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We consider an asymptotically conical manifold (M", G), ie
for £ € M and some S closed manifold, we have a
diffeomorphism

k:M\K — (R ) xS
such that
G=r" (A(r)dr2 + 2rB(r)dr + r2H(r)>

where A(r) is a function (on S), B(r) a 1-form and H(r)
Riemannian metric, all depending smoothly on r, such that for
some p > 0,

10HA(r) = Do + [[8:B(NI|1 + |BHH(r) — Ho)ll2 S r i,

where Hy is a fixed metric on S. This means G ~ dr? + r?Hj
close to infinity.
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1
2.

(R", Gp), Go = Euclidean metric
(R", G), G long range perturbation of Gy, ie

|02 (G(x) = Go) | < (1 + |x|)~7~ 1

3. (M, G) scattering manifold, ie if M can be smoothly

compactified as a manifold M with boundary OM = S,
with boundary defining function x (S = {x = 0}), and close
to x = 0 (= infinity)

ax®  h(x)

G= =
x4 G

)

h(.) = family of metrics on S smooth w.r.t. x up to x = 0.
Then take r = 1/x and H(r) = h(1/r).
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Set R(z) = (~Ag — z)~'. The LAP at energy A € R is the
existence of

Rs(A +£i0) := lim (r)"°R(\ £ ie)(r)~*

e—0+

for some suitable s > 0 or (slightly) more simply

sug (N SR\ +ie){r)~°|| < o

e>

More generally, one can consider

RYI(\ +i0) = (k1) lim (r)~(~Ag A= ie) 1k (ry s

The LAP is related to the spectral resolution E) of Ag, via

dE, 1

= 5= (RO = i0) = R\ + 0))
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» The LAP is a well known consequence of the Mourre
theory (+ Jensen-Mourre-Perry).

» Problem: getting estimates Rs(A £+ i0) as A — oo, high
frequency regime, and A — 07, low frequency regime
» High frequency (= semiclassical) estimates depend on the
geodesic flow
1. in general: O(e®*"?)
2. non trapping: O(A~'/2)
3. "weak" trapping: at least O(A\~"/2log \), or O(\7)...
» Low frequency estimates do not depend on the geodesic
flow, but rather use global homogeneous Hardy-Poincaré
or Sobolev inequalities

1N ~ulle S IIVauUllzs  luller S IVl

where 2* = 2n/(n — 2) for n > 3 (cf assumptions to get
long time gaussian heat kernel estimates)
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If B is a bounded operator

/ |Be™euy|[2dt < 2n (supBR(Hie)B*) ol [2
R AER,

e>0

Using B = (r)~S¢(h?Ag), with ¢ € CS°(R \ 0) and
semiclassical resolvent estimates

sup |[{r)"°(-Ag— A+ iO)‘1 (ry=%|| < Cshl(h), s>1/2
A~h—2

we get, eg with /(h) = h~/, a local smoothing effect

[l sorR A e ot < Callu
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By almost orthogonality, we can sum over h =27k k >0, and
get

/H O)(Bg)e™eul P dt < Collu|Z

for some (actually all) ® € C5°(R), ® = 1 near 0. If we want to
remove this spectral cutoff, we only get that for all T

T .
/ ey =2 ouo] 2y .-t < Crlluel

unless we have a good control of the resolvent when A — 0
which leads to global in time estimates.

Other important motivations for low frequency estimates: global
Strichartz estimates (more later) and local energy decay
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The result

Theorem 1 (B + Royer) Let (M, G) be an asymptotically
conical manifold of dimension n > 3.

1. There exists C > 0 such that, for [Re(z)| < 1,

N~ (—ag—2)" ("] < C.

2. Forall s € (0,1/2), there exists Cs > 0 such that, for
0 < |Re(z)] <1,

1(r)"275(=Ag — 2)3(r)"27%|| < Cs|Re(2)[*".

3. Fix [Eqy, E2] € (0, 00). For all integer k > 1, there exists Ci
such that, for all e € (0,1] and all ¢ s.t. Re(¢) € [Ey, E2],

[{er) ™ (=€ 206 — Q) (er) ¥ < Ci.
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Comments

1. The weight (r)~" is sharp and improves on previous results
by B and Bony-Hafner (on R"). Maybe contained implicitly
in Guillarmou-Hassell for scattering manifolds.

2. In higher dimensions, one has better estimates. Morevoer
when n = 3 and (S, Hy) = (S?, can), one can take s = 1/2.

3. When (M, G) = (R", Gy), the estimate
[[{er) ™ (= 2Aa — ) (er) ¥ < Ck

follow from the case ¢ = 1 by rescaling. Such estimates
imply that, for any ¢ € C3°(R \ 0),

[[(er) (e 2Dg)e™ e (er) || < Ci(Pt)' K.
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/R 6(e 2AG)u(t)|Ba- at < [[uo] 2.
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We split

d(e 2Ag)u(t) = x(er)p(e 2Ag)u(t) + (1 — x)(er)p(e 2Ag)u(t)

1. The first term is treated by L? estimates (Sobolev + LAP)

Ix(eno(e*Ag)ud)llier S [IVax(er)é(e *Ag)u(b)]l2
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<

1(r) " o(e 2Ag)u(t)]| 2

2. (1 = x)(er)p(e2Ag) is a (micro)localization where r > ¢~
and [£| ~ € = outside of the 'uncertainty region’ = one can
use microlocal techniques (rescaled pseudodifferential and

Fourier integral operators). Here, the 'type 3 estimates’ are
very useful.
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Global Strichartz estimates

Let _
u(t) = ePeyy.

Theorem 2 (B + Mizutani - in progress) Let (M, G) be an
asymptotically conical manifold of dimension n > 3. Assume
we have polynomial resolvent estimates at high frequency

I{r)~(=Ag — X —i0){r)~®|| < C\, A>1,

for some s > 0 and o € R. Then

1. There exists x € C3°(M) equal to 1 on a large enough
compact set such that

(T =) ull 2wz (my) S ol zvy-
2. If the manifold is non trapping (ie 0 = —1/2), then we have
global space time Strichartz estimates

ull 2g;2* () < ol 2an)-
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Lemma One can choose x: M\ K — (R, o0) x S (or
equivalently the radial coordinates r near infinity) such that

dvolg = x*(r" " drdvoly,).

Consequence: Outside a compact set, a good model for
(M, dVOlG) is (./\/lo, rn—1 dl’dVOlHO) with Mo = (0, OO) x S, and
1. the rescaling group e

ev(r,w) =e'zv(elr,w), teR

is unitary on L2(Mo, r"~'drdvoly,).
2. the operator k. Agr* coincides near infinity with

Pu = divg,(TCdu),  (here Gy = dr? + r’Gy),
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Proof of Theorem 1 (item 1)

More precisely
Pu = divg,(TC%du),

with Tg section of Hom(T* Mg, T M) looking like

T.— 1—|—K11(f) r‘1K12(r) - 1 0
G\ Kei(r) (T + Kao(r))) ~ \O r2TH0)>
with
(ror)¥Kj small forall k > 0. (S)
Then

(P— A\ — iE)_1 _ )\—1ei|n)\1/2A(P)\ 1 iu)e—ilnN/ZA

where P, is the rescaled operator obtained by rescaling

r— r/A'/2 in the Kj, scaling under which (S) is invariant.
Remark: all theses A\ dependent operators are selfadjoint with
respect to r"~'drdvoly,.
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Using the standard Mourre theory, we can prove the LAP for
(Py—1—ip)™!
Proposition There exists v > 0 small enough such that
WA+ (P =1 —iu) " (vA+ 1) lg1py < C

forall A > 0andall x> 0.
Recall that /A = ro, + 3.
Observe next that

rt=r WA+ DNWA+ )T = (ar ' 4+ bo,) (vA+ ),
where, by the homeogenous Hardy inequality
1~ Vllzme) < ClIOVIl2 o),

ar~' + bo, is bounded from H] to L2...
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... therefore, we get the bound
Ir ' Py =1 —ip) 'r e 2 < C

forall A > 0andall x> 0.
After rescaling, this yields

M2 P = —ig) ' r "\\?|| o< C
[2— [

forall A > 0 and all . > 0, which completes the proof for the
model.



