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localized around (or centered at) z in space, and near ¢ in momentum

_ 12
(-sz,c)(g) = 71'7% exp (_iz,g_ %)

Think of (z,¢) as a point in phase space T*R"
We call ¢, ¢ a Gaussian wave packet centered at (z,()

Main interests (for us) :
1. One can write "waves” (i.e. functions) as superposition of wave packets

2. The evolution of a wave packet under a Schrodinger flow can be described rather
explicitly (in a suitable regime)
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1. Wave packet decomposition

Define the Bargmann transform of a function u by

Bu(z,¢) = /]R g, c(x)u(x)dx
Then, one has the inversion formula
u=(27)""B*Bu

In other words

u) = @) [ [ (Bu)(a Opc()dedc

is a decomposition of u as a (continuous) sum of wave packets
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2. Evolution of wave packets under the Schrodinger equation
For quadratic potentials, one has exact formulas. Set

2 |2 A |2
PV(X7§)=%+V%, Hu=75+u%, v=0,+1,-1

Then

) . rt
e o) = ot epi (S5 G (- )+ TR ) (- )

where

t
(£:6) = 95,20, Si= [ H-c—pulai (o)
and «f, T}, are given in term of the differential of flow &% ,
¢ _ (A, B
Dq’p,,(Z,C)— (Cll; DIE )

by
M= (CL+iD5)(AL +1B)7  9f = det(Af +1BL)7/2.
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Explicitly, we obtain

t+i

o = m/n, =1 4it)7?
rn = i, v¥ = (cost +isin t)*g
inh(2t) + i .
re, %(;t—;—l/n7 vt = (cosh t +isinht)™2

This allows in particular to read the profile and spreading of the packets:

i 1 |x — Z¢|?
itH, — 0
[ ()] = oo (s )

1 Ix — zf|2
exp [ ———2—
<3P 2
|x — zt,?

itH_q x — X -
|14z ¢ (%) (mcosh(26))? p< 2cosh(2t)>

ey, ¢ ()]
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From now on, we use a semiclassical normalization

i P
P2 o(x) = (wh) ™% exp (EC'(X_Z)_ | = | )

= Localization around z on a scale h'/2
Consider a semiclassical Schrédinger operator on R”

__Fa _lee
HB) = =21 V0, plx€) = S+ V().

with V € C>°(R",R). Denote

t t
(Zt7<t) = d);)(Z? <)7 (ét gt) = Dd);)(Z? C)

st = /Otf-cs — p(z°,¢%)ds

Proposition [action of the symplectic group on the Siegel half space]
At +iB? js invertible and
rt:=(C'+iD")(A" +iB")~*

is symmetric complex, with positive definite imaginary part
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Theorem (Hagedorn-Joye, Combescure-Robert) In the limit h — 0, and under
general conditions on V,

e A (%)

is well approximated by
— a2t gh i t t t re t t
(wh)~F Al exp - (ST ¢ (x = 2) + = 2) - (x = 21)

for times |t| < Co|In h| (Co dynamical constant). Here vt = det(A; +iB:) /2. The
amplitude is of the form
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with Aj(z, ¢, t, X) polynomial of degree < 3j in X, with coeff. depending on the
classical trajectory t — (zt,(*) and the Taylor expansion of V at z*

Rem. The polynomial growth of the amplitude in (x — zt)/h% is beaten by the
exponential decay of the exponential since Im(I'?) is positive definite
— Concentration near the classical trajectory, at least as long as Im(I't) > h
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Sketch of proof.

Lemma The matrix ['t satisfies the Ricatti equation
= —vO() - (rH?, ro =i,

and the function ~¢ satisfies
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= >

Set rt
=S (x =2+ S —2) - (x = 2).
Then
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1. injectivity radius bounded from below by rp > 0
2. all covariant derivatives of the Riemann curvature tensor bounded on M
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Wave packets on Riemannian manifolds

Let (M", g) be a Riemannian manifold with bounded geometry i.e.
1. injectivity radius bounded from below by rp > 0
2. all covariant derivatives of the Riemann curvature tensor bounded on M
3. complete (for simplicity)

Example. Any closed Riemannian manifold

Lemma [Inverse exponential map close to the diagonal of M x M] If dg(z, m) < rp,
there is a unique W]" € T;M such that

m = exp, (W}").
For fixed m, z — W} is a vector field and one can expand its covariant derivative
VWz ~—I+ ng ('7 Wz ) Wz + E(VR)Z(WZ R Wz )Wz + -

All tensors in this expansion are bounded (similar result for higher covariant
derivatives)

Rem: on R", W =m — z.
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Consider V € C*°(M,R) and

H(h) = —h2% +V

2
(2%, ¢ = &'(2,0), Hamiltonian flow of % + V(m)
Proposition. Let U be a coordinate patch, with coordinates y1,...,yn. Along each

trajectory starting at (z,{) € T*U, one can define intrinsincally
re: T,eMC — T,eMC, where T,:M® =T, M®C
(i.e. Tt is a complex tensor along the curve t — z') which is symmetric
<I'tX,Y>Z, :<X,FfY>Zt, X,YeT,;M
has positive definite imaginary part
Im(FtX,X>Zt>O7 X#0, XeT,M
and satisfies the Ricatti equation
Vet = —Hess(V),e — Rye (., 2) 2" — (I)?

where R,: is the Riemann tensor at zt
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Proof.
To construct 't on R”, we have used the natural identifications

T(Z,C)(T*Rn) =R"@®R", T(Ztygz)(T*R") =R"@®R"

How to proceed on a manifold ?
1. At starting points (z,{) with z € U, we split

using the (symplectic) coordinates (yi,...,¥n,N1,--.,7n) on T*U
2. At points (2%, ("), we use the (global) identification Zg : T*M — TM

Ig(ztv Ct) = (ztv Zt)
and split along horizontal and vertical spaces

T(Zr’jr)(ZgT*M) = H(zt,it) @ v(zf,it)

This gives a natural block decomposition

d(Ig o d)t) = (g? 2[3)) : R; & R;’? = Hzt zt) O V(at 5t
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Proof (continued). One can then define
(Lc+iLp) (La+iL) " Hipe sy = Ve sy
and then define I'* by composition with the natural isomorphisms
T,:MC - H‘(Czt,f), Vgczt,it) — T, MC
More concretely, using local coordinates (xi,...,xn) near zt, the matrix of 't reads
GTI(Ct +iDY) (At +iBt)"! — G Ixt

with
G =(g"(x"),  TE=D awt(xHi,  xt=x(zY)
k,l

At BY\  (9xt/oy Ox'/dn
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= Symmetry of 't positivity of Im(I'*) + Ricatti equation by direct computation #
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Proof (continued). One can then define
(Lc+iLp) (La+iL) " Hipe sy = Ve sy
and then define I'* by composition with the natural isomorphisms
T,:MC - H‘(Czt,f), Vgczt,it) — T, MC
More concretely, using local coordinates (xi,...,xn) near zt, the matrix of 't reads
GTI(Ct +iDY) (At +iBt)"! — G Ixt

with
G =(g"(x"),  TE=D awt(xHi,  xt=x(zY)
k,l

At BY\  (9xt/oy Ox'/dn
ct pt) = \oetjay  oct/on

= Symmetry of 't positivity of Im(I'*) + Ricatti equation by direct computation #
Rem. If (¥1,...,yn) are other coordinates on U, the matrix of 't is changed into

= P -~ o\ —1
G C+D'Z) (A +B'Z) P —GclE,  z= (@ + i@) (a—y + ia—y)
8y  on) \dy On
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Definition of gaussian wave packets Let p € C§®(—ro, o), equal to 1 near 0.

_n i 1
W’;’C(m) = (rh) 4% exp ; (4- wm 4+ 5(r"w;", W;")z) o (dg(z,m)),

form € M and (z,¢) € T*U (ie. (€ T;U)

Al

70 = det(gi(y(2))) ~

Rem. W) .(m) =0 if dg(z,m) > ro.
Proposition [Wave packet decomposition - Approximate Bargmann transform] Set
R h o
Bhu(z,¢) := <\Uz,§? u>L2(M) , ue Ceo(U)
Then
(2mh) ™" B} Byu = a(h)u = (1 +hiag+ hlay + ) u

with a(h), a1, a2,... € C*®, je.

(27rh)*"//T*U Bhu(z,)W! (dzd( = a(h)u
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Theorem [Propagation of gaussian wave packets] In the limit h — 0, and under
general conditions on V (e.g. all covariant derivatives bounded),

e THM ! (m)
is well approximated by
_n i 1
(k) By Ab ) exp 1 (87T W+ 5 (P W WER),0 ) ol )

with
v = det(gj(x*")) "/ det(A* +iB")"/2
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Theorem [Propagation of gaussian wave packets] In the limit h — 0, and under
general conditions on V (e.g. all covariant derivatives bounded),

e THM ! (m)
is well approximated by
_n i 1
(mh) "3t Al (x) exp " (St +¢ Wi+ 5 (rrwi, W;’)Zt) p(dg(ze, m))
with
vt = det(gi(x*)) "/ *det( At + iBt)~1/2
and an amplitude of the form

AD) ~ 1+ ST (t, 2. )

1
>1 h2

for times |t| < Go|In h| with Tj(t,z%,¢t,.) polynomial (i.e. sum of tensors) of degree
at most 3j, depending on the classical trajectory and the Taylor expansions of V and
W™ at zt.



Wave packets on Riemannian manifolds

Remark on the proof: The transport equations



Wave packets on Riemannian manifolds

Remark on the proof: The transport equations are of the form

(Ve T)(oyooy, )+ TM ]+ + T, TE = FL, .0
N —r

k factors k terms
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Remark on the proof: The transport equations are of the form

(Ve D) yee s )+ TR ]+ + T, TR = FL, .00, ]
N

k factors k terms

which turns out to be equivalent to

d
p (T[Et ..., Ee]) = FlEt ..., Et]

with E; := dn(La +iLg) : C" — T,:M ® C (dm = projection from the horizontal
space at (z%, zt) to the tangent space at z*)

== Control on the exponential growth in time of T;(t,z%,¢",.).
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Theorem [Propagator approximation] If Ay, is a pseudodifferential operator supported

in U, with principal symbol x, then (the kernel of) e~ inH(M)

Ap is well approximated by
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Theorem [Propagator approximation] If Ay, is a pseudodifferential operator supported
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in U, with principal symbol x, then (the kernel of) e Ay, is well approximated by
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Theorem [Propagator approximation] If Ay, is a pseudodifferential operator supported

in U, with principal symbol x, then (the kernel of) e_i%H(h)Ah is well approximated by
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Wave packets on Riemannian manifolds

Theorem [Propagator approximation] If Ay, is a pseudodifferential operator supported
—it H(h)
h

in U, with principal symbol x, then (the kernel of) e Ay, is well approximated by
Kh(m m’) // by(t,z, ¢, m,m’)exp — F(t z,¢, m,m’)dzd¢
for times |t| < Co|log h|. The phase reads
F = St t m 1 rt m Wm Wm’ 1 F)\/Wm Wm/
=50t zf+§<(z,<) zf>zt‘<' = T5\"zo z
z
where
/Ox/ m’ m’ _ 0 m’ m’ . 0 m’ m’
<r(m wr W >Z = —Re (1Y, W', W >Z +itm (P, oW, W >

The amplitude by(t,z, ¢, m, m’) reads by(t,z,¢, m, m') 4+ O:(h'/2),

bo = det((gi(x"))/2(A +iB")) "2 det(gi(y))) ¥ x(2: O)p(de(z, m')) p(d (2", m))

Proof:

e hHM ALy = (21h)~ //TU e inHMy <Ahah vl >2( )dzdg



Thank you for your attention



