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Abstract

We prove local in time Strichartz estimates without loss for the restriction of the solution of
the Schrodinger equation, outside a large compact set, on a class of asymptotically hyperbolic
manifolds.

1 The results

Let (M, G) be a Riemannian manifold of dimension n > 2. Denote by A the associated Laplace-
Beltrami operator and by dG the Riemannian volume density. The Strichartz estimates for the
Schrédinger equation

10w+ Agu = 0, Ujp—0 = Uo, (1.1)

are basically estimates of

1 1/p
ull i (0.1 o () = ( / ||u<t,.>|iqw,dg)dt) ,

in terms of certain L? quantities of ug, when the pair of exponents (p,q) satisfies the so called
admissibility conditions

SHo=c p=2, (p,q)#(2,00). (1.2)

We recall that Strichartz inequalities play an important role in the proof of local existence results for
non linear Schrédinger equations (see for instance [16, 13, 11]). We won’t consider such applications
in this paper and will only focus on Strichartz estimates.

Let us review some classical results. If M = R” with the flat metric Ggyc, it is well known
[28, 16, 21] that

HuHLp([o,lLLq(Rn)) < ||u0|\L2(Rn). (1.3)

In this model case, the time interval [0,1] can be replaced by R and the Strichartz estimates
are then said to be global in time!. Furthermore, the conditions (1.2) are seen to be natural by

n this paper, however, we will only consider local in time Strichartz estimates, ie with ¢ € [0,1]. Althought one
can expect that global in time estimates hold, it is not clear how to obtain them by the present method; one may
however hope to obtain such global in time results at least for initial data spectrally cutoff on the low frequencies,
by combining the present analysis and the method of [9].



considering the action of the scaling u(t,z) — wu(t/A\%,2/\) on both Schrédinger equation and
Strichartz estimates.
In more general situations, estimates of the form (1.3) have sometimes to be replaced by

]| L (0],L0(M,dc)) S 1wol|me(Mm,da) s 520, (1.4)

where
|[uollm=(rac) = II(1 — Ag)™uo||L2(mac)-

is the natural L? Sobolev norm. If s > 0, (1.4) are called Strichartz estimates with loss (of s deriva-
tives). Notice that, under fairly general assumptions on (M, G), we have the Sobolev embeddings,
namely H*(M,dG) C L9(M,dG) for s > 3 — 7. They show that (1.4) holds automatically if s
is large enough and the point of Strichartz estimates with loss (and a fortiori without loss) is to
consider smaller s than those given by Sobolev embeddings.

Such inequalities have been proved by Bourgain [10] for the flat torus T" , n = 1,2, with
any s > 0, ie with ’almost no loss’ (for certain (p,¢)) and by Burq-Gérard-Tzvetkov [11] for any
compact manifold with s = 1/p. The techniques of [11] are actually very robust and can be applied
to prove the same results on many non compact manifolds. The estimates of [11] are known to
be sharp for M = S? with p = 2 and by considering certain subsequences of eigenfunctions of the
Laplacian. This counterexample can then be used to construct quasi-modes and show that (1.4)
can not hold in general with s = 0, even for non compact manifolds.

A natural question is therefore to find (sufficient) conditions leading to estimates with no loss.

A classical one is the non trapping condition. We recall that (M, G) is non trapping if all
geodesics escape to infinity (which forces M to be non compact). It was for instance shown in
[29, 26, 8] that, for non trapping perturbations of the flat metric on R™, (1.4) holds with s = 0.
By perturbation, we mean that G — Ggyq is small near infinity and we refer to these papers
for more details. In [17], the more general case of non trapping asymptotically conic manifolds
was considered. To emphasize the difference with asymptotically hyperbolic manifolds studied in
this paper, we simply recall that (M, Q) is asymptotically conic if G is close to dr? + r2g, in
a neighborhood of infinity diffeomorphic to (R, +00) x S, for some fixed metric g on a compact
manifold S. The asymptotically Euclidean case corresponds to the case where S = S"~1.

The non trapping condition has however several drawbacks. First it is a non generic property
and second there is no simple criterion to check whether a manifold is trapping or not. Furthermore,
it is not clearly a necessary condition to get Strichartz estimates without loss.

In [8], we partially got rid off this condition by considering Strichartz estimates localized near
spatial infinity. For long range perturbations of the Euclidean metric? G on M = R", trapping or
not, we proved the existence of R > 0 large enough such that, if x € C§°(R™) satisfies x = 1 for
|z| < R, then

I[(1— X)UHLT’([O,l];Lq(R",dG)) S ||UO||L2(R",dG)- (1.5)

This shows that the possible loss in Strichartz estimates can only come from a bounded region
where the metric is essentially arbitrary (recall that being asymptotically Euclidean is only a
condition at infinity). One can loosely interpret this result as follows: as long as the metric is close
to a model one, for which one has Strichartz estimates without loss, the solution to the Schrédinger
equation satisfies Strichartz estimates without loss too.

The first goal of the present paper is to show that the same result holds in (bounded) negative
curvature, more precisely for asymptotically hyperbolic (AH) manifolds. Let us however point out

2je, for some T > 0, 8%(G(z) — Grua) = O({z)~7~Iol)



that, even if our result (Theorem 1.2 below) is formally the same as in the asymptotically Euclidean
case [8, Theorem 1], its proof involves new arguments using the negative curvature. Slightly more
precisely, one of the messages of this paper is that, by taking advantage of certain curvature effects
described at the end of this Section, we prove Strichartz estimates using long time (microlocal)
parametrices of the Schrodinger group which are localized in very narrow regions of the phase
space, much smaller than those considered in the asymptotically Euclidean situation [8].

As far as the Schrodinger equation is concerned, Strichartz estimates on negatively curved
spaces have been studied by Banica [2], Pierfelice [24, 25] and Anker-Pierfelice [1] (see [30] for
the wave equation). In [24], Pierfelice considers perturbations of the Schrédinger equation on the
hyperbolic space H" by singular time dependent radial potentials, with radial initial data (and also
radial source terms) and derives some weighted Strichartz estimates without loss. The non radial
case for the free Schrodinger equation on H™ is studied in [2] where weighted Strichartz estimates
are obtained too. The more general case of certain Lie groups, namely Damek-Ricci spaces, was
considered in [25] for global in time estimates (see also [3] for the 2-dimensional case) and further
generalized in [4]. In these last papers, only radial data are considered. This radial assumption
was removed in [1]. We point out that the papers [3, 1] show that, in such geometries, the set
of admissible pairs for the Strichartz estimates is contained in a triangle, and thus is much wider
than in the (asymptotically) Euclidean case. One expects that such a result remains valid in our
context, but this does not clearly follow from the tools presented here and might require refined
propagation estimates.

In this article, we give a proof of Strichartz estimates at infinity which is purely (micro)local
and therefore, to many extents, stable under perturbation. In particular, we do not use any Lie
group structure nor any spherical symmetry. We won’t assume either any non trapping condition.
We refer to Definition 1.1 below for precise statements and simply quote here that our class of
manifolds contains H", some of its quotients and perturbations thereof. In particular, we do not
assume that the curvature is constant, even near infinity.

Powerful microlocal techniques for AH manifolds have already been developed by Melrose and
its school (see [22] and the references in [23]). These geometric methods, based on compactifica-
tion and blowup considerations, are perfectly designed for conformally compact manifolds (with
boundary) but do not clearly apply to the more general manifolds we shall study here.

Let us finally mention that Theorem 1.2 reduces the proof of potential improvements of Burg-
Gérard-Tzvetkov inequalities to local in space estimates of the form

Ixullze (0,1, L9 (Mm,d6)) S ol s (m,a6),

with 0 < s < 1/p. It would be interesting to know if such inequalities holds for some trapping AH
manifolds.

Before stating and discussing precisely our result, let us fix the framework.
Definition 1.1 (AH manifold). (M",G) is asymptotically hyperbolic if there exist a compact set
K € M, a real number R > 0, a compact manifold without boundary S and a function
r e C°(M,R), r(m) — +oo, m — 00, (1.6)
which is a coordinate near M\ K such that: we have an isometry

U:(M\K,G) — ((R;c,—i—oo)r x S, dr® + e2rg(r)) , (1.7)



where g(r) is a family of metrics on S depending smoothly on r such that, for some T > 0 and
some fized metric g on S, we have

10F (g(r) — 9) llcoe(s,reseres) ST, r > Ry, (1.8)
or all k > 0 and all semi-norms || ||ce (s 1+501+5) in the space of smooth sections of T*S R T*S.
(8,T*S@T*S)

With no loss of generality, we can assume that the decay rate 7 in (1.8) satisfies
0<7<L (1.9)

Therefore, by analogy with the standard terminology in Euclidean scattering, dr? + e¢*"g(r) can
be considered as a long range perturbation of the metric dr? + e?"¢. Notice that the conformally
compact case quoted above corresponds to the special situation where g(r) is of the form g(e™"),
for some family of metrics (§(x))o<z<1 depending smoothly on = € [0,z¢) (2o small enough) up
to x = 0. In that case, ¢g(r) is an exponentially small perturbation of g = §(0). The assumption
(1.8) is therefore more general.

We next denote by Aqg the Laplace-Beltrami operator associated to this metric. It is classical
that this operator is essentially self-adjoint on C§°(M) (using for instance the method of [18]),
and therefore generates a unitary group ¢*2¢ on L?(M,dG).

Our main result is the following.

Theorem 1.2. There exists x € C5°(M), with x = 1 on a sufficiently large compact set, such
that, for all pair (p,q) satisfying (1.2),

(1 = X)€" ug|| (o139 Moacy) S ||vollL2(mac)s ug € Cg°(M). (1.10)

This theorem is the AH analogue of Theorem 1 of [8] in the asymptotically Euclidean case.

To be more complete, let us point out that the analysis contained in this paper and a classical
argument due to [29] (see also [8, Section 5]), using the local smoothing effect [14], would give the
following global in space estimates.

Theorem 1.3. If in addition (M,G) is non trapping, then we have global in space Strichartz
estimates with no loss: for all pair (p,q) satisfying (1.2),

‘|€itAGu0|‘LP([O,l];Lq(MdG)) 5 HUOHLQ(M,dG)’ up € CSO(M)

We state this result as a theorem although we won’t explicitly prove it. The techniques are
fairly well known and don’t involve any new argument in the present context. We simply note that
resolvent estimates implying the local smoothing effect can be found in [12].

We now describe, quite informally, the key points of the analysis developed in this paper.
Assuming for simplicity that S = S! (and thus n = 2), we consider the model case where the

principal symbol of the Laplacian is
2

_ 2 —2r
p=p te .
For convenience, we introduce

P .= _e(n—l)r/QAGe—(n—l)r/2 — _er/2AGe_r/2

which is self-adjoint with respect to drd6, instead of e"~V"drdf = e”drdf for the Laplacian itself.



Recall first that, by the Keel-Tao TT* Theorem [21], proving Strichartz estimates (without
loss) is mainly reduced to prove certain dispersion estimates. Using the natural semi-classical time
scaling t — ht, this basically requires to control the propagator e~*"" for semi-classical times of
order h~!. Such a control on the full propagator is out of reach (basically because of trapped
trajectories) but, fortunately, studying some of its cutoffs will be sufficient.

After fairly classical reductions, we will work with semi-classical pseudo-differential operators
localized where r > 1 and p € I, I being a (relatively) compact interval of (0,4+00). We can split
the latter region into two areas defined by

pl/2 pl/2
F+:{T>>17pelap>_2}7 F:{T>>17pelap<2}a

respectively called outgoing and incoming areas. The main interest of such areas is that one has
a very good control on the geodesic flow therein (see Section 3). Basically, geodesics with initial
data in outgoing (resp. incoming) areas escape to infinity as ¢ — +oo (resp. ¢ — —o00), which is
proved in Proposition 3.3. One thus expects to be able to give long time approximations of the
propagator e~ **"¥ microlocalized in such areas, for large times (¢ > 0 in outgoing areas and t < 0
in incoming ones).

In the asymptotically Euclidean case, it turns out that one can give accurate approximations of
e~ PyE for times t such that 0 < 4+t < A1, if x* are pseudo-differential cutoffs localized in I'*.
This is not the AH case: here we are only able to approximate e~*""yF for cutoffs xyF localized
in much smaller areas, namely

p _ p
F:‘(e):{r>>1,pel, ]91/2>1—62}, Fs(e):{r>>1,pel, ])1/2<62—1},

which we call strongly outgoing/incoming areas. Here € will be a fixed small real number. We then
obtain approximations of the form

67ithPX;t _ JSi (a:i:)efitthJSi (b:t)* + O(hN), 0 < 4+t S h*l' (111)

Here e~hD? is the semi-classical group associated to the radial part D? of P. Here and in the

sequel, we shall use the standard notation

D, = i_lah Dy = i_lag.

The operators Jg+ (a™) and Jg= (b*) are Fourier integral operators with amplitudes a*,b®

ported in strongly outgoing (+)/ incoming (-) areas and phases essentially of the form

sup-

—2r 2
n

SE ~rp 40+ ,
4p

ie the sum of the free phase rp + 6n and of a term whose Hessian is non degenerate in 7, which
will be crucial for the final stationary phase argument (the small factor e 2" will be eliminated
by a change of variable). The non degeneracy of the full phase of the parametrix (1.11) in p will
come of course from e~ "D, This approximation of S* comes basically from (4.32),(4.33), (4.34),
(4.35) and we point out that although the right hand side does not depend on =+, it is only defined
in the disconnected regions {p > 0} and {p < 0}.

The approximation (1.11) is the AH Isozaki-Kitada parametrix and an important part of this
paper is devoted to its construction. Let us mention that it is an adaptation to the AH geometry of



an approximation introduced first in [20] to study perturbations of the Euclidean Laplacian by long
range potentials. In the present paper, it will be used very similarly to the usual (semiclassical)
Euclidean one as in [8]. Its main interest is to give microlocal approximations of the propagator for
times of size h~!. Recall however the big difference with the asymptotically Euclidean case where
one is able to consider cutoffs supported in I'* rather than I'F(¢) in the AH case. We therefore
have to consider the left parts, namely
rs

inter

=TI\ T (e),

which we call intermediate areas. These areas will only contribute to the dispersion estimates for
small times using the following argument. By choosing J small enough and by splitting the interval
(—1/2,1 — €2) into small intervals of size &, we can write

p
Fiter = Ul,<V5_1 {T > 17 pe Ia :I:W S (alagl + 6)} = Uls(s_lriter(l?e?d)'

By looking carefully at the Hamiltonian flow fIJ; of p, it turns out that, for any fixed (small) time
to, we can choose § (which depends also on €) such that

(I);) (Fijr:ltcr(lv €, 5)) N Fi

inter

(I,6,6) =0, +t > 1. (1.12)

By semi-classical propagation, this implies that, for pseudo-differential operators Xiinter localized
in T, (1€, ), _
Xinter€ " Xinter = O(R), £t > to.

Such operators typically appear in the TT™* argument and the estimate above reduces the proof
of dispersion estimates to times |¢t| < tg. The latter range of times can then be treated by fairly
standard geometric optics approximation.

We interpret (1.12) as a negative curvature effect on the geodesic flow which we can roughly
describe as follows, say in the outgoing case. For initial conditions (r,0,p,n) in T}, (I,€,6), the
bounds 1/2 < p < (1 — €2)p*/? yields the following lower bound,

p-t _ 26—27't (nt)Q 2 62,

over a sufficiently long time, if we set (r*, 0", p,n') := ®. This ensures that pt/p*/? increases fast
enough to leave the interval (o;,0; 4+ d) before t = ¢y and give (1.12). In the asymptotically flat
case, ie with =2 instead of e~2", we have p = 2(r')~3(n*)? and its control from below is not as
good, basically because of the ‘extra’ third power of (r!)~!.

This paper is organized as follows.

In Section 2, we introduce all the necessary definitions, and some additional results, needed to
prove Theorem 1.2. The latter proof is given in Subsection 2.5 using microlocal approximations
which will be proved in Sections 5, 6 and 7.

In Section 3, we study the properties of the geodesic flow in outgoing/incoming areas required
to construct the phases involved in the Isozaki-Kitada parametrix. This parametrix is then con-
structed in Section 5.

In Section 6 we prove two results: the small semi-classical time approximation of the Schrodinger
group by the WKB method and the propagation of the microlocal support (Egorov theorem). These
results are essentially well known. We need however to check that all the symbols and phases belong
to the natural classes (for AH geometry) of Definition 2.2 below. Furthermore, we use our Egorov
theorem to obtain a propagation property in a time scale of size h~! which is not quite standard.



Finally, in Section 7, we prove dispersion estimates using basically stationary phase estimates
in the parametrices obtained in Sections 5 and 6.

Up to the semi-classical functional calculus, which is taken from [6, 7] and whose results are
recalled in subsection 2.3, this paper is essentially self contained. This is not only for the reader’s
convenience, but also due to the fact that the results of Section 6 do require proofs in the AH
setting, although they are in principle well known. The construction of Section 5 is new.

Aknowledgments. The author would like to emphasize the high quality of the referring process
and thanks sincerely the anonymous referees for their suggestions and for the very careful reading
of the first version of this paper.

2 The strategy of the proof of Theorem 1.2

2.1 The setup

Before discussing the proof of Theorem 1.2, we give the form of the Laplacian, volume densities
and related objects on AH manifolds.

The isometry (1.7) defines polar coordinates: r is the radial coordinate and S will be called the
angular manifold. Coordinates on S will be denoted by 61,...,0,_1.

A finite atlas on M \ K is obtained as follows. By (1.7), we have a natural ‘projection’ mg :
(M\ K,G) — S defined as the second component of ¥, ie

¥(m) = (r(m),ms(m)) € (Ri, +00) x S, me M\ K. (2.1)
Choosing a finite cover of the angular manifold by coordinate patches U,, ie
S = U,ezU, (2.2)
with corresponding diffeomorphisms
b, U, — ¢,(U,) CR"Y, (2.3)
we consider the open sets
U, =T ((R,+o0) x U,) C M\ K,
and then define diffeomorphisms
U, : U, — (Rx,+o0) x 9,(U,) C R", (2.4)

by
U (m) = (r(m), . (rs(m))).
The collection (U,, ¥,),c7 is then an atlas on M\ K. If 01,...,0,_;1 are the coordinates in U,, ie
Y, = (01,...,0,-1), the coordinates in U, are then (r,01,...,0,,_1).
We now give formulas for the Riemannian measure dG and the Laplacian Ag on M \ K. In
local coordinates § = (61, ...,60,—1) on S, the Riemannian density associated to g(r) reads

dg(r) == det (g(r,0))"/? |dOy A - -+ A dbr_1],



where det(g(r,0)) = det(gjx(r,0)) if g(r) = g;x(r,0)d0;dbs (using the summation convention).
Then, in local coordinates on M \ K, the Riemannian density is

dG = eV det (g(r,0))/? |dr A doy A -+ A dby,_y]. (2.5)

Let us now consider the Laplacian. Slightly abusing the notation, we set

_ 19,det(g(r,s))

C('l", S) = 2m, r > R}C, CES S, (26)

since, for fixed r, the quotient of J,det(g;x(r,6)) by 2det(g;x(r,0)) is intrinsically defined as a
function on S, ie independently of the choice of the coordinate chart. We then have

Ag =0+ 6_27'Ag(r) + c(r, 8)0r + (n — 1)0,..

It will turn out be convenient to work with the following density
dG = e1="rdq, (2.7)

rather than dG itself. In particular, we will use the following elementary property: for all relatively
compact subset V/ € 9,(U,), all R > Rx and all 1 < ¢ < co, we have the equivalence of norms

ull purn iy = 100 € Loy, supp(u) © W7 (R, +o0) x V), (2.8)

L%(R™) being the usual Lebesgue space. This is a simple consequence of (1.8) and (2.5) (we consider
R > Ry since (1.8) gives an upper bound for det (g(r,0)) as r — Ry , not a lower bound).
We then have a unitary isomorphism

1r

LAH(M,dG) 3 ur e~ T u € LA(M, dG), (2.9)

and Ag is unitarily equivalent to the operator

n—1

Ag =" Age 7, Yo =5 (2.10)
on L2(M,dG). This operator reads
AG = 33 + eiQTAg(T) + ¢(r, 8)0r — yne(r, s) — *yfl, (2.11)
and we will work with the following one
P=-Rg- 2 (212
If q,(r,.,.) is the principal symbol of —A ) in the chart U,, namely
a(r0.6)= Y g"roag, (2.13)
1<k,I<n—1
the principal symbol of P in the chart U, is then
po = pPHeTq(r0,mn), (2.14)

p?+q.(r,0,e7"n).



The full symbol of P is of the form p, + p, 1 + p,,0 with

Py o= Y aus(r0)pfe ), j=0,L (2.15)
k+|8l=3

The terms of degree 1 in 7 come from the first order terms of the symbol of —Agy. In the
expression of Ag they carry a factor e=2" and therefore, if j = 1, k = 0 and |3]| = 1 above, we
could write a, xg(r,8) = e~ "b, xa(r,8) for some function b, 3 bounded as r — oo. This remark
and (1.8) show more precisely that, for all V' € #,(U,), the coefficients in (2.15) decay as

10708 a, 1p(r, 0)] < Cyjolr) 7177, €V, r>Re+1. (2.16)

The decay rate —7 — 1 — j will be important to solve transport equations for the Isozaki-Kitada
parametrix. This is the main reason of the long range assumption (1.8).

2.2 Pseudo-differential operators and the spaces By, (€2)

We will consider h-pseudo-differential operators (h-¥DOs) in a neighborhood of infinity and the
‘calculus’ will be rather elementary. For instance, we will only consider compositions of operators
with symbols supported in the same coordinate patch and no invariance result under diffeomor-
phism will be necessary.

The first step is to construct a suitable partition of unity near infinity. Using the cover (2.2)
and the related diffeomorphisms (2.3), we consider a partition of unity on S of the form

ZHL o1, =1, with K, € CCR™Y), supp(k,) € ¥.(U,), (2.17)

LeT

and a function k € C*°(R) such that
supp(x) C [Rx + 1, +00), k=1 on [Rg+2,+00). (2.18)
Then, the functions (k ® k,) o ¥, € C*°(M) satisfy

{1 if r(m) > R +2,

Z(Ii ®k,) oW, (m) = 0 if r(m) < Rg +1,

LET

(2.19)

which means that they define a partition of unity near infinity. We could obtain a partition of
unity on M by adding a finite number of compactly supported functions (in coordinate patches)
be we won’t need it since the whole analysis in this paper will be localized near infinity.
We also consider & € C*°(R) and %, € C§°(R"1), for all ¢ € Z, with the following properties
E=1 on (Rx+1/2,+00), K, =1 near supp(k,), (2.20)

supp(k) C (Rx +1/4,+00),  supp(k,) € ¢,(U.). (2.21)
We next choose, for each ¢ € Z, two relatively compact open subsets V, and V/ such that
supp(r,) € V, € V! € supp(k,) and R, =1 near V' (2.22)

L

We are now ready to define our WDOs. In the following definition, we will say that a € C°°(R?")
is a symbol if either a € C°(R*"), ie bounded with all derivatives bounded, or

a(r,0,p,m) =>_ ars(r,0)p*n?,

with arg € Cg°(R™), the sum being finite. We shall give examples below. Notice that throughout
this paper, p and 1 will denote respectively the dual variables to r and 6.



Definition 2.1. For . € Z, all h € (0,1] and all symbol a such that
supp(a) C [Rx + 1, +0) x V/ x R™, (2.23)

we define

—

Op,(a) : C5° (M) — C=(M),
by

(Op.(@)u) 0w, (1,0) = a(r,0,hD,, kDo) (R(r)7i,(0)(wo W, )(r,6) (2.24)

Note the cutoff ¥ ® ¥, in the right hand side of (2.24). It makes the Schwartz kernel of /@\)L(a)
supported in a closed subset of M? strictly contained in the patch U? so that Op,(a) is fully defined

by the prescription of \I/L*a\pL(a)‘Ilf. For future reference, we recall that the kernel of the latter
operator is

(2mh)™" //e%(r_r,)p+%(9_9,)'"a(r,O,p, n)dpdnx(r')x.(0"). (2.25)

The notation 6pL refers to the following relation with the measure dG: if a € Co(R?™) satisfies
(2.23), then

HQ)L(CL)HL2(M7JE;')—>L2(M7J@) S h € (0,1]. (2.26)

This is a direct consequence of the Calderén-Vaillancourt theorem using (2.8) with ¢ = 2, (2.21)
and (2.22). In the ‘gauge’ defined by dG, the latter gives

lle=""Op,(a)e™" || L2 (m,da)— L2 (Mdc) S T, h € (0,1]. (2.27)

Working with the measure dG is to this extent more natural and avoids to deal with exponential
weights.

Let us now describe the typical symbols we shall use in this paper. Using (2.17), (2.18), (2.19)
and (2.22), we can write

h2pP = Z @L ((/@ ® Ky) X (p, + hp,1 + h2pL70)) , r > Ric + 2, (2.28)
LeT

using (2.13), (2.14) and (2.15). One observes that the symbols involved in (2.28) are of the form

ab(r797p7 77) = db(r79,p7e_T77), (229)

with @, € S?2(R™ x R™). It will turn out that the functional calculus of h2P (or h?Ag) will involve
more generally symbols of this form with a, € S7*°(R™ x R™). For instance, if f € C§°(R), the
semi-classical principal symbol of f(h?P) or f(—h?Ag) will be

(0> +a.(r,0,e7 ™)), (2.30)

which, once multiplied by the cutoff k¥ ® x,, is of the form (2.29) with a, € S~>°(R™ x R™). This
type of symbols is the model of functions described in Definition 2.2 below. To state this definition,

we introduce the notation ‘ 4
Diat = erlPlafalog o,

for all j,k € Ny and o, 8 € Ny 1.

10



Definition 2.2. Given an open set Q C T*R% = (0, +00), x Ry ™" x R, x Ry™!, we define

Buyp() = {a € C*(Q) | D2 a € L®(Q), for all j,k € Ny, o, B € Ny},

and
Shyp(Q) = {a € C(R*) | supp(a) C Q and a € By, (Q)}.

A family (ay,)ven is bounded in Buyp(2) if, for all §, k, o, B, (Djak

hypﬁay)ye/\ is bounded in L>().

Note that considering €2 C T*R"} is not necessary but, since we shall work only in the region
where r > 1, this will be sufficient.

Example 2.3. Consider the following diffeomorphism from R?™ onto itself
). (2.31)

If a, € S°(R™ x R™) is supported in Fiy,(Q), with Q@ C T*R7, then (2.29) belongs to Shyp(S2).

T

thp : (Ta 07 j2 77) = (Ta 0; p,e

Proof. We only need to check that (2.29) belongs to Byyp(£2). We have
Oy (au(r,0,p,e7"n)) = (8ra)(r,0,p,e""n) — e " (8e@,) (1,0, p, &) jemern;
which is bounded since £ - J¢a, is bounded. Similarly
€0y (au(r,0,p,e7" ) = (0ca,)(r,0,p,&)jg=e-ry

is bounded too. Derivatives with respect to p, € are harmless and higher order derivatives in r, 7
are treated similarly. O

In the following lemma, we give a characterization of functions in By, (€2).
Lemma 2.4. Let Q C T*R"} be an open subset and assume that
Fiyp(©2) CRY x B, with B bounded. (2.32)
Then, a function a € C*°(Q) is of the form
a(r,0,p,m) =a(r,0,p,e""n) with & € Cp° (Fuyp()), (2.33)
if and only if, for all j, k,a, 3,
Di*a e L>=(Q). (2.34)

Here C°(2) (resp. C°(Fuyp(2))) is the space of smooth functions bounded with all derivatives
bounded on Q (resp. Fiyp(2)).

Proof. That (2.33) implies (2.34) is proved in the same way as Example 2.3: the boundedness
of ¢ - O¢a follows from the boundedness of £ = e "5 in Fiyp(R2) by (2.32) and the fact that
a € Cg° (Fryp(€2)). Conversely, one checks by induction that

a(r,0,p, &) := a(r,0,p,€"¢),

belongs to Cp° (Fhyp(£2)), using again the boundedness of & on Fiyp(£2). O
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Example 2.5. Forall f € C*(R™), all R > Ry and allV € U, (U,), (2.30) satisfies the conditions
of this lemma with Q = (R, +00) x V x R™.

Proof. By (1.8), there exists C' > 1 such that
CHel? S ar,0,6) SCIEPP,  r>R, 6eV, eR™Y (2.35)
and, using the notation (2.13),
10705 g™ (r,0)| < Cjr., r>R, 0€V. (2.36)

Therefore, (2.35) and the compact support of f ensure that e~"n and p are bounded, ie that (2.32)
holds on the support of (2.30). Then, (2.36) implies that f(p*+q,(r,0,£)) belongs to C5°(Fhyp(£2))
(notice that here Fi,yp(Q) = (R, +00) x V x R™). O

We conclude this subsection with the following useful remarks. If a,b € Sy () for some
(such a, b satisfy (2.23)), we have the composition rule

—_ —

Op,(a)Op, (b) = Op,((a#b)(h)), (2.37)

if (a#tb)(h) denotes the full symbol of a(r, 8, hD,., hDg)b(r, 0, hD,, hDy). In particular all the terms
of the expansion of (a#0b)(h) belong to Shyp(£2) and are supported in supp(a) Nsupp(b). Similarly,
for all N > 0, we have

—~

Op,(a)* = Op,(af + -+ hVaky) + BN Ry (a, ) (2.38)
with af,...,a% € Shyp(Q) supported in supp(a) and ||Rn/(a, h)HL?(M,Jb)—wQ(M,JE) < 1forh e

0,1].

2.3 The functional calculus

In Proposition 2.7 below, we give two pseudo-differential approximations of f(h%P) near infinity
of M, when f € C§°(R). The first approximation, namely (2.43), is given in terms of the ‘quanti-

zation’ Op, defined in the previous subsection. This is the one we shall mostly use in this paper.
However, at some crucial points, we shall need another approximation, (2.44), which uses properly
supported WDOs.

To define such properly supported operators, we need a function

¢ € C§(R™), ¢ =1 near 0, supp(¢) small enough,

which will basically be used as a cutoff near the diagonal. The smallness of the support will be
fixed in the following definition.

Definition 2.6. For . € Z, all h € (0,1] and all symbol a satisfying (2.23), we define
Opupr(a) : C5° (M) — C(M),

as the unique operator with kernel supported in U? and such that the kernel of \I/f@\)L(a)\I/L* is

(2wh)™" // e%(r_rl)’ﬂ’%(‘g_e/)'”a(r, 0, p,n)dpdn¢(r—1r",0 — ¢). (2.39)
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The interest of choosing the support of ¢ small enough is that, using (2.23), we can assume
that, on the support of (2.39), r’ belongs to a neighborhood of [Rx + 1,+00) and 8’ belongs to
a neighborhood of V/. For instance, we may assume that ' € £~ 1(1) and ¢ € &, (1) so that
we can put a factor k(r")K,(8") for free to the right hand side of (2.39). The latter implies, using
(2.8), (2.25), (2.39), the standard off diagonal fast decay of kernels of ¥DOs and the Calderén-
Vaillancourt theorem that, for all a € Cp°(R?") satisfying (2.23) and all N € Ny, we have

||@)L(a) - ®L*pr(a)||L2(M,u/lz¥)~>L2(M,c/lZ¥) f, hNa h € (Oa 1] (240)

This shows that, up to remainders of size h*, @L(a) and Op, pr(a) coincide as bounded operators
on L?(M,dG). Under the same assumptions on a, we also have

1Opepr (@)l L2 (A a6)— L2 (Mda) S 1, h € (0,1], (2.41)

which is a first difference with @L(a) for which we have only (2.27) in general. The estimate (2.41)
is equivalent to the uniform boundedness® of €*"Op, ,-(a)e™ 7" on LQ(M,JEJ). The latter is
obtained similarly to (2.26), using the Calderén-Vaillancourt theorem, for we only have to consider
the kernel obtained by multiplying (2.39) by €™ ("="") which is bounded (as well as its derivatives)
on the support of {(r —r',0 — 8").

In other words, (2.41) can be interpreted as a boundedness result between (exponentially)
weighted L? spaces. Similar properties holds for L? spaces (under suitable assumptions on the
symbol a) and they are the main reason for considering properly supported operators. In particular,
they lead to following proposition where we collect the estimates we shall need in this paper. We
refer to [6] for the proof.

Proposition 2.7. Let f € C§°(R) and I € (0,400) be an open interval containing supp(f). Let
Xk € C§°(M) and R > Ri + 1 be such that

xc(m) =1 if (m) <R+ 1.
Then, for all N > 0 and all v € T, we can find symbols
a0(f)s o @ () € Suyp (B 400) x Vi x R N p7 (1)), (2.42)
(where p, is the principal symbol of P in the chart U,) such that, if we set

aEN)(fu h) - aL,O(f) + h‘ab,l(f) + -+ hNahN(f)a

we have
(1= x)f(B*P) = > Op,(a™(f,h) + BN R (£, h), (2.43)
LET
= Z @)L;PT (aEN) (fv h)) + hN+1RN,pr(fa h), (244)
€T

where, for each q € [2, 0],
n(3-3)

6™ R e (- W)l o aniey o gy S D373, he (0,1], (2.45)

3with respect to h € (0,1]
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and

||RN(f7 h)‘|L2(M,(Ea)—>L2(M,@) 5 L, h e (0, 1]' (2'46)
In addition, for all © € T and all q € [2, 00|, we have
—YnT —n(l_1
167" Opupe(al™ (Ml o an ooy S 07 he @1, 247
and, for all g € [1,00] and all v € R,
He_’YTQ)L,Pr(aEN)(f7 h))e’yr‘|Lq(M,@)—>L‘1(M,@) s L h & (0,1]. (2.48)

In this proposition, as well as in further definitions or propositions, the interval I can be
considered as a semiclassical energy window, in the sense that the principal symbol of h2P will
live in I. In the sequel, I will be more explicitly of the form (1/4,4) or (1/4 —€,4 + €) (see for
instance (2.54)).

To make (2.42) more explicit, let us quote for instance that

aco(f)(r,0,p,m) = K(r)K.(O)f (p* + q.(r,0, ")) > (1= xx0) (7 (1, 0)).

More generally, (2.42) and Lemma 2.4 show that a,o(f),...,a, n(f) are of the form (2.29) with
a,(r, 0, p, &) compactly supported with respect to (p, £).

The estimate (2.48) basically means that Opb’pr(aEN)(f, h)) preserves all L? spaces with any
exponential weights. In particular, since LI(M,dG) = e’“’”r/qu(M,gC\?), replacing dG by dG
in (2.48) would give a completely equivalent statement. This estimate is the main reason for
introducing properly supported operators. Of course, (2.48) holds for other symbols than those
involved in the functional calculus of P. We have more generally (see [6]) for all v € R,

1™ Opupr(@)e™ | Lo maey—Lomaey S L he(0.], (2:49)
for any ¢ € [1, 00| and any
a, € Shyp (R + 1, +00) x V! x R" np, (1)),

provided I’ is bounded.

By the unitary equivalence of P and —Ag — 2, we would get a very similar pseudo-differential
expansion for f(—h2A¢). Note that, here, we have only described (1 — xx)f(h?P) since this will
be sufficient for our present purpose, but of course there is a completely analogous result for the
compactly supported part xxf(h?P) (see [6]). Such an approximation of f(—h?Ag) was used in
[7] to prove the next two propositions.

Proposition 2.8. Consider a dyadic partition of unit
L= fo(N) + Y f27*N),
k>0
for X in a neighborhood of [0, +00), with
fo € C5°(R), feCse([1/4,4]). (2.50)
Then, for all x € C§°(M) and all g € [2,00), we have
1/2

11 = ullpamae) S | D, 0= X)F(=r*Ac)ullFamac) + [[ull L2 (Mm,a6)-

h2=2—Fk,
k>0

14



This proposition leads to the following classical reduction.

Proposition 2.9. Let x € C§°(M) and (p, q) be an admissible pair. Then (1.10) holds true if and
only if there exists C' such that

[[(1— X)eitAGf(_hZAG)ud‘LP([O,l];Lq(M@G)) < O||u0||L2(M,dG)7 (2.51)
for all h € (0,1] and ug € CZ*(M).

This result is essentially well known and proved in [7] for a class of non compact manifolds.
We simply recall here that the L9 — L¢ boundedness of the spectral cutoffs f(—h?Ag) is not
necessary to prove this result, although the latter slightly simplifies the proof when it is available.

2.4 Outgoing and incoming areas

Propositions 2.7 and 2.9 lead to a microlocalization of Theorem 1.2: as we shall see more precisely
in subsection 2.5, they allow to reduce the proof of (1.10) to the same estimate in which (1 — x) is
replaced by h-UDOs. This microlocalization, ie the support of the symbols in (2.42), is however
still too rough to simplify the proof of Theorem 1.2 in a significant way. The purpose of this
subsection is to describe convenient regions which will refine this localization.

Definition 2.10. Fiz 1 €Z. Let R > R+ 1, V € V/ be an open subset (see 2.22), I € (0,+0c0)
be an open interval and o € (—1,1). We define

IR, V,1,0) = {(r,0,p,n) €R®™ | r >R, €V, p, €1, £p> —ap/?},

where p, is the principal symbol of P in the chart U, given by (2.14). The open set T (R, V,1,0)
(resp. T, (R,V,I,0)) is called an outgoing (resp. incoming) area.

We note in passing that, except from the localization in 6, these areas are defined using only the
variable r, its dual p and the principal symbol of P. In particular, up to the choice of the coordinate
r, the conditions r > R, p, € I and £p > fap}/Q define invariant subsets of 7% M. However the
whole analysis in this paper will be localized in charts and we will not use this invariance property.

Let us record some useful properties of outgoing/incoming areas. First, they decrease with
respect to V, I, and R~!:

Ri>Ry, VicVa, LChL, o1<0y = TF (R, Vi,I1,01) CT(Ry, Vo, Iz,00). (2.52)
Second, we have
IN(R,V,I,1/2) UT; (R, V,1,1/2) = (R, +00) x V x R" N p; }(I). (2.53)

Here we have chosen o = 1/2 but any o € (0, 1) would work as well.
We will use the following elementary property.

Proposition 2.11. Any symbol a € Syyp ((R,+00) x V x R* Np; (1)) can be written
a=at+a", with a* € Sy (TF(R,V,1,1/2)).
Proof. See part ii) of Proposition 4.1. O

This splitting into outgoing/incoming areas was sufficient to use the Isozaki-Kitada parametrix
in the asymptotically Euclidean case; in the AH case, we will only be able to construct this
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parametrix in much smaller areas, called strongly outgoing/incoming areas, which we now intro-
duce.

We first describe briefly the meaning of such areas, say in the outgoing case. Basically, being
in an outgoing area means that p is not too close to —p'/?; the aim of strongly outgoing areas is to
guarantee that p is very close to p*/2, which is of course a much stronger restriction. This amounts
essentially to chose o close to —1 in the definition of outgoing areas. We will measure this closeness
in term of a small parameter €. It will actually be convenient to have the other parameters, namely
R,V, I, depending also on ¢, so we introduce

Rle)=1/e,  V,e={0ecR" " |dist(,V)) <€}, I(e)=(1/4—¢,4+¢), (2.54)
where we recall that V, is defined in (2.22).
Definition 2.12. For all € > 0 small enough, we set
L(e) =T (R(e), Vi, I(€), € — 1).
The open set T'f (e) (resp. T'; (€)) is called a strongly outgoing (resp. incoming) area.

The main interest of such areas is to ensure that e "|n| is small if € is small. Indeed, if
q €[0,+00) and —1 < o < 0, we have the equivalence

+p > —a(p* + q)'/? & +p>0 and q <o 3(1—o0?)p2 (2.55)
Therefore, there exists C' such that, for all € small enough and (r,, p, 1) € I';(e),
q.(r,0,e7 ") < C,
which, by (2.35), is equivalent to
el S e (2.56)

Note also that, by (2.52), strongly outgoing/incoming areas decrease with e.

We now quote a result which motivates, at least partially, the introduction of strongly outgo-
ing/incoming areas.

Denote by ®! the Hamiltonian flow of p,. This is of course the geodesic flow written in the
chart ¥,(U,) x R™ of T* M.

Proposition 2.13. Fiz 0 € (—1,1). Then, there exists R, > 0 such that for all R > R. and all
€ > 0 small enough, there exists tr . > 0 such that

! (TE(R,V,, (1/4—€,4+¢€),0)) C Ffs(e), forall £t > tg..
In particular, for all e > 0 small enough, there exists T, > 0 such that,
o (T (R(e), Vi, I(€),0)) C T (e),  +t>T. (2.57)
Proof. Given in Subsection 4.1. O

Note that, since p, is only defined in the chart ¥, (U,) x R, its flow is not complete. We shall
however see in Section 3 that, for any initial data (r,6,p,m) € T (R(e), V., I,0), ®L(r,0,p,n) is
well defined for all +¢ > 0, ie ®!(r, 0, p,n) € ¥,(U,) x R™ for all £t > 0.
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Proposition 2.13 essentially states that the forward (resp. backward flow) sends outgoing (resp.
incoming) areas into strongly outgoing (resp. incoming) areas in finite positive (resp. negative)
time. This will be interesting for the proof of Proposition 2.24.

The last type of regions we need to consider are the intermediate areas. They should have
two properties: firstly they should essentially cover the complement of strongly outgoing/incoming
areas in outgoing/incoming areas and, secondly, be small enough.

To define them we need the following. For all € > 0 and all 6 > 0, we can find L + 1 real
numbers, og,...,0r,

(%)2—1:00<01<...<0L:1/2, (2.58)
such that
((e/2) = 1,1/2) = U5 (011, 0041), (2.59)
and
loii1 —o1_1] < 6. (2.60)

Note that the intervals overlap in (2.59), since (0;_1,0;+1) always contains a;.

Definition 2.14. The intermediate outgoing/incoming area associated to the cover (2.59) are

Fi:inter(ev(s; l) = {(7',97P, 7’) € RQn | r> R(€)7 0 e VLv p. € I(G), ilL/Q € (Ul+170l—1)}a
P

for1<I<L-1.
Notice that, by definition,

F:I:

t,inter

(e,0;1) C TE(R(e), V,, I(€), 1/2). (2.61)

In the notation, we only specify the parameters which are relevant for our analysis, namely
€,0, but, of course, intermediate areas depend on the choice of o1,...,0r. Here § measures the
smallness and Proposition 2.16 below will explain how to choose this parameter.

We first give the following result.

Proposition 2.15. Fiz e > 0 small enough, 6 > 0 and oo, ..., satisfying (2.58), (2.59) and
(2.60). Then, any symbol
@™ € Suyp(T(R(e), Vi, 1(€),1/2))

can be written

+ _ + + +
a— = ag + al,intcr +oe Tt aL—l,inter’

with
a;t € Shyp (Ffs(ﬁ))v a:t € Shyp(]'—‘i:inter(e’ 5; l))

l,inter
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Proof. Given in Subsection 4.1. O

We conclude this subsection with the following proposition which will be crucial for the proof
of Theorem 1.2 and motivates the introduction of intermediate areas.

Proposition 2.16. Fiz t > 0. Then, for all ¢ > 0 small enough, we can find 6 > 0 small
enough such that, for any choice of oy,...,or satisfying (2.58), (2.59) and (2.60), we have, for
all1<I<L-—1,

0 (T (€.6:0)) ATy e, 6:0) = 0, (262)
provided that
+t > ¢.

Proof. Given in Subsection 4.1. d

2.5 The main steps of the proof of Theorem 1.2

We already know from Proposition 2.9 that we only have to find x € C§°(M) such that (2.51)
holds, which is equivalent to

le™™" (1 = x) f(K*P)e™"uo|| o (0,11, 20(M.a6)) < Clluoll L2 g a2y (2.63)

using the unitary map (2.9) and (2.11), (2.12). }
Before choosing x, we introduce the following operators. Choose a cutoff f € C§°((0,+c0))
such that ff = f.

Lemma 2.17. For all x € C§°(M), we can write
(1= (h*P) = (1 = x)Ape(h) + R(h)

with R(h) satisfying, for all q € [2,00],

||57%TR(h)||L2(M,C?Z;)_>L4(M,dc) S L (2.64)

and Ay, (h) such that, for all q € [2,00],
e™ ™" Ape (M) 2 pm.d0) - La(Moac) p(3-3), (2.65)
le™ " Ape(R)e™" || Lo (Mmoac)— Lo (M) S 1 (2.66)
e e s gty srianiey S B 2.7
||6%TApr(h)*e_%T‘|L1(M’¢TG)HL1(M’¢§Z;) S L (2.68)

Proof. It is an immediate consequence of Proposition 2.7. Using (2.44), with N such that N +1 >
n/2, we define Ay, (h) as the sum of the properly supported pseudo-differential operators. We thus
have (2.64), (2.65) and (2.66). The estimates (2.67) and (2.68) are obtained by taking the adjoints
(with ¢ = oo in (2.65)) with respect to dG. O

Basically, the operators e~ """ A, (h) and Ap,(h)*e~"" will be used as ’ghost cutoffs’ to deal
with remainder terms of parametrices which will be O(h") in £(L?(M,dG)), using the Sobolev
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embeddings (2.65) and (2.67). They will be transparent’ for the principal terms of the parametrices
by (2.66) and (2.68), which uses crucially that they are properly supported.

For € to be fixed below, we choose x € C§°(M) such that
x=1 for r(m)<3el.

This function will appear in Proposition 2.18 below only trough its support. More precisely,
Proposition 2.18 states that to prove (2.63) for such a x (with € small enough), it is sufficient to
prove the estimate (2.70) for a class of symbols supported where r(m) > e .

Proposition 2.18 (Microlocalization of Strichartz estimates). To prove (2.63), it is sufficient to
show that, for some € small enough and all

a, € Shyp ((R(€),400) x V, x R* N p; (I(e))), (2.69)
where we recall that R(e) = e 1 and I(e) = (1/4 — €,4 + €), we have
||e_%TApr(h)OpL(ab)e_itPUO|‘LP([O,l];L‘I(M,dG)) < CHUOHLz(M,U’fg)v (2.70)

uniformly with respect to h € (0,1].
Proof. Choose xo € C§°(M) such that
xo=1 for r(m)<e?, xo =0 for r(m)>2e .

We then have (1 — xo) = 1 near supp(l — x) so, by the proper support of the kernel of A, (h), we
also have

(1 - X)Apr(h) = (1 - X)Apr(h)(l - XO)»
at least for ¢ small enough. The latter and (2.64) reduces the proof of (2.63) to the study of

e Ape (h)(1 = x0) f(h*P)e™"T.
By splitting (1 — xo)f(h?P) using (2.43) with N + 1 > n/2, we obtain the result using (2.46) and
(2.65). 0

We now introduce a second small parameter § > 0. By Propositions 2.11 and 2.15, for all 6 > 0,
any a, satisfying (2.69) can be written

L—1
a, =al +a; + Z al":inter + @ inters (2.71)
=1
with
a;t € Shyp (F?,ZS(G))7 a’finter € Shyp(rfintcr(ea 67 l)) (272)

Proposition 2.19 (Reduction to microlocalized dispersion estimates). To prove (2.70), it is suf-
ficient to show that, for some € and & small enough, we have:

77" Ape () Op, (a5 )e ™" O, () Ape(1)"e ™" 2 5y e 0y < Celbt ™2, (273)
and
177" Ape () Op, ()€™ 0P, ien) Apr (1) € a5y v sy < Clt ™2, (2.74)
for
he(0,1]  0<+t<2nl, (2.75)
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Recall that the important point in this lemma is (2.75), ie that it is sufficient to consider ¢t > 0
for outgoing localizations, and ¢ < 0 for incoming ones.

O
Proof. Let us define - _
Ts:t(tv h, 6) = eivnrApr(h)Q)L(a;t)einpv
and - ‘
Tinter (B o €,6) = €777 A (R)Op, (@i nter)e™ .
By (2.26) and (2.65) (with ¢ = 2), we have,
Tt By ) o ey — 12 0acy + I Timser (s € ) 2dey 12y < Ceds R € (0,1], tER,
hence by the Keel-Tao Theorem [21], (2.70) would follow from the estimates
||T:t (t, h, €)Tsﬂ:(8, h, 6)*||L1(dG)HLoo(dG) < C€|t - 8|_n/2, (276)
and
||leﬁnter(t7 h, G)Tlﬁm@r(sv hy €)*|| L1 (aqy—roe(aa) < Ceslt — s|7/2, (2.77)

for h € (0,1] and ¢, s € [0, 1]. Using the time rescaling t — ht, the fact that L' (dG) = e‘QV"TLl(J@)
and that the adjoint of (2.9) is given by e™", (2.76) and (2.77) are respectively equivalent to (2.73)
and (2.74), for h € (0,1] and |¢t| < 2h~!. The reduction (2.75) to £t > 0 is obtained similarly to
[8, Lemma 4.3]. We only recall here that it is based on the simple observation that the operators
T(t)T(s)* considered above are of the form Be~*(*=5)F B* 50 that L> bounds on their Schwartz
kernel for £(t — s) > 0 give automatically bounds for (¢ — s) < 0 by taking the adjoints. O

As we shall see, there are basically two reasons for choosing € small enough. The next result is
the first condition.

Proposition 2.20 (Time h~! Isozaki-Kitada parametrix). For all ¢ > 0 small enough and all
a;t € Shyp (Ffs(e)), we can write

e—ithP@L(aSi)* = EIj;((t, h) + hnRIiK(ta h)a

with
le™ " g (6 0)e ™ | ey ey S 1172, (2.78)
||RIiK(t7h)||L2(JE;)_)L2(ga) S L (2.79)
for
h € (0,1], 0<+t<2n

Proof. By (2.38), the result follows from Theorem 5.1 and by a stationary phase argument justified
by Propositions 7.2, 7.3, 7.6, Lemma 7.9 and Propositions 7.11, 7.12. g

Proposition 2.20 is mainly an application of the Isozaki-Kitada parametrix. It has the following
consequence.

Proposition 2.21 (Time h~! strongly incoming/outgoing dispersion estimates). For all € > 0
small enough, (2.73) holds for all h,t satisfying (2.75).
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Proof. We first replace @L(af) by Op, pr(af) to the left of e~®"F in (2.73). The remainder term,
which is O(h®°) in L£(L?(dG)) by (2.40), produces a term of size O(h*°) in L(L'(dG), L>(dG))
using (2.65) (with ¢ = 00) and (2.67). We then use Proposition 2.20: the remainder term satisfies

S1S [t~

| ‘ei%rApr(h)OpL,pr(a;t)eiithPhnRﬁ( (t, h)Apr(h)*eivnq|L1(@)—>L°°(dG) ~

and the main term Ei (t,h) gives the expected contribution using (2.66), (2.68) and (2.49) for
Opupr(a3). O

The second condition on e will come from Proposition 2.24. It uses Proposition 2.16 which
depends on some fixed small time which will be given by the following result.

Proposition 2.22 (Time 1 geometric optics). There exists twkp > 0 such that, for all € > 0
small enough and all symbol a* € Syyp, (I'F(R(€),V,,1,1/2)), we can write

e P Op (aF) = B p(t, h) + " Riyyep (8, h),

with
17" Eiaca (6 1)e ™ s iy -noacy S 1072, (2:80)
||R\:}:VKB(t7h)||L2(dAG)HL2(dAG) S L
for
he(0,1],  0<+t<twks. (2.81)

Proof. 1t follows from the stationary phase theorem, using the parametrix given in Theorem 6.1
and Propositions 7.2, 7.3, 7.6 and 7.8. g

The first consequence of this proposition are the following short time dispersion estimates.

Proposition 2.23 (Time 1 dispersion estimates in intermediate areas). For all e > 0, all 6 > 0
and all aimer satisfying (2.72), the estimate (2.74) holds for all h,t satisfying (2.81).

Proof. Tt is completely similar to the proof of Proposition 2.21. O

We can now give the second condition on ¢, also giving the choice of 4.

Proposition 2.24 (Negligibility of 1 <t < h~! dispersion estimates in intermediate areas). If e
is small enough, we can choose § > 0 small enough such that, for all 1 <1< L —1, all

bfinter € Shyp (Ffinter(eﬁ 61 l)) ’
and all N > 0, we have
|‘@L(blf,tinter)eiithpwb(bitinter)*||L2(JZ¥)—>L2(@) < Clth’N’ (282)

for
h € (0,1], twks < +t <271
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Proof. Subsection 6.2, page 67. O

This is, at least intuitively, a consequence of Proposition 2.16 with ¢ = twkp and of the Egorov
Theorem which shows that e~*"FOp, (b7

L,inter l,inter

)* lives semi-classically in the region ®° (supp(bjE )) .

We summarize the above reasoning as follows.

Proof of Theorem 1.2. Using Proposition 2.21, we choose first ¢y > 0 small enough so that, for
all € € (0,¢], (2.73) holds for 0 < 4t < 2h~1. By possibly decreasing ¢, we then choose twxks
according to Proposition 2.22, uniformly with respect to € € (0, eg]. Next, according to Proposition
2.24, we fix € € (0, o] and § > 0 small enough such that (2.82) holds for twxp < 4+t < 2h~!. Using
(2.65), (2.67) and Proposition 2.24 with N = n and b, = ali’inter defined by (2.71), we have

l,inter

—Tn O (0T —ithP A (& —Tn
||€ K TApr(h)Q)L(al,inter)e " P@L(al,inter)*Apr(h)*e Tt

IA

C&,é
S |nt| 7,

|11 (dG)—L>=(dG)

for twikp < 4t < 2h~1. On the other hand, (2.74) holds for 0 < 4t < twkg, using Proposition
2.22. Therefore (2.74) holds for 0 < +t < 2h~!. By Proposition 2.19, this proves (2.70) for all
a, satisfying (2.69). By Proposition 2.18, this implies (2.63) which, by Proposition 2.9, implies
Theorem 1.2. O

3 Estimates on the geodesic flow near infinity

In this section, we describe some properties of the Hamiltonian flow of functions of the form

p(Tv 0, P 77) = p2 + w(r)q(r, 0, n)v (31)

on T*R% = R x Rg_l x R, x ]R?]_l. Here ¢ is an homogeneous polynomial of degree 2 w.r.t n
and w a positive function. In subsection 3.2, we will assume that w(r) = e=2" but we start with
more general cases in subsection 3.1.

The motivation for the study of (3.1) comes naturally from the form of the principal symbol p,
of P given by (2.14).

We emphasize that the symbol p considered in this section is defined on T*R’ whereas p, is only
defined on a subset of the form T*(Ry, +00) x V,. The results of subsection 3.2 will nevertheless
hold for p, as well with no difficulty for we shall have a good localization of the flow in the regions
we consider (see Corollary 3.10).

3.1 A general result

Let w = w(r) be a smooth function on R™ = (0, +00) such that

w\’
w >0, w' <0, (w) >0, (3.2)
and, for some 0 <y < 1,
(14)r w'
limsup/ — € [—00,0). (3.3)
r—+oo Jp w
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Note that lim,_, 1 o, w(r) exists, by (3.2), and that (3.3) imply that this limit must be 0. Note also
that, for all R > 0, we have

w(r) <1 and [w' (r)| S wlr), on [R,+00).

These assumptions are satisfied for instance by w(r) =72 or w(r) = e~2".
We assume that ¢ is an homogeneous polynomial of degree 2 w.r.t i of the form

q(r,0,m) = qo(0,m) + qu(r,0, 1) (34)
with ¢o, g1 homogeneous polynomials of degree 2 w.r.t n satisfying, for some 0 < 7 <1,
0505000, < (), (3.5)
02050 an(r.0,m)] S ()T () >V, (3.6)
and, for some C' > 0,
C™nl* < q(r,0,m) < Clnl?, (3.7)

for (r,0,n7) € RT x R"~1 x R"~1. The latter implies, by possibly increasing C, that
C™Hnf> < qo(@.m) < Cll*,  (6,m) e R*™H x R (3.8)
Setting ¢’ = 9,.q (ie 0,q1), we finally assume that,
!
T o as r — 400, (3.9)

q w

uniformly with respect to § € R*~! and n € R*~1\ 0.
The Hamiltonian flow ®' = (rt, 6%, pt, nt), generated by p, is the solution to the system

T = 2p
6 = )
)= wda/on (3.10)
po= —wq—wq
7 = —wdq/00
with initial condition
(Tt79t»Pt’77t)|t:0 = (7"79’/)777)- (311)

Our main purpose is to show that, if p > —p'/? (with p = p(r, 6, p,1)) and 7 is large enough,
then ®! is defined for all £ > 0 and r; — 400 as t — +oo (we will obtain a similar result for ¢ < 0

provided p < p'/?). This result relies mainly on the following remark: if n # 0, we can write
w’ w q

(p—p2) (1+/>< )
w q

—w'q—wq = ——
w

Using (3.9) and the negativity of w’/w, this shows that, for all € > 0, we can find R > 0 such that

/

—w'qg—wq > —(1—¢)(p— pZ)E, on [R,+00), x Rp™' xR, x Rg_l (3.12)
w

which we shall exploit to prove that p > 0.
In the following lemma and in the sequel, we shall extensively use the shorter notation

p=p(r,0,p,n).
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Lemma 3.1. Denote by (—t_,t4) (t+ € (0,+00]) the mazimal interval on which the solution of
(8.10), with initial condition (3.11), is defined. Then

ty>
== 2p1/2'

Furthermore, either ry — 0 ast — t4 (resp. t — —t_) orty =400 (resp. t_ = +00).

Note that, if p(r, 8, p,n) =0, i.e. p =0 and n = 0, then it is trivial that t+ = +oo.

Proof. We will only consider the case of ¢, , the one of t_ being similar. By the conservation of
energy we have |pf| < p!/2 thus, for t € [0,¢,), 7t is bounded,

[rt —r| < 2tp*/2, (3.13)

and r* > 7 — 2tp'/2. We now argue by contradiction and assume that ¢, < r/2p'/? (in particular,
that ¢, is finite). Then r, :=r—2t,p'/2 > 0 and r; > r, for all t € [0,¢,). Furthermore, by (3.7),
we have |wd,q| < C(wq +w) < C(p + w), with w bounded on [r,+00), hence #* is bounded on
[0,%4). One shows similarly that p* and 5 are bounded on [0, ¢ ), using that |w’| < w on [ry, +00)
for p. This implies that lim, .., (r%, 6%, p,n’) exists and belongs to (0,+00) x R"™! x R x R"~1.
The solution can therefore be continued beyond ¢ which yields the contradiction.

We now consider the second statement. Assume that ¢, < +o0o. We must show that r* — 0
as t — t4. Assume that this is wrong. Then there exists R > 0 small enough and a sequence
tp — t4 such that r®* > R for all K > 0. On the other hand, by energy conservation, we have
[rt — 78| < 2p'/2|t — s| for all £, 5 € [0,%4), hence

rt>rte —2pl2|t — 1| > R/2

provided [t — t;| < R/4p1/2. Since t;, can be chosen as close to t; as we want, there exists € > 0
small enough such that r* > R/2 for t € [ty — €,t+). Then, by the same argument as above,
limy ¢, (r, 6%, p',n") exists and belongs to (0,+00) x R"™* x R x R”"'. The solution can be
continued beyond ¢} hence t; = +o0o which is a contradiction. g

Lemma 3.2. Let 0 < ¢ < 1. For any R > 0 such that (3.12) holds, we have the following: if
r'e > R and p' > 0 (resp. p'® < 0) for some ty € [0,t4) (resp. to € (—t_,0]), then t; = +oo
(resp. —t_ = —o0) and

" >R, p'=p (resp. p' <p)  Vit>ty (resp. t <tg).
Furthermore, vt > rto 4+ 2(t — tg)p' for all t > to (resp. t < to).
Proof. As in Lemma 3.1, we only consider the case of ¢;. It suffices to show that

" >R, for all ¢ € [to,t4+). (3.14)

Indeed, if this is true, Lemma 3.1 shows that ¢, = 400 and then, by (3.12 ), we have p* > 0 hence
pt > plo and rt —rlo > 2pto(t — ¢g). Let us prove (3.14). We consider the set

I={t€to,ty) | r* > Rand p* > p'° Vs € [to,t]}.

It is clearly an interval containing ¢y and we set T := sup I. By continuity, p! > p/2 > 0 for t in a
small neighborhood J of ty. This implies that 7 > 0 on J, hence that r* > rfo > R on J N [tg,ty)
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and thus that p* > 0 on J N [tg,ty) which in turn shows that p® > p' on J N [tg, ¢y ). This proves
that T > tog. Then, on [ty,T'), we have

>R, pt>ph (3.15)

Now assume, by contradiction, that 7" < ¢,. Then (3.15) holds on [tp,T] and in particular we
have 77 > 7o + 2(T — tg)p'® > r*. Thus r* > R in a neighborhood of T' and this implies that
p' > 0 in this neighborhood. Hence there exists 7" > T such that (3.15) holds on [to, "] yielding
a contradiction. 0

To state the next result, we define [ € (0, +00] as
A+y)r v
I = —limsup/ “ (3.16)
r—+4o0o Jp w

and we choose an arbitrary ¢ € R such that

_2 (4 12
0<0<{1l+(l2+1) if I < 400 (3.17)

if I =400
Note that, if I is finite, 0 < —% + (7 + 1)*/? < 1 and that (3.17) is equivalent to
(1—02)1/2> 20 > 0.

Proposition 3.3. For any o satisfying (3.17), there exists Ry, ~,o > 0 large enough such that: if
> Ry o and p > —op'/? (resp p < op'/?), then t; = +o0 (resp —t_ = —00) and for allt >0
(resp. t < 0) we have

r' > max ((1 —y)r (1 *’)/*O'")/)T'+20'p1/2|t‘) . (3.18)

This proposition means that, by choosing an initial data with 7 large enough and p > —op'/?
(resp. p < op'/?), the forward (resp. backward) trajectory lies in a neighborhood of infinity.
In particular, the forward (resp. backward) flow starting at (7,6, p,n), with p > —op'/? (resp
p < op'/? ) depends only on the values of p on [(1 —7)r, 400) x R* 1 x R x R,

Proof. We only consider the case where p > —op'/?, the case where p < op'/? being similar. If

[ < 00, (3.17) allows to choose 0 < € < 1 such that
(1—€e)*(1 —0?)1/2 > 20. (3.19)

If I = 0o, we choose an arbitrary ¢ € (0,1). We next choose R so that (3.12) holds with the above
choice of €. If p > op'/? (recall that p'/2 > 0 since p > —ap1/2) and r > R, then Lemma 3.2 shows
that the result holds with R, ,, = R. We can therefore assume that p < op'/2. Let us set

Ri=(1—-~)"'R and T =n~r/2p"2 (3.20)
By Lemma 3.1, we have ty > T and, if r > Ry,

rt > —2tpt/? > (1 —~)r > R, for ¢ €[0,T].
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Using (3.12), this implies that 4* > 0 on [0,7] and hence that pt > —ap'/? for all ¢ € [0,T]. Let
us now prove by contradiction that there exists ¢ € [0,7] such that pt > op'/?. If this is wrong,
we have (p')? < op on [0, T], thus (3.12) shows that, for all t € [0, 7],

/

!/
Pz —(1= (1= a®p () = ~(1 = (1 = o*)p (7 +2p'2),
w w
using the third estimate of (3.2) and the fact that 7 < r + 2¢p'/? in the second inequality. By
integration over [0,T7], we get
T 2y 1721 0T g
PPz —(-gu-attis [ (3.21)
” w
using the second equality in (3.20). Let us now fix Ry such that, for all r > Ry,
/(1“‘7)’" w'’ - {(1 — )l if [ <+o00

40 : '

With such a choice (and (3.19) if [ is finite), we see that, if 7 > max(R;, R2), (3.21) implies that
pT — p > 20p'/? and hence that pT > op'/? which yields the expected contradiction.

In summary, we have shown that for any r > max(R;, Ry) and any p > —op'/?, there exists
to € [0, 7] such that p'c > gp'/? > 0 and % > R, hence t; = 400 by Lemma 3.2. Furthermore,
rt > (1—~)ron [0,T] and vt > rT +2(t — T)op/? > (1 — (1 4 o)y)r + 2top*/? on [T, 4+00). Since

(1=9)r if tel0,7]
(1—vy—oy)r+20p2t if t>T

i

max ((1 —y)r, (L=~ —ovy)r+ 20p1/2t) = {
the result follows. O

3.2 The asymptotically hyperbolic case
In this part, we prove more precise estimates on the Hamiltonian flow of p when
w(r)=e

In that case, the conditions (3.2), (3.3) and (3.9) are fulfilled, with any 0 < v < 1 in (3.3) and we
have I = 400 in (3.16).

In the sequel, we shall need the following improvement of Proposition 3.3.

Proposition 3.4. Let 0 < 0 < 1. There exist R, > 0 and C, > 0 such that: if r > R, and
p > —op'/? (resp. p < op'/?), then

rt > r 4 20pY 2t - C,, forall t>0 (resp.t<0).
The improvement consists in replacing (1 — v — oy)r in the estimate (3.18) by r — C,.

Proof. Here again we only consider the case ¢t > 0. By Proposition 3.3, we may assume that r* > R
for all ¢ > 0, with R large enough so that (3.12) holds with ¢ = 1/2. This implies that

. _ ot _ ot _ ot
ph=2e""q(r', 0" n") — e Orqu (", 0", ") = e q(r', 0", 0") = p — (p")*. (3.22)
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If p > op'/?, then the result follows from Lemma 3.2 (with C, = 0). If p < op'/?, we will show
that, with 7' = 20p~1/2/(1 — 02), there exists t € [0, T] such that p' > op'/2. Assume that this is
wrong. Then (p')? < o?p on [0, T] and by integrating the above estimate on p', we get

pl —p>T(1—0%)p=20p">
This proves that p” > op'/? which is a contradiction. Therefore, by Lemma 3.2, we see that
rt — T > 20p'/2(t — T) for t > T. On the other hand, we have r* > r — 2p'/?t for t € [0,T]. The

latter implies that r* > r + 20p!/2t — 2p*/2(1 + o)t > r + 20p'/%t — 45 /(1 — o) for t € [0,T]. This
holds in particular for ¢ = T and then for ¢ > T". Thus the results holds with C, = 40 /(1 — o). O

We have so far only studied some localization properties of ®¢, the Hamiltonian flow of p. We
shall now give estimates on derivatives of ®¢. We start with the following lemma giving some rough
estimates. They will serve as a priori estimates for the proof of Proposition 3.8 below.

Lemma 3.5. For all 0 < o < 1, there exists R > 0 such that, for all (r,0,p,n) € T*R} satisfying
r> R, +p>—op'/?,  pe(1/4,4), (3.23)
and all £t > 0, we have
e1PaR ol 95 oF (@ — ) (1,0, p, n)‘ < (B).
Note the e8! factor in front of the derivatives.

We will need two lemmas. The first one is a soft version of the classical Faa Di Bruno formula.

Lemma 3.6. Let Q3 C R™, Qs C R™ be open subsets, with ny,ne > 1. Consider smooth maps
Y= (Y1, s Yny) : Q1 — Qo and Z : Q1 X Qo — R, with ng > 1. Then, for all |y| > 1,

9 (Z(x,y(x))) = (0yZ) (2, y(2))0y(x) + (92 Z) (2, y(x)) + Ry (2)

where R (z) =0 if |y| = 1 and, otherwise, is a linear combination of
- gv 1 v 17 Ty
(8; v 8yZ) (z,y(x)) (3;{ yi(z). .. O yl(z)> .. <&Z Yny (Z) o 0z "2 Yn, (9:)) ,

with 'y,v’,%’-“ eNGY, v=(11,...,Vn,) € N§? satisfying v #0, v # 0 and

V< 2Ll =A<l A bR R =
k k
and using the convention that 9;* yi(z) . O Ye(z) =1 if vy =0 (if v, # 0 then 7Y, ..., 7% are
all non zero).

Proof. Tt follows by a direct induction. O

In the second lemma, we consider the linear differential equation
X =At)X +Y(t), (3.24)

with A(+) € C([0, +00), Myxn(R))* and Y (-) € C([0, +00),C") for some N > 1. We assume that
A() belongs to a subset B C C([0, +00), My« n(R)) for which there exist 6z > 0 and Cz > 0 such
that

IA@IIl < Cse™®*,  t>0, A()€B,

with ||| - ||| 2 matrix norm associated to the norm || - || on C¥, i.e. such that ||[M Z|| < |||M|||||Z]],
for all M € My«n(R) and Z € CV.

A My« n(R) the space of N x N matrices with real entries
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Lemma 3.7. There exists C > 0 such that, for all A(-) € B and all Y (-) satisfying

/ Y ()]t < oo,
0

the solutions X (-) of (3.24) satisfy
wanchme+A ummw), £>0. (3.25)

Proof. Fix first 0 < § < dg and € = g — 6. Choose T' > 0 such that Cze %5t < ¢ for t > T. By
the Gronwall Lemma, we have

wans@an+éfuwmw)ﬂ“”, >,

and .
Xl < (IIX(O)I +/0 IIY(S)||d8> OB te0,T).

These two inequalities give, for some C depending only on Cg, iz, § and T,

IX(7f)|SC(IX(ONH-/0 |Y(8)||d8> e, t>0.
Used as an a priori estimate in (3.24), this yields
IX @) < [[Y(®)]| + CCpe™ (IlX(O)I +/0 ||Y(3)|d8) ,  t>0,

which implies (3.25). O

Proof of Lemma 3.5. As before, we only prove the result for ¢t > 0. For |8+ j + |o| + k = 0,
the result is a consequence of the motion equations (3.10) and the energy conservation. Indeed,
for r* — r, the estimate follows directly from (3.13). Next, the motion equation for 6, (3.7) and
Proposition 3.4 show that

01 S e I S e ') S14p

hence that [#* — 6] < (t) by integration. One similarly shows that |p* — p| + |nt — p| < (t). We
now consider the derivatives and denote for simplicity 97 = 85858385. Denoting by H, is the
Hamiltonian vector field of p and applying 97 to (3.10), we obtain

Pl dt = (dH,)(®!)e™Pla7d! + R(t)
where, by Lemma 3.6, R(t) = 0 if |y| =1 or, if |y| > 2, is a linear combination of

(0" H,)(@")e"? (87%7"’5 oo Tt) ... (37?”%_1 e Vo 7751_1> . (3.26)

Here v = (11, ..., v2,) is of length at least 2, all the derivatives of ® involved in R(t) are of strictly
smaller order than v (ie 'ylii < v and 'ylii # ) and

2< <y, A+ =1 (3.27)
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Writing dH, as a matrix, we have

0020 0 0 0 0
oo o0 o0 Lo | 92,0 —200g na 0 D
dHy =10 09 0 of*° 40rq1 —4q — 0%.q1 209q — 01 0 20,9 — 2.

00 0O 20pq — 0%y q1 —02yq 0 —025q

Defining M as the first (constant) matrix of the right hand side and using Proposition 3.4, we have
[, () = M| S e (1) S e 720 () + (0%) S e

using that 2p'/2 > 1 and that e2"(n)? is bounded, by (3.23). We then set

Alt) = e ™ (dH,(@") — M) ™M,
X(t) = e ™MPBlgrapt — Pl
Y(t) = e ™R(t)+ At)e’Plore0,

so that
X(t)=A®X@t)+Y (),  X(0)=0.

Noting that M? = 0, we have
exp(+tM) =1+ tM, |exp(£tM)| < (t), (3.28)
thus

JA()| S e ()2 < emot/2, (3.29)

~

To estimate X (¢) by Lemma 3.7, we still need to estimate Y (¢). We first assume that 97 = 85
with |3] = 1. We then have R(t) = 0 and

A)eP1o7 @0 = e~ ™M (97 H,,) (B")e"
since M@g@o = 0. By Proposition 3.4 and (3.23) again, we obtain
(O Hp) (@) S e 727 () S e,

so that |Y(t)] < e 7t/2. Using (3.29) and Lemma 3.7, we get | X ()| < 1. Since M@gfbo =0, we
can rewrite X (t) = e~*Me"97 (9! — ®°) and, using (3.28), finally get

leraf (@ — @°)| < (t).

The other first order derivatives of ® — ®° are studied similarly (note that there is no e” factor
then), by showing that X (¢) is bounded and using that X (t) = e "M 37 (®* — d0) 4 (e7*M —1)97 @O
with (3.28) to get

072" — @%)| < (t).
For higher order derivatives, 37 ®° = 0 and 97 (®! —®°) = 97 ®'. Furthermore, since the derivatives
of ®! involved in R(t) are of strictly smaller order than v, we can proceed by induction. By writing

at for rt, pt, 6t and N = 85; af? 8;!;82; for the derivatives involved in (3.26), with 1 <14 < 2n and
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1 <1< y; (recall that, if v; = 0, the corresponding product in (3.26) is 1), the induction hypothesis
yields _ _
etirentat] < (o),

since, if B3} # 0, 855 t= 9P (2t —2°). If n+2 < i < 2n (and v; # 0), we also have

el oring_, 4| S (B,

unless 9 = 85’1 with |8f] = 1, in which case we only have | nt_,_1l < (t). By setting

E={n+2<i<2n; 31 <I<uvsuch that & =9 with |8}| = 1},
and N = #&, we thus obtain

1(3.26)] S €712 Hy) (@) |(6) =N TT 107 ml_ .
&

Since the components of H,, are polynomial of degree 2 with respect to the last n — 1 variables,
we only need to consider the case where N < 2, otherwise v,19 + -+ + o, > 3 and 0"H, = 0.
Furthermore

(0" Hy) (®1)] S €72 ()27 vmee = ven G e (27N,

For N < 2, we have (n")2~N < (n)2=N 4 (£)27N so, using that eNre 2" < = @=Nr=20t e see
that eN7e=2r" (")2~N < ¢t which finally implies

1(3.26)] S ()=t S e=ot/2,

Therefore |Y (t)| < (t)e 7" and, by Lemma 3.7, | X (¢)| is bounded . The result follows then easily.
U

The following proposition will be important in subsection 4.3 to construct and estimate phase
functions.

Proposition 3.8. For all 0 < o < 1, there exists R > 0 such that, for all j,k € Ny, o, 0 € Ngil,
with the notation
jak3 _ r i na nk
DJ2¥? = erllol ol ogof,
(introduced before Definition 2.2) and (1); = max(0,1), we have
@2-18D+

DGt = =2t ) S (e n/p') (8D 2

iR =0 s e (e n/p') N e,

hyp

A

o o . @180+ .,
DI (ot = p)| + DS (nf — )| < (e <77/p1/2>> p=k=18D/2,

and, for all0 <e <1,

o . C=18D+ 1oVl 1k
DIRB (ot £ p112)] S (e <n/p1/2>) e 4=e)tp!/ p(1—k—181)/2,
uniformly with respect to (r,0,p,n) and t satisfying

r> R, +p > —op'/?, +t > 0. (3.30)
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We point out that, apart from the energy localization and the localization in 6, the conditions
(3.30) are the main ones that define outgoing/incoming areas according to Definition 2.10.

Note also that, if (1,6, p,n) are restricted to a subset where p belongs to a compact subset of
(0, +00), the estimates of Proposition 3.8 read

DI (rt — 1 — 2[t[p"/?)| + | DI (o — p)| + |1 DIE (gt =) S (e ()T (3.31)
jok —7r —r (1-181)
DM (0f — 0)| S e (7)Y (3.32)
j —r 2—|B _a(1— 1/2
IDISRP (pf 7 pH/2)| < (7)) * 70T em @l (333

Actually the latter estimates are equivalent to Proposition 3.8 by the following elementary scaling
properties,
(r,6°)(r,0,p,m) = (1, 0%)(r,0,p/\/N), (3.34)
(0" 1) (.0, p,m) = AP, ) (r,0, /X, n/N), (3.35)

for A > 0. Note that the condition (3.30) is invariant under the scaling (¢, p,n) — (At, p/ A, n/N).

To prove Proposition 3.8, we need the following lemma (which will also be useful in proof of
Proposition 2.16 in Subsection 4.1).

Lemma 3.9. For all0 < o < 1, there exist R > 0 and C > 0 such that, for all (r,0,p,n) satisfying
(3.23),

Ipt T pt/? < Ce 1/, +t > 0. (3.36)

1/2

In particular, pt — £p'/? ast — Foo.

Proof. We consider the case where ¢t > 0, the case of negative times being similar. Using (3.12),
Proposition 3.4 and Lemma 3.5, we can choose R large enough such that p* > 0 and

. —ort —opt —2r—20 —0o
prS e I P S e (Inl 4+ ()2 S e (Il + (1) S e, (3.37)

—2r

using the fact that e=2"|n|?> < p in the last estimate. Therefore, p* has a limit as t — +oco. By the

energy conservation and the estimate on e~2" |2 given by (3.37), we have p = (p')% + O(e~°),
which shows that (p!)?> — p. Since p' is non decreasing and p° = p > —p'/2, the limit must be
p*/2. Then we get (3.36) by integrating the motion equation for p* between ¢ and 400, namely

pt/? —pt = / pids = / e (2q(r%,0%, %) — (8,q1) (r*,0°, %)) ds (3.38)

¢ ¢
where, by Proposition 3.4 and Lemma 3.5, the integrand is O(e=27=29%((s) + (n))?). O
Proof of Proposition 3.8. We only need to prove (3.31), (3.32) and (3.33) with p € (1/4,4) and,

again, we only consider ¢ > 0 and p > —op'/2. We first assume that j + |a| + k + |3 = 0. By
(3.10), Proposition 3.4 and Lemma 3.5, we have

0 S e (Inl+ (1) S e ),
'l S e (Inl + () S e ),

31



hence |7t —n| < e 27(n)? and |0* — 0| < e2"(n). In particular, n* —n and 6" — § are bounded. The
motion equation for r* yields

t
rt—r—2pt/? = 2/ (p* — p*/?)ds, (3.39)
0

and, using (3.36), we get |r! —r — 2tp'/?| < 1. The latter estimate, the boundedness |* — 7| and
(3.38) imply

o =P S e 2, (3.40)
Furthermore, since [p'/2 — p| = |p? — p|/|p + p'/?| < e 2"|n|?, we also have |p* — p| < =27 (n)2.
Putting (3.40) into (3.39), we obtain |r* —r — 2tp/?| < e~2"(n)? which completes the proof of
(3.31), (3.32) and (3.33) for j + |a| + k + |5 = 0 (note that we can choose € = 0 in this case).

Let us now prove (3.32) when j + |a| + k + |3] > 1. We first note that, by Lemma 3.5 and the
boundedness of |rt —r — 2tp'/2|, we have

./ /k// ot -1 /k// ot ./ /k// ot
DL e ) < DL e it =)+ D5 (e ),
< 2P gy d R (64 T (efr|,7|)(1f|5'\)+) :
5 e—2tp1/2 <t>j/+|a/‘+k/+|3/\ (e—r<n>)(1_|ﬁl|)+ , (341)

for all j/ + |&/| + &' 4+ |8'| > 0. By writing

s

t
ot — 6 = / e~ (8yq)(r*, 0%, 7" 0 )ds,

0

and using (3.41), Lemma 3.5 (ie \Df;/y/g“k”ﬁurﬂ + |Dﬁ//3”k”ﬁ”9t| S () af j7 + |+ K487 #0),
the Leibniz formula and Lemma 3.6, we obtain (3.32). We obtain similarly (3.33) and then (3.31)
(also using that (e7"(n))? < e "(n) < 1). Note that, for r* —r — 2tp'/2, (3.31) follows directly

from (3.33) and (3.39). O

Corollary 3.10. Let V € V! € R*! be two relatively compact open subsets and let 0 < o < 1.
There exists R > 0 and C > 0 such that the conditions

r> R, eV, +p > —op'/?, (3.42)

imply that, for all £t > 0,
rt>r—C, ot cv'.

In particular, if (3.42) holds, the flow ®'(r,0, p,n) depend only on p on T* ((r — C,+oc) x V') for
+t > 0.

This corollary allows us to localize the estimates of Proposition 3.8 in charts of asymptotically
hyperbolic manifolds.
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4 The Hamilton-Jacobi and transport equations

In this section, we develop the analytical tools necessary for the Isozaki-Kitada parametrix that
will be constructed in Section 5. We mainly construct the phases and amplitudes needed for that
parametrix, but also prove certain useful properties of outgoing/incoming areas, including those
quoted without proof in Subsection 2.4.

All the statements in this section will hold in a coordinate chart at infinity, associated to a
fixed coordinate patch U, on the angular manifold. Thus, for notational simplicity, we will drop
the corresponding index ¢ from the notation.

4.1 Properties of outgoing, incoming and intermediate areas

Here we collect some properties of outgoing, incoming and intermediate areas which will be needed
for the construction of the Isozaki-Kitada parametrix. We also prove a part of the results quoted
without proofs in Subsection 2.4, namely Propositions 2.11, 2.13, 2.15 and 2.16.

In the first proposition below, we use the classes Shyp(€2) introduced in Definition 2.2.

Proposition 4.1. i) Assume that
Ri > Ry, Vi € Va, I €Iy, o1 < 09. (4.1)
Then we can find Xliég € Shyp (T*(Ry, Va, Is,02)) such that
Xio=1  on TH(R, Vi, I, 00).
i) Any symbol a € Spyp ((R,+00) x V. x R"Np~(I)) can be written
a=a"+a", with a* € Swyp (TH(R,V,1,1/2)).

One important point in this proposition is that Xliéz and a* can be chosen in Shyp-

Proof. i) We may for instance choose
X0 (1,0, 0.0) = X iy — o (1)XVi =5 (0)X 1, — 1 (D) Xors —a (/D).
With XRr, - Rss Xo1—os € CP(R), Xvi—v, € C§°(V2) and x1, 1, € C3°(I2) such that
supp(Xr,—R,) C (R2,+00),  supp(Xo;—o,) C (=02, +00),
and
XRi—Ry =1 on (Ry,+0), xview,=1onVi, xn-n=1onli, Xoi—o, =1 on(—oy,+00).

Notice that p/p'/? is smooth on the support of xr, 1,(p). So defined X1j:2 is smooth on R?",
supported in T (Ry, Vo, I5,09), = 1 on T'*(Ry, Vi, I1,01) and one easily checks that it belongs to
Bhyp (T£(Ra, Va, I, 02)), using for instance Lemma 2.4.

i) It is very similar to the first case. We may for instance choose

ai((rv 03 ,07 77) = (l(?“, 97 pv U)Xf/g(P/Pl/Q),

with Xit/Q € C*(R) such that
XT/Q + Xl_/2 = ]-a Supp(X;—/Q) - (71/2a +OO)7 Supp(X;—/Q) C (7007 1/2)
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Here again p/p'/? is smooth on the support of a and a* € By, (T (R,V,1,1/2)). O

Let us remark that, by the first part of Proposition 4.1, I'*(Ry, Vs, I, 03) is a neighborhood of
the closure of I'* (Ry, Vi, I, 01) under the assumption (4.1). In the following proposition, we make
this remark more quantitative.

Proposition 4.2. Assume (4.1). There exists € > 0 such that, for all (r',0’,p',n') € R*" and all
(Ta 9, P 77) € Fi(Rh ‘/1’ Ila 01);

|(T,9,p,7}) - (Tlaelvp/an/” <e = (Tlvolvp/an/) € Fi(R27V27]230—2)'

Proof. Choose first g > 0 such that, if |r — 7| + |0 — 6’| < &g, 7' > Ry and 0’ € V5. Then, by
writing

a(r', 0,7 ) = (', 07 ) = e g, 00 = )+ (207 = 1)g(r, 0 e7), (4.2)
and using (3.5), (3.6) with the Taylor formula, we get
(', 0" 0 1) = p(r,0, p.m)| < |p* = p2 + Cli" = nf* + C(lr —o'| +10 = 0'[)e ™" |n?,
where e~2"|n|? is bounded, using (3.7). Since p is bounded too, we obtain
p(r", 0", 0" 1) = p(r.0, p,m)| < Cl(r.0,p,m) = (', 0", p', 1),
provided that |(r,0,p,n) — ('8, p’,n)| < ¢ and therefore,
Y2080 ') = 2 (8, 0,m)| < O, 6, p,m) — (6,0 )],

’
P i < C\(T,H,Pﬂ?) - (r,,0/7p/777/)‘7

P20, 0, p ) pR(r,0,p,m)

if |(r,0,p,m)— (', 0, p',n')| is small enough, using that Iy € (0, +00). The conclusion is then easy.
(]

Similarly to (2.54), we fix V5 C R"~! a relatively compact open subset of ¢, (U,) and define
R(e) = 1/e, Ve={0 cR"! | dist(, Vo) < €2}. (4.3)

In the sequel, we shall need very often the following result on strongly outgoing/incoming areas
(see Propositions 4.8, 4.14 and Lemmas 4.11, 4.16). This will for instance be the case when we use
Taylor’s formula and want to guarantee that the whole segment between two points of a strongly
outgoing/incoming area is still contained in such an area.

Proposition 4.3. For all M > 0, there exist ey > 0 and Cyy > 1 such that, for all 0 < € < €y,
the following holds: if

(,60,p,m) € T (e), (4.4)
and
r—r>—M, 0 — 0] < Mé?, lp = p| < Mé?, Iy’ —n| < Meel/e, (4.5)

then, for all0 < s <1,
(7"/’ 9/7 p/7 Sn/) e F;t(CME)-

In particular, (r', 0, p',0) € TE(Cyre).
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Remark. There should not be any confusion between the interpolation parameter 0 < s < 1 and
the subscript s which refers to strongly outgoing/incoming areas (and which are independent of s).

Proof. Using (2.56) and (4.2), we first note the existence of M’ > 0 such that, for all 0 < e < 1/4,
if (4.4) and (4.5) hold then

p(r', 0, ', sn') — p(r, 0, p,m)| < M€,
using in particular that sn’ —n = s(n’ —n) + (s — 1)n. If Cyy is large enough and 0 < eCyy < 1/4,

we obtain

1 1
0< ZfCMe< Z—efM'e2 <p(, 0,0, sn) <4d+e+ M <44 Cye.

If 0 < € < epr with epr small enough, then p(r', 8, o', sn') /p(r, 0, p,m) = 1+ O(€?) so that

+' _ +p p(r,0,p,n)'? p=p
p(r', 0, p', sn')/? p(r,0,p,m) Y2 p(r', 0", p/ s/ )1 /2 = p(r', 0, pf s )H /2
> 1-— (CMG)Q,

by possibly increasing Cyps. In addition, dist(6, Vo) < 0" — 6| + dist(0, Vo) < (Care)?, by possibly
increasing Cj; again and decreasing ey;. Finally, #/ > r — M > e'/¢ — M > e'/Cm¢ for all
0 < € < epr by possibly decreasing €y; again, so (7,6, p',sn') € TE(Cypre). O

We can now prove Proposition 2.13 which states that one can reach a strongly outgoing (resp.
incoming) area from an outgoing (resp. incoming) one in finite time, along the geodesic flow.

Proof of Proposition 2.13. We consider only the outgoing case. With no loss of generality, we
may assume that 0 < o < 1. By choosing R > R/ large enough, we can use Proposition 3.4 and
Corollary 3.10. By Proposition 3.4, we have r; > r + ¢t — C for some C, ¢ > 0, hence r; > R(e) for
all t > tg c, provided

CtR,e — C+R> R(E) (46)

By Proposition 3.8, we have |6! — 0| < e™" hence 6 € V,, for € small enough and all ¢+ > 0, since
e~1/¢ <« €. Using (3.33) and the energy conservation, we shall have p'/p'/2(rt, 0%, pt, nt) > 1 — €2
provided for instance that

e P Pt < 8, (4.7)

with e small enough. Choosing ¢t . so that (4.6) and (4.7) hold, we get the result. O

We conclude this part with the following explicit construction of cutoffs.
In Section 5, we will need a result similar to part i) of Proposition 4.1. This is the purpose of
the following result.

Proposition 4.4. We can find 0 < v < 1 and a family of cutoffs Xeigﬂe € Suyp(TE (1)), defined
for all € small enough, such that,

Xj;—»e =1 on I’f(eQ), (4.8)
and, uniformly on R?",

|672T|77|j87’,97pmxei2ﬂe| + |672T|77|2ap,n3r,9X6i2H6| N 61/27 j=12 (4.9)
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5. € Snyp(TE(e'1)) satisfying (4.8) would follow directly
from Proposition 4.1. The important additional point here is the control with respect to € given
by (4.9). Note also that the power 1/2 is essentially irrelevant: we only mean that the left hand
side of (4.9) is uniformly small as € — 0. This rather technical point will only be used in Section
5 to globalize suitably certain phase functions.

That we can find, for each e, x5

Proof. For 0 < § < 1 to be chosen later, we consider the characteristic functions )Zius and )22/24,5 of
(1/4— €9 44 €'9) and V 4 B(0, €219) respectively. Let us choose ¢! € C§°(R), ¢V € C§°(R™1)
both equal to 1 near 0, such that [¢/ = [¢V =1 and set

_ A— 1
X£1+6 ()\) = /Xius (.U)CI <€1+2§L) et zéd,ua

_ 0—9\ __
/Xl/zw (ﬁ)CV (62+25) e~ (n=1)(2+20) 9.

One then easily checks that, if € is small enough,

XZ2+6 (9)

X =1 on (1/4— €4+ ¢€%), XLy =0 outside (1/4 — i a4 el+%),
XYis(0) =1 if dist(6,V) < ¢, XYis(0) = 0 if dist(6,V) > €272,
Choosing w € C*°(R) supported in (1/4,400) such that w =1 near [1/3,00), we now define

Xeoo (1,0, pm) = w(r/R())xrs (0)xivs (D) ()T (€72 ] ).

On the support of x/,,;(p), we have p* > 1/4—0O(e) so the factor w(+p) only determines the sign of
p. By (2.55) and (2.56), one sees that (4.8) holds with v = 6/2, if € is small enough. Furthermore,
x5, is supported in T'F(e*) and belongs to Byy,(I'E (e1+7)).

Let us prove (4.9). Since e=2"|n|? < ¢ on the support of X;_}g, the first order derivatives
satisfy

Oxsd S REPD) T e TP TP+ ) S,
|8PX3:2*>6| /S 6717267

‘aGXj:Z*,J 5 672726 + 671725672T|ﬂ‘2 g 672726,
O S el H e ) <o

using the fact that e 2"|n| <e " < e~ for the last estimate. Similarly

—2—-20 x —1-26 _ 6—3—46

+
10,0r,0X 2 € €

)

/2

|<
—€ [ad
< e

|87]8rvexj;—>€|

Since e 2"|n|2e 3749 < €175 and e~ || < e=<""? the result follows with § = 1/10 (hence with
v =1/20). 0

We finally consider the statements involving of intermediate areas.

Proof of Proposition 2.15. By (2.58) and (2.59), we can find x—oo, X400 € C®(R) and x; €
C§° (=041, —01-1), for 1 <1 < L — 1, such that

SUPP(X—co) € (=00, —01),  sUPP(X4o0) € (1 — €%, +00),
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and
L—1

X+oo+ZXl+XfooE]. on R.
=1

This simply relies on the overlapping property of the intervals in (2.59). We then obtain the result
by considering

as:(raaapa 77) = ai(r,ﬂ,p, 77) X X+Oo(j:p/p1/2)7
Winer (0, 0,m) = a*(r,0,p,m) X xu(£p/p"/?),  1<1<L-2,
a%—l,inter(rvaapa 77) = a’i(rvaapv 77) X (XL—l +X—oo)(:tp/p1/2)

since, in the definition of a%_lyinter, the cutoff guarantees that :tp/pl/2 < —0p_o and a* that
+p/p'/? > -1/2 = —0y,. O

Proof of Proposition 2.16. We consider the outgoing case, the incoming one being similar. Using
Corollary 3.10, we may assume that, if € is small enough, (3.22) holds for any initial condition such
that 7 > R(e), # € V and p > —p'/?/2. In particular t — pt is non decreasing for ¢ > 0. Assume
that 1/2 < p/p*/? <1 — (¢/2)? and set

_ — PP
te =t(r,0,p,m) := sup{tZO | Py < WJFG for all s € [O,t]}.

Notice that . is finite by Lemma 3.9 and that p'c = p + p'/2e*. If 1 — (¢/2)% + €* > 1/2, we have
Ipt/p'/?| < 1—(€/2)?+¢* on [0,t.). Thus, if € is small enough (independent of (r,, p,n)), we have
(p)?/p <1 —(e/2)? for all t € [0,t.) and then, by (3.22) again, we have p* > (¢/2)?p on [0, ] so
that

p'c —p > (¢/2)?pt..
This shows that t. < e*/(¢/2)?p = 4€?/p. Then, for e small enough such that 4¢%/p < t for all
(r,0,p,m) in

{(ne,pm) ER?™ | r>R(e), 0V, pelfe), —1/2< # <1- (6/2)2} , (4.10)

and with 0 = €*/2, we have p* — p > 26p'/? for all t > t. This implies (2.62) since, for any choice

of 0g,...,0p and any [, Fiinter(e, d;1) is contained in (4.10). O

4.2 Hyperbolic long/short range symbols

In this short subsection, we introduce the definitions of short/long range hyperbolic symbols which
will be useful for the resolution of transport equations in Subsection 4.5. We prove in passing
Proposition 4.6 below which will be used at several places, in particular in Subsection 4.3.

Definition 4.5. A smooth function ax on I'F(€) is said to be of hyperbolic short range if
(020500 ax (1,0, p,m)| S (r —log(n) ™77, (,0,p,m) € T (e), (4.11)
and of hyperbolic long range if

\8285“8§85ai(r,97p, M| < (r—log(n)) "9, (r,0,p,m) € Ff(e). (4.12)
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Notice that in this definition, we do not assume that a € By, (I'F (€)). However, this will be the
case in the applications and we now give a simple criterion to check that a symbol a € By, (' (€))
is of hyperbolic short/long range.

For € small enough, by restricting a to a smaller area I'F(¢/C), with C > 1 large enough (or to
I'F(e?), TE(€®) as it will be the case in the applications), using Lemma 2.4 and Proposition 4.3,
we have

1
(1(7’, 07 Ps 77) = CL(’/’, 0, P O) + / (85&) (Ta 07 Ps S&)K:e*““nds ! 677’7]7 (413)
0

where @ belongs to C5°(Fyp(I'E(€))) and (1,0, p, sn) € TE(e) if (r,0,p,m) € TE(e/C). Since, for
all N > 0,

007e "l < (r—log(m) ™™, (r.6,p,m) €T (e),
we obtain that, for a € By, (I'E (¢)),

a is of hyperbolic short /long range in T'E(e/C) < ajy—o is of usual short/long range (4.14)
in the sense that

| (8105 05a) (r,0.p.0)| S (r)"777,  (r,0.p,0) € T (e),
in the long range case (recall that 0 < 7 < 1) and
| (2085 8a) (r.0,p,0)| < (r)""*77, (r0,p,0) €TX(e),

in the short range case.

To calculate aj,—o in some applications, we shall use the following elementary result.

Proposition 4.6. For allr >0, all # € R"! and all £p > 0, we have, for all =t > 0,

(r' 0" p ) =0 = (r+2tp,0,p,0), (4.15)

t
O (r, 0", p" ") jymo = <O,/ eQT4Sphessn[q}(r+sp,9)ds,0,1d>. (4.16)
0

where hess,[q](r,8) is the Hessian matriz of g with respect to nn (which is independent of n).

Proof. One simply checks that the right hand side of (4.15) is a solution to (3.10) (with w(r) = e=2")
for £t > 0. Applying then 0, to (3.10), one sees easily as well that the right hand side of (4.16) is
a solution to the corresponding system. O

Remark. If € is small enough then, on T'F(¢), we have
r —log(n) > 0. (4.17)
In particular, in this region, (r — log(n)) is equivalent to the weight
(r —log(n))+ := max(1,r —log(n))

which was introduced by Froese-Hislop in [15]. For the study of global in time estimates, which
we hope to consider in a future work, the resolvent estimates proved in [5] suggest that the hyper-
bolic short/long range conditions (4.11)/(4.12) would play the same role as the usual Euclidean
short/long range conditions used in [9].
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4.3 The Hamilton-Jacobi equation

In this subsection, we use the results of subsection 3.2 to solve the time independent Hamilton-
Jacobi equations giving the phases of the Isozaki-Kitada parametrix.

Lemma 4.7. There ezists 0 < €9 < 1 such that, for all 0 < € < €y and all £t > 0, the map
U : (r,0,p,m) = (1,0, p%1)")
is a diffeomorphism from T'E () onto its range and
TE(®) Cc UF (TX(e)),  forall £t>0. (4.18)

Proof. See Appendix A.

The power € in (4.18) is not very important. It is only a rough explicit quantitative bound
for the size of a strongly outgoing (resp. incoming) area which is contained in W (I'f (¢)) (resp.
U, (7 (e))) for all £ > 0 (resp. ¢t < 0).

The components of the inverse map (\Ilft)_l are of the form (r,0, p;,n;) with

Pt :Pt(rveapﬂ?% nt =77t(7“»9>/’»77)~

Here we omit the £+ dependence for notational simplicity. We thus have

pt(T7 9) Pt, 7715) =p, 77t(7“a 97 Pt 77t) =1, (419)

at least for all (1,0, p,n) € T (e}) and +t > 0.

Remark. It follows from the Proof of Lemma 4.7 and the scaling properties (3.34), (3.35) that
\I!f is actually a diffeomorphism from the cone generated by I'F(¢g) onto its range, the latter range
containing the cone generated by T'F(e3). Therefore (p;,7;) is actually the restriction to I'F(e3) of
a map defined on the cone generated by I'F(e}) and, using (3.35), we have

(ph’r]t)(ra 0, )‘pa /\77) = )‘(p)\hn)\t)(rv 07/)7 77)7 +t > Oa (7‘, 05 Ps 77) € F;t(eg)5 (420)
for all A > 0.

Proposition 4.8. There exists €1 < €3 such that, for all j,k € Ng, o, 3 € Ngil,

jak jak
DI (pe = p)| + [DYat? (e —m)| S 1, (r,0,p,m) €TE(er), +t>0. (4.21)

In addition, if (r,0,p,0) € T (e1), we have
(pesnt)jn=0 = (p, 0), (4.22)
O (pt = p, 1 = M) n=0 = (0,0). (4.23)

Proof. By (4.18), any (7,6, p,n) € T¥(e}) can be written W (r, 0, 5,7) with (1,0, 5,7) € TF(e),
hence

sup |pr — p| + |ne —nl < sup |p— p"(F,0,p,7)| + |7 — n'(7,0, 5, 7).
I (ed) I (o)
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By (3.31), the right hand side is bounded so we obtain (4.21) for j + |a|+ k+ |3 = 0. Then, for €
small enough, using Proposition 3.8 and Lemma 4.6, we remark that, for (7,6, p,n) € I'F(e),

1
100 (0" = o, — 1) | < /0 000p.0 (", 1") (1,6, p, sn)|ds|n| S le”"n| Se,

since, by Proposition 4.3, (1,0, p, sn) € I'F (o) if (r,0,p,m) € T'F () and € is small enough. There-
fore, if € is small enough,
10,0 (p"s0") — 1d,,| < 1/2, on T'E(e), (4.24)
for all ¢t > 0. Here |.| is a matrix norm. We can now prove (4.21) when j + || + k + |5] > 1.
Assume first that Dfl;gﬁ = "9y, with |5 = 1, and denote for simplicity
Ee(r,0,p,m) = (pe,me)(r, 0, p,m),  E'(r,0,p,7m) = (o, 0")(r,0,5,7),  E=(p,n),
when (r,0, p,n) € TE(e), (r,0,p,7) € TE(e) and +t > 0. Applying e’”@ff to ( 4.19), we get

(05,72 (r,0,E4)e" 00 Z, = (0,e70n) = €O E,

and using that (9; ;2072 = 8P=", we obtain
(05.7Z")(r,0,20)e" 05 (2, — E) = e” (05(E — Et))ur,e,at) ,

where the right hand side is bounded, by (3.31). Using (4.24), we see that e¢"0;(Z; — Z) is
bounded on I'F(e;) for £t > 0, by choosing ¢; < €3 and such that (4.24) holds. The other
first order derivatives are treated similarly and are simpler to handle since there is no e”. When
j+lal +k+ |8 > 2, we iterate this process using Lemma 3.6. To complete the proof of the
proposition, we finally note that (4.22) and (4.23) are easy consequences of (4.19) and Proposition
4.6. O

By Propositions 4.7 and 4.8, we can define 7§ = r(r,0, p,n) and 6 = 0;(r,0,p,n) on I'F(e)

by
Tf :TS(T7e,Pta77t)7 ets zes(ra97pt7nt)7 =+t Z +s Z 07

where +t > +s > 0 means more precisely that t > s > 0 if (r,6,p,n) € T} (e1) and that t < s <0
if (r,0,p,m) € T (e1). Here we assume that €; is small enough so that Proposition 3.8 hold for
r > R(e;) and o0 = 1/2 (for instance), which justifies that 7 and 6 are well defined (and that
their derivatives can be estimated using Proposition 3.8).

By the classical Hamilton-Jacobi theory, the function ¥4 defined by

Sa(t,r,0,p,m) =rip+ 0L -n—tp* — te_z’":q(rf, 0t,m) (4.25)
solve the following time dependent eikonal equation, for (r,0, p,n) € TE(e;) and +t > 0,
0 Xy = p(r,0,0,X+,001), Yilt=o=rp+0-mn. (4.26)

To put it in a more standard way, note that (4.25) is obtained by defining ¥4 via X4 (¢,7,0, p', ') =
rtpt + 0t - nt — tp(rt, 0, pt,nt). Note also that this simple expression uses the fact that p is
homogeneous of degree 2 in (p,n). Now assume for a while that

+o0
Si(raeapan) = Tp+977+/ at (Zi(t7r707p777) _tpz) dt (427)
0
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is well defined on T'F(e;). Then, at least formally,
ar,GSj: (7"7 97 P 77) = . hgl ar,ezi (tv T, 97 P 77) (428)
— 00

The latter only uses the fact that the term tp? inside the integral is independent of r, . If we know
in addition that

t h:tm apzi(t7r707p7 77) = +00, (429)

then, using that ©* are generating functions of ®*, namely
O (r,0,0,X1,0031) = (0,54, 0, 4, p,n), +t >0, (4.30)
we obtain, on T'F(ey),
p(r,0,0,5+,05S) = lim p(9,T,0,%,p,1m) = p°.
Let us state the following proposition.

Proposition 4.9. There exists 0 < €3 < €1 such that we can find Sy = Si(r,0,p,n), defined on
I'#(e2), real valued, satisfying

p(rveaar‘s:t’aesﬂ:) = p2a on F;t(EQ)a (431)
and such that
Si(r79ap7n) :7"/)“‘6'77"'@1[(7"7970777)’ (432)

for some o1 € Buy,(I'E(e2)) satisfying, when (r,0,p,0) € T (e3),

Ptln=0 = 0, (433)
eranwi\n:O = 07 (434)
+oo
e*"hess, [pa] im0 = / e~ % hess, [q|(r + 2tp, 0)dt. (4.35)
0

It is convenient to note that, by possibly decreasing e and by using Lemma 2.4, (4.13), (4.33)
and (4.34), we can write

pi(r,0,p,m) = Y az(r,0,p,e ), (4.36)
161=2

with af € Cp°(Fhyp(TE(e2))).
Proof. We consider only the outgoing case. To complete the proof of (4.31), we have to prove

the missing details, namely the convergence of the integral in (4.27) (plus its derivability) and the
limits (4.28) and (4.29). Defining (p;,n7) := (p*,n®)(r, 0, pt,n:), the motion equations yield

¢
rl = r+2/ pids,
0

t ot
r+2tp — 2/ / e 2 (2q(ry, 01, ni) — (0rq)(ry, 01, mi)) duds. (4.37)
0 Js
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By Propositions 3.8 and 4.8, we have the following bounds on 't (1), for s > 0 and ¢ > 0,

h, s h, E —r h, s
DRy (i =n| S (9h |DiRs o) se |DiRa -] s1 (43s)

In addition, using Proposition 3.4 and (4.18), we have, for s > 0 and ¢ > 0,
Tf Z7""‘2(1_66)5171/2(7"9’0%771&) -C ZT+S/4_O? on F:(63)) (439)

with e small enough such that, p'/2(r,0, p;,n;) > 1/4. Using (4.37), (4.38), (4.39), with ey :=
€ < ¢ small enough, and Lemma 3.6, we obtain the existence of a bounded family (a;);>0 in
Bhyp(T'F (€2)) such that

Ty =71+ 2tp+ai(r,0,p,n), t>0. (4.40)

One shows similarly that () — 0) - n = e"(6; — 6) - e~ "n is bounded in Byy, (IS (e2)) for ¢ > 0 and
hence that

Yy —(rp+0-n+tp*) isbounded in Buy, (I (e2)) for ¢t >0, (4.41)
which proves (4.29). Then, using (4.26) and (4.30), we note that
Oy —p* = e 2% 4 q(0,54, 0,54, m). (4.42)

Therefore, using (4.39), (4.40), (4.41) and (4.42), we obtain the convergence of the integral in
(4.27) and the limit (4.28) as well as the fact that Si (7,6, p,n) —rp—0-n belongs to By, (IS (e2)).
Finally, the formulas (4.33), (4.34) and (4.35) follow directly from (4.42) combined with (4.22) and
(4.15). 0

Remark 1. We point out that, by applying 9, to (4.41), there exists C' such that, for all
(r,0,p,m) € TT(e2) and t > 0,

0,54 (£, 7,6, p,1m) — 0] < Ce™ S e Rler),
This shows, in the spirit of Corollary 3.10, that the proof above depends only on the definition of
q(r,0,n) for 0 in an arbitrarily small neighborhood of Vj, provided es is small enough.

Remark 2. Using (3.34), (3.35) and (4.20), one sees that Sy is actually well defined on the conical
area given by
r>R(e), 0V,  £p>(1-e)p'/?

and that
Ei(t7 ’r7 07 >\p7 )\77) = AZ:‘:(At7 ’r7 07 p7 "7)) A > O'

This implies that S is the restriction to I'F(e;) of an homogeneous function of degree 1, with
respect to (p,n).

We conclude this part with a useful result to consider phases globally defined on R?" when we
shall construct Fourier integral operators.

Proposition 4.10. For some small enough €3 > 0, there exists a family of functions (Si ¢)o<e<es
globally defined on R?™, such that

Oi.e(r,0,p,m) =S+ (r,0,p,m) —1p—0-7
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coincides with o1 on T'F(e) and satisfies

supp(p+.c) C Ty (e?), (4.43)
pre € Buyp(T(e?), (4.44)
|8P,?7 ® arﬁw:t.,e(ra 07 P; 77)‘ S 1/23 (Ta 03 pa 77) € R2n7 0 <e€ S €3, (445)

with | - | a matriz norm.

In further applications, (4.45) will also be used under the equivalent form

0.1 ® Or0S+,e(r,0,p,m) —1dn| <1/2,  (r,0,p,m) €ER*", 0<e<ey (4.46)

Remark. Although this proposition allows to assume that they are globally defined, the phases
S, . solve the Hamilton-Jacobi equations on I'F (e2) only.

Proof. We use Lemma 4.4 and consider

Ste(r:0,p,m) :==rp+0-n+xarz_(r,0,p,n)ps(r,0,p,n), (4.47)
with ¢4 defined in Proposition 4.9. We have Sy . = Sy on I'f(€) and, using(4.9) and (4.36),

10 @ Or0Sx (1,0, p,1) —1d,| < €/, on R

since e~ "|n| < €'/2 on T} (€'/2). This yields the result if € is small. O

4.4 Fourier integral operators on R"

In this subsection, we derive some basic properties of Fourier integral operators associated to the
phases S+ obtained in Proposition 4.9.
For simplicity, we introduce the shorter notation

B (€) i= Buyp(TE(e)),  SF(e) =8y, (TE(e)), (4.48)
where the classes Byyp, and Shyp, were defined in Definition 2.2.

By Propositions 4.9 and 4.10, for all h € (0, 1], all € small enough and all a* € SF(¢), we can
define the operator

JE(a®) : S(R™) — S(R™), (4.49)
as the operator with Schwartz kernel

i

Kif(r,0,7",0") = (2xh)~ /eﬁ S+ (r0pm)=r'o=0"1) o £ (1 9. p ) dpdn.

Since the symbol a™ is supported in T'F(¢), the phase S+ can be replaced by Sy . which is globally
defined (see Proposition 4.10). Note also that Ji5 (a™) maps clearly the Schwartz space into itself
since, for fixed h say h = 1, it can be considered as the pseudo-differential operator with symbol
e+ at = ei¥+.<q* which belongs to Cp°(R?™).

To obtain the L? boundedness of such operators uniformly in h € (0, 1] as well as the factor-
ization Lemma 4.13 below, which are both consequences of the usual Kuranishi trick, we need a
preliminary result.
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Consider the maps (B:I: /N e) :R3" — R™ defined by

(py omy )(r,0, 0, p,n) = /01 Or oS+ c(r +s(r—r"),0"+s(0—0"),p,n)ds (4.50)

so that
(r — 7"’)&[76 +(0-96") Ny, = Si.e(r,0,p,m) — Sec(r', 0, p,m). (4.51)
Lemma 4.11. For all (r,0,7",0') € R*™ and all 0 < € < €3, the map (p,n) — (B:I:,e’ﬁ:t,e) is a

diffeomorphism from R™ onto itself. Denoting by (py ., M4 ) the corresponding inverse, we have,
for all 0 < e < eg,

\agazaj,’agag/a’; (Paer ) — (p,n))’ < 1,  onR™ (4.52)
Furthermore, there exists €g > 0 such that, for all 0 < € < €g, we have
(r,0,p,m) €TE(e) = (T’e’ﬁi,e’ﬂi,e)|rzr, by € (M3, (4.53)
(r 0,p, ,n ) eTE() = (10,p,n) €TE(e) (4.54)
LR L |’r‘:r’,9:0’ s y YV M s 5
and

0000070505 0F (P e) = (0.0)_ygy| S € onTEHE). (455)

~

Proof. The estimate (4.46) implies directly that (p,n) — (p, ,n, ) is a diffeomorphism for all
(r,0,7,0") € R*" and 0 < € < e3. Evaluating (4.50) at (r,60,7',6',p. ., 71 ), namely

(P, 77) = (B:t,e’ﬂ:t,e)<r’ 9’ Tlv 9,7ﬁi,e7 ﬁi,e)’ (4'56)

yields

1
(1) — (PaorTla) = / Orppselr’ +5(r—1').0' + 50— 0), 5y Tu Jds.  (457)

By (4.43) and (4.44), o+ .. € Cg°(R*"), 50 (P 71+ ) —(p, ) is bounded, for fixed €. For the deriva-

tives, we apply 856,{8583‘85‘/8}’; to the right hand side of (4.57) and obtain (4.52) by induction,
using Lemma 3.6.
To prove (4.53), we simply notice that ¢ . coincides with ¢+ on T (€®) so that

= ‘ar,tg()ﬁ:t(r707p7 T’)| 5 627

’(pv 77) - (Bi,e’ Qi’€)|r:r’,9:9’
using (2.56) and (4.36). The result follows from Proposition 4.3 and the fact that T'F(Ce) C
T'F(e'/3) for e small enough. To get (4.54), we use directly Proposition A.1 proving that I'F(e®) C
UH(TE(e)) with
\Ilt(r’ 9, Ps 77) = (T’, Q’Bi7e’ ﬂi,e)h“:r’,e:a’ = (Ta 07 87‘S:I: (Ta 03 12 77)7 89Si(ra 0; Ps 77))?

which is actually independent of ¢ and e.
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By (4.52), (4.55) holds when 3 = 0. Consider next the first order derivatives when |G| =1 and
the other multi-indices are 0. Applying (“)g to (4.56) and evaluating at r =1/, § = ¢, we get

(ap»n(3i7ﬁ’ﬂi,€)) 35 ((ﬁ:ﬁ:,e»ﬁ:ﬁ:,e) - (pa 77)) = 8587”7990:|:(Ta aap:t,evﬁ:t,e)

where we have replaced ¢4 . by ¢4 using (4.54). Since (8,,777(&: ol 6)) is uniformly bounded

and emaﬁ@r,g@i(r,H,ﬁiye,ﬁiﬁ_) is bounded, using (4.54) again, we get the result in this case.
Higher order derivatives are obtained similarly by induction, using Lemma 3.6. g

Proposition 4.12. For all 0 < € < ¢ and all a®,b* € SF(¢), we have

|| i () JiE )" = Y BEef(r,0,hD,, hDy
k<N

M ie@ey—zz@n <CAVTL hE(0,1], (458)

where the constant C' can be chosen uniformly with respect to a* and b* when they vary in bounded
subsets of SE(e) and where the symbols cf are given by

1 . .

+ . ' — — = = — —

= > — 5005 DD} (a(r,e,pi,e,ni,g)b(w,9/,pi,g,ni,e)Jac(pi,e,ni,e))IT:T, o 14:59)
J+lel=k ’

with Jac(ﬁi,e?ﬁ:ﬁ:,e) = ‘det(apm(ﬁ:t,eaﬁj:,e)”- In particular,
cf € SE(3). (4.60)
Proof. The Schwartz kernel of .J;- (ai)Jhi(bi)* takes the form

(27Th)_n/e%(s:t,e(7"»979,71)_5:&,5(7'/79/707’7))a(7a’97p’ b, 0, p,n)dpdn

and this can be rewritten using the Kuranishi trick, ie (4.51) and Lemma 4.11, as

(2mh) " / R (=00 (0 0.5, T B0 O, Py ooy )dac(Py My Jdpdn.  (4.61)

By (4.52), the symbol in (4.61) belongs to Cg°(R3"). Therefore, the standard h-pseudo-differential
calculus implies that, with ¢ defined by (4.59), we obtain the L? bound (4.58) by the Calderén-
Vaillancourt Theorem. In addition, by (4.53) (applied with (p,7) = (P4 ¢, 4 ) jr=r,9—¢' ), We have
supp(c) C T4 (e'/3). One then checks that ¢ € B (¢'/?), using (4.55). O

We note in passing that this proposition shows that, for all 0 < € < €5 and all a* € SF(e),
1JiE (@) || 2 @ny—r2mny < C, hoe(0,1]. (4.62)

More precisely, the constant C' can be chosen independently of a* if, for € fixed, a® vary in a
bounded subset of SZ(e).

45



Proposition 4.13. For all 0 < € < €g, the following hold: if we are given
at,...,af € SE(e),
with af such that
af > 1, on TE(e%), (4.63)
then, for all x* € SF(°), we can find bE,. .., b% € SF(€3) such that, if we set
at(h)=af +---+0Nak,  bE() =bF +-- + V0L,
we have

|| T (™ () Ty (6% (R))* = X&(r, 0, hD,., hDy ,SCRNFL he(0,1],

) ’ {LQ (R")—>L2(R"

Proof. By Proposition 4.12 and the notation therein, we only need to find boi, e ,bﬁ such that

cétzxsi, cf:O7 k=1,...,N.

Using Lemma 4.11 and (4.59), the first equation, ie c§ = xZ, is solved explicitly by

1

bi 707 ’ = ( x aea ’ Jac ) ) X
o (r0,p,m) = (X (r,0,p, 0, )ac(p, 0, ) rr =0 aE (0o

where 1/a§ is well defined since Xf(r,@,gi /N e)wzn g/—g is supported in TF(e3) by (4.54).
Thus, bF is well defined, supported in TF(e?) and belongs to B (e?) by (4.50) and Proposition
4.9 (since (p, .0, Jpr=r, /=0 = Or,pSx in I'#(e%)). Furthermore, bg(r,ﬁ,ﬁiye,ﬁi,e)w:n o—p 18
supported in T'F(¢?). We then find the other symbols by induction for we have a triangular system
of equations. More precisely, the k-th equation ¢, =0 (k > 1), reads

(bf (Tv 9, p:ﬁ:,e?ﬁ:l:,e)af)t (T7 ovp:t,e7ﬁ:t,e)‘]ac(p:t,e7ﬁ:l:,e)) = df (Tv 97 P 77)

|r=r’,0=0"

where df is a linear combination of symbols of the form

(avbi)(r’ 0; ﬁ:l:,ev ﬁiﬁ)r:r’,&:@’ (a’y a‘i )(Ta 0, ﬁ:l:,ea ﬁ:‘:,e)T:T’/,ezgléklkg’y’y/ (T, 97 P 77)

with ko < k and 0y, g, a product of derivatives of order > 1 of (py ., 74 )(r, 0,7, 7', p,n) eval-
uated at r = ', 6 = #’. By the induction assumption (871)%2)(7“, 0,9+ s Mg )r=r 6=6" is supported
in T+ (), so we have

(r,0,p, 1y Jr=ro=0' € Iy (e%),
using (4.53). Therefore, Ok, iy (1,60, p, 1, )r=r 0= belongs to BE(e%) by (4.55) and b;" satisfies
the expected properties. O

4.5 The transport equations

In this subsection, we solve the time independent transport equations related to the phases con-
structed in Proposition 4.9. If we define (v*, w*) = (v, w*)(r, 0, p,n) by

() = (G s o) = (o s )
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these transport equations take the form
vE0,aF + wt - 9paT + yTat = 2%, (4.65)
where y*, 2* are given and a™ is the unknown function of (r, 0, p, 7). Such equations arise naturally
in the construction of the Isozaki-Kitada parametrix (see Section 5). They can be solved standardly
by the method of characteristics and therefore, we start with the study the integral curves of the
vector field (vF, w?).
Given (r,0,p,m) € I'F(€?), with € > 0 small enough (to be specified below), we denote by

Tt:t :Ti:tt(ragapan)v ot:t = oti(ﬂevﬂﬁ),

the solution to

i vE(r, 05, p,m), (466)
'+ +/.£ pt .
0t = w (Tt 79t 7p777)a

with initial data
g (r,0,0m)=r  03(r,0,p,n) =0.

In this problem, p and 7 are parameters. Equivalently,

d);t = ¢ti(7'»9,f’,77) (Tt 707& apan)v

is the flow of the autonomous vector field (vF,w*,0,0).

Proposition 4.14. There exist ¢4 > 0 such that for all (r,0,p,n) € TE(e2), the solution (v}, 0;")
(resp. (ry ,0;)) is globally defined on [0, +00) (resp. (—00,0]). There also exists C > 0 such that,
for all 0 < e < ey and all (r,0,p,n) € TE(e2), we have

(rE,0F,p,m) € TE(e), £t >0, (4.67)
and
rf¥ —r —2tp| < Ce® min(1, [¢]), (4.68)
0F —0] < Ce. (4.69)
Furthermore,
|D{es? (rif — v = 2tp)| + | DISR (6 — )] < Clangs- (4.70)

for (r,0,p,m) € TE(e2) and £t > 0.

Since St = St on Fi( ) the localization property (4.67) shows that ¢ still solves (4.66) on
I'F(e?) if one replaces (v, w*) by (v, wZ), the latter being obtained by replacing S+ by Sy . in
(4.64).

Proof. Here again we only consider the outgoing case. By (4.36), there exists Cy > 1 such that,
for all (r,0,p,n) € T (e2),

10-S1 = pl < Coe™"lnl, |7 (9y9)(r,0,865+)| < Coe™*"|n. (4.71)
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By (2.56), there exists C; > 1 such that, for all e > 0 small enough and all (r, 6, p,n) € Tt (e),

e "nl < Cre, el < C1€, (4.72)

—R(e)

the last inequality following from e < e. If € small enough, we may also assume that, for all

(r,0,p,m) € TS (e),
p>1/8.

Fix now M = 5CoC1, and for (1,0, p,n) € T'F(e?), consider T := T (r,0, p,n) defined by
T={t>0] (rf,0) is defined and r} >r+s/8, |0F —0| < Me*, Vse[0,t]}.

The set 7 is clearly an interval containing 0 and, if € is small enough, Proposition 4.3 shows that
(rf,0F,p,m) € T (e) for all s € T. Thus, by (4.71) and (4.72), we have

it —2p] <200Cre,  |0F] < CoCre?,  seT,

and, by possibly assuming that CoCie < 1/8, we have 77 > 0 on 7. Choosing Cp; > 1 as in
Proposition 4.3, we now claim that, if

€ <e/Cy and r > R(Cye),

then T :=sup7 = +oo. Assume that this is wrong. Then T is finite, belongs to 7 and, on [0, T,
we have
rf>r+s/8>r, 07 — 0] < C1e® < Mé?,

so, by Proposition 4.3, (rf,0F, p,n) € TF(Cuye) C T (e2) and, by (4.71), (4.72),
T
Ird —r —2pT| < Coef’"|n\/ e™%/8ds < Coe™"|n|T < CoCyeT, (4.73)
0
T
05 — 0] < Coe_QT|n\/ e=*/1ds < 4Che2"|y| < 5CoCye. (4.74)
0

This implies that 75 > r 4+ T'/8 and that |65 — 6] < Me? so the flow can be continued beyond T,
yielding a contradiction with the definition of T. The flow is thus well defined for ¢ > 0. Then,
(4.68) and (4.69) follow from the first inequalities of (4.73) and (4.74) with an arbitrary ¢t > 0
instead of T, since e~ "|n| < €2 for (r,0, p,n) € T'F(e?). If € is small enough, Proposition 4.3, (4.67)
shows that is a direct consequence of (4.68) and (4.69), using that e™" < €*.

It remains to prove (4.70) for j + |a| +k + |3] > 1. We consider 7} :=r;" — 2tp and 5: =0,
which satisfy

Ay Jdt =T(t, 75,8, p,n),  dB, Jdt =w(t, 7,0, , p.n), (4.75)
with
o(t,r,0,0,m) = (Orpy)(r+2tp,0, p,m),
w(t,r,0,p,m) = e 2r—dtp (Onq) (r + 2tp, 6,005 (r+2tp,0,p,m)) .

Using (4.36), we have, for all j/, o/, k', 3,

DL @) S () e e, 120, on I (e/C), (4.76)
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with C such that if (r, 6, p,n) € TS (e2/C) then (r + 2tp, 0, p,n) € T'f (e2/C). Note also that if € is
small enough and (r, 0, p,n) € I'T(¢?), we have (?j,?j,p, n) € I'f(e2/C), using (4.68), (4.69) and
Proposition 4.3. We then obtain (4.70) by induction by applying ng{fﬁ to (4.75). Indeed, using
Lemma 3.6 and (4.76), we have

d ja —+ T — jakB—+ pt _
DIk (7781 = (0r0l0.0) DI (.87) + O ),

where O(e=2Pt) = 0 for first order derivatives and, otherwise, follows from the induction assump-
tion. Since |8,.0(v,w)| < e 2!, Lemma 3.7 yields the result. O

We now come to the resolution of (4.65) in a way suitable to further purposes.

Proposition 4.15. There ezists €5 > 0 such that, for all 0 < € < e5 and all y* € Byyp(TE(€)) of
hyperbolic short range in T'F(€), the function

+oo
a}jfom = exp </o yi o ng;tds) ,

solves (4.65) on TE(e?) with 2+ =0, belongs to By, (I'E(€2)) and
affom — 1 is of hyperbolic long range in TE(e?).

In addition, for all z* € Buyy, (TE(€)), of hyperbolic short range in TE(€), the function

" +oo s
inhom — _/0 zFo ¢si exp (/0 yto (bfdu) ds,

solves (4.65) on TE(€?), belongs to Buyp(TE(€2)) and

+
Ainhom

is of hyperbolic long range in F;E(eg).
We need the following lemma.
Lemma 4.16. There exists e5 > 0 such that, for all j,a,k, B and all N > 0,
09050500 (rfF —r —2tp)| + (01050500 (6; —0)] < (r—1log(n)) ™™,

on T (e5), uniformly with respect to £t > 0.

Proof. By Proposition 4.3, there exists C' > 0 such that, for all € small enough and all s € [0, 1],
(r,0,p,m) €TE(?) = (r,0,p,sn) € TE(CE). (4.77)
Therefore, if Ce? < €7 and if we set X;5(r, 0, p,n) = (ri —r — 2tp, 0 — 0), we can write
1
XE(0.p.1) = XE(r0..0)+ [ (0,500, p.sm)ds e
on T'F(e?). The crucial remark is that X (r,0, p,0) = 0. Indeed, by (4.32) and (4.33), we have

0,8+ = p and 9pS+ = 0 at n = 0 (notice that (r,0,p,0) € T'F(ez) if Ce% < 3), so the solution to
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(4.66) is simply (r42tp, §) in this case. In addition, by (4.70), (X;5)>0 is bounded in Byyp (I (€2)).
Thus, for all N > 0,

0908 0L OB XE (1,0, p,m)| S €0} S (r —logl) ™Y, +£>0, (1,0,p,m) €TE(E),
which yields the result. O

Proof of Proposition 4.15. For simplicity we set 07 = 6,2838,’335. Then, using Lemma 3.6 with
Iy > 1, 87 (y* o ¢F) is the sum of

(0ry™) 0 9TOTE + (Dpy™) 0 ¢ - D0F + 510000 (0505 y*) o ¢ (4.78)
and of a linear combination of

(Oh M0 gy 0 ot (07irE L rE) L (0F () O (0F)u ), (4T9)

where (0)1,...,(0%),_1 are the components of #%, (0,0,k’, ') 4+ 3.~/ = ~, using the convention
and the notation of Lemma 3.6. By (4.70), we have

|00y 0 6301 | S (s —log(n)) 7 2e TPl (s)",

where k = 1if k =1 and j + |a| 4+ |8] = 0, and k = 0 otherwise. On the other hand, by Lemma
4.16, we have

(8ry™) 0 9570713 | S (s —log(m)) ™7~ 2(r — log(n)) ~(s)",
with the same & as above and j = j if j > 2, or j = 0 for j < 1. Similarly, we also have
[(@oy™) 0 6F - 06| S (rE — log(n) ™" x min (71 (- — log(n)) 7).,
while, for the last term of (4.78), we have

950000 (O505y ™) 0 9F| S min (7 1F1re=2M0sl, (15 o)) =7 1),

since e~ 1817 < e 1BIre=2Blls] for v — 1 — 2ps is bounded from below and ps > 0. Now, we remark
that . . i
(0o E ) | S ()™ (r = log(m)) ™™,

-1 1 1 1
where 77 is the number of o = on 83" (“),If’ (“)5’ for which jl1 =0, Ng=0if jll <1 for all { and Ny
is any positive number if j; > 2 for at least one [. We therefore obtain, if 3 = 3,

‘(479>| 5 <’I“§E _ 1Og<n>>—r—1—y1 min (6—7“\5\<S>V17 <T _ 10g<,’7>>u1—171—j<8>1]1) ,

since vy — 1 — j > 0 in the case where no r derivative fall on the components of 6§ and only r
derivatives of order at most 1 fall on r¥. If 8 # (', we have

|(4.79)| < min (e‘m‘ﬁ/'""‘"e"’g"'<8>”1, (rs —log(n)) 71" (r — 10g<17>>”1‘51‘j<8>”1) :

+

Since 7

— 1 — 2ps is bounded from below, ps > 0 (with |p| = 1) and using (4.17), we have

(r¥ —log(n)) "1 < (r —log(n) + |s[) "M
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All this implies that
|Djozkﬂ ( o ¢:|:) |

hyp

107050507 (v © 67 |

()77

S
< (r—log(n) +[s)77 1 (r — log(n)) ™7,

and since

+oo
/O (r — log() + |sl)~""ds < (r — log{n)) ™",

(using (4.17) on strongly outgoing/incoming areas), we see that the function f * y*optds belongs
to Buyp(I'E(e?)) and is of hyperbohc long range. This implies easily that the same holds for
apom — 1. One then checks that ahom solves the homogeneous transport equation by computing
d(ag o ¢F)/dt at t = 0%. One studies similarly the case of a O

hom inhom*

5 An Isozaki-Kitada type parametrix

In this section, we prove an approximation of e ~#"¥ @L(Xgi) when yZ is supported in the strongly
outgoing (+)/ incoming (—) region I'f(e) (see Definition 2.12 for these areas and Definition 2.1

for @L()) We recall that ¢ is an arbitrary index corresponding to the chart at infinity we consider
and where the symbols are supported (see (2.4) and (2.19)).

Here we will prove an L? approximation, valid for times such that 0 < £t < h~!. Basically, we
will show that, for any N, e~#*hP @L(Xf) is the sum of a Fourier integral operator and of a term
of order % in the operator norm of L?(M, cfa), uniformly for 0 <t < h~1.

We will therefore essentially prove half of Proposition 2.20, namely the estimate (2.79). The
dispersion estimate (2.78), following from a stationary phase argument on the Fourier integral
operator, will be proved in Section 7.

In the sequel, we choose an arbitrary ¢ € Z (see (2.2)). Since it will be fixed, we drop it
most of the time from the notation (in particular in phases, symbols) and keep it only for the
diffeomorphism W, the regions I'f,(-) and (5.3).

In Theorem 5.1 below, we use the classes of symbols Shyp(+) introduced in Definition 2.2 and
the Fourier integral operators (4.49) defined in Subsection 4.4. For these operators, the phases are
associated to the Hamiltonian p = p,, the principal symbol of P in the (-th chart (this notation is
consistant with (5.3)).

Theorem 5.1. For all N > 0, there exists e(N) > 0 such that, for all 0 < € < ¢(N), the following
holds: there exists a™(h) = aF + -+ + hNaj with

a(j)t7 o ,aﬁ € Shyp (Fi[s(f)) )
such that for all
Xz € Shyp (Ffs(eg)) ) (5.1)
we can find b*(h) = b + -+ hNb%;, with
by, .. 0% € Shyp (TE()) (5.2)

such that, for all T > 0, there exists C' > 0 such that

H efithP@L (Xf) . (Jff (ai(h)) e*itthJs: (bi(h))*) (@:1)*

<ChN 1

L2(d3)—L2(dG)
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provided
0<+t<Th™*, h € (0,1].

We emphasize that, by (2.21), (2.22) and (2.54), the symbols a*(h) and b*(h) are supported
in (e, 400) x V, e x R" C (Rxc + 1,+00) x V/ x R", for € small. Therefore the Schwartz kernel

of the operator Ji (a*(h)) e~ ithD} Jif (b (R))" is supported in ((Rx + 1, +00) x V/)? and hence
v (J;,F (a*(h)) e~ #*hD7 JE (bi(h))*> (w1

is well defined on the whole manifold (by the implicit requirement that its kernel vanishes outside
the coordinate patch U, x U, of M x M).

We also remark that e(N) could certainly be chosen independently of N. However this is useless
for the applications we have in mind and we will not consider this refinement.

Before starting the proof, we give some heuristic ideas about our parametrix. It gives a microlo-
cal approximation of e?"” for initial data microlocalized in strongly outgoing/incoming areas. In
such areas, e~ "7 is small and r is large, so the geodesic flow is close to the ‘free’ flow of p? uniformly
in the future/past, as a consequence of Proposition 3.8 basically. This closeness at the classical
level remains true at the quantum level in the sense that the flow e’ can be put in the normal
form P 3, ie up to the conjugation by time independent Fourier integral operators. We point out
that we state this approximation on a h~! time scale, but it would more generally hold for times
of order h=, for any N. To obtain a semi global in time parametrix, ie t > 0/t < 0, we would
need to combine our construction with a priori estimates on e*"* of local energy decay type, to

control the error terms given by the Duhamel formula.

Let us fix or recall some notation. We set
P/, = (WZI)*P(\I/L)* :p(T797DT’7D9) +171(7’707D7’7l)9) +172(7’70)7 (53)

with p the principal symbol and py of degree 2 —k in (p, n) for k = 1,2. For simplicity, we also use
the notation (4.48).

Recall finally that, for some fixed ¢, > 0 small enough, Proposition 4.10 proves the existence of
S solving

p(r,0,0.5+,095+) = 0, (r,0,p,m) € PIS(Q) (5.4)

Proof of Theorem 5.1. We denote for simplicity
As = Ji(@*(h),  Bi=Jy(0*(h).

By the Duhamel formula, we have

eTPUT Ay = Wy AgeT D — / e IRy (R2P, AL — ALR2D?)e " Prds.  (5.5)
0

Multiplying (5.5) by B4 (¥;1)* and denoting

Cy = xT(r,0,hD,,hDy)(k ® k,) — AL B%, (5.6)
Di(s) = (h*P, Ay — ALh>D?)e "hPipx (5.7)
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(where £ and R, are the cutoffs used in Definition 2.1), we obtain

e—ithP@)L(X;t) _ \I,ZfAie—ithDrBi(\Ijb—l)*
. t
e PO (U — %/0 e =Py D (s)(U 1) ds.

Using (2.8) with ¢ = 2, the theorem will then be proved if we find a®(h) and b*(h) such that
|Cel| L2y —r2@®n) S BN, 1D ()| p2®n)—r2@ny S AV, h € (0,1], (5.8)

uniformly with respect to 0 < s < Th™! for D(s).
For simplicity we only consider the outgoing case but the incoming one is of course completely
similar.

Construction of at(h). We first define (v, w™) by (4.64) and also set
yt = p(r,0,0,,00)S+ + p1(r,0,0,,0)S+. (5.9)

Lemma 5.2. There exists €, < €, such that y* belongs to Buy,(I'}((€,)) and is of hyperbolic short
range on T'f ().

Proof. Tt follows from (2.11) and (4.14) since Proposition 4.9 shows that yﬁ;;:o =0. O
Elementary computations show that, for all ag, ..., a}; € Shyp( €) and a*(h) = af +---+hNa},
N+2
h2P,J; (at () — J;F (at(h))h2D2 = Z ANCARR

where the symbols are given by
df = (p(r,0,0.54,005) — p2) af —i(vTora | +wt - Opa) | +yTal ) + Paf,
= —i(vTora | +wT Opa) | +yTal ) + Pal,, (5.10)

using (5.4) and assuming € < ¢,. Here, we have 0 < ! < N + 2 and the convention that af2 =

afl = aﬁﬂ = aﬁw = 0. In particular, the first three terms are given by

df = 0, (5.11)
idf = v oral +wt - Gpad +yTad, (5.12)
idy = v o.al +wT - 0pal +yTal +iPag. (5.13)

Using Proposition 4.15, Lemma 5.2 and assuming ¢, < min(é?, e5) we can define

+oo
amr,e,p,n)exp( / y+o¢:<r,e,p,n)ds), (r.0.p,m) € TF. (&)
0

so that a7 € Buyp(I5(é,)), ag — 1 is of hyperbolic long range in I'/(¢,) and

v oal +wt - Opad +ytad = on T} (&).
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Since the function [~ 3™ o ¢Fds is bounded on I'/(¢,) (see the proof of Proposition 4.15), we also
have

ag(r.0,p,m) 21,  (r,0,p,n) €T/(&). (5.14)

Using (2.11) and the fact that dar — 1 is of hyperbolic long range, it is easy to check that PLfLS_ is
of hyperbolic short range in I‘jfs(€?). By Proposition 4.15, we can then define

—+o00 s
af = z’/o (Pag) o ¢ exp (/0 yTo d)jdu) ds, on I} (e),

which belongs to By (I (€7)), is of hyperbolic long range in I'}'(¢,) and satisfies

vtoral +wt - 0pal +yTal = —iPad on I/ (e).

More generally, for 1 <1 < N, we can define iteratively
—+00 s .
d;r = z/ (Pbdltl) o g7 exp (/ yTo qﬁj;du) ds, on Fts(éf ),
0 0
which belongs to Bhyp(f‘ts(éfl)), is of hyperbolic long range in F;’fs(éfl) and satisfies
vtOa +wt - 8paf +yTa = —iPat,  on T (%),

using Proposition 4.15 and the fact that Pbdltl is of hyperbolic short range if dl"’ is of hyperbolic
long range. Hence, using Lemma 4.4 with ¢ < éfN and setting

afzsz_)ﬁdf, 0<I<N
with the a;" defined above, we have constructed ag, ..., a}; € S}Jl;p(e) with ag satisfying (4.63), by
(5.14). Furthermore,
& € §f(e) for 0<I<N+2, (5.15)
df =0 on Fj:s(e2) for 0 <I<N. (5.16)
Construction of bt (h). Given xI € S}Ep(eg), we then simply choose the symbols bg, ..., bk

according to the Proposition 4.13, with € < min(€fN,eﬁ).
Justification of the parametrix. Since & ® %, = 1 near the support of x7, we have

|| (.0, ADy, hDg) = X (1,0, hDrr, hDo) (R @ )| gy oy S B € (0,1],

for all M, using the standard symbolic calculus, the Calderén-Vaillancourt Theorem and the fact

that S}‘g,p(e) C Cp°(R?™). Using Proposition 4.13, we therefore obtain

[tea WVEL he (0,1).

<
(R"‘)—?LQ(R") ~
It remains to consider D, (s) which reads

N+2 N , .
Dis)= 3 30 WA )e PRI

=0 m=0

By (4.62) and (5.15), the part of the sum where [ > N +1, has an L? operator norm of order AV *1.
Once divided by h and integrated over an interval of size at most h~!, the corresponding operator
norm is O(hN~1). The control of the other terms of the sum will follow from the next result.
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Proposition 5.3. If € is small enough, then, for all 0 <I,m < N and all M > 0, we have

7 (e =22 g (v ChM,  he(0,1], 0<s<Th"

L2(R™)— L2 (R™)

The proof is based on a fairly elementary non stationary phase argument. To control the
operator norms of the kernels obtained after integrations by parts, we need the following rough
lemma.

Lemma 5.4. Fora € Cy° (R3™) compactly supported with respect to p, let us set
[alif (r,0,7",60") = (2wh) ™" //e%(SJr,e(",G,pm)—svz—S+,e(r’,9',pm))a(r7977,/79/7/),n)dpdm

using St defined in Proposition 4.10. Denote by A; : L2(R™) — L2(R") the operator with
Schwartz kernel [a]}". Then, there exists ng(n) > 0 such that, for all € small enough,

HAZHLQ(RTL)HLQ(RW,) < Cch™™(s)™ max sup ||07al|eo,
[v|<no R3n

for all h € (0,1], all s € R and all a € Cg°(R3™) satisfying

supp(a) C {|p| < 10}.

Proof. 1t is a simple consequence of the Calderén-Vaillancourt Theorem by interpreting AZ as the
pseudo-differential operator with symbol

e%(s@+,e(Tﬂ,p,n)—sz—<p+,f(f’/,9’7pm))a(r, 0,760, p,n),
where ¢ . is defined in Proposition 4.10. 0

Proof of Proposition 5.3. We notice first that, by Proposition 4.9 and (4.36)

9 (S4(r,0,p,m) — sp* — S+ (r',0',p,n)) =1 — 1" —2sp+ O(€%), (5.17)
Oy (S4(r,0,p,m) —sp” — Sy (r',0',p,m)) =0 — 0"+ O(e~Y9), (5.18)

on the support of d; (r, 0, p,n)b}, (.0, p,n). On the other hand, by construction, we have

d?_ =qi! (U+arXe2—>e + wt - 89X52—>e) dl+_1 + PL(X€2—)Ed7_—2) - X62_,6PL(AI?__2,

(with the convention that at, = a*, = 0). Using in particular that

wt = e "(0yq)(r,0,e7 "0 S+),
j

d; is a sum of terms of the form c(r, 0, p,n)d4 (e "9p)*x 5 ., with j + |a| > 1 and ¢ € B (e).
Using the form of ij_% given by Lemma 4.4, we see that, on the support of such terms, at least
one of the following properties hold

et<r<e? ( )
p(r,0,p,n) <1/4— € or p(r,0,p,n) >4+ €, (5.20)
A2 < 2 < 2, (5.21)

dist(0,V,) > €*, (5.22)
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for some fixed 0 < k < 1 in (5.21). For terms such that (5.19) holds on their supports, we have
(5.17) < e 2 —e 3 —2s5p+C < —1—2sp. (5.23)

for € small enough and integrate by parts w.r.t p. For those satisfying (5.20) on their supports,
then we must have
PP —1/4 < —€2 or PP —4> €

since e2"|n|? < €2 in any case, whereas on the support of bl+, where p(1/,0",p,n) € (1/4—€3,4+¢3)
and e~ |n|? < €,
pP—1/4> - and PP —4<é,

so that the amplitude vanishes identically, again if € is small enough. For those satisfying (5.21)
on their supports, we have e"|n|=! < e*72. Since e™" |n| < €2, we get

e <C+(14k)ne<0,

which implies again that (5.17) < —1 — 2sp, if € is small enough. Thus on the supports of terms
satisfying either (5.19) or (5.20) or (5.21), we have |(5.17)| 2 (s). By standard integrations by parts,
the kernel of corresponding operator can be written, for all M, as in Lemma 5.4 with amplitudes
of order (h/(s))™ in C$°(R3"). Hence, their L? operator norms are of order (h/(s))™ =" with an
arbitrary M.

For the remaining terms satisfying (5.22) on their supports, we remark that |¢' — 0] > €
(otherwise dist(6,V,) < |0 — 0| +dist(0,V,) < € + €% < €*) hence

5

|(5.18)] = €°.

Thus, for all M > 0, the kernel of the corresponding operators can be written as in Lemma 5.4
with amplitudes of order h™ in C$°(R3"). Since M is arbitrary, their L? operator norms are of
order M if |s| < h™L. O

This completes the proof of Theorem 5.1. g

6 Geometric optics and Egorov Theorem on AH manifolds

As in the previous section, we fix here an arbitrary index ¢ corresponding a coordinate patch and
then drop it from the notation in symbols, phases, intervals, etc...

6.1 Finite time WKB approximation

In this subsection, we give a short time parametrix of e~*"POp, (y*) when x= is supported in
an outgoing (+) or an incoming (—) area. This parametrix is the standard geometric optic (or
WKB) approximation which is basically well known. Nevertheless, in the literature, one mostly
find local versions (ie with x € C§°) or versions in R™ for elliptic operators. Here we are neither
in a relatively compact set nor in the uniformly elliptic setting so we recall the construction with
some details.

Analogously to Section 5, we prove here an L? approximation. The related dispersion estimates
leading to (2.80) will be derived in Section 7.

We also emphasize that, although we shall prove this approximation with a specified time
orientation (ie ¢t > 0 for x* and ¢ < 0 for x ™), this result has nothing to do with outgoing/incoming
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areas; in principle we should be able to state a similar result for any y supported in p~*(I) and
for times |t| < 1. We restrict the sense of time for only two reasons: firstly, because it is sufficient
for our purpose and, secondly, because we can use directly Proposition 3.8 (we should otherwise
give a similar result for the geodesic flow for ¢ in an open neighborhood of 0).
Fix
Lelel;e (0,+OO),
three relatively compact open subsets of V (see (2.22)),
VieV,elzeV/,

and three real numbers
—1l<o<oy<oz<l.

For some Rj3 large enough to be fixed below, we also choose arbitrary Ri, Re real numbers such
that
Ry > Ry > Rs.

Theorem 6.1. For all R3 large enough, there exists twkp > 0 and a function
¥ € C™ ([0, £twks] x R*",R),
such that, for any
X" € Suyp (T7 (R1, Vi, 11, 01)) (6.1)

we can find
ag(t)a .. ,U,ﬁ(t) € Shyp (FZ‘:(RQ; ‘/2712a0-2)) )

depending smoothly on t for 0 < +t < twkg, and such that, if we set
ay(t,h) = ag (t) + -+ hVay (1),

the operator defined on C§°(R™) by the following kernel
(T3 (t,ax (6, 1))] (t,7,0,77,60") = (2ch) ™" / / et (B2 Crbpm=r'o=0"1) 42 (¢ h. 10, p,)dpdn,
satisfies, with 1, the characteristic function of (Rs,+00) x V3,

< CRNT (6.2)

—ithP +\ g+ 7L + —1\*
H © Op, (x7) = LT (b an(t ) 1 (V.7) L2(M,dG)—L?(M,dG) —

for
0 < £t < twks, h € (0,1].

In addition, the functions ©F are of the form

SE( 0, p,m) =rp+0-n+ (5570, 0,m) —rp—1-n) Xa_s(r, 0, p,m),
with Xzi_,3 € Suyp(TF(R3, V3, I3,03)) such that Xét_,?, =1 on T (Ry, Vs, I5, 02), and some bounded
family (5 (£))o<tt<twin i Buyp(DF(Rs, Vs, I3, 03)) satisfying

{atzgﬂ +p(r,0,0,5F,0,5F) =0, 63)

E(:)t(ovrvgvpvn) :Tp‘f‘@??
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and

|Df1$§5 (Zi<t7 T, 9; P, 77) —Trp— 9 N/ tp(ﬁ 9, P, 77)) | S Cjakﬁtza (64)

both for
0 S +t § tWKB and (r797p77’) € F?:(Riia ‘/23;[3703)'

We also have
(Zi(t,rﬁ,p, n)—rp—0- n)ositStWKB bounded in  Shyp (FLi(Rg,, Vg,Ig,Ug)) ) (6.5)
Finally, for all0 < j < N,

(o}

7)) e ticrnn, 18 bounded in Sy (TE (R, Va, I, 02)) . (6.6)

Notice that V3 @ V/ so it makes sense to consider 6\pL (xF) (see (2.23)).

In principle it is not necessary to have R3 large to get such a lemma, but this will be sufficient
for our applications. The interest of choosing R3 large is simply to allow to use directly Proposition
3.8.

Note also that, by (6.6), the kernel of ._7hi (t, aﬁ(t7 h)) 1, is supported in ((R3, +00) X V3)2.

The rest of the subsection is devoted to the proof of Theorem 6.1.
We need to find X4 and a¥(t, h) such that

T (0,a%(0,h)) = x*(r,0,hD,, hDy), (6.7)
(hDy + B?P) JiF (t,ax(t,h)) = KNT2R%(t,h),
where P, = (¥, 1)*P¥} and
||RJ:‘\:[(tv ) L2@ny—r2@n) < C, h € (0,1], 0 < £t < twks- (6.9)

Indeed, if (6.7), (6.8) and (6.9) hold then
U TE (tag(t,h) 1, (U1 — e PUi*(r,0,hD,, hDp)1, (U,1)" =

L

t -
ihN+1/ e_i(f’_s)h’P\I/fRN(s, h1, (\I/L_l)* ds
0
will yield (6.2) since, for all M > 0,

10\ (r, 0, hDy, hDg)1, (¥;1)" — Op, (x < CpyhM

)Hm M,dG)—L2(M,dG)

by standard off diagonal decay (see Definition 2.1 for @L), since 1, = 1 near II,. g (supp(x¥)).

To get the conditions to be satisfied by ©% and a%, . ,aﬁ we observe that
N+2
(hDy + h2P,) JiF (t,a%(t, b)) Z W T (8,65 (1)) | (6.10)

where, if we additionally set an = afl = aﬁﬂ = an\EH_Q =0

= (0,5F + p(r,0,0,5%,095%))a; + i~ 10y + TF)ai_, + Pai_,, (6.11)
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with
TE =20,%%0, + (0,q)(r, 0,6 "0pX%) - e "0 + (p + p1) (7,0, 0r, 09) X7, (6.12)

where ¢ = ¢, is defined in (2.13) and p; is the homogeneous part of degree 1 of the full symbol
of P,. To obtain (6.7), (6.8) and (6.9) it will therefore be sufficient to solve the eikonal equation
(6.3), then the transport equations

(0 + TH)aT =0, aZ(0,.) = x*(), (6.13)

(0 + TH)af = —iPai |,  ai(0,.) =0, (6.14)

for 1 < k < N, and finally to get an L? bound for Fourier integral operators of the form jhi (t,a)
(using the Kuranishi trick).

To solve (6.3), we need the following lemma for which we recall that (rf, 8%, p*, n') is the Hamil-
tonian flow of p.

Lemma 6.2. For all —1 < oeix < 0Ly < 1, all open intervals Ik € I, € (0,+00), all open
subsets Veix € VYye € V/ and all Reix > R,y large enough, there exists t1 > 0 small enough such
that

W s (r,0,p,m) — (', 0%, p,)
is a diffeomorphism from T'E(RLy, Vi, ILy, 0l) onto its range for all 0 < £t < t; and
I (Reik, Vi Leik, Teix) C vl (FLi( eiter Vil Iéikaaéik)) for all 0 < £t < ty.
Proof. Let us choose first /4, € R, I}, open interval and V), open set such that
Tl < Oeiic < 1, I € Iy € (0,400) and Vi € Vi € V).

We also choose R, > 0 large enough such that Proposition 3.8 holds with o = |0/, | and R = R,
We then choose arbitrary Ry and R'eik such that

/ 1/
Reix > Repye > Reix,

+ +
and then X;=, € Shyp (T (R, Ve, Tihi, o)) such xi—., = 1 on TF(Riy, Vi, T 0t - '£he

existence of such a function follows from Proposition 4.1 i). In particular, x;-.,, and 0,0, n X7y
are bounded on R?”. For £t > 0, consider the map

t t
el iR 5 (r,0,p,n) </ 2p3ds,/ e " (8nq)(rs795,e_rsns)ds> Xt (r,0,p,m) € R™, (6.15)
0 0
so that, by the motion equations,
\IIZI: = IdR2n + (83:70) on Fit( /eik7 e/ika Iéilmatleik)'

By Proposition 3.8 we have [0y.9,,,¢%| < [t|, hence Idgzn + (¢%,0) is a diffeomorphism from R?"
onto itself, for all £¢ > 0 small enough. Therefore, it remains to show that, if ¢ is small enough
and (r,0, p,n) € TF(Reix, Veik, Leik, Ocix) is of the form

(7",97[), 77) = (’I“/, 9/’,0',77/) + (Eﬁt(rlv 9/7p/7 77/)7())7
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then (7,0, p',n') € TF (R, Vi, Iy 0l ). We have trivially p = p' and n = /. By Proposition

eik’ ‘e
3.8, |l | S |t| on R?*™, so [r — 1’| + 10 — €| < |t], hence ' > R/, and 0’ € V,_if ¢ is small enough.
Furthermore, by writing

q(r,0,e7™n) — q(r’,0' e n) = q(r,0,e7"n) — q(r', 0, e ") + (1 — e 2" Ng(r 0 e "),

we see that
|P(T»€,P» 7’) _p(rl,el’p’ 77)| g |t|

using the boundedness of |e_rlv7| and the Taylor formula. Hence
p(rlaglapv 77) € Iéik and :l:p > 7U;ikp(7nlaol>p, 77)1/2

if ¢ is small enough, since p(r, 0, p,n) € Lk and £p > —oeup(r, 0, p,n) /2. This completes the
proof. O

Let us now fix ek, I, Veik, Vi and oeik, 0l as in Lemma 6.2 with the additional conditions
Veix = Vs, Loy = I3, Oeik = 0.
We denote by Wi the inverse of W', and define (ry,6;) = (r1,0;)(r, 6, p,n) by
U (r,0,p,m) = (r1, 00, p,m) € T (R, Vi Lhises 0

if (1,0, p,m) € T'F(Reik, Veik, Teik, Oeiic) and 0 < #+t < t;. Here t1, Ry and R/, are those given by
Lemma 6.2.

Proposition 6.3. For all Rs > Rk, there exists tejc > 0 such that
S5 (6,70, p1) i= 1ep + O -0+ tp(re, 0, o),

solves (6.3) on T'F(R3, V3, I3,03) for 0 < +t < tek, and such that

(SE(t,r,0,p,1m) =70 — 0 - N)o<tict, 15 bounded in By (Ff(Rg, Vs, I3,03)) . (6.16)
Proof. That E? solves the eikonal equation is standard so we only have to show (6.16). Since

Syt 0.0m) =1p+0-n+ (re—r)p+e (0 —0) - e+ te 2T g(ry, 0,67 ),
(6.16) would follow from the following estimates

DI (re = 1) + [Digs? (" (6, = 6)) | < Cang, (6.17)

for 0 < 4t < +tey and (7,0, p,n) € I'F(Rs3, Va, I3, 03). The motion equations yield

t ¢
rt=r4+ / 2p%ds, o' =0+ / e (Onq)(r®,6°, efrsns)dsa (6.18)
0 0

so, by Proposition 3.8 with R/, of Lemma 6.2 and by choosing t.ix small enough, we see that, for
0 < £t < tej, we have

|3r,9(7“t’9t) —1d,| <1/2, on FLi(Réikv‘/gikaIéikvoéik)v
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where |.| is a matrix norm. Therefore, by differentiating the identity (rf, 6%)(rs, 04, p,n) = (r,0) one
obtains, similarly to Proposition 4.8,

| DI (1, — )| + | DI%*F (9, — 0)| < Cjars, (6.19)

hyp hyp

for 0 < +t < te and (r,0, p,n) € I'F(Rs3, V3, I3, 03). This proves the expected estimates for r; — r.
The second equation of (6.18) evaluated at (r, 6, p,n) yields

t
(000 = [ @) 0 e i) (6.20)
0
where xf = z°(r, 0, p,m) for x = r,0,n. Combining (6.19) and Proposition 3.8, we have, on
FEE(R37‘/37I3aO-3)a
DYt (ry = )| + | Dlan? (07 — O)| + |Dia” ;= m)| < Cianp, 0 < %5 < L,

from which the estimate of the second term of (6.17) follows using (6.20). O

We now solve the transport equations. By (6.12), we have to consider the time dependent
vector field (vt , Wi ) defined on T} (R3, Vs, I3, 03), for 0 < £t < te, by

v (8,p)(r,0,0, zgt,agzi) 20, %%
L) = )= ( L, . ). (621)
Wy (9yp)(7,60,0,5F, 05X7) e 2" (Onq)(r,0,00X7)
We then denote by qb;t_ﬁ the flow, from time s to time ¢, of (vti, wti, Og») namely the solution to
6t¢a—>t - ( gt(qﬁi[—)t)’wti(d)si—nf)vo)’ ¢s—>s(r ¢ y Py 1] ) (T,H,p, 77)' (622)

Lemma 6.4. For all I, open interval, o € R and Vi, C R™™! open subset such that
Riy > Rs, Vir € Vs, I, € I3, -1 < oy < 03,
there exists 0 < ty <t small enough such that:
q{);it is well defined on Ff[(Rtr, Virs Ity 0tr), for all 0 < 45 <tg, 0 < £t < i, (6.23)
and

(D;Ig},;ﬁ (65— 10)| S 1. on TE(Rur Vir Ly o), for 0< s, 5t < o, (6.24)

By (6.23), we mean in particular that
¢s—t (TF (Rex, Vv, Lirs 0c)) C T (Rs, Vs, I3, 03), 0 < s,k <t (6.25)

The estimate (6. 24) can be restated by saying that the components of ¢= , — Id are bounded

families of Byyp (I'} *(Rir, Var, Ly, 0tr)) for 0 < 45,4t < t5.

s—t

Proof. For all § > 0 small enough, we have

|T - T/‘ + |9 - 0l| S 0 and (T707p7 7]) € F?(Rtrv‘/‘chltraatr) = (T,70I7p7 T’) € F?:(Ri% V37]37U316'26)
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s—t)

by Proposition 4.2. Denoting by (r;it, Gfﬁt, p,n) the components of ¢
of the problem

they must be solutions
t
(850 =00+ [ )k 65 i

By (6.16), we have

(02, wE)] + 9o (02, 0E) < C, (6.27)
on I'F (R, Vi, I3,03), for 0 < +7 < tep.. Therefore, the sequence u (t) = ul(t,s,r,0,p,n) defined
by

+ + ! +
FE) =0, w0 =00+ [ (F ) (). p i

is a Cauchy sequence in C°([0, £t5], R") for all (r,0, p,n) € TF(Rir, Vir, Lir, 04r) and 0 < £5 < to,
for some to small enough independent of (r,6, p,n). Indeed, using (6.26) and choosing to small
enough so that ZkZO(Ctg)kH < 4, a standard induction using (6.27) shows that

Ui (1) = uj (D] < (Cta)*H,

which makes the sequence well defined and convergent. This proves (6.23). We then obtain (6.24)
by induction by differentiating the equations in (6.22). This proof is completely similar to the one
of the estimate (4.70) in Proposition 4.14 (and much simpler for it is local in time) so we omit the
details. O

In the next proposition, we denote by qti = qg{(r, 6, p,n) the function defined on [0, +teix] ¥
TE(R,V,1,0) by
G = (p+p1)(r,0,0,,0) 7,

which is involved in (6.12).
Proposition 6.5. Choose Ry, V;y, Ity and oy such that
Rs > Ry, > Rs, Vo € Viy € V3, I € I, € I3, 09 < O < 03
Then, there exists ty, > 0 small enough such that, for all x* satisfying (6.1), the functions
a(ﬂf, .. .7aﬁ 0 [0, £ty] x R*™ — C,
defined iteratively by

t
ag (t) == xF o ¢ gexp (/ g o ¢ﬁs)
0

and
t

t
aif(t) == — ; i(Pai ;) (s1,0i.,,) exp ( / a o¢i52d52> ds;, 1<k<N,
S1

on TF(Ry, Va, I, 09) and by 0 outside are smooth and solve (6.13) and (6.14). Furthermore, for
all0 < k<N,

(aif(t))o<ti<t, is bounded in Shyp (FLi(Rg, Va, Iz, 05)) . (6.28)
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Proof. Let us fix Ry, V., I{, and of, such that

troy
Ry > R, > Ry, Vo @ Vi, @ Vi, L eI, € I, oy < 0py < Oy

By choosing 0 < ¢, < to small enough, we then have, for all 0 < +£s, +t < #y,,

¢, (TF (R, Vi, I, 01)) C© TE(Ry, Vo, I, 00), (6.29)
¢;tﬁt (FLi(RQﬂV%I%J?)) - FZ:(R‘/ch/t/r?Itlwoér)? (6'30)
(bsiat (Ff (Rér’ Vclrv It/ra Uér)) C FLi<Rtr7 Virs Lo O'tr)- (6'31)

This follows from Proposition 4.2 and the fact that |¢F,, — Id| < |t — s|, which comes from
the integration of (6.22) between s and ¢, using (6.24). By Lemma 6.4, the flow is well defined on
I'*(Riy, Vir, Itr, 011 ), therefore the condition (6.31) ensures that we have the pseudo-group property

¢ oot =o¢t 0 < =+s, +t, +u < t, (6.32)

s—u?

on TF(R.,, V., I!.,0l.). In particular, ¢if o ¢F Id on this set. Therefore, by (6.30), we have

s—t
F?:(RQa ‘/27 127 02) C (bit—m (F?(Rérv ‘/‘5/1‘7 Iéra 01/;1')) .

This implies that the map
(tv Ta 9, pv 77) — (ta Qfgt—)t (Tv 07 pz 7)))

is a diffeomorphism from (0, +ti,) x IF(R.,, Vi, I/, ol,) onto its range and that this range contains
(0, ti;) x TF(Ry, Va, Iy, 02). Restricted to the latter set, the inverse is given by (t, ¢ .,) which
shows that ¢tiﬂs is smooth with respect to ¢t. Furthermore, by differentiating in ¢ the relation
¢ ., 0 ¢L ., =1d, one obtains

Qbis + (Orodin) - (i W) =0, on T (R, Vo, Iz, 0),
for 0 < &t < t,. Using this relation, one easily checks that ag solves (6.13) on T (Ry, Va, Iz, 02).

In addition, if
(T7 97 P 77) € F%(Rér, thr> It/rﬂ O—ér) \ F?:(R27 Va, I, 02)7

we have qbf:O(r,G,p, n) ¢ supp(x*) otherwise (1,0, p,n) € ['F(Ry, Va, Is,02) by (6.1), (6.29) and
(6.32). This shows that, extended by 0 outside I'*(Ry, Va, Ia, 02), a§ is smooth. The property
(6.28) for k = 0 is then a direct consequence of (6.24). We note in passing that we have

supp(ag (1)) C ¢(T—>t(SUPP(Xi))~

The proof for the higher order terms af, k > 1, is then obtained similarly by induction using that
supp(P,af_,(s1)) C ¢0i_,sl(supp(xi)) for all s;. O

Proof of Theorem 6.1. It remains to prove (6.4), to globalize E%, to prove (6.5) and the bound
(6.9). By Proposition 4.1, we can choose

Xa3 € Snyp(I; (Rs, V3, I3,03)) such that x5 .5 =1 on TJ(Ry, Va, Iz, 09).

We set

Ei(t77"797p777) :rP+977+X2iﬂ3(Ta9aPa77) X (E[:)t(tvrvoapvn)frpfo'n)'
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It coincides with E(jf on [0, +tepr] x T (R, Va, Iz, 02) so it is a solution to the eikonal equation on
[0, £twikB] x ['F(Ry, Va, Is, 02), for any 0 < twkp < tek. Furthermore, (6.16) implies (6.5) and,
by using

t
S5 (t,r,0,p,m) =rp+0-n+ / p(r,0,0,55 (s), 0555 (5))ds, (6.33)
0

we get (6.4) since (6.16) and (6.33) itself show that the components of (9,X% (s) — p, 9gXF(s) —n)
are O(s) in Buyp (T (R3, V3, I3,03)).

To prove (6.9), we use the Kuranishi trick which is as follows. By the Taylor formula, we can
write

SE(t,7,0,p,m) —XE (0, p,n) = (r— )T (t,r,0,77,0  p,n) + (0 —0') -7 (t,r,0,0,0", p,n).
Using again (6.33) and (6.16), we obtain
|00095:07,08 9502 (7%, 75)(t,r,0,7",0", p,1) — (p.)) | < Chagranslt], (6.34)

for (r,0,7',0',p,n € R3") and 0 < £t <t The latter implies that, for all 0 < +t < tywkp small
enough and all (r,0,7',0") € R?", the map

(psm) = (55, 71),

is a diffeomorphism from R™ onto itself. Furthermore, proceeding similarly to the proof of (4.52)
in Lemma 4.11, we see that its inverse (5,7) — (p™,n*) satisfies

|8¥,838£:83/8§8§ ((pi’ni)(t,r,e,rl,el’ ﬁa ﬁ) - (ﬁa ﬁ)) | < Cjaj’a’kﬁa (635)

on R3" uniformly with respect to 0 < £t < twkp. Thus, for any bounded family (¢ (£))o<t<twis
in Shyp (T (Rg, Va, I, 02)), the kernel of J; (¢, a*(t)) J;F (t,a*(t))", which reads

(27Th)7”/e'%(Zi(t"r’e’p‘")fzi(t’r/’el’p’"))ai(t,7“,G,p, nax(t, ", 0", p,n)dpdn, (6.36)
can be written
(2mh) ™" / R =P O=Y DB (¢ 7 0,4, 5, 7)dpdi, (6.37)
with B(t,.) bounded in C{°(R3") as 0 < £t < twkp. By the Calderén-Vaillancourt Theorem we
obtain the uniform boundedness of the operator given by (6.37) hence
75 (8 a* (1) |2 @n)—r2(rn) < C, 0 <+t <twks, h € (0,1],

where C depends only a finite number of semi-norms of a* () in C$°(R?"). Using (6.10), (6.11)
(with ai (t) solutions to the transport equations) and (6.28), the bound above yields (6.9) which
completes the proof of Theorem 6.1. O

6.2 Proof of Proposition 2.24

To prove Proposition 2.24, we first need a version of the semi-classical Egorov Theorem in the
asymptotically hyperbolic setting. We recall that ®* = (r?, 0%, p*, n') denotes the Hamiltonian flow
of the principal symbol p of P.

Fix V € V/ an open subset, I € (0,+00) an open interval and —1 < o < 1.
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Theorem 6.6. If R > 0 is large enough the following holds: for all T >0, all N > 0 and all
a € Swyp (TE(R,V,1,0)), (6.38)
we can find
ao(t),...,an(t) € Shyp (' (supp(a))), 0<+t<T, (6.39)

such that,

e~ ithPOp, (a)e'thP Z W Op < Ong.ah™ T, (6.40)

LQ(M,dAG)—>L2(M,dAG)

for all 0 < £t <T and all 0 < h < 1.

This theorem is basically well known. Here the main point is to check (6.39), namely that
ao(t),...,an(t) € Buyp (P! (supp(a))). Notice that, by Corollary 3.10, ®* (supp(a)) is contained in
the same chart as a in which it is therefore sufficient to work.

Using the group property, it is sufficient to prove the result when 7" is small enough (depending
only on V,I,0). To check this point, we choose open sets Vi, Vs such that V€ V3 € Vo, € V/.
Then for some C' > 0 and all R large enough

' (TF(R,V,1,0)) CTFH(R—-C,Vi,1,0), +t >0,

and
' (TF(R—C, Vi, 1,0)) CTF(R—2C,Va,1,0), +t > 0.

This follows from Corollary 3.10 and the fact that p* can be assumed to be non decreasing, using
(3.22). Thus, it is sufficient to prove (6.40) for 0 < £+t < ¢ with € > 0 small enough independent
of a € Spyp (TF (R — C, V4, 1,0)). Indeed if this holds, it holds for a satisfying (6.38) and

zshP@) —zehP Z hk _|_ hN+1R (h, 8)

with Ry (h, €) uniformly bounded on L?(M, cf@) and ay,(¢) € Suyp(TF(R—C, V1, 1,0)), with a(e)
supported in ®¢ (supp(a)) more precisely. Conjugating the expression above by e~ """ and then
applying the same result with ax(¢) instead of a we can write

128}LP@) —QIEhP Z hk ak 25 hN+1RN(h7 25)7

where ay(2¢) is supported in ®2¢ (supp(a)) which is still contained in I'* (R — C, V1,1, 0) and thus
allows to iterate the procedure.
The interest of considering small times is justified by the following lemma.

Lemma 6.7. Fixz Vi,1,0 as above, then for some Ry > 0 large enough and ¢ > 0 small enough,

‘D“kﬂ (@)~ —Ids,)| < Cjars  on @ (TE(Ry, Vi, 1,0)),

hyp

forall0 < £t <e.
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Proof. Using the identity
t
d( — 1dy,) = / dH, (°)dP* ds
0
and Proposition 3.8, we have |d (®* — Idy,) | < |t| hence |(d®!)~Y < 1 on I'F(Ry, Vi, 1,0) if Ry is

large enough and ¢ is small enough. We then obtain the result by applying Dfl%w to @' o (P!)~1L
and using the Faa Di Bruno formula. For instance, if j = k = |a| = 0 and || = 1, we have

d(pl\f(qﬂ)_lerag ((q)t)71 - Id?n) = (IdQn — d@f(@t)a)eragldgn

where, using Proposition 3.8, the right hand side is bounded for this is simply eraf; (Idy, — @)
evaluated at (®%)~!. Higher order derivatives are studied similarly by iteration using Lemma 3.6.
O

Naturally, (®!)~1! is the reverse Hamiltonian flow, namely flowing ® (I'F(Ry, V1, I, o)) back to
I'*(Ry, Vi, 1,0). More precisely, for 0 < +t < ¢,

d

(@7 0, p,m) = —H, ()7 (0, p,m) . (1,0,p:m) € @ (TE(R1, Vi, 1,0)) . (6:41)

We prefer to keep the notation (®!)~! on ®*(I'} (R, Vi, I, o)) rather than using &~ since we have
only studied ®¢ for ¢ > 0 on outgoing areas and ¢ < 0 on incoming areas.

We have essentially all the necessary tools to solve the transport equations considered in the
following lemma.

Lemma 6.8. There exists C > 0 such that, for all R large enough, the following holds: for all
Qini € Shyp (Fbi (R7 ‘/, ], U)) and

(f(t))o<xi<e a bounded family of Shyp (FLi(R -C,W,1,0)),
smooth with respect to t and such that
supp(f(t)) C @' (supp(aini)),

the function defined for 0 < +t < e by

_ { o (@)1 + [1 f(s) 0% o (®')'ds on ¥ (supp(a)) ,
a(t) := )
0 outside,

is smooth and satisfies
Ora(t) +{p,a()} = f(t),  a(0) = ain:. (6.42)
Furthermore
(a(t))o<ti<e is bounded in Snyp (TF (R~ C,V4,1,0)). (6.43)

In (6.43), we consider I'F (R — C, V;,I,0) for it is independent of ¢ but, by construction, a(t) is
supported in the smaller region ®f(supp(a)).

Proof. To check the smoothness of ag(t) it is sufficient to see that aj,; o (®%)~! and f(s)o (®!=%)~!
are defined and smooth in a neighborhood of ®! (supp(a)) where they vanish on the complement
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of ®! (supp(a)). Indeed (®!)~! is defined on ®* (I'(R — C,V4,1,0)) and if (r,0, p,n) belongs to
ot (I't (R — C,Vi,1,0)) but doesn’t belong to ® (supp(a)), then acirc o (®)~1(r, 8, p,n) = 0 other-
wise, (®')~1(r,0, p,n) should belong to supp(a) and thus (r,, p,n) should belong to ®!(supp(a)).
Similarly f(f f(s) o ®% o (®V)~L(r, 0, p,n)ds must vanish otherwise there would be an s between 0
and t such that ®° o (®)~1(r, 0, p,n) € ®*(supp(a)) implying that (r,0, p,n) € ®!(supp(a)). Then
(6.42) follows directly from (6.41) and (6.43) follows from Lemma 6.7. O

Proof of Theorem 6.6. By Lemma 6.8, the solutions of the transport equations (6.42) belongs
t0 Shyp (I'F (R — C, V4, 1,0)). The proof is then standard (see for instance [27]). O

Proof of Proposition 2.24. We start by choosing € > 0 and § > 0 according to Proposition 2.16
with ¢ = twkp. Then, using (2.26), (2.37), (2.38) and Theorem 6.6, it is straightforward that, for
all T Z tWKB and all N Z O7

O (hE —ithP . (pt * N
||@9L(bl,intcr)e it Q?L(bl,intcr) ||L2(@)HL2(3@) S CT,I,Nh ) h e (07 1]7 tWKB S +t S T.
It is therefore sufficient to show the existence of T large enough such that,

‘|Q7L(b?,:inter)eiithpq%(b?,:inter)*|‘L%J@)HL%J@) < Cl’NhN’ h e (O’ 1]’ I<+t< 2h71' (644)
For simplicity we consider positive times and set B = @L(bfinmr). For T to be chosen, we write

B(T) — e_iThPBeiThP.

)

o—ithP g _ e—i(t—T)hPB(T)*e—iThP
As above, we may write

B(T)* =" h*Op,(0;(T)) + KN+ By (h)
k<N

with By (h) uniformly bounded on L%(M, dG) and
B(T) € Siyp (07 (5D(finier) ) ) © Styp (97 (T een (€:031)) ) -
By (2.57), for all € > 0, we can choose T¢ large enough such that
T (I (e, 80) ) € THL(E).
Thus, if € is small enough, Theorem 5.1 allows to write, for ¢ > Tg,

¢TI Dp, (b (T2)) = W7 (T @eh))e TR L (b)) (9,71)" + BV R (8, ),

with Ry (t, h) uniformly bounded on L2(M,dG) for h € (0,1] and 0 < t — Tt < 241, and
ae(h) € Snyp (T4(€)) -
We will therefore get (6.44) with T' = T¢ if we choose € small enough such that, for all NV,

||b+ (r,0,hD,, hD@)J;_(a€(h))||L2(Rn)~>L2(]R") < ONhN.

l,inter
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By the standard composition rule between pseudo-differential and Fourier integral operators (see
27]), b oer (T30, RDy  hDg)J;F (Ge(R)) is the sum of an operator with norm of order A"V and of
Fourier integral operators with amplitudes vanishing outside the support of

b+

l,inter

(T7978TS+7895+)&€(T797p777’ h’)v

where S = S, (1,0, p,n) is the phase defined in Proposition 4.9. It is therefore sufficient to show
that, for € small enough, the support of the amplitude above is empty. Indeed, on this support we
have
O0rSy
p(?“, 0, 87-8+, 89S+)

P
p(r,0,p,n)1/?

73 <1 (¢/2)* >1-—é. (6.45)

Furthermore, by Proposition 4.9, we also have
0.5 — 7|+ 1065+ — | S &,

on '} (€) where a¢(h) is supported. Since p is bounded from above and from below on T}, (€), we
obtain that, for all € small enough,

14 2 ~2 2
—— <1 —(€/2 Cee <1—(e/4
p(r,0,p,n)'/% ~ (e/2) + & < 1= (e/4)
which is clearly incompatible with the second condition of (6.45). O

7 Dispersion estimates

In this section, we prove Propositions 2.20 and 2.22, using respectively the parametrices given in
Theorems 5.1 and 6.1. The dispersion estimates will basically follow from the stationary phase
theorem, applied to the kernels of these parametrices which are oscillatory integrals. The principle
is thus quite simple. One needs however to check some technical points essentially due to the non
compactness of the manifold and, more precisely, to the non uniform ellipticity of the symbol of
the Laplacian.

Here is some heuristic in the case of the Isozaki-Kitada parametrix. We have to consider
oscillatory integrals with phases whose model is

o o 402 727”_727”%
(r=rp+0@—-0")-n—tp +(e e )4p’

where r, 7', 6,0 are parameters and p, 7 the integration variables. Due to the localization of the am-
plitudes, we may also assume that (r,0, p,n) and (/,6’, p,n) belong to strongly outgoing/incoming
area. The critical point satisfies (assuming that it is unique)

r—r —2p— (e 2 — 2" m—0 7.1
p= (e =) =0 (7.1)
0_0 + (6727‘ _ e*QT') % =0, (7.2)

where one should also keep in mind that e™"n and e "’ are small since the amplitudes are
supported in strongly outgoing/incoming areas. In particular, p is close to +p!/2 and thus is
far from 0. By (7.1), one obtains at the critical point that, as expected,

rar’+2tp =1"+2|tp|, (7.3)
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where tp = |tp| by the sense of time considered in outgoing/incoming areas. This in turn shows
that
0—0 ~e 2 (1 — 6_2”') n
p
In Proposition 7.2, we check that this intuition is correct, and we improve the localization around
critical points in Proposition 7.6. To use the stationary phase theorem, one needs to check the non
degeneracy of the phase. Using the change of variable £ = e~"7’, the phase is changed into

1€

o g gL e 42 —2(r—r') _
(r—=rp+e" (0-0")-&—tp +(e 1) i

and its hessian becomes

-2 / 6—2(1”—7”) -1 0 é-/p
t { ( 0 672(7"2;; )1> - T (E/P 0 ) . (74)

Since ¢ is small, the second matrix is small compared to the first one. When ¢ is not too large,
% is bounded from above and below (recall 7.3) and the phase is thus non degenerate.

This i1s made more rigorous in Proposition 7.11. When ¢ becomes large the hessian matrix is
basically equivalent to
1
T

which is again non degenerate but will contribute apparently only through a factor [t|~'/2 in the
stationary phase theorem. However, recalling the change of variable e‘r,n = £ whose Jacobian is
e ("=1) and using the two factors e~ ("=Dr"/2 ¢=(n=1)r/2 o hoth sides of the kernel (written with
respect to dG rather than Jé), we get a factor of the form e(n=D("=1)/2 which decays exponentially
in ¢ by (7.3) and provides (much more than) the missing [¢|~("~1)/2 decay. This is made more
rigorous in Proposition 7.12.

The aim of the following subsection is to justify this intuition. In particular, to justify the above
approximations (e.g. the precise meaning of (7.3) or the smallness of the second matrix in (7.4))
we need to be in an asymptotic regime given by a certain (small) parameter: in the Isozaki-Kitada
case, the relevant parameter is e (the size of the strongly outgoing/incoming areas) and, in the
WKB case, it is the range of time.

7.1 Stationary and non stationary phase estimates

For simplicity, we drop the index ¢ from the notation, including in outgoing/incoming areas. In
both Isozaki-Kitada and WKB parametrices, we have to consider oscillatory integrals of the form

() [ [ O OR O 0 0 0,17, ), (7.5)
For the Isozaki-Kitada parametrix, the amplitude is independent of ¢ and of the form
Afic(t,,0,77,6', p,m) = a* (1,6, p, )b (17,6", p,m),
with

a* € Shyp (F:E('f)) ) bt € Shyp (Fsi(eg)) ) (7.6)
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with € > 0 small to be fixed. The phase reads
(I)IiK(t’ T, 9, 7‘/, 0,7 P T]) = S:I:,E(T7 07 P 7)) - tp2 - S:I:,E(Tlv 0/7 P, 77)’

where Sy . is defined in Proposition 4.10. We recall that it coincides with Si on I'Z(e) (hence on
I'E(e3) too), where Sy is given by Proposition 4.9. We can therefore freely replace Si ¢ by Sy, or
more generally by any other continuation of Sy outside I'F(e). Here we have 0 < 4+t < 2h~!. The
integral (7.5) is well defined for (r,6,7’,6") € R®" but, using (7.6), we can assume that

r>e ! eV, r > e 3, 0 € Vs. (7.7)

The first purpose of this section is to prove that, if € is small enough, we can use stationary phase
estimates.

The second purpose is to show a similar result for the WKB parametrix, using twkp as small
parameter (see Theorem 6.1). In this case, we have to consider

A\:%/KB(t’ T’ 0) T/7 6/’p’ 77) = a/:t(t’ 7"’ 9’ p’ 77)7

where, for Vo € ¢,(U,), I € (0,400), 02 € (—1,1), some Ry > 0 large enough and some twgp > 0,
we have

(a*(t))o<st<twis  bounded in Spyp (IF (R, Va, Iz, 02)) . (7.8)
In particular, we can assume that
r > Ro, b€ Va. (7.9)
The phase is of the form
CD\%VKB(t, r0,7,0 p,n) =SE(t,r,0,p,n) —1'p—0 -1, (7.10)

and we refer to Theorem 6.1 for more details. We only recall here that the phase ©* is defined
on [0, +twkg] x R?" and solves the eikonal equation (6.3) on [0, +twkns] x ['F(R3, V3, I3, 03), with
I'*(Ry, Va, I, 09) C T*(R3, V3, I3, 03). Here again, the condition (7.8) implies that we can freely
modify ¥ outside I'*(Ry, Va, I, 02).

Below, we will use the notation ®* (resp. A%) either for @IiK or <I>$VKB (resp. AIiK or A\ﬂf\,KB)7
as long as a single analysis for both cases will be possible. For convenience we also define

2h~1  for Isozaki-Kitada,

0< +t<T(h):=
B - () {tWKB for WKB

In the next lemma, we summarize the basic properties ()/f AT and ®F needed to get a first non
stationary phase result. For simplicity, we set 07 = 8{838%33/8};85 .
Lemma 7.1. In each case, for all |y| > 0, the amplitude satisfies
|07 A% (t,r,0,7,0' p,n)| < Cs, (7.11)
for all

(r,0,7",0', p,n) € R, h € (0,1], 0 <+t <T(h), (7.12)
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and we may assume that the phase satisfies,
|07 (®*(t,m,0,7,60", p,m) = (r —1")p— (0= 0') - ) | < Cy (1), (7.13)
under the condition (7.12) too. In particular, for all |v| > 1,
1070, (t,r,0,7,0', p,n)| < C(t), (7.14)
under the condition (7.12).

Proof. If A* = A% (7.11) follows easily from Definition 2.2, (7.6), (7.8) and the time independence
of AIiK If A* = A\%VKB, (7.11) is a direct consequence of (7 8). For the phase, Proposition 4.10
(resp. Lemma 7.5) show that ®F — (r —1/)p — (6 — 0') - (resp. DL pp — (r—1")p— (6 —6') - )
is the sum of a function f € Cp°(R3") and —tp? (resp —tp(r,0,p,n)). Since the amplitude
is compactly supported with respect to p and p(r, 8, p,n), we may replace @IiK (resp @%KB) by

(r=1")p—=(0—0")-n+f—tp°x1(p) (vesp. by (r—1")p—(0—0')-n+f —tp(r,0, p,n)x1(p(r. 0, p,n)))
for some x1 € C§°(R). This implies (7.13) and completes the proof. O

Let us choose now x1 € C§°(—1,1),x2 € C5°(R™1), both equal to 1 near 0 and define, for any

c1,c0 >0, N
A (a,,<1> >X2(3¢ )Ai
Cl<t> C2

We denote by E*(t,h) the operator with Schwartz kernel (7.5) and by E+
with Schwartz kernel

t,h) the operator

C1, Cz( ?

27Th // % trer st n)A(::tl Cz(tvrvear/a9l7p7 n)dpdn’ (715)

for h € (0,1] and 0 < £+t < T'(h).

Proposition 7.2 (Semi-classical finite speed of propagation). For all ¢1,co > 0 and all N > 0,
we have

|E-(t,h) — EX ., (t,h)|lL2®m)—r2Rn) < ON A1 e’ he (0,1], 0<+t<T(h). (7.16)

In addition, if c¢1 is small enough, there exists C > 0, independent of +t € [0,T(h)] and of ca > 0,
such that

r—r<C, (7.17)
on the support of ACl n-

Proof. The kernel of E*(t,h)—EZX _ (t,h) is an oscillatory integral similar to (7.15) with amplitude

C1,C2

+ + +
AT —AZ  =(1-x 0p® X2 On® AT+ (11— On® A%,
’ Cl<t> Co Co

On the support of the second term of the right hand side, we integrate by part M times with

h

+
Z’|3nq>i‘2anq) - Oy,
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Here we note that all derivatives of 9,®*/|9,®*|? are bounded since ¢ is bounded in the WKB
case and since (“)7877<I>IiK is independent of ¢ and bounded for |y| > 1. On the support of the first
term, we integrate by part M times with

h
0,05

Using (7.14), we have, on the support of the first term, |07(1/9,®%)| < 1, for all 4. Thus, using
also (7.11), we end up in both cases with an integral of the form

pitn [ [ ekt on 00 B, 0,17,/ p, ) dp

with BE(¢,.) bounded in Cf°(R3"), for 0 < £t < T(h). We then interpret this integral as the
kernel of a pseudo-differential operator with symbol A exp{i(®* — (r —+")p — (0 — ') - n)/h} B*
(in the spirit of Lemma 5.4). By the Calderén-Vaillancourt Theorem and (7.13), its operator norm
is of order h™ ({t)/h)™, for some universal ny (depending only on n). We therefore get (7.16) by
choosing M = N + 2ny.

To prove the second statement, we consider separately the two cases. For the WKB parametrix,
t is bounded. Thus, by (7.13), 3p<I>$VKB — (r — ") is bounded and since [9,9% k| < c1(t), on the
support of AX:‘I:VKB,cl,cy r — 7’ must be bounded too. For the Isozaki-Kitada parametrix, as long
as t belongs to a bounded set the same argument holds. We may therefore assume that +¢t > T
with T" > 0 a fixed large constant. We then exploit two facts: first, for some ¢ > 0, we have
¢ <+p<c'andtp >0 on the support of AL . Second, f*:=®L — (r—1)p—(0—0")-n+1tp?
is independent of ¢ and bounded, together with all its derivatives on the support of AIiK. Then

D,0L =1 — 1" —2tp+9,f%,
hence, on the support of x1(9,®5 /c1(t)), we have
r—r' > —cy(t) +2tp — 9, fE.

If ¢; is small enough and T large enough, we have 2tp — ¢q(t) > 0 for ¢ > T and this completes the
proof. O

Remark. It is clear from the proof that the constant C' in (7.17) is uniform with respect to € > 0
small in the Isozaki-Kitada case (recall that the amplitudes depend respectively on ¢ and € for the
WKB and the IK parametrices).

From now on, we fix ¢; > 0 small enough such that (7.17) holds.

Proposition 7.3 (Dispersion estimate for times < h). For all co > 0, we have

||6_’Y"7AE1i (t7 h)e_’yn'THLl(Rn)‘}Loo(Rn) < CA,<I>,62 ‘htl_n/Z, 0< £+t < min(T(h), h),

C1,C2
where we recall that v, = (n —1)/2.

Note that the condition +¢t < min(7'(h), k) is essentially the condition £¢ < h. We have put it
under this form only because of those h such that A > twkg. This will not modify the rest of the
analysis. Furthermore, the latter h correspond to bounded frequencies and their contribution to
the Strichartz estimates can be treated by Sobolev embeddings.
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Proof. In the Isozaki-Kitada case, both e*T/n = ¢ and e~ "7 are supported in a compact set. In the
WKB one, e~ "1 is compactly supported but, using (7.17), this also implies that e_T/n is compactly
supported. Therefore, in both cases, the change of variable e_rln = ¢ shows that the kernel of
EX _ (t,h) is an integral of the form

C1,C2

h—ne(n—l)r/ /e%@bi(t,r,O,r/,O’,p,eTlg)B:t(t’ 9’ 7“/, 9/7 0, §)dpd£,

with B* bounded on [0, £7'(h)] x R®" and supported in a region where |p| + |¢| < 1. The kernel
of e_%’”Ei@ (t)e=7»" is then simply obtained by multiplying the above integral by e=7("+"") 5o
its modulus is controlled by

hfne'y"(r'fr) 5 |ht‘7n/2,

using (7.17) and the fact that 0 < ¢ < h. This completes the proof. d

To prove the dispersion estimates for h < +t < T'(h) we need to analyze more precisely the
phases.
In the following lemma and its proof, we shall use the notation (3.4).

Lemma 7.4. For all € > 0 small enough (fized), we can find a family of real valued functions
(% Jo<e<1 such that,

goi,e =L =i, on TE(e), (7.18)
P ¢ € Suyp (Ts(9)) (7.19)
and, if we set -
Ry o(r,0,p,m) = ¢ (r,0,p,m) — W,
the following holds for j+ |a| < 1: if k+|8] < 2
( s)up }(eran)ﬁa,z‘ag‘aﬁ Ry (r,0,p.n)| < Ce™/2, (7.20)
r,0,m)ER2n—1,
£pEf1/4,4)

and if k + 18| > 3,

sup  [(€79,)70/95 0 R o(r,0.p.1)| < Cejanp.
(r,6,m)er2n—1,
+pe(l/4,4]

where T, the decay rate in (1.8), satisfies (1.9).
Proof. Using (4.33), (4.34), (4.35) and Taylor’s formula, we can write
+oo
¢+ (r,0,p,m) =/ e Pq(r +2tp,0,e " n)dt+ > ay(r,0,p,m)(e )7,
0
[v[=3

with a, € Buyp(T'E(€9)) for some fixed €9 > 0. Therefore,

b,e" s r -

wi(rﬁ,pm)w :/ e qu(r + 2tp, 0, n)dt + Y ay(r,6,p,m)(e )", (7.21)
0

Iv1=3
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with ¢ satisfying (3.6). Denote by R(r,8,p,n) the right hand side of (7.21) and choose x; €
Cs°(R), x2 € C$°(R™1) both equal to 1 near 0. For some € > 0 to be fixed below, we also choose
Xgi such that

XZ €Smp(TE(@), Xz =1 on TH@),
using Proposition 4.1 (we don’t need Proposition 4.4 here, since €® will be fixed). We then claim
that, if € is small enough (and fixed) and e with € is small enough too, the function

q0 (Ga 67”7)
4p

satisfies (7.18), (7.19) and (7.20). Indeed, by choosing ¢ small enough, we have +p ~ 1 on the
support of X;ft so the integral in (7.21) is exponentially convergent. Furthermore, since

@i7€(r’ 97 P n) = + R(Tv 97 P U)Xgi (’/‘, 0, P 77)X2 (6#77/51/2)(1 - Xl)(el/QT)7

|(€78,))° ! ((e-rn)m(e—rn/elm)) | < C(e/2)hl-181,
for all ~y, and using the fact that, if tp > 0 and r > 0,
|(6T6,,)ﬁ8ﬂ8§‘8§q1(r +tp,0,e7"n)| < Clt|F ()~ e |18,

we get the estimate (7.20). Finally, since e"|n| < € and r > € on I'F(e), we have (7.18) for all ¢
small enough. The property (7.19) is clear thanks to X? O

In the following lemma, we use the notation of Theorem 6.1.
Lemma 7.5. We can find a family of real valued functions (L% (t))o<ti<iwgn Such that
SEt) =2% (1) on TH(Ry, Va, Iy, 09), (7.22)
and, for all k, 3,

Sy |(e78,)° 0k (S5 (t,7,0,p,m) —1rp— 0 - —tp(r,0,p,n))| < Cipt®. (7.23)

Proof. Using the function XQi_,g of Theorem 6.1, the result is straightforward by considering

S5t 0.0m) = Xaus(r0,p.m) (S5 (t,r,0,p,m) —rp—0-1—tp(r,0,p,m)) +
Tp+ 0 - n + tp(ra07p7n)a

and using (6.4). O

Let us remark that % satisfies (6.5) whereas Esit does not. This was the reason for considering
Y+ first, since the property (6.5) is convenient to prove L? bounds for Fourier integral operators.

The estimates (7.20) and (7.23) show that we have good asymptotics for the phases in certain
regimes, namely € — 0 for the Isozaki-Kitada parametrix and ¢ — 0 for the WKB parametrix.
Using Lemma 7.4 (resp. Lemma 7.5), we replace @1 . (resp. ¥F) by ¢ (resp. by »E) in the
expression of ®F, (resp. P cp)-

To use a single formalism for both cases, we introduce the parameter

)

. € for the Isozaki-Kitada parametrix
T \#st kg for the WKB parametrix
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where 5} > 0 will denote the size of the time interval where ¢ will be allowed to live. Using the
change of variable £ = e"“/n and factorizing by ¢ in the phase, the integral (7.15) can be written

@y et [ EREORE (e €

c1,C2 Ast

where h € (0,1],

g 1 ’
X, (4, p,€) = S OE (b1, 0,77, 0, p,e"8), (7.24)
AE o .0,6) = Acy oy (t,7,0,17,0 e '€), (7.25)
and
y = (h7tara95r/70/)a (726)

with 7, 7" satisfying (7.17) and

2h~1  for the Isozaki-Kitada parametrix

)

0 < £t <T(h,Ast) =13 .
kg for the WKB parametrix

The kernel of e~ " EX _ (t,h)e™ """ then reads

C1,C2

(2mh) ") / CHERL PO TE L (0, €)dpde.

Proposition 7.6 (Non stationary phase). There exists C' > 0 such that the condition

_ N

r—r'
t

r
€

>, (7.27)

imply that for all ca >0, all N >0 and all 0 < Ay € 1, we can find C¢, Nz, such that, for all
h € (0,1], +t € [h, T(h, Ast)], w>1, (r,0,7",0") € R*",

with v, satisfying (7.17), we have
’ . HE ~
(2mh) e () / PO AL L p §>dpd§’ < Cepvn w0

Proof. For t # 0, we define %?ee ==, er,‘g%y - £ for which

t
v, bl = (;9 - 9’) .

We then start with the case of CID\TVKB. By Lemma 7.5 and (7.17), Vp@((f))\st — ®free) ig a function
of (t,7,0,7',p,&) which is bounded on the support of the amplitude, as well as all its derivatives
in p, &, uniformly with respect to (¢,r,0,r’). Therefore, if C’ is large enough, we have

/

r—r 0—0

t

> e’

~

‘vp1£¢>\st

, (7.28)
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and the result follows from standard integrations by parts. Note that, here, we have not used
the smallness of Ay (ie of ¢). We shall use it for the case of @IiK which we now consider. Since
+p € [1/4,4] on the support of the amplitude if e = Ay is small enough, Lemma 7.4 and Taylor’s
formula imply that

£y Ffree q 9’6#77«5 —q 0/35 r—r §—¢
vp»&(q)kst - (I)£ ) = (_2pv O) + vl)vf O( t)p 0( ) + 55(%[’7 g) ¢ ) ¢ )

where e.(y, p,€) and all its derivatives in p,£ go to 0 as e — 0, uniformly with respect to y (see

(7.26)) with 7,7’ satisfying (7.17) and (£p, &) € [1/4,4] x R*~L. Furthermore, using (7.17) and the

fact that |£] < € on the support of the amplitude, we have

qo(g’er/—r§> _qo(elvg) r—r -0
tp t 7t

< €3

~

‘Vp{

thus, using that ' > 0 on the support of the amplitude, we have (7.28) if € is small enough. In
addition, for all k + |8]| > 2, we also have
/ /
<|(r—r 7 0—0
~ t t

on the support of the amplitude, using (7.17). The result then follows again from integrations by
parts. O

k50 &
0500

st

We next state a convenient form of the Stationary Phase Theorem with parameters.

Proposition 7.7 (Stationary Phase Theorem). Let Q be a set and f be a function
[iR" X< Q5 (z,y) = f(z,y) €R
smooth with respect to x, such that :
Hess,[f](z,y) = S(y) + R(z,y),  (2,y) ER" x Q, (7.29)
with S(y) a symmetric non singular matriz such that
1SS, yeq, (7.30)
and R(x,y) a symmetric matriz such that
1S@) " 'R(z,y)| <1/2  (z,y) €R" x Q, (7.31)

where || - || is the Buclidean matriz norm. Then there exists N > 0 such that, for all K € R,
there exists Cx > 0 satisfying

N
‘/BM(I’”U(@’)dﬂ: < Cxw™? sup [|0%ul|po=(x) sup <sup |3°“f(a?,y)|+1) ;

|| <N 2<|a|<N \zeK

forally € Q, alluw € C§°(K) and allw > 1.
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Proof. Tt is a simple adaptation of the proof of Theorem 7.7.5 in [19]. We give a proof in Appendix
B for completeness. O

For the WKB parametrix, we shall use this proposition fairly directly by considering

r—r

Q\%VKB (t%KB) = {(hvtaraa7’r/79/) ‘ h e (0, 1]7

<, hgitgt%thB}.

Notice in particular that r — 7’ is bounded on Qwkp (kg )-

Proposition 7.8 (Dispersion estimate for the WKB parametrix). Fizcy > 0. There exists t\xp >
0 small enough such that, for all y = (h,t,r,0,7',60") € Q\j;:VKB (5 kp) and allw > 1, we have

st
c1,¢2,35Kkp

’ iw&’i Py ~
(2mh) e (=) / ek S (. p, £)dpd£‘ w2

Proof. Tt is a straightforward application of Proposition 7.7 since, using (7.23), we have

P~ 2 0
Hessy ¢ Do, ] = (0 Hessn(Q)) + Otvkn)

where the first matrix of the right hand side satisfies (7.30) by the uniform ellipticity of gq. The
conclusion is then clear since all derivatives, in p, &, of Atﬂ; are bounded, as well as those of
WKB

&)tsc of order at least 2, on the support of the amplitude. O
WKB

To be in position to use Proposition 7.7 for the Isozaki-Kitada parametrix, we still need two
lemmas.

Lemma 7.9 (Sharper localization for IK). Let xo € C§°(R) be equal to 1 near 0 and set

Xe(y, p) = Xo (e”“ <2p - _t r/>) : (7.32)

Then, for all e > 0 small enough, all N > 0 and all c; > 0, there exists Ce, v, such that, for all

h € (0,1], +h <t <2hn1, w>1,

and all (r,0,7",0") € R?" satisfying (7.7) and such that

_ N

r—r
t

»
e

<, (7.33)

we have
(2mh) e () /ei“&’ﬁi(y’”’f)(l — Xy P) AL (s, f)dpd£’ < Ceyn,h W™V,

Proof. By the same analysis as in the proof of Proposition 7.6, using Lemma 7.4 and (7.33), we
may write
—r')

. p—p*+ RE(y,p,€)

E(y,p,€) = r

7



where, on the support of the amplitude,
ORI S ORI RE| S 1,

for k + |3 > 1. On the other hand, on the support of (1 — x.(y, p)) we also have, for some ¢ > 0,

! ol
rtr —2p > e/t or rtr —2p < —ce/%,
Therefore, if € is small enough, B
10,2F (y,p,€)| Z €74,
on the support of the amplitude and the result follows from integrations by parts in p. O

Basically, the interest of the localization (7.34) is to replace 1/4p in (7.20) by 2t/(r — ') up to
PE=

a small error. We implement this idea as follows. By Lemma 7.9, we can replace AC17627E(y, 0,€)

in (7.25) by

XeW, P AL ., (v, p.€). (7.34)

+

C1,C2,€

If € is small enough, +p € [1/4, 4] on the support of A hence, for some ¢ > 0,

ct| <r—r" < e, (7.35)

on the support of (7.34), which is stronger than (7.17). Furthermore, the condition (7.33) together
with (7.7) implies that we may assume that |6 — 6’| < C’e=< '|¢|. We fix from now on

Cy = €.

Thus, by writing
aﬂq)ftK = 0 - 9/ =+ 6’7g0i(r’ 0? P, 77) - aﬂ(pi(’r/? 0/7 12 n)a
With i € Buyp(T*(e2), we haveldye (1,0, p,n)] S e and Dy (r',0', p,m)| S ™' on the
g 2

support of the amplitude. By (7.7), we have for instance |9,®5 — (0 — 0')] < € if € is small
enough. We may therefore assume that

’
T

¢
o_o|<crell (7.36)
| | o

To be set of parameters for the stationary phase theorem, we will thus choose
Qi (e) = {(ht,r,0,7",0") | h € (0,1], £t € [h,2h7"] and (7.7), (7.33), (7.35), (7.36) hold} .

Before applying Proposition 7.7, we still need to modify the phase &);t outside the support of the
new amplitude (7.34).

Lemma 7.10. We can find Y smooth and real valued such that, on the support of (7.34),

UE(y,p,€) = DE(y, p, €),

and,

— N -9 ) 1— e2(7“'—7’)
t 7 2(r —1r")

VE(y,p.6) = - - w0, +vEy.p8).  (137)
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where, for all k + |8] < 2,

swp [(OE00VE (g, Ol =0, =0, (7.38)
LE)ERM,
ypeQIiK(E)
and, |k| + |B] > 3,
sup | OKOYE(, p. &) < Ceop (7.39)
(p,&)ER™,
veak (o)

Proof. We shall basically combine (7.20) with the fact that
2p = (r =) /t] S €/, (7.40)
on the support of (7.34). By Lemma 7.4, the phase reads

r—r 6— 0 r’ 2 qO(leg)_eQ(rliT)qO(avg) Riyﬁ(rvgvpverlg)_R:I:,E(Tlvglvpverlg)
Pt el Apt + ! '

The last term of this sum satisfies the estimates (7.38) and (7.39): for 0 < £t < 1, it follows from
Taylor’s formula using (7.33) and Lemma 7.4 with j 4 |a| = 1, and for £t > 1 it follows from
Lemma 7.4 with j 4+ |a] = 0. For the term involving gy we write

using (7.40) with € small enough and x; € C§°(R"™!) equal to 1 near 0, and

qo(0,e” 7€) = 2o (0, €) + €27 (o (0, €) — g0 (0, €))x2(6),

with x2 € C§°(R™™1) equal to 1 near 0. We obtain the estimates (7.38) and (7.39) for

1 ’
TpteQ(r =) (CIO(97§> - CIO(9I7§))X2(§)7

using (7.36), and for

using (7.35). In both cases, we can freely multiply the functions by a compactly support cutoff in

p using that + ~ 1 on the support of the amplitude. This completes the proof. g

Proposition 7.11 (Bounded times). There exists €5t > 0 such that, for all T > 0, all 0 < € < g,
there exists Ce v such that, for all

h € (0,1], h<+t<T, (r,0,7",0") satisfying (7.7), (7.35) and (7.36) , (7.41)

we have

’ W - ~
(2mh) e () / GFPEWR )y (y, p)Apy ce(y, p. E)dpdE| < Cor|ht| /2, (7.42)
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Proof. By Lemma 7.10, we can replace &% by UF. We then have

2 0

Hess, ¢[UF] = 207 =7 +o(1),
pe[VE] (0 WHGSSU((]Q)

where o(1) — 0 as € — 0, uniformly with respect to (p,&) € R™ and to the parameters satisfying
(7.41). Using the upper bound in (7.35) and the boundedness of ¢, the positive number

1— 62(7"'77”)
2(r —r")

belongs to a compact subset of (0,00), yielding the condition (7.30). We conclude by applying
Proposition 7.7. O

Notice that, to obtain (7.42), we have used the boundedness of €'~ since |r — r/| was
bounded. In principle, the condition (7.35) implies that e (" =7) decays exponentially in time. We
shall exploit the latter below.

Proposition 7.12 (Large times). There exists T > 0 and €l such that, for all 0 < € < €., there
exists Ce such that, for all

h € (0,1], T <+t <2n, (r,0,7",0") satisfying (7.7), (7.35) and (7.36) ,  (7.43)

we have
—n r—r itdE e —-n
(2mh) e () / R WPy (y, p)Acy e (y, p, €)dpd€| < Ce|ht| /2.

Proof. Choose T large enough such that, for t > T and r, r’ satisfying (7.35), we have e2("' =) < 1/2.
To compensate the factor 1/(r—7") in (7.37) (of order 1/|t| by (7.35)), we consider the new variable
t|'/2¢ = €. By (7.38), if € is small enough, this new phase satisfies the assumptions of Proposition
7.7. In the corresponding estimate given by Proposition 7.7, derivatives of the new amplitude as
well as derivatives of the new phase of order at least 3 will grow at most polynomially with respect
to t. This gives a polynomial growth in ¢ of the coefficient in the stationary phase estimate of
Proposition 7.7 but such a growth is controlled by the exponential decay of et (=) < e~cltl. This
completes the proof. d

7.2 Proof of Proposition 2.20

By (2.38), up to a remainder of operator norm of size h™ (uniformly in time), we may replace
/O\pL(aSi)* by a linear combination of operators of the form @L(&f) with supp(aZ) C supp(aZ). We
next apply Theorem 5.1 to order n + 1 and are left with the study of the Fourier integral operator
part. By Proposition 7.2, the amplitude can be modified so that, up to a remainder of operator
norm of order h™ uniformly in time, we are left with an operator whose kernel K*(r,0,7",6',t,h)
satisfies

le= " KE(r, 0,7, 6 t,h)e™ " | < |ht|7™2,  he(0,1],0 < £t < 2h.

Indeed, for ¢ < h, this follows from Proposition 7.3 and for ¢ > h, from Propositions 7.11 and 7.12
with w = £t/h and also from Proposition 7.6 and Lemma 7.9 with N > n/2. O

80



7.3 Proof of Proposition 2.22

It is completely similar to the one of Proposition 2.20 by considering times 0 < £t < {5 with
3y kp small enough to be in position to use both Theorem 6.1 and Proposition 7.8. O
A Control on the range of some diffeomorphisms

In this section, we prove a proposition implying Lemma 4.7 and (4.54) in Lemma 4.11. For
simplicity, we consider the outgoing case only but the symmetric result holds in the incoming one.
Let us define the following conical subset of T*R’} \ 0,

Moeon(®) = {(n00,m) 7> R(e), 0 € Vi, p> (1= )(p* +a(r,0,e7m) 2}, (A1)

which is the cone generated by I'T (e).

Proposition A.1. Assume that, for some 0 < € < 1/4, we are given a family of maps (¥*);>0
defined on TY__ (€), of the form

U'(r,0,p,n) = (r,0,p"(r,0,p,m),10"(r,0,p,m)) € R*",

satisfying, for all v > R(€), 6 € Ve, p> (1 —)p*/2, t >0 and X > 0,

(0,0 )(r,0. 20, 2m) = Mp™,n™)(r,0,p,m), (A-2)
(0" ') (r,0,p,0) = (p,0), (A.3)

and such that,
(p" — p)i>0 and (the components of ) (n* —n)i>0 are bounded in By, (L' (€)). (A.4)

Then, there exists 0 < € < € such that, for allt > 0 and all 0 < € < &, Wt is a diffeomorphism from
T'r(e) onto its range and

If(e®) c ¥ (T (e), t>0, 0<e<e

Lemma 4.7 is indeed a consequence of Proposition A.1 since Proposition 3.8, (3.35) and (4.15)
show that (A.2), (A.3) and (A.4) hold with (p',n*) = (p',n*). Similarly, for Lemma 4.11, we
consider o

(Bt,ﬂt)(r, 0, P 7’) = (B_p ﬂ+)(ra 0,r,0, Py 77)

which is independent of ¢ and satisfies the assumptions (A.2), (A.3), (A.4) by (4.50), Proposition
4.9 and Remark 2 after Proposition 4.9.

To prove the proposition, we need another conical subset of T*R’ \ 0:

Ten(® = {000 [7> R(e), 0 € Ve, p> (1= (o + nf2)2}.

Using the diffeomorphism Fjy,, defined by (2.31), we have

Figh ((eon(®) = {(r0.00) | 7> R(), 0€ Vi, p> (1 =)0 + |2} (A5)

The latter is of interest in view of the following lemma.
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Lemma A.2. There exists C > 1 such that, for all € > 0 small enough,

T con(6/€) € Pt (T con(€)) € T (C).

Proof. By (3.7), we have, for some 0 < ¢ < 1,
ce ™ |nl> < q(r,0,e""n) <c Ve >,  r>R(e), 0V, neR"
Using (2.55), it suffices to show the existence of C' > 1 satisfying, for all e small enough,
1= (e/C)) P (1-(1—(e/O)*)*) < (1—€*) 2 (1—(1—€)?), (A.6)
and
(1= )72 (1= (1-)?) < el - (Ce?) 2 (1 - (1- (Ce?)?). (A7)

For € — 0, the left hand side of (A.6) is equivalent to 2¢~!(e/C)? and the right hand side to 2€.
Therefore, (A.6) holds if ¢71/C? < 1 and e is small enough. We get (A.7) similarly. O

Let us now consider (1,0) = (1,0,...,0) € R\ 0. For all 0 < € < 1, let us denote by C*(€) the
cone generated by B((1,0), €), namely

CH(e) ={(Ap, M) [ A >0, (p—1)* + [n]* < *}.

Since p > 1 —¢ > 0 and p?/(p? +[n|?) > 1 —€2/(1—¢€)? on B((1,0),¢), it is then not hard to check
that, for all € small enough,

CH(E/4) C {p> (1 =) (0" + [n|*) /),

and
{p>(1—€)(p* + nl*)'/?} c CT(2e),

since, if p > (1—€2)(p?>+|n|?)'/2 then (1,1/p) € B((1,0), 2¢), using that 1—(1—¢€2)? < 4e2(1 —¢?)?
for € small enough. In particular, we obtain

(R(€),400) x Ve x CH(e2/4) C T ou(€) C (R(e), +00) x Ve x C(2e). (A.8)

We next recall a standard lemma the simple proof of which we omit.

Lemma A.3. Let xg € R", ¢ > 0 and f : B(xg,e) — R™ such that f(xo) = xo and f —id is 1/2
Lipschitz, ie |f(x) —xz+y — f(y)] < |z —y|/2, on B(xg,e). Then f is injective on B(xg,e) and

B(xo,¢/2) C f(B(xo,¢)).
Proof of Proposition A.1. Let us set
Fro4(p,€) = (p'(r.0,p,€7€), "' (1,0, p,€"€)) .
By Lemma 2.4 and (A.4), we have, for k + || = 2,

|a§agfr,9,t(p7 77)' 5 1) t> 07 (T793p7 6) € thp(rs_(g))7 (Ag)
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and, by choosing €; small enough, we also have
r>R(E), 0€Ve, (p,&) € B((1,0),&) = (1,0,p,) € Fiyp(TJ ().

By (A.3) Op¢fro,.:(p,0) =1d, , so (A.9) implies that f, 9 — Id, is 1/2-Lipschitz on B((1,0), 2¢)
for all € small enough, all t > 0, r > R(€), and 6 € Vz. Therefore, by Lemma A.3,

B((1,0),€) C fero (B((1,0),2)),  t>0, 7> R(&), § € Va.

Using (A.2), we can replace the balls in the above inclusion by the cones they generate and, using
Lemma A.2 with (A.8), we get

for all € small enough, with the C > 1 of Lemma A.2. Since f,g: — Id,, is 1/2-Lipschitz on
B((1,0),2¢) for all ¢ > 0, (A.2) implies that it is also 1/2-Lipschitz on the cone generated by
B((1,0),2€) so fr g is injective on this cone. Thus, for all € small enough and ¢ > 0, ¥* is injective
on I'Y . (¢€) and is a diffeomorphism onto its range. By (A.10), we have

s—con
TE(E®) €T on(€) € U (T con(e))

S—con

for all ¢ > 0 and all € small enough, so the proof will be complete by showing that, for all € small
enough and all £ > 0, the following implication holds

(Taeapa 77) = \Ilt(rvevphnl) € F:(eg) with (7”79’01»771) € F:;con(€)
= p(r,0,p1,m) € (1/4—¢€,4+¢). (A.11)

Assume the first line of (A.11). Using (A.3) at (p1,0) and the fact that f;, ¢ —Id,, is 1/2-Lipschitz,
we have

[(pe™™n) = (pr.e”"m)| = | fero(p1, e m) — (pr, e m)| < e "ml/2. (A.12)

Therefore |[e~"n — e~ "] < |e”"n1|/2 and we get 01| < 2|n|. Since e "|n| < €3, (A.12) shows that
|p = p1]+le7"(n —m)| < € hence that

[p(r, 0, p1,m) = p(r.0, p,0)| < €.
Since p(r,0,p,m) € (1/4 — €3,4 + €3), the latter yields (A.11) for € small enough. O

B Proof of Lemma 7.7

Note first that, for all y € 0, the map
R*">2z— V,f(z,y) € R”

is a diffeomorphism since, by considering F(z,y) := S(y) "'V, f(z,y) and using (7.29), (7.31) and
(7.30),  — F(z,y) — x is 1/2 Lipschitz. For all y € Q, we then denote by z¢ = zo(y) the unique
solution to

wa(x()ay) =0.

Let us now consider

g(x,y) = f(xvy) - f(xo,y) - (Hessw[f}(ajo,y)(a: - :1?0)7.’17 - SC()> /2?
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and, for all s € [0, 1],

fs(@,y) = f(xo,y) + (Hesse [f](z0, y)(x — m0), © — 20) /2 + sg(x,y).

Notice that f; = f, that fo — f(zo,y) is quadratic with respect to  — o and that

Vafs(z,y) = {S(y) + S/O R(zo + t(z — xo), y)dt + (1 — S)R(w‘o,y)} (z —x0),

by the Taylor formula and (7.29). By (7.30), there exists ¢ > 0 such that |S(y)X| > 2¢|X]|, for all
X € R™ and all y € Q hence (7.31) implies that

Vafs(z,y)l = clz —zo(y)l,  s€[0,1], (z,y) €R" x Q. (B.1)

Lemma B.1. For all K € R™ and all integer k > 1, there exists C > 0 and N > 0 such that, for
all s € 10,1], all y € Q and all u such that

u e Cg"HE) N CPFR™\ {zo(y)}), (B.2)
0%u(zo(y)) =0, la| < 2k, (B.3)
d%u € L (R"), |a] = 2k, (B.4)
we have
N
wf(2.) < Cwk [ e 1 o > 1.
‘/e u(z)dz| < Cw ﬁfﬂ?%i”a ul| Lo (£ QSH(%%( +§ggla fsl) ;o w>

Notice that the assumption (B.4) is only a condition near xo(y). It guarantees the boundedness
of %u(x)/|z — xo|?F-1el.

Proof. We proceed by induction and consider first £ = 1. We would like to integrate by part
using the operator |V, fs| 2V, fs -V, but, since V, f, may vanish on the support of u, we consider
Ls = (|Vafs|> +0)"1V.fs - V. which satisfies

iw/ei“’fs(z’y)u(x)dx = lgﬁ)l/(Lgei“’fs(z’y))u(x)dx.

We then integrate by part at fixed § > 0, using that

1
CVufP 40

2

t
Ls = =
’ Vo fsl? +6

{V:vfs 'vz+Awfs_ <Hessw[fs]va:fsvva:fs>}-
Since |Az fs(z, y)u(z)] S max|q)=2 [|Az fs (- Y| Loe (1) |[0%Ul[Loo |2 — zo(y)|? and using (B.1), by
letting 6 | 0 we get

w / el @)y (1) da
la]=2 ERSIING

< Cmag [0l ey a1+ sup [0°1,]).

Here the constant C' is independent of y, u, s and w; it depends only on K and the constant ¢ in
(B.1). The result then follows by induction using that

|vacfs|72<va:f37a:cu>v |vxfs|72(Axfs)ua |vxf8|74 <Hessm[fs]vxf37vxfs>u
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satisfy the assumptions (B.2), (B.3) and (B.4) if u does for k + 1. O

End of the proof of Lemma 7.7. We next consider I(s) = [ e®/s@¥)y(z)dz so that, for all j € Ny,
we have

1@D (5) = (iw)¥ /e"“fs(’”’y)g(w,y)QjU(JC)dﬂf-

Since 0% (g(x,y)*) = 0 for all || < 64, Lemma B.1 yields, with k = 35 > n/2,

le=20(y)
N
|1 2])( )| < Cw™ n/2 |g|12%{j [[0%ul| Lo (k) 2§I|ILE\E§(6 <1 + zseu]}g |8afs|> , s €[0,1].
Since I(1) = [ e/ @¥y(z)dz, the estimate
=Y 1D0)/1 < sup 159 (s)]/(24)),

1<2j s€[0,1]

reduces the proof to estimating the integrals I (l)(O) whose common phase fy is quadratic, up
to a constant term and whose amplitude is u(x)g(z,y)!. By Taylor’s formula g(x,%) is of order
|z —z0(y)|? so the derivatives of u(x)g(z,y)! may be of order (zo(y))? on which we have no control.
By choosing K a bounded neighborhood of K and applying Lemma B.1 to the subset of {2 on which
z0(y) ¢ K, we can assume that we consider those y for which zo(y) € K. We then use the Lemma
7.7.3 of [19] on oscillatory integrals with quadratic phases, observing that ||03g(.,y)"||=(k,) is
controlled by (products of) of norms |07 f(.,y)|| (k) with |3| > 2, since z is bounded on the
support of u and z((y) remains bounded. O
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