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The setup
We consider an asymptotically conical manifold (Mn,G), ie
for K bM and some S closed manifold, we have a
diffeomorphism

κ :M\K → (R,∞)× S

such that

G = κ∗
(

A(r)dr2 + 2rB(r)dr + r2H(r)
)

where A(r) is a function (on S), B(r) a 1-form and H(r)
Riemannian metric, all depending smoothly on r , such that for
some ρ > 0,

||∂ j
r (A(r)− 1)||0 + ||∂ j

r B(r)||1 + ||∂ j
r (H(r)− H0)||2 . r−j−ρ,

where H0 is a fixed metric on S. This means G ≈ dr2 + r2H0
close to infinity.
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Examples

1. (Rn,G0), G0 = Euclidean metric
2. (Rn,G), G long range perturbation of G0, ie∣∣∂αx (G(x)−G0

)∣∣ . (1 + |x |)−ρ−|α|

3. (M,G) scattering manifold, ie ifM can be smoothly
compactified as a manifoldM with boundary ∂M = S,
with boundary defining function x (S = {x = 0}), and close
to x = 0 (= infinity)

G =
dx2

x4 +
h(x)

x2 ,

h(.) = family of metrics on S smooth w.r.t. x up to x = 0.
Then take r = 1/x and H(r) = h(1/r).
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The limiting absorption principle (LAP)
Set R(z) = (−∆G − z)−1. The LAP at energy λ ∈ R is the
existence of

Rs(λ± i0) := lim
ε→0+

〈r〉−sR(λ± iε)〈r〉−s

for some suitable s > 0 or (slightly) more simply

sup
ε>0

∣∣∣∣〈r〉−sR(λ+ iε)〈r〉−s∣∣∣∣ <∞
More generally, one can consider

R(k)
s (λ± i0) = (k !)−1 lim

ε→0+
〈r〉−s(−∆G − λ∓ iε)−1−k 〈r〉−s

The LAP is related to the spectral resolution Eλ of ∆G, via

dEλ
dλ

=
1

2iπ
(
R(λ− i0)− R(λ+ i0)

)
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The limiting absorption principle (LAP)
I The LAP is a well known consequence of the Mourre

theory (+ Jensen-Mourre-Perry).
I Problem: getting estimates Rs(λ± i0) as λ→∞, high

frequency regime, and λ→ 0+, low frequency regime
I High frequency (= semiclassical) estimates depend on the

geodesic flow
1. in general: O(eCλ1/2

)
2. non trapping: O(λ−1/2)
3. "weak" trapping: at least O(λ−1/2 logλ), or O(λσ)...

I Low frequency estimates do not depend on the geodesic
flow, but rather use global homogeneous Hardy-Poincaré
or Sobolev inequalities

||〈r〉−1u||L2 . ||∇Gu||L2 , ||u||L2∗ . ||∇Gu||L2 ,

where 2∗ = 2n/(n − 2) for n ≥ 3 (cf assumptions to get
long time gaussian heat kernel estimates)
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Connection with time dependent problems

If B is a bounded operator

∫
R
||Beit∆Gu0||2dt ≤ 2π

sup
λ∈R,
ε>0

||BR(λ+ iε)B∗||

 ||u0||2

Using B = 〈r〉−sφ(h2∆G), with φ ∈ C∞0 (R \ 0) and
semiclassical resolvent estimates

sup
λ∼h−2

||〈r〉−s(−∆G − λ± i0)−1〈r〉−s|| ≤ Cshl(h), s > 1/2

we get, eg with l(h) = h−l , a local smoothing effect∫
R
||〈r〉−sφ(h2∆G)eit∆Gu0||2

H
1−l

2
dt ≤ Cs||u0||2L2 .
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The result
Theorem 1 (B + Royer) Let (M,G) be an asymptotically
conical manifold of dimension n ≥ 3.

1. There exists C > 0 such that, for |Re(z)| ≤ 1,

||〈r〉−1(−∆G − z)−1〈r〉−1|| ≤ C.

2. For all s ∈ (0,1/2), there exists Cs > 0 such that, for
0 < |Re(z)| ≤ 1,

||〈r〉−2−s(−∆G − z)−2〈r〉−2−s|| ≤ Cs|Re(z)|s−1.

3. Fix [E1,E2] b (0,∞). For all integer k ≥ 1, there exists Ck
such that, for all ε ∈ (0,1] and all ζ s.t. Re(ζ) ∈ [E1,E2],

||〈εr〉−k (−ε−2∆G − ζ)−k 〈εr〉−k || ≤ Ck .
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Comments

1. The weight 〈r〉−1 is sharp and improves on previous results
by B and Bony-Häfner (on Rn). Maybe contained implicitly
in Guillarmou-Hassell for scattering manifolds.

2. In higher dimensions, one has better estimates. Morevoer
when n = 3 and (S,H0) = (S2, can), one can take s = 1/2.

3. When (M,G) = (Rn,G0), the estimate

||〈εr〉−k (−ε−2∆G − ζ)−k 〈εr〉−k || ≤ Ck

follow from the case ε = 1 by rescaling. Such estimates
imply that, for any φ ∈ C∞0 (R \ 0),

||〈εr〉−kφ(ε−2∆G)eit∆G〈εr〉−k || ≤ Ck 〈ε2t〉1−k .
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Connection with Strichartz estimates

We want to know if global Strichartz estimates for
u(t) = eit∆Gu0 hold, ie∫

R
||eit∆Gu0||2L2∗dt . ||u0||2L2

ie typically ∫
R
||φ(ε−2∆G)u(t)||2L2∗dt . ||u0||2L2 .
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Connection with Strichartz estimates
We split

φ(ε−2∆G)u(t) = χ(εr)φ(ε−2∆G)u(t) + (1− χ)(εr)φ(ε−2∆G)u(t)

1. The first term is treated by L2 estimates (Sobolev + LAP)

||χ(εr)φ(ε−2∆G)u(t)||L2∗ . ||∇Gχ(εr)φ(ε−2∆G)u(t)||L2

. ε||〈εr〉−1φ(ε−2∆G)u(t)||L2

. ||〈r〉−1φ(ε−2∆G)u(t)||L2

2. (1− χ)(εr)φ(ε−2∆G) is a (micro)localization where r & ε−1

and |ξ| ∼ ε⇒ outside of the ’uncertainty region’⇒ one can
use microlocal techniques (rescaled pseudodifferential and
Fourier integral operators). Here, the ’type 3 estimates’ are
very useful.
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Global Strichartz estimates
Let

u(t) = eit∆Gu0.

Theorem 2 (B + Mizutani - in progress) Let (M,G) be an
asymptotically conical manifold of dimension n ≥ 3. Assume
we have polynomial resolvent estimates at high frequency

||〈r〉−s(−∆G − λ− i0)〈r〉−s|| ≤ Cλσ, λ� 1,

for some s > 0 and σ ∈ R. Then
1. There exists χ ∈ C∞0 (M) equal to 1 on a large enough

compact set such that

||(1− χ)u||L2(R;L2∗ (M)) . ||u0||L2(M).

2. If the manifold is non trapping (ie σ = −1/2), then we have
global space time Strichartz estimates

||u||L2(R;L2∗ (M)) . ||u0||L2(M).
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Proof of Theorem 1 (item 1)

Lemma One can choose κ :M\K → (R,∞)× S (or
equivalently the radial coordinates r near infinity) such that

dvolG = κ∗
(
rn−1drdvolH0

)
.

Consequence: Outside a compact set, a good model for
(M,dvolG) is (M0, rn−1drdvolH0) withM0 = (0,∞)× S, and

1. the rescaling group eitA

eitAv(r , ω) = et n
2 v(et r , ω), t ∈ R

is unitary on L2(M0, rn−1drdvolH0).
2. the operator κ∗∆Gκ

∗ coincides near infinity with

Pu = divG0(T Gdu), (here G0 = dr2 + r2G0),
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Proof of Theorem 1 (item 1)
More precisely

Pu = divG0(T Gdu),

with TG section of Hom
(
T ∗M0,TM0

)
looking like

TG =

(
1 + K11(r) r−1K12(r)
r−1K21(r) r−2(T H0 + K22(r))

)
≈
(

1 0
0 r−2T H0

)
,

with
(r∂r )kKij small for all k ≥ 0. (S)

Then

(P − λ− iε)−1 = λ−1ei lnλ1/2A(Pλ − 1− iµ)e−i lnλ1/2A

where Pλ is the rescaled operator obtained by rescaling
r 7→ r/λ1/2 in the Kij , scaling under which (S) is invariant.
Remark: all theses λ dependent operators are selfadjoint with
respect to rn−1drdvolH0 .
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Proof of Theorem 1 (item 1)

Using the standard Mourre theory, we can prove the LAP for
(Pλ − 1− iµ)−1

Proposition There exists ν > 0 small enough such that

||(νA + i)−1(Pλ − 1− iµ)−1(νA + i)−1||H−1→H1
0
≤ C

for all λ > 0 and all µ > 0.
Recall that iA = r∂r + n

2 .
Observe next that

r−1 = r−1(νA + i)(νA + i)−1 =
(
ar−1 + b∂r

)
(νA + i)−1,

where, by the homeogenous Hardy inequality

||r−1v ||L2(M0) ≤ C||∂r v ||L2(M0),

ar−1 + b∂r is bounded from H1
0 to L2...
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Proof of Theorem 1 (item 1)

... therefore, we get the bound

||r−1(Pλ − 1− iµ)−1r−1||L2→L2 ≤ C

for all λ > 0 and all µ > 0.
After rescaling, this yields

||λ1/2r−1λ−1(P − λ− iε)−1r−1λ1/2||L2→L2 ≤ C

for all λ > 0 and all µ > 0, which completes the proof for the
model.
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