as
a unity.

Let P∗(k) be the orthogonal projector on the relevant family of bands, i. e.
P∗(k) =

∑

{n:En(k)∈σ∗(k)}
|ϕn(k)〉〈ϕn(k)|.

De�nition. A function k 7→ χ(k, ·) ∈ Hf is called a quasi-Bloch function
[de Cloiseaux 64] if χ ∈ L2(B,Hf)

P∗(k)χ(k, ·) = χ(k, ·), χ(k, ·) 6= 0 for a.e. k ∈ B

and it is Γ∗-equivariant,i. e.

χ(k + λ, y) = e−iy·λ χ(k, y) ∀λ ∈ Γ∗, k ∈ ∂B.



Let m := dim Ran P∗(k) < +∞.

De�nition. A Bloch frame is a family {χa}a=1,...,m of quasi-Bloch func-
tions such that

{χ1(k, ·), . . . , χm(k, ·)} is an orthonormal basis of Ran P∗(k) ∀k ∈ B.

De�nition. The composite Wannier functions corresponding to a Bloch
frame {χa}a=1,...,m are de�ned as

wa(x) :=
(
Ũ−1χa

)
(x), a ∈ {1, . . . , m}.

Notice that the family {wa,γ}a=1,...,m;γ∈Γ is an orthonormal basis of the spec-
tral subspace corresponding to the energy window Ran σ∗.



Composite Wannier functions and Bloch gauge
A Bloch frame is �xed only up to a k-dependent unitary matrix U ∈ U(Cm),
i. e.

χ̃a(k) =

m∑

b=1

Ua,b(k)χb(k)

is still a Bloch frame if {χa}a=1,...,m is a Bloch frame.

Question (B): is there a choice of Bloch gauge which makes the composite
Wannier functions exponentially localized ?

Question (B′): does exist a family of quasi-Bloch functions k 7→ χa(k) such
that
(B1) each map χa : Rd // Hf has a analytic extension to a strip;
(B2) the set {χ1(k), . . . , χm(k)} is an (orthonormal) basis spanning RanP∗(k)

for every k ∈ B.

First answer to (B): yes for dimension d = 1 [G. Nenciu, 1983].



The geometric viewpoint

Vision: the problem is equivalent to a geometric one.

We are interested to prove the triviality of a Hermitian vector bundle
over the d-dimensional torus T∗d.



The geometric viewpoint

Vision: the problem is equivalent to a geometric one. Moreover the obstruc-
tion might appear only at the topological level

Continuous
solution

Steenrod⇐⇒ Smooth
solution

Stein⇐⇒ Analytic
solution



Time-reversal
symmetry

Hper(−k) = CHper(k)C
−→

First Chern class
of the vector bundle

is zero

↓ d ≤ 3 (technical)

Existence of continuous
and periodic
global frame

↓ [Stein]

Exponentially
localized

Wannier functions
←−

Existence of analytic
and periodic
global frame



Second answer to (B): yes in dimension d ≤ 3.

• G. Panati. Triviality of Bloch and Bloch-Dirac bundles, Annales Henri
Poincaré 8, 995-1011 (2007).

• Ch. Brouder, G. Panati, M. Calandra, Ch. Mourougane and N. Marzari.
Exponential localization of Wannier functions in insulators, Phys. Rev.
Lett. 98, 046402 (2007).



IV
Maximally localized Wannier functions:

the Marzari-Vanderbilt functional



The Marzari-Vanderbilt localization functional

In the 90's, the long-lasting uncertainty about the existence of exponen-
tially localized composite WFs, and the need of an approach suitable for
numerical simulations, forced the solid state physics community to change
the perspective:
one writes a convenient localization functional and look for its minimizers
[Marzari & Vanderbilt 97].



The Marzari-Vanderbilt localization functional

In the 90's, the long-lasting uncertainty about the existence of exponen-
tially localized composite WFs, and the need of an approach suitable for
numerical simulations, forced the solid state physics community to change
the perspective:
one writes a convenient localization functional and look for its minimizers
[Marzari & Vanderbilt 97].
De�nition For a single-band normalized Wannier function w ∈ L2(Rd),

FMV (w) :=

d∑
j=1

Var
(
Xj; |w(x)|2dx

)
=

∫

Rd
|x|2|w(x)|2dx−

d∑
j=1

(∫

Rd
xj|w(x)|2dx

)2

,

which is well-de�ned at least whenever
∫
Rd |x|2|w(x)|2dx < +∞.

More generally, for a system of L2-normalized composite Wannier functions
w = {w1, . . . , wm} ⊂ L2(Rd) the Marzari-Vanderbilt localization func-
tional is

FMV (w) :=

m∑
a=1

∫

Rd
|x|2|wa(x)|2dx−

m∑
a=1

d∑
j=1

(∫

Rd
xj|wa(x)|2dx

)2

.



De�nition A system of maximally localized composite Wannier func-
tions (MLWF) is:
a minimizer {w1, . . . , wm} of the Marzari-Vanderbilt localization functional
in the setWm := (D(H) ∩ D(X))m under the constraint that {ϕ1, . . . , ϕm},
for ϕa = Ũwa, is a Bloch frame .



De�nition A system of maximally localized composite Wannier func-
tions (MLWF) is:
a minimizer {w1, . . . , wm} of the Marzari-Vanderbilt localization functional
in the setWm := (D(H) ∩ D(X))m under the constraint that {ϕ1, . . . , ϕm},
for ϕa = Ũwa, is a Bloch frame .

Since [Marzari-Vanderbilt 97] this approach has been extremely successful in com-
putational physics, see the recent review
Marzari et al., Maximally localized Wannier functions: theory and applications ,
submitted to Rev. Mod. Physics, arXiv:1112.541.
There are has been convincing numerical evidence that MLWF are ex-
ponentially localized, i. e. there exist β > 0 such that∫

Rd
e2β|x| |wa(x)|2dx < +∞ a ∈ {1, . . . , m}.

Beyond numerical results, no mathematical proof . . .



Natural mathematical problems

(MV1) (Existence) prove that there exists a system of maximally localized com-
posite Wannier functions;

(MV2) (Localization) prove that any maximally localized composite Wannier
function is exponentially localized



The MV functional in momentum space

Since the modi�ed Bloch-Floquet transform is an isometry and it satis�es

(ŨXj g)(k, y) = i
∂

∂kj
(Ũ g)(k, y)

the MV functional can be rewritten in terms of the Bloch frame ϕ =
{ϕ1, . . . , ϕm} as

F̃MV (ϕ) =

m∑
a=1

d∑
j=1

{∫

B
dk

∫

TY

∣∣∣∣
∂ϕa

∂kj
(k, y)

∣∣∣∣
2

dy −
(∫

B
dk

∫

TY

ϕa(k, y) i
∂ϕa

∂kj
(k, y) dy

)2
}

.

Theminimization spaceW = D(H)∩D(X) is mapped by the Bloch-Floquet
transform into

Hτ ∩ L2
loc(Rd,W 2,2(TY )) ∩W 1,2

loc (Rd, L2(TY )) =: W̃ .



The MV functional for the unitary gauge

It is convenient to use the existence of a real-analytic Bloch frame χ =
{χ1, . . . , χm} and rewrite the functional in terms of the unknown change of
gauge, i. e.

ϕa(k, ·) =
∑

b

χb(k, ·) Ub,a(k) with Ub,a(k) = 〈χb(k) |ϕa(k)〉Hf

Here χ is �xed, and the minimization variable is the map

U ∈ W 1,2(T∗d,U(Cm)) where T∗d ≡ Rd/Γ∗



The MV functional for the unitary gauge

For the given reference frame χ, the localization functional in terms of the
gauge U reads

F̃MV (U ; χ) =

d∑
j=1

∫

T∗d

[
tr

(
∂U ∗

∂kj
(k)

∂U

∂kj
(k)

)
+ m

m∑
a=1

∥∥∥∥
∂χa(k, ·)

∂kj

∥∥∥∥
2

Hf

]
dk +

+

d∑
j=1

∫

T∗d
tr

[(
U(k)

∂U ∗

∂kj
(k)− ∂U

∂kj
(k)U ∗(k)

)
Aj(k)

]
dk +

+

m∑
a=1

d∑
j=1

(∫

T∗d

[
U ∗(k)

(
∂U

∂kj
(k) + Aj(k)U(k)

)]

aa

dk

)2

.

Here the matrix coe�cients Aj ∈ L2(T∗d; u(m)) are given by the formula
[
Aj(k)

]
cb

=

〈
χc(k, ·) | ∂χb(k, ·)

∂kj

〉

Hf

−
〈

∂χc(k, ·)
∂kj

|χb(k, ·)
〉

Hf

.



The MV functional for the unitary gauge

For the given reference frame χ, the localization functional in terms of the
gauge U reads

F̃MV (U ; χ) =

d∑
j=1

∫

T∗d

[
tr

(
∂U ∗

∂kj
(k)

∂U

∂kj
(k)

)
+ m

m∑
a=1

∥∥∥∥
∂χa(k, ·)

∂kj

∥∥∥∥
2

Hf

]
dk +

+

d∑
j=1

∫

T∗d
tr

[(
U(k)

∂U ∗

∂kj
(k)− ∂U

∂kj
(k)U ∗(k)

)
Aj(k)

]
dk +

+

m∑
a=1

d∑
j=1

(∫

T∗d

[
U ∗(k)

(
∂U

∂kj
(k) + Aj(k)U(k)

)]

aa

dk

)2

.

Beautiful!!! The former functional is a perturbation of the Dirichlet energy
for maps U : T∗d → U(Cm)!
In other words, stationary points are harmonic maps.



In summary

inf

{
FMV (w) :

{w1, . . . , wm} ⊂ W
Ũ w is a Bloch frame

}
= inf

{
F̃MV (U ; χ) : U ∈ W 1,2(T∗d;U(Cm))

}
.

Therefore, problem (MV1) is equivalent to show that the r.h.s. is attained.
Analogously, problem (MV2) corresponds to show that any minimizer of
F̃MV (·; χ) is real-analytic, provided that χ is also real-analytic.



Theorem. [Panati & Pisante 11]
Let σ∗ be a family of m Bloch bands for the operator −∆ + VΓ satisfying
the gap condition, and let {P∗(k)}k∈Rd be the corresponding family of spectral
projectors.
Assume d ≤ 2 and m ≥ 1, or d ≥ 1 and m = 1, or d = 3 and 1 ≤ m ≤ 15.
Then:

(MV1) there exist composite Wannier functions {w1, . . . , wm} ⊂ W which min-
imize the localization functional under the constraint that the corre-
sponding quasi-Bloch functions are an orthonormal basis for Ran P∗(k)
for each k ∈ B.

(MV2) for any system of maximally localized composite Wannier function w =
{w1, . . . , wm} there exists β > 0 such that eβ|x|wa is in L2(Rd) for every
a ∈ {1, . . . , m}, i. e. the composite Wannier function wa is expo-
nentially localized.

Conjecturally, we expect that the parameter β appearing in the latter
claim does not depend on the minimizer w, and that the claim holds true
for any β < α, where α is the width of the analyticity strip for k 7→ P∗(k).
We also expect that the result holds true for any m ∈ N even for d = 3.



Snapshots from the proof
• The existence of a minimizer is standard, it follows essentially from
the direct method of calculus of variations

•We prove the analyticity of the minimizers of F̃MV by adapting ideas and
methods from the regularity theory for harmonic maps [Chan Wang &
Yang][Lin & Wang]

• The crucial step is to prove that any minimizer of F̃MV is continuous.
• In the 2-dimensional case, this fact is a consequence of the hidden struc-
ture of the nonlinear terms in the Euler Lagrange equation for
the F̃MV functional.

• In the 3-dimensional case, the continuity follows instead from the deeper
fact that minimizers at smaller and smaller scales look like mini-
mizing harmonic maps from T∗d to U(Cm). We are able to prove that,
for m ≤ 15, the latter are actually real-analytic, by showing constancy of
the tangent maps as in [Schoen & Uhlenbeck 84].
As a consequence, we obtain the continuity of the minimizers of F̃MV.



The Euler-Lagrange equations

Let ϕ ∈ C∞(T∗d; Mm(C)) and for ε 6= 0 �xed let
U(k) + εϕ(k) be a free variation of U in the direction ϕ.
In a su�ciently small tubular neighborhoodO of U(m) in Mm(C) there is a well
de�ned nearest point projection map Π : O // U(m), so the projected
variations are
Uε(k) := Π(U(k)+εϕ(k)) = U(k)

(
I + ε

1

2

[
U−1(k)ϕ(k)− (U−1(k)ϕ(k))∗

])
+o(ε) .

Lemma. A map U ∈ W 1,2(T∗d;U(m)) satis�es d

dε
F̃MV (Uε; χ)|ε=0 = 0 if and

only if U is a weak solution of the Euler-Lagrange equation

−∆U +

d∑
j=1

∂U

∂kj
U−1∂U

∂kj
+

d∑
j=1

[
∂U

∂kj
U−1AjU − ∂Aj

∂kj
U − Aj

∂U

∂kj

]
+

+

d∑
j=1

[
−

(
∂U

∂kj
+ AjU

)
Gj + UGjU−1

(
∂U

∂kj
+ AjU

)]
= 0 .



Here the constant (purely imaginary) diagonal matrices {Gj} ⊂ Mm(C) are
de�ned as

Gj = diag

∫

T∗d
U ∗(k)

[
∂U

∂kj
(k) + Aj(k)U(k)

]
dk.



Continuity in the 2-dimensional case

Crucial lemma. [P & Pisante] borrowing ideas from [Lin & Wang]

Let d ≥ 2, m ≥ 2 and let U ∈ W 1,2(T∗d;U(m)).
Assume B̃j ∈ L2(T∗d; u(m)) for j ∈ {1, . . . , d} and div B̃ = 0 in D′(T∗d).
If U is a weak solution to

∆U =

d∑
j=1

∂U

∂kj
B̃j + f̃ and U−1f̃ ∈ Lp(T∗d; u(m))

for some p > 1, then U ∈ W 2,1(T∗d;U(m)).

The Euler-Lagrange equations can be recast in the form above. For d = 2 one
has continuity by Sobolev embedding.



Continuity in the 3-dimensional case
Let Ω′ ⊂ Rd an open set, d ≥ 3, and let U ∈ W 1,2

loc (Ω′;U(m)), m ≥ 2.
De�ne the Dirichlet energy

E(U ; Ω) =

∫

Ω

1

2

d∑
j=1

tr

(
∂U ∗

∂kj

∂U

∂kj

)
dk , Ω ⊂⊂ Ω′.

The condition of stationarity for E easily implies that U is a weakly har-
monic map, i. e. U is a weak solution of

−∆U +

d∑
j=1

∂U

∂kj
U−1∂U

∂kj
= 0 .

We aim to prove that, when d = 3 and m ≥ 2 any local minimizer U ∈
W 1,2

loc (R3;U(m)) which is degree-zero homogeneous, i. e.

U(k) = ω

(
k

|k|
)

for some ω ∈ C∞(S2;U(m))

is constant.



Proposition [P & Pisante]

Let m ≥ 2 and ω ∈ C∞(S2;U(m)) a harmonic map. If U(k) = ω
(

k
|k|

)
is

a local minimizer of the Dirichlet energy then the homogeneous energy
satis�es

E(ω) ≤ π

2
m.

Here the homogeneous energy is the Dirichlet energy for maps S2 → U(m)

E(ω) =

∫

S2

1

2

∣∣ω−1dω
∣∣2 dV ol .

Proposition [Valli 88]. The energy E(ω) of any harmonic map ω : S2 // U(m)
is an integer multiple of 8π.

Obvious corollary. If m ≤ 15 then E(ω) = 0, so ω is constant.



Details, proofs & applications in the preprint:
Bloch bundles, Marzari-Vanderbilt functional
and maximally localized Wannier functions,

arXiv:1112.6197

Thank you
for you attention!!


