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ABSTRACT
Random Medium-Access-Control (MAC) algorithms have
played an increasingly important role in the development of
wired and wireless Local Area Networks (LANs) and yet the
performance of even the simplest of these algorithms, such as
slotted-Aloha, are still not clearly understood. In this paper
we provide a general and accurate method to analyze net-
works where interfering users share a resource using random
MAC algorithms. We show that this method is asymptoti-
cally exact when the number of users grows large, and ex-
plain why it also provides extremely accurate performance
estimates even for small systems. We apply this analysis
to solve two open problems: (a) We address the stability
region of non-adaptive Aloha-like systems. Specifically, we
consider a fixed number of buffered users receiving packets
from independent exogenous processes and accessing the re-
source using Aloha-like algorithms. We provide an explicit
expression to approximate the stability region of this sys-
tem, and prove its accuracy. (b) We outline how to apply
the analysis to predict the performance of adaptive MAC
algorithms, such as the exponential back-off algorithm, in a
system where saturated users interact through interference.
In general, our analysis may be used to quantify how far
from optimality the simple MAC algorithms used in LANs
today are, and to determine if more complicated (e.g. queue-
based) algorithms proposed in the literature could provide
significant improvement in performance.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless com-
munication
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Algorithms, Design, Performance
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1. INTRODUCTION
Distributed Medium Access Control (MAC) algorithms,

starting from the first version of Abramson’s Aloha to the
most recent algorithms used in IEEE802.11, have enabled
a rapid growth of wired and wireless Local Area Networks
(LANs). They aim at efficiently and fairly sharing a re-
source among users even though each user must decide in-
dependently when and how to attempt to use the resource.
MAC algorithms have generated a lot of research interest,
especially recently in attempts to use multi-hop wireless
networks (Mesh and Ad-Hoc networks) to provide low-cost
high-speed access to the Internet.

In this paper, we restrict our attention to wireless LANs,
where the resource is a single radio channel and where users
interact because of interference, i.e., two interfering users
cannot transmit simultaneously (in such case we say that
they experience a collision). Users willing to use the chan-
nel must first probe (or listen to) the channel, and when it
is not busy, they can decide to transmit. In other words, we
consider CSMA (Carrier Sense Multiple Access) algorithms.
However as explained later, the analysis also applies to clas-
sical slotted-Aloha.

We may roughly categorize distributed MAC algorithms
into two types: (1) Traffic-oblivious algorithms, where users
do not use any information on the contents of their own
or their neighbors’ buffers to decide whether to transmit;
(2) Traffic-aware algorithms, where users exchange informa-
tion on their buffers before deciding to attempt to use the
channel. In today’s LANs, only simple traffic-oblivious algo-
rithms are used. In spite of their simplicity, these algorithms
are extremely difficult to analyze and their performance re-
mains largely open (we outline recent efforts to analyze these
algorithms in Sections 3 and 5). As a consequence, we do
not know whether they can provide any performance guar-
antees. This has motivated the recent development of traffic-
aware algorithms. For example, some researchers have pro-
posed distributed implementations (see e.g. [16] and refer-
ences therein) of Tassiulas-Ephremides optimal centralized
algorithm [18]. In general, the performance of traffic-aware
algorithms is easier to analyze than that of traffic-oblivious
algorithms, and they should perform better. However they
require signaling procedures that are sometimes complicated
and that in turn affect the overall performance.

In this paper, we aim at analyzing the performance of
traffic-oblivious algorithms used in today’s LANs. This anal-
ysis is crucial to understand whether the performance gap
between these algorithms and optimal schemes is large enough
to motivate practical implementations of more elaborated



algorithms. We consider a time-slotted system with a fixed
number of users sharing a radio channel according to some
traffic-oblivious distributed MAC algorithms, namely Aloha-
like or exponential back-off algorithms. These users interact
through interference, and can be either unsaturated, which
means that the packets they need to transmit are generated
according to some exogenous random processes with fixed
rates, or saturated, which means that they always have pack-
ets to transmit in their buffers. Unsaturated users model
streaming applications, whereas saturated users are more
appropriate to model elastic data traffic. For streaming ap-
plications, we are interested in packet delays, and then pri-
marily in buffer stability. For data applications, the QoS
metric is the user throughput, i.e., the number of packets
per second the user can successfully transmit.

Contributions. We provide a generic analysis for predict-
ing the performance of systems with unsaturated or satu-
rated users. We show that this analysis is asymptotically
exact when the number of users grows large, and we explain
why it also provides extremely accurate performance esti-
mates even for small systems.
(a) Stability of non-adaptive (Aloha-like) MAC algorithms
in unsaturated systems. Characterizing the stability region
of these kind of systems is notoriously difficult (see a de-
tailed description of the state-of-the-art in Section 3). The
difficulty can be illustrated by the fact that the stability
condition is sensitive, i.e., it depends not only on the av-
erage packet arrival rates, but also on the detailed statis-
tical characteristics of the arrival processes. The stability
region has been characterized for small systems only, with
two (or sometimes three) users. The main contribution of
this paper is to provide a general approximate expression
of the stability region for systems with an arbitrary number
of users. This approximate stability region is shown to be
exact when the number grows large and very accurate when
this number is small; it also proves to be insensitive, i.e.,
it depends on the mean packet arrival rates only. We give
approximate expressions in various scenarios depending on
the type of interference considered, and on the duration of
packet transmissions and collisions:

• In the case of full interference, i.e., when all users inter-
fere with each other, the approximate stability region
is particularly simple, even when the packet transmis-
sion and the collision durations are greater than one
slot.

• In the case of partial interference, i.e., when a user does
not necessarily interfere with all other users, the ap-
proximate stability region is more complicated and is
expressed as a function of the stationary performance
of certain loss networks.

(b) Throughput of adaptive MAC algorithms in saturated
systems. We outline how to apply the analysis to predict
the throughput achieved by saturated users running adap-
tive algorithms, such as the exponential back-off algorithm,
in systems with partial interference. This generalizes and
justifies theoretically similar analysis used for systems with
full interference, see [3,5].

The paper is organized as follows. In Section 2, we present
the network and traffic models. In Sections 3 and 4, we ana-
lyze the stability of systems with unsaturated users. Section
5 is devoted to the analysis of systems with saturated users.
We conclude in Section 6.

2. NETWORK AND TRAFFIC MODELS

For convenience we consider a system where time is mea-
sured in slots so any time interval is measured in multiples
of slots.

2.1 Network model

We consider a wireless network with a fixed number N
of links or users sharing the radio resources (a single chan-
nel) using some random MAC protocol. Users are classified
by location: users of the same class interfere with and are
interfered with by the same set of users.

For simplicity, we assume that if user interferes with user
j, then j interferes with user i but our results could be gener-
alized to asymmetric interference. Two interfering users can
not simultaneously transmit successfully. If they transmit
at the same time, they both experience a collision. Denote
by C the set of user classes, and i ∈ c means that user i is of
class c. Also denote by Nc the set of classes such that users
of these classes interfere with users of class c. If d ∈ Nc, we
say that d is a neighbor of class c. Finally we define by Ii

the set of users interfering with user i.
An example of such network is the uplink of a cellular

system with overlapping cells. In Figure 1, we present a
network with two overlapping cells: it has three different ge-
ographic regions, each corresponding to a user class. Class-2
users transmit packets to the access point (AP) 1, so they
are neighbors of class-1 users. They also neighbors of class-3
users due to the fact that AP 2 has to acknowledge packets of
class-3 users, and these acknowledgment (ack) transmissions
interfere with the transmissions by AP 1 of acks of packets
of class-2 users. The acks make the interference symmetric.

class−1 users
class−2 users

class−3 users

AP1 AP2

Figure 1: A network of 2 overlapping cells.

Finally, in this paper, we say that the system has full
interference when each user interferes with all other users.
Otherwise, we say that the system has partial interference.

2.2 Traffic models and performance metrics

We propose two traffic models, depending on the type of
applications handled by the network.

2.2.1 Unsaturated users
Each user is assumed to have an infinite buffer. For user

i, packets of fixed sizes are stored in a FIFO manner and
arrive in this buffer according to an exogenous Markov mod-
ulated process that can be represented by a stationary er-
godic Markov chain Ai(t) with stationary probability πi(a)
of being in state a. The Markov chains Ai(t) are indepen-
dent across users and take values in a finite space A. When
Ai(t) = a, a new packet arrives in the buffer of user i with
probability λi,a. The average arrival rate of packets per slot



at user i is then λi =
P

a λi,aπi(a). We use these chains to
represent various types of packet inter-arrival processes. The
simplest example is that of Bernoulli arrivals, i.e., when the
inter-arrivals are geometrically distributed with mean 1/λi:
this can be represented by the Markov chain Ai(t) with one
state. We could also represent inter-arrivals that are sums
or any combinations of geometric random variables. In the
following we denote by αi = λi/

P

j λj the proportion of
traffic generated by user i.

Unsaturated users constitute a convenient model for stream-
ing applications such as voice or video, whose rate is intrin-
sic. For such applications, the main QoS requirement can be
expressed in terms of packet delays, which remain bounded
if the system is stable. Here, we consider that the system
can be described by a Markov chain, so that stability means
the ergodicity of this chain.

2.2.2 Saturated users
A user is said to be saturated when it always has pack-

ets in its buffer. This scenario is common in case of elastic
data applications when the wireless link is a bottleneck. In
this case, the congestion control algorithm tends to saturate
the buffer. For such applications, we will be interested in
the long term throughput of the users. By definition the
throughput of a user is the long term average packet trans-
mission rate achieved by this user.

2.3 Medium Access Control algorithms

We consider CSMA (Carrier-Sense-Multiple-Access) pro-
tocols, which means that before transmitting, a user senses
the channel, and if it is busy it does not start transmitting.
In other words, a user cannot interrupt a packet transmis-
sion of another user. Nevertheless, collisions are possible
when two users have sensed the channel idle, and decided
to transmit simultaneously. After the beginning of the suc-
cessful transmission of a packet, the channel can not be used
for L slots (note that we assumed packets with fixed sizes,
so that L represents the time to transmit the packet and
its MAC ack plus the additional time required for the users
to find out and declare that the channel is idle again, in
IEEE802.11, this duration is DIFS). Similarly, we denote by
Lc the duration of a collision. Lc might be smaller than
L (e.g. as in IEEE802.11 with RTS/CTS). Note that our
models could be easily generalized to the case where L and
Lc are random variables. When needed, to keep the system
in a Markovian setting, we will keep track of the remaining
time of packet transmissions or collisions. A particular case
of the above model is slotted-Aloha [14], where L = Lc = 1.

In Section 3, we consider non-adaptive random MAC al-
gorithms, where, when the channel is sensed idle, a user
attempts to use the channel with a fixed probability. In
Section 5, we discuss the performance of adaptive algorithms
where the transmission probability depends of the number of
successive collisions previously experienced by the user. To-
day’s wireless LANs use the exponential back-off algorithm:
after a successful transmission the transmission probability
is set to p0, and after experiencing a collision, the transmis-
sion probability is divided by 2 (unless it has already reached
the minimum probability p02

−m, where usually m = 7).

3. STABILITY REGION OF
NON-ADAPTIVE MAC ALGORITHMS

Consider a fixed number N of unsaturated users. Each
user generates packets according to a random process that
can be represented by a Markov chain as explained in Section
2.2. When user i has a packet in its buffer, it attempts to
use the channel with fixed probability pi. When its buffer is
empty, it does not attempt to use the channel.

3.1 Full interference - Unit packet duration

We first investigate of the stability region in the case all
users interfere with each other and when the packet trans-
mission and collision durations are equal to one slot. This
problem has received a lot of attention in the literature in
the three last decades. An exact characterization of the sta-
bility region has been provided in [13, 15, 19] under general
traffic assumptions but only for N = 2 users. For two users,
the stability region Λ2 is defined by: λ ∈ Λ2 if and only if:

either λ1 < p1(1 − p2), λ2 < p2(1 − λ1/(1 − p2)),

or λ2 < p2(1 − p1), λ1 < p1(1 − λ2/(1 − p1)).

The first (resp. second) condition is obtained assuming that
buffer 2 (resp. buffer 1) is saturated. When the number
of users is greater than three, the stability region depends
not only on the mean arrival rates λi, but also on the other
detailed statistical properties of the arrival processes. For
example, when N = 3, this is due to the fact that the sta-
bility condition for a particular buffer depends on the prob-
ability that the two other buffers are empty separately or
simultaneously. These probabilities actually depend on the
detailed characteristics of the arrival processes, see e.g. [4,7].
For N = 3 and Bernoulli arrivals, the stability region can
be characterized [17]. When the arrivals are not Bernoulli,
the system stability region is unknown. When the number
of users N exceeds 3, it becomes impossible to derive ex-
plicit stability conditions. As shown in [7, 17], the stability
region ΛN is then recursively described as a function of the
various stability regions of systems with N − 1 users, ΛN−1,
and of the probabilities that in these systems, some buffers
are simultaneously empty. These probabilities are unknown
in general, and so is the stability region. The only previous
explicit stability result for arbitrary N is given in [1]; unfor-
tunately, to obtain this stability condition, the author has
to assume that the arrival processes of the different users
are correlated, which is unrealistic in practice. Some other
authors have proposed bounds on the stability region, see
e.g. [4, 12]. The basic idea behind all the proposed bounds
is that the stability region is decreased when one assumes
that some buffers are saturated and this can be quite conser-
vative. Finally, note that when the system is homogeneous
in the sense that λi/[pi

Q

j 6=i(1− pi)] does not depend on i,

then one can show as in [4] that the stability condition is:
λi < pi

Q

j 6=i(1 − pj) for all i (in this very specific case, all

buffers saturate simultaneously at the stability limit).

3.1.1 Approximate stability region̂ΛN

We now provide an approximate expression of the stability
region for a system with an arbitrary number of users. We
prove that this approximation is exact when the number
of users grows large. The approximate expression is valid



for any arrival processes, which indicates that the stability
region becomes insensitive when N grows. Finally, we show
through theoretical arguments and numerical results that
the approximate stability region is actually very tight even
for a small number of users, say three.

Roughly speaking, the approximate stability region is ob-
tained assuming that the evolutions of the queues of the
various users are independent. Let ∂j [0, 1]N be the set of
ρ ∈ R

N
+ such that ∀i, ρi ≤ 1, and ρj = 1. The approximate

stability region is the region lying below one of N boundaries
∂jΛ

N defined by:

∂jΛ̂
N =



λ : ∃ρ ∈ ∂j [0, 1]N ,∀i, λi = ρipi

Y

k 6=i

(1 − ρkpk)

ff

.

More precisely, Λ̂N is the set of positive vectors λ such that
there exist j and σ ∈ ∂jΛ̂

N with λi < σi for all i. Note

that Λ̂2 = Λ2, so the proposed approximation is exact when
N = 2.

Let (λN , pN) = ((λN
1 , pN

1 ), . . . , (λN
N , pN

N )) be a sequence of
vectors of arrival intensities and transmission probabilities.
For this sequence, we assume that for any N , infi,j λN

i /λN
j >

0 and infi,j pN
i /pN

j > 0. These assumptions implies that
when investigating stability, the arrival and transmission
rates have to scale as 1/N . Without loss of generality, we
assume that (NλN

i , NpN
i ) can take a finite number of val-

ues, indexed by a set V, and that the proportion of users
such that (λN

i , pN
i ) = (λv/N, pv/N) tends to βv. We finally

assume that for all N ,
P

i pN
i ≤ 1. This assumption is made

so as to keep the approximation expression of the stability
region simple. Note that as Kleinrock already noticed [11],
the assumption is needed to guarantee a certain efficiency of
the system.

The following result compares the stability region ΛN with
our proposed approximation Λ̂N as N gets large. Define
1N := (1/N, . . . , 1/N).

Theorem 1. For ǫ > 0 small enough, there exists Nǫ

such that: for N > Nǫ,
(a) if λN + ǫ · 1N ∈ Λ̂N , then the system is stable;

(b) if λN − ǫ · 1N 6∈ Λ̂N , then the system is unstable.

When Λ̂N satisfies the property described in Theorem 1,
we say that it is an asymptotically exact approximation of
the stability region ΛN . A consequence of the above result is
that when N grows large, and whatever the arrival processes
considered, the set traffic intensities (λ1, . . . , λN) such that
there exist transmission probabilities (p1, . . . , pN) stabilizing
the system is the set M with boundary ∂M:

∂M =



λ : ∃p1, . . . , pn ∈ (0, 1) : ∀i, λi = pi

Y

j 6=i

(1 − pj)

ff

.

This result has been conjectured by Tsybakov and Mikhailov
in [19].

3.1.2 How to computêΛN

Assume that the distribution of traffic demand α = (αi, i =
1, . . . , N), is fixed and let us find the limit total arrival rate

ŝ⋆ =
P

i λi such that λ = ŝ⋆α ∈ Λ̂N . It can be easily
shown that at this limit, the user i⋆ such that ρi⋆ = 1 is:
i⋆ = arg maxi αi(1 − pi)/pi. We deduce the limit arrival

rate:

ŝ⋆ =
pi⋆

αi⋆

Y

i6=i⋆

„

1 −
αipi⋆

αipi⋆ + αi⋆(1 − pi⋆)

«

.

3.1.3 Accuracy of̂ΛN

How far is the approximate region Λ̂N from the actual
stability region? Theorem 1 says that the gap tends to 0
when the number N of users grows large. But even for small
N , Λ̂N is quite an accurate approximation as illustrated in
the numerical examples provided later. We can explain this
accuracy by remarking that the boundaries of the regions
ΛN and Λ̂N coincide in many scenarios. Remember that
Λ̂N can be interpreted as the stability region one would get
if the evolutions of the different buffers were independent.
As a consequence, it provides the exact stability condition
for scenarios where, in the stability limit, the buffers become
independent.

Definition 1 (k-homogeneous directions). A direc-
tion (a vector with unit L1-norm) α ∈ R

N
+ is k-homogeneous

for the system considered if there exists a permutation σ of
{1, . . . , N} such that, for all i = 1, . . . , k, ασ(i)(1−pσ(i))/pσ(i)

does not depend on i.

In the following, without loss of generality, when a direction
is k-homogeneous, the corresponding permutation is given
by σ(i) = i for all i.

Lemma 1. Assume that λ = s × α, where α is a
k-homogeneous direction for the system considered. Define
s⋆ = sup{s ≥ 0 : sα ∈ ΛN} and similarly ŝ⋆. Then if
1k+1≤Nαk+1(1−pk+1)/pk+1 ≤ α1(1−p1)/p1 and αl = 0 for
l > k + 1, then s⋆ = ŝ⋆.

Proof. For k+1 = N , the lemma is equivalent to Proposition
6 in [4] (a less general version of this result was given in
[17], Corollary 4). For k ≤ N , the proof can be made as
in [4], remarking that along direction α, when we increase
the overall arrival rate s, then due to k-homogeneity, buffers
1, . . . , k are going to saturate first. So at the stability limit,
the buffer evolutions are independent. 2

The above lemma states that the boundaries of Λ̂N and
ΛN coincide on a set of curves corresponding to particular
directions. In case N = 3, Figure 2 gives a schematic illus-
tration of these curves.

p3

λ3

λ1

λ2
A

B D C

p1 p2

Figure 2: Curves where ∂Λ̂3 and ∂Λ3 coincide. A =
(p1(1 − p2), p2(1 − p1), 0); B = (p1(1 − p3), 0, p3(1 − p1));
C = (0, p2(1−p3), p3(1−p2)); D = (p1(1−p2(1−p3), p2(1−
p1(1 − p3), p3(1 − p1)(1 − p2)).



3.1.4 Numerical examples
We now illustrate the accuracy of Λ̂N using numerical

experiments.
Example 1: First, we consider the case of N = 3 sources,
each transmitting with probability 1/3. We vary the relative
values of the arrival rates at the various queues: λ1 = λ,

λ2 = λ × (1+1/x)
2

and λ3 = λ/x. We vary x from 1 to 50. It
can be shown that the approximate stability condition is

3
X

i=1

λi < ŝ⋆ =
4x(x + 1)

(2x + 1)(5x + 1)
.

In Figure 3 (left), we compare this limit to the actual stabil-
ity limit found by simulation with Bernoulli arrivals (Simu-
lation 1) and hyper-geometric arrivals (Simulation 2). In the
latter case, the inter-arrivals for each user i are i.i.d., and
an inter-arrival is a geometric random variable with param-
eter aλi with probability 1/2, and (1−a)λi with probability
1/2. This increases the variance of inter-arrivals (when a is
small the variance scales as 1/a). In the numerical experi-
ment, we chose a = 1/5. Remark that the stability region is
roughly insensitive to the distribution of inter-arrivals. This
insensitivity has been also observed in the other examples
presented in this section. The simulation results have been
obtained running the system for about 107 packet arrivals.
Note finally that the arrival rates are chosen so that the
system is not k-homogeneous.
Example 2: We make a similar numerical experiment when
(p1, p2, p3) = (0.6, 0.3, 0.1). The arrival rates at the three
queues are as in Example 1. We vary x from 0.1 and 10. For
x < x0 = 47/7, at the boundary of Λ̂3, queue 3 is saturated
(ρ3 = 1); whereas for x ≥ x0, queue 2 is saturated (ρ2 = 1).
The approximate stability condition is:

3
X

i=1

λi < ŝ⋆ =

(

7.2x(x+1)
(7x+3)(2x+3)

, if x < 47/7,
44.1(x+1)2

(13x+7)(7x+13)
, if x ≥ 47/7.

Figure 3 (center) illustrates the accuracy of Λ̂3.

Example 3: Finally, we illustrate the accuracy of Λ̂N when
the number of users N grows. Each user is assumed to trans-
mit with probability 1/N and the traffic distribution is such
that α1 > αi for all i ≥ 2. Hence, again the system is not
k-homogeneous. One can easily show that in this direction,
the approximate stability condition is:

N
X

i=1

λi < ŝ⋆ =
1

Nα1

N
Y

i=2

„

1 −
αi

αi + (N − 1)α1

«

.

In Figure 3 (right), we compare the boundary of Λ̂N with
that of ΛN when the distribution αi is linearly decreasing
with i. Again as expected, ŝ⋆ provides an excellent approx-
imation of the saturation level in the actual system.

3.2 Full interference - Arbitrary packet
duration

When the packet transmission and collision durations L
and Lc are not equal to 1 slot, the challenges of deriving
an exact stability region are similar to those arising when
they are equal to 1 slot. As previously, we can provide an
approximation Λ̂N

L of the actual stability region ΛN
L .

For ρ = (ρ1, . . . , ρN) ∈ R
N
+ , define γi(ρ):

γi(ρ) =
Pi

L
P

j Pj + LcC + E
,

where
8

<

:

Pi = ρipi

Q

j 6=i(1 − ρjpj),

E =
Q

k(1 − ρkpk),
C = 1 − E −

P

j Pj .

The approximate stability region Λ̂N
L is the set of points

lying below one of the boundaries ∂jΛ̂
N
l defined by:

∂jΛ̂
N
L =



λ : ∃ρ ∈ ∂j [0, 1]N ,∀i, λi = γi(ρ)

ff

.

Under the assumptions of Theorem 1 (see the paragraph
above Theorem 1), we can show that:

Theorem 2. Λ̂N
L is an asymptotically exact approxima-

tion of the stability region ΛN
L .

As in the case of unit packet duration, we can show using
theoretical arguments and numerical experiments that the
approximation is extremely accurate. For example, the no-
tion of k-homogenous directions can be easily extended, and
Λ̂N

L is exact in those directions. Due to space limitations,
we do not discuss this further here.

3.3 Partial interference - Unit packet duration

We now consider the case with partial interference, and
denote by Ii the set of users interfering with user i (includ-
ing i). The packet transmission duration is 1 slot. Again we
can provide a accurate approximation of the stability region.
This approximate region is denoted by Λ̂N ((Ii)

N
i=1) and de-

fined by the set of points lying below one of the boundaries
∂jΛ

N ((Ii)
N
i=1):

∂jΛ̂
N ((Ii)

N
i=1) =



λ : ∃ρ ∈ ∂j [0, 1]N ,∀i, λi = ρipi

Y

k∈Ii\{i}

(1 − ρkpk)

ff

.

In the case of partial interference, to state the analog of
Theorem 1, we group users according to their arrival and
transmission rates, and to their interference properties: a
user i is in group v ∈ V if (NλN

i , NpN
i ) = (λv, pv) and if its

class is identified by v, i.e., i ∈ c(v). The analog of Theorem
1 is:

Theorem 3. Λ̂N ((Ii)
N
i=1) is an asymptotically exact ap-

proximation of the stability region ΛN ((Ii)
N
i=1).

Once again the approximation turns out to be very accu-
rate.

3.4 Partial interference - Arbitrary packet
duration

The case of partial interference and packet transmission
and collision durations greater than 1 slot is more compli-
cated than all previous cases. This is due to the fact that
the users of various classes do not see the same channel busy
periods. For example, the users of class 2 in the network of
Figure 1 typically see longer periods where the channel is
busy than the users of classes 1 and 3: users of the latter
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distribution βi.

classes do not hear each other so a user of class 1 may start
to transmit in the middle of a transmission made by a user
of class 3. In such case, the channel is declared busy by users
of class 2 for a period longer than L.

3.4.1 An intermediate loss network
To circumvent this difficulty, we introduce the following

loss network (see e.g. [9] for a survey on loss networks). The
construction of this network is as follows. For each user class
c ∈ C, create a link c of unit capacity. The network has a
set R = R1 ∪R2 of routes.

• Routes in R1 go through a single link, and there is one
of such routes per link c ∈ C. These routes represent
successful transmissions, i.e., when a client is active
on route r = {c} ∈ R1, it means that in the origi-
nal system, a class-c user is successfully transmitting
a packet. When a client starts being active on a route
of R1, it remains active for L slots.

• Routes in R2 are any set of neighboring classes, and
represent collisions. These routes can be of any length.
For example, when there is a client on route r = {c} ∈
R2, it means that in the original system, at least 2
users of class c are transmitting simultaneously and
that there is no user of one of the neighboring classes
of c currently transmitting. When there is a client on
route r = {c, c′} ∈ R2, it means that there is at least
one user of classes c and c′ transmitting, and that no
user of one of the neighboring classes of c and c′ (except
c, c′) is currently transmitting. When a client starts
being active on a route of R2, it remains active for Lc

slots.

For the system of Figure 1, the corresponding loss network
is presented in Figure 4. It has 3 unit-capacity links 1, 2,
and 3; R1 = {{1}, {2}, {3}},
R2 = {{1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}}.

Routes in R2

Routes in R1

Figure 4: The loss network corresponding to the

network of Figure 1.

The state of the loss network n belongs to {0, 1}|R|. We
write nc = 0 when there is no client on any route r contain-
ing link c, and nc = 1 if there is at least one client on a route

going through link c. We also write nr = 0 or 1 depending
on whether or not there is a client on route r. We introduce
the clear-to-send functions Sc(n) as follows: Sc(n) = 1 if for
all d ∈ Nc, nd = 0, Sc(n) = 0 otherwise. In the original sys-
tem, when Sc(n) = 1, a class-c user observes an idle channel
and none of its neighbors is currently transmitting. In this
case, this user can attempt to use the channel.

The evolution of n is discrete in time and is parametrized
by a vector ρ = (ρ1, . . . , ρN ) ∈ R

N
+ , where ρi will be natu-

rally interpreted as the proportion of time the buffer of user
i is not empty. First introduce Pc (resp. Cc) the probabil-
ity that only one (resp. more than one) class-c user starts
transmitting, and Ec the probability that none of these users
starts transmitting:

8

<

:

Pc =
P

i∈c ρipi

Q

j 6=i,j∈c(1 − ρjpj),

Ec =
Q

i∈c(1 − ρipi),
Cc = 1 − Ec − Pc.

The service time of a client on a route is deterministic so
we have to include the remaining service time to make the
loss network Markovian. Denote by dr the residual service
time of the client on route r, and assume that dr = 0 means
that there is no client on this route. We are now ready to
write the transition kernel of the loss network. Consider
a transition from state (n, d) to (n′, d′). First, the state
n′ has to be feasible: this means that if for any couple of
routes r, s such that n′

r = 1 = n′
s, then user classes c ∈ r

and c′ ∈ s can not be neighboring classes. Formally, for
all c ∈ r and all c′ ∈ s, then c′ /∈ Nc. We gather these
conditions together through the function 1f (n′) equal to 1
if all the conditions are met and 0 otherwise. The transition
probability K((n, d), (n′, d′)) can then be written:

K((n, d), (n′, d′)) = 1f (n′) × K1 × K2 × Ke × Ks.

Ks represents the services of clients in the network:

Ks =
Y

r:nr=1,n′

r
=0

1{dr=1}

Y

r:nr=1=n′

r

1{d′

r
=dr−1>0}.

K1 represents the probability that clients arrive on routes in
R1. Denote by R1(n, n′) the set of routes in R1 such that
if r ∈ R1(n, n′), nr = 0, n′

r = 1, and d′
r = L. Then:

K1 =
Y

c:{c}∈R1(n,n′)

Sc(n)Pc.

Similarly, K2 is the probability that routes in R2 become
active. Define by R2(n, n′) the set of routes of R2 becoming



active in state n′ (note that here we must have d′
r = Lc).

Then:

K2 =
Y

c:{c}∈R2(n,n′)

Sc(n)Cc ×
Y

r∈R2(n,n′)
|r|≥2

Y

c∈r

Sc(n)(Pc + Cc).

Finally, Ke is the probability that routes initially empty in
state n remain empty in state n′. Define by Re(n, n′) the set
of classes c such that there exists no route r in R1(n, n′) ∪
R2(n, n′) such that c ∈ r. Then:

Ke =
Y

c∈Re(n,n′)

(Sc(n)Ec + 1 − Sc(n)) .

Remark that the expression of the transition kernel is com-
plicated by the fact that the loss network evolves in discrete
time. Note also that the arrival rates in the loss network de-
pend on the network state, so that in general, the network
loses its reversibility [9]. Hence, its stationary distribution
πρ can not be explicitely written. Anyway, the state space
of the loss network is rather restricted, so that it is easy to
compute πρ numerically. Note that there are cases where
the stationary distribution can be accurately approximated.
For example when Lc ≪ L, then we can neglect routes of
R2. In such a scenario, writing the balance equations of
the loss network with geometrically distributed service times
(instead of deterministic), we observe that the network is re-
versible. This implies that its stationary distribution can be
explicitly written and is insensitive to the service time distri-
bution provided that the mean service time L is not changed
(see e.g. [10]). This distribution is then valid for determinis-
tic service times, and it is such that, for all n with nr = 0 if
r ∈ R2, πρ(n) = πρ(0)

Q

c:nc=1 L×Pc

Q

r∈R2
1{nr=0}. With

this approximation, we recover the stationary distribution
identified in [8] to understand the performance of Aloha-
like algorithms in networks with saturated users, and with
negligible collision probability.

From the stationary distribution πρ, we can deduce the
service rate of user i ∈ c, γi(ρ):

γi(ρ) =
X

n:Sc(n)=1

πρ(n)
ρipi

1 − ρipi
Ec

Y

d∈Nc,Sd(n)=1

Ed.

The above expression is obtained using the cycle formula
(see 1.3.2 [2]).

3.4.2 Approximate stability region
We are now able to define Λ̂N

L ((Ii)
N
i=1), the proposed ap-

proximation of the stability region. It is the set of points
lying below one of the N boundaries ∂jΛ̂

N
L ((Ii)

N
i=1) defined

by:

∂jΛ̂
N
L ((Ii)

N
i=1) =



λ : ∃ρ ∈ ∂j [0, 1]N , ∀i, λi = γi(ρ)

ff

.

The analog of Theorem 1 is:

Theorem 4. Λ̂N
L ((Ii)

N
i=1) is an asymptotically exact ap-

proximation of the stability region ΛN
L ((Ii)

N
i=1).

3.4.3 Stability region of the network of Figure 1
In Figure 5, we compare Λ̂N

L ((Ii)
N
i=1) and ΛN

L ((Ii)
N
i=1) in

the case of the network of Figure 1. There are 2 users per
class, and they all transmit with probability 0.1. We as-
sume that the arrival rates λi for users of classes 1 and 3
are identical, i.e., λ1 = λ2 = λ5 = λ6. The arrival rates for

users of class 2 are also identical, λ3 = λ4. We investigate
the cases where L = Lc = 2, 10, and 100. Again the ap-
proximation is quite accurate. Note also that they are some
points in the curves representing the boundary of Λ̂N that
actually correspond exactly to stability limits of the system
(analog of the notion of k-homogenous systems discussed in
Section 3.1). This is the case for example for the elbow of
the curve for L = 2 (at that point all queues get saturated
simultaneously).
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Figure 5: Stability region of the network of Figure

1 - 2 users per class, pi = 0.1 for all i.

4. PROOFS OF THEOREMS 1-4

We now prove the results of the previous section. Infor-
mally speaking, we prove that when the number of users
grows large, the queues attached to the various sources be-
come independent. Assuming independence, we can derive
the system stability, and then show that the stability con-
dition obtained approximates that of the original system.
The proofs are based on interpreting the system as a system
of interacting particles for which we analyze the asymptotic
behavior. All the results related to the particle system are
postponed to the appendix, and proved in [6]. In the present
section, we explain how to use these results. We will prove
Theorem 1, and briefly explain how to obtain Theorems 2-4.

4.1 Proof of Theorem 1

4.1.1 The limiting regime
Consider a system with N users, and for user i, denote by

λN
i and pN

i the arrival and transmission rates, respectively.
The arrivals of packets for user i are driven by a A-valued
Markov chain AN

i whose transition kernel is KN
i , and is

initially in steady state πi. By assumption, for each i, there
is a v ∈ V such that (λN

i , pN
i ) = (λv/N, pv/N). In which case

we say that user i is in group v. Without loss of generality,
we assume that v also characterizes the arrival process of
users, i.e., for a user i in group v, KN

i = Kv , πi = πv,
λN

i,a = λv,a/N , and λv =
P

a∈A πv(a)λv,a (refer to Section
2.2 for the notation).

The system can be represented as a system of interacting
particles as described in Appendix. Each user i corresponds
to a particle whose state XN

i (t) at time slot t represents the
group v it belongs to, and the length BN

i (t) of its buffer:
XN

i (t) = (v, BN
i (t)). The individual environment of particle

i is AN
i (t), and the global environment process ZN is not

needed here. Denote by νN(t) the empirical measure of the

system at time slot t: νN (t) = 1
N

PN
i=1 δXN

i
(t).



Assume that at time slot t, the empirical measure is ν.
If user/particle i in group v is in state x = (v, k), and if
its individual environment AN

i (t) is a, the probabilities of
transition for the next slot are given as follows. The state
becomes (v, k + 1) with probability:

F N
b (x, ν, a)/N = λv,a/N + o(1/N),

and (v, k − 1) with probability:

F N
d (x, ν, a)/N = 1k>0

pv

N(1 − pv

N
)

Y

v′

(1−
pv′

N
)βN

v′
ν+

v′
N+o(1/N),

where βN
v is the proportion of users in group v and ν+

v is
the proportion of users in group v with non-empty buffers.
Denote by βv the proportion of users in group v at the limit
when N grows large. When N → ∞, the functions F N

b , F N
d

converge to Fb, Fd where:

Fb(x, ν, a) = λv,a, Fd(x, ν, a) = 1k>0pv exp (−
X

v′

βv′ν+
v′pv′).

At time 0, we apply a random and uniformly distributed
permutation to the users so that their initial states become
i.i.d.. This operation does not change the stability of the
system. Since the system evolves slowly (at speed 1/N), we
accelerate time and define qN

i (t) = XN
i (⌊Nt⌋). The limiting

averaged functions defining the particle transitions (see (9)
in Appendix) are then:

F b(x, ν) = λv, F d(x, ν) = 1k>0pv exp (−
X

v′

βv′ν+
v′pv′).

We can now apply Theorem 6 in Appendix, and conclude
that when N grows large, the evolutions of the users become
independent. Furthermore, at time t, if Q(v,k)(t) denotes the
limiting probability that a user in group v has k packets in
its buffer, then thanks to Theorem 7, we have:

∂

∂t
Q(v,k)(t) = λv

`

1k>0Q(v,k−1)(t) − Q(v,k)(t)
´

(1)

+pv exp (−γ(t))
`

Q(v,k+1)(t) − 1k>0Q(v,k)(t)
´

.

with

γ(t) =
X

v

βvpvν+
v (t) =

X

v

βvpv(1 − Q(v,0)(t)). (2)

For a given v, equations (1) are the Kolmogorov equations
corresponding to an M/M/1 queue with time-varying capac-
ity equal to pv exp (−γ(t)) at time t. One can also write the
evolution of the workload Vv(t) =

P

k kQ(v,k)(t) of a queue
of group v:

∂Vv

∂t
(t) = λv − pve−γ(t)(1 − Q(v,0)(t)). (3)

Finally, multiplying by βv and summing over v, we can char-
acterize the evolution of the total workload V (t) =

P

v βvVv(t)
as:

∂

∂t
V (t) =

X

v

βvλv − γ(t) exp(−γ(t)). (4)

4.1.2 Stability at the limiting regime
We now investigate the stability of the dynamical system

(1)-(2). Assume that
P

v βvλv < e−1, in the following we
denote by γ(λ) and γ(λ) the unique solutions in (0, 1) and

in (1,∞), respectively, of:

γe−γ = λ :=
X

v

βvλv. (5)

Define the function ξ from [0,∞) to [0, e−1] by ξ(x) = xe−x.
Let p =

P

v βvpv. The stability of the dynamical system is
given by:

Theorem 5. (a) Assume that:

p < γ(λ) and ∀v ∈ V, λv < pv exp(−γ(λ)), (6)

then the dynamical system (1)-(2) is globally stable, and p >
γ(λ).
(b) If for some v ∈ V, λv > pv exp(−γ(λ)) or if p < γ(λ)
then the dynamical system (1)-(2) is unstable.
(c) If p > γ(λ), then the system is not globally stable.

The above theorem states that the stability region of (1)-
(2) is Γ(1, V ), where for b ∈ [0 : 1], Γ(b, V ) is the following
subset of R

V
+ :

{λ ∈ R
V
+ : ∃ρ ∈ [0 : 1]V : ∀v, λv = pvρvbe−

P

u
βuρupu}.

Actually, one can easily prove that Γ(b, V ) is the stability re-
gion of a generalized system obtained from (1)-(2) by adding
a slot availability probability b to the service rate of group
v users; i.e. this service rate becomes bpv exp(−γ(t)). We
now provide an alternative representation of Γ(b, v). Define
Λ(b, V ) as the subset of R

V
+ whose upper Pareto-boundary

is the union of the following surfaces ∂vΛ(b, V ):

{λ ∈ R
V
+ : ∃ρ ∈ ∂v[0 : 1]V : ∀u, λu = ρupube−

P

w
βwρwpw}.

We prove that when 〈β, p〉 :=
P

v βvpv < 1, then Λ(b, V ) =
Γ(b, V ). Let component v of the function f be fv(g) =
bgv exp(−〈β, g〉), and let P = [0, p1] × . . . × [0, pV ]. The
derivative df of f is b exp(−〈β, g〉)(I − gβT ) where gT =
(g1, . . . , gV ) and βT = (β1, . . . , βV ). (I − gβT ) is a rank one
matrix with one nonzero eigenvalue, 〈β, g〉 associated with
the eigenvector g. Since

P

u βugu ≤
P

v βvpv < 1, the in-
verse of df is the positive matrix b−1 exp(〈β, g〉)(I + (1 −
〈β, g〉)−1gβT ) by inspection. f is clearly one-to-one from P
to the star-like domain f(P) = Γ(b, V ). Since df is nonsin-
gular it follows that the image of points g in the interior of P
are mapped to the interior of f(P) (since f(g +h)− f(g) in-
cludes a ball around g by first order approximation) and that
points g on the boundary of P are mapped to the boundary
of f(P) (again by first order approximation). It is also clear
that the upper, respectively lower, boundary of P is mapped
to the upper boundary (the union of the ∂vΛ(b, V )), respec-
tively lower boundary of f(P). Moreover, since the inverse
of df is a positive matrix, it follows that if α < λ ∈ Γ(b, V )
then α ∈ Γ(b, V ). It follows that the boundaries of f(P) are
Pareto boundaries so Λ(b, V ) = Γ(b, V ).

Proof of Theorem 5. The proof is based on the proba-
bilistic interpretation of the dynamical system (1)-(2) as a
collection of M/M/1 queues with time-varying capacities.

For two probability measures σ, σ′ on N, we write σ ≤st

σ′ if for all k ∈ N,
Pk

l=0 σl ≥
Pk

l=0 σ′
l. For a collection

α = (αv, v ∈ V) of probability measures on N, we also define
γα =

P

v βvpv(1 − αv,0). For two sets of measures α, α′,

if for all v αv ≤st α′
v , then γα ≤ γα′

. Let us now denote
by Qα(t) the set of probability measures solution of (1)-(2)
with for all v, Qα

v (0) = αv. Q0(t) is obtained when we start
with an empty system, i.e., Q0

(v,k)(0) = 1k=0 for all v.



Lemma 2. If for all v, αv ≤st α′
v, then

∀t ≥ 0, Qα(t) ≤st Qα′

(t).

Furthermore: ∀t, h ≥ 0, Q0(t) ≤st Q0(t + h).

Proof. The proof of the first statement can be made using
standard coupling arguments. It suffices to observe that the
arrivals are exogenous so we can make the arrival process
identical in both copies of the coupled chains. To prove

the second statement, observe that for all v, Q
Q0(h)
v (0) ≥st

Q0
v(0). Hence by monotonicity, Q0

v(t + h)
L
= Q

Q0(h)
v (t) ≥st

Q0
v(t). 2

Part (a): Stability starting from an empty system. We have

γ0(0) = 0. From Lemma 2, Q0
v(t) is stochastically increasing

in time, and γ0(t) is a non-decreasing function. This also
implies that V 0(t) increases, and then, by (4):

∀t, λ ≥ γ0(t) exp(−γ0(t).

Remark also that γ0(t) converges to some G when t →
∞. From the above equation, we deduce that G ≤ γ(λ)

since by (4), V 0(t) decreases if γ0(t) > γ(λ). Next λv <

pv exp(−γ(λ)) ≤ pv exp(−G) so the workload V 0
v is stable

as γ0(t) → G and the distribution of queue v is that of an
M/M/1 queue with service rate pv exp(−G). Hence, G =
P

v βvpvλv/(pv exp(−G)) so ξ(G) = λ and finally G = γ(λ).

Part (a): Arbitrary initial condition. Denote by α the ini-

tial condition, and note that for all t, γ(t) ≤ γ(λ). We first
state a further property of a system starting at 0: Q0

(v,0)(t)

converges exponentially fast to Q0
(v,0)(∞). To see that, it

suffices to consider (1) and then compare with the same
equation where γ0(t) replaced by γ(λ). This gives a linear

system with solution Q0,e(t). The linearized system has a
slower service rate so Q0

(v,0)(t) decays faster than Q0,e
(v,0)(t)

from 1 to Q0
(v,0)(∞). Consequently the associated γ0(t) in-

creases faster than γ0,e(t) to γ(λ). However a linear system

decays exponentially fast to steady state so γ0,e(t) converges
exponentially fast to γ(λ) and so does γ0(t).

By monotonicity, Qα
(v,0)(t) ≤ Q0

(v,0)(t) for all v. This im-

plies: γα(t) ≥ γ0(t). We also know that γ0(t) converges ex-
ponentially fast to γ(λ) so ξ(γα

v (t))−ξ(γ(λ)) ≥ −C exp(−ct)
for some C and c (recall that γα

v (t) ≤ p ≤ γ(λ)). Also by
monotonicity V α(t) ≥ V 0(t) so by (4):

V 0(∞) − V α(0) ≤

Z ∞

0

∂

∂t
V α(t)dt

=

Z ∞

0

[ξ(γ(λ)) − ξ(γα(t))]dt

=

Z ∞

0

[ξ(γα(t))

−ξ(γ(λ))]−dt −

Z ∞

0

[ξ(γα(t)) − ξ(γ(λ))]+dt

≤

Z ∞

0

C exp(−ct)dt −

Z ∞

0

[ξ(γα(t)) − ξ(γ(λ))]+dt.

Using our lower bound on ξ(γα(t)), we conclude that:
Z ∞

0

[ξ(γα(t)) − ξ(γ(λ))]+dt < ∞.

However the derivative of γα(t) is bounded (see (1)), so we
conclude ξ(γα(t)) → ξ(γ(λ)) so γα(t) → γ(λ). Now as be-
fore, if λv < pv exp(−γ(λ)), queue v is stable. Summing
over v gives γ(λ) < p.

Part (b): If we can show that Q0
v is unstable then Qα

v will

also be unstable. As previously, γ0(t) → G ≤ γ(λ). Suppose
some queues in the set Sc are unstable while the rest in S
are stable. Consequently, v ∈ S iff λv < pve−G, and

G =
X

v∈Sc

βvpv +
X

v∈S

βvpv(1 − (1 −
λv

pv exp(−G)
))

= p′ + (λ − λ′)eG

where p′ =
P

v∈Sc βvpv and λ′ =
P

v∈Sc βvλv. If there is
a v such that λv > pv exp(−γ(λ)), then G < γ(λ) and the

workload V 0 diverges. If p < γ(λ) then γα(t) ≤ p < γ(λ) so
it follows from (4) that the workload tends to infinity and
G < γ(λ).

Part (c): We just show here that the dynamical system has
two fixed points. We have already shown that, if for all v,
λv < pv exp(−γ(λ)), and if the system start at 0, then it
converges to a fixed point where γ(t) = γ(λ) and where a
queue of group v has the same distribution as a stationary
M/M/1 queue of arrival rate λv and capacity pv exp(−γ(λ)).
Now the second fixed point is obtained as follows. Assume
λv < pv exp(−γ(λ)) for all v. Suppose also that the initial
condition for queues of group v is the stationary distribu-
tion of an M/M/1 queue with arrival rate λv and capacity
pv exp(−γ(λ)). Then the derivatives in (1) are all 0 and we
have identified a second fixed point. 2

4.1.3 Stability of the finite system of queues
To conclude the proof of Theorem 1, we need to relate the

stability region of the dynamical system to Λ̂N . We discuss
the case of stability only. The case of instability is proved
similarly and left to the reader.

The arrival (resp. transmission) rate of a user i in group
v ∈ V is λv/N (resp. pv/N). Then, in this setting, λN + ǫ ·

1N ∈ Λ̂N iff λ+ ǫ ·1 = (λ1, . . . , λV )+ ǫ ·1 ∈ Λ̂N (1, V ), where

for b ∈ [0 : 1], Λ̂N (b, V ) is the subset of R
V
+ whose Pareto-

boundary is the union (over v) of the following surfaces:

{λ : ∃ρ ∈ ∂v[0 : 1]V : ∀v′, λv′ =
bpv′ρv′

1 − ρv′

p
v′

N

Y

u

(1−ρu
pu

N
)βN

u
N}.

One can easily see that for N large enough, Λ̂N (b, V ) is very
close to Λ(b, V ) (their Hausdorff distance is of order 1/N).
From this we deduce that there exists Nǫ, such that for all
N > Nǫ , λ + ǫ · 1 ∈ Λ̂N (1, V ). Define Γ̂N(b, V ) as:

{λ ∈ R
V
+ : ∃ρ ∈ [0 : 1]V : ∀v, λv =

bpvρv

1 − ρv
pv

N

Y

u

(1−ρu
pu

N
)βN

u
N}.

We can prove (as done after Theorem 5) that when
P

v βvpv <

1, Λ̂N (b, V ) = Γ̂N (b, V ).
We now consider systems built from our original systems

but such that each slot is available for transmission with
probability b, i.i.d. over slots. We show the following result
by induction on V , and deduce Theorem 1 applying it for
b = 1.

“If there exists an ǫ > 0 small enough, such that for N
sufficiently large, λ+ǫ·1 ∈ Λ̂N (b, V ), then the system with N
queues is stable. Furthermore in such a case, the stationary



distributions πN
st of such systems constitute a tight family of

probability measures.”
Let us first prove the result when V = 1. In such case,

all the queues are similar, and the system is then homoge-
nous. We have Λ̂N (b, 1) = ΛN (b, 1) and the system is sta-
ble iff λv < pvb(1 − pv/N)N−1. Now assume that λv <
pvb(1 − pv/N)N−1 − ǫ. Then the system with N queues is
stochastically bounded by the one we would obtain assum-
ing that all the other queues are saturated. In the latter
system, the stationary distribution is that of a Markovian
queue of load λv/(pvb(1 − pv/N)N−1) < 1 − αǫ for some
α > 0. Tightness follows.
Now let us assume that the result is true when |V| ≤ V ,
and let us prove it when |V| = V + 1. Assume that for N

large enough, λ + ǫ · 1 ∈ Λ̂N (b, V + 1). Denote by λv the V -
dimensional vector built from λ where the v-th component
has been removed. Since Λ̂N (b, V +1) = Γ̂N (b, V +1), there
exists v such that: for N large enough,

λv + ǫ · 1 ∈ Λ̂N

„

b(1 −
pv

N
)βN

v
N , V

«

. (7)

Consider the stochastically dominant system where all queues
of type different than v see saturated queues of type v. For
the latter sub-system, in view of (7), we can apply the in-
duction result. We conclude that for N large enough, the
dominant system without queues of type v is stable, and that
the family of the corresponding stationary distributions πN,v

st

is tight.
From Theorem 5 applied to the dominant systems without
queues of type v, we know that the corresponding limiting
system is globally stable. We can then apply Theorem 8 to
these systems to characterize the average proportion of slots
left idle by the queues of type different than v: when N →
∞, this proportion tends to exp (−σ) where σ is the lower so-
lution of σe−σ.be−βvpv =

P

u 6=v βuλu. Now consider a queue

of type v in the dominant system. Denote by (SN
t , t ≥ 0) its

service process. We can make this process stationary ergodic
just assuming that initially the system without queues of
type v is in stationary regime. The service rate of a queue of
type v converges to bpv exp(−σ) exp(−βvpv) when N → ∞.
Hence when N is large enough, we have:

E[SN
t ] ≥ bpv exp(−σ) exp(−βvpv) − ǫ/4.

Now since λ + ǫ · 1 ∈ Λ̂N (b, V + 1), we have for N large
enough:

λv < bpv exp(−σ) exp(−βvpv) − ǫ/2 ≤ E[SN
t ] − ǫ/4.

We deduce that in the dominant system, the queue of type
v are stable for N large enough, and that their stationary
distributions are tight. We conclude the proof noting that
the original systems are stochastically dominated by sys-
tems that are stable for N large enough, and such that their
stationary distributions are tight.

4.2 Sketch of proofs of Theorems 2-4
Due to space limitations, the complete proofs of Theo-

rems 2-4 will be given in a separate manuscript. They are
similar to that of Theorem 1, and consist in interpreting the
system of users as a system of particles. When the packet
transmission and collision durations are equal to 1, we use
the same particle system as in Theorem 1. In the case of
full interaction with arbitrary packet duration, the system

of particles in the same as that used in the proof of Theo-
rem 1, but the state of particles is recorded only at certain
times, i.e., at the beginning of idle slots, of packet transmis-
sions or collisions. Now in the case of partial interference
and arbitrary packet durations, we introduce a global envi-
ronment process that is exactly the loss network discussed
in Section 3.4.1. The state of this loss network represents
the set of active classes (a class is active if there is one user
of this class currently transmitting). It evolves very rapidly
(at rate ∼ 1) compared to the users (who evolve at rate
∼ 1/N). The system then corresponds exactly to one of the
particles systems introduced in Appendix.

5. THROUGHPUT PERFORMANCE
OF MULTI-ACCESS ALGORITHMS

In this section we outline the performance analysis of a
system of saturated users running the exponential back-off
algorithm, and with partial interference. This generalizes
the analysis of systems with full interference done in [5].
Here we only sketch the main idea behind the analysis. Refer
to [6] for more details.

The wireless system is represented as a system of parti-
cles as described in Appendix. Each user corresponds to a
particle whose state XN

i (t) records at time t, its class ci ∈ C
and its transmission probability pN

i (t). There is no individ-
ual environment attached to the users, but particles interact
with a global environment process ZN which records the set
of active classes, i.e., classes such that there is at least one
user currently transmitting. We can represent this process
as the loss network as defined in Section 3.4.1. The only dif-
ference is that here the transition kernel of the loss network
evolves, and at time t, it is written as in Section 3.4.1, but
replacing the terms Ec, Pc, Cc as follows:

8

<

:

Pc =
P

i∈c pN
i (t)

Q

j 6=i,j∈c(1 − pN
j (t)),

Ec =
Q

i∈c(1 − pN
i (t)),

Cc = 1 − Ec − Pc.

Simple manipulations of the above equations show that the
transition kernel of the loss network depends on the empir-
ical measure of the particles. Similarly we can write the
transition probabilities of the particles. For example, the
probability that a particle i corresponding to a user of class
c starts a succesful transmission when in state (c, pN

i (t)) is:

pN
i (t)Sc(n)

1 − pN
i (t)

Y

d∈Nc

0

@Sd(n)
Y

j∈d

(1 − pN
j (t)) + (1 − Sd(n))

1

A .

The transitions depend on the current state of the parti-
cle, on the empirical measure of the other particles and on
the state of the environment process. The framework is
then that of the systems considered in the Appendix. Hence
we can state that when N tends to ∞, the users become
independent, and one may write the differential equations
corresponding to the evolution of the distribution of a par-
ticle. We can also solve the resulting dynamical system,
whose fixed point can lead to an expression of the station-
ary throughput of users. Unfortunately, for this compli-
cated system, simple performance formulas can not be de-
rived. However, the network performance can be very easily
computed numerically, especially if the network has a small
number of classes.



In Figure 6, we present the resulting throughput in the
case of the network of Figure 1. We vary the duration
of packet transmission L (Lc = L). Observe that when
L = 100 (roughly corresponding to a transmission of a 1000-
bytes packet at a rate 54 Mbit/s in IEEE802.11g systems),
users of class 2 achieve 5 times less throughput than users
of classes 1 and 3. This illustrates and quantifies the known
fairness issues of the exponential back-off algorithm in multi-
cell WLANs.
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Figure 6: Throughputs achieved using exponential

back-off algorithm in the network of Figure 1 - two

users per class.

6. CONCLUSION
The main contribution of this work was to provide sim-

ple approximate expressions for the stability region of non-
adaptive MAC protocols. These expressions are proved to
be exact when the number of users grows large, and are very
accurate in the case of small systems. The problem of char-
acterizing the stability region of MAC protocols has been
open for a long time, actually since the introduction of the
first version of Aloha systems in 1970, and we believe that
we bring considerable light into this issue.

The method used to derive stability regions of non-adaptive
algorithms can be applied to predict the performance of
adaptive MAC protocols, such as the exponential back-off
algorithms. Unfortunately, the analysis does not lead to sim-
ple formulas, although it considerably simplifies the problem
and allows us to rapidly compute the stationary network
performance.
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APPENDIX

A. A SYSTEM OF PARTICLES IN VARY-
ING ENVIRONMENTS

In this section, we present the asymptotic analysis of a
particle systems interacting with a random environment.
The results derived here are used in the core of the paper.
Their proofs can be found in [6].

A.1 The particle system
We consider N particles evolving in a state space V × X

at discrete time slots t ∈ N. V is a finite set, and X is
at most countable. For simplicity we assume the parti-
cles are exchangeable. At time t, the state of particle i is
XN

i (t) = (vN
i , Y N

i (t)) ∈ V × X . The first component vN
i of



XN
i (t) is fixed, and is used to represent a type of individual

environment as explained below. The state of the system at
time t is described by the empirical measure νN(t) ∈ P(X ):

νN (t) = 1
N

PN
i=1 δXN

i
(t).

Each particle i is attached an individual environment whose
state AN

i (t) at time t belongs to a finite space A. (AN
i (t), t ≥

0) is a Markov chain independent of everything else and with
kernel KN

v where v ∈ V is defined by XN
i (t) = (v, Y N

i (t)).
We assume that for all v, KN

v converges to Kv when N → ∞
and that AN

i (t) is in stationary regime for all t. Let πv be
the stationary distribution of a chain with kernel Kv.

The particles interact with a global environment whose
state is denoted by ZN (t) at time t. The environment pro-
cess takes its values in an at most countable state space Z.
We assume that the joint evolution of the particles, their in-
dividual environment and the global environment is Marko-
vian, i.e., (XN

i (t),AN
i (t), i = 1, . . . , N, ZN (t), t ≥ 0) is a

Markov chain. Next we describe the marginals of the tran-
sitions of this Markov chain. In the system we consider,
these marginals are sufficient to completely characterize the
asymptotic system behaviour when the number of particles
grows large. Nevertheless, when N is fixed, the transitions
of the particles and of the global environment process may
be correlated.

Global environment evolution. The process ZN evolves as
follows:

P(ZN (t + 1) = z|Ft) = KN
νN (t)(Z

N (t), z),

where KN
µ is a transition kernel on Z depending on a prob-

ability measure µ on P(X ), and where
Ft = σ((νN(0), ZN (0)), · · · , (νN(t), ZN (t))). In words, ZN

is a Markov chain whose transition kernel evolves with the
empirical measure of the state of the particle system.

Evolution of the particles. We represent the possible tran-
sitions for a particle by a finite set S of mappings from X
to X . A s-transition for a particle in state x = (v, y) leads
this particle to the state s(x) = (v, s(y)). In each time slot
the state of a particle has a transition with probability 1/N
independently of everything else. If a transition occurs for a
particle whose individual environment is in state a ∈ A, this
transition is a s-transition with probability F N

s (x, ν, a, z),
where x, ν, and z are respectively the state of the particle,
the empirical measure, and the state of the environment pro-
cess before the transition. Hence, in this state, a s-transition
occurs with probability:

1

N
F N

s (x, ν, a, z). (8)

with
P

s∈S F N
s (x, ν, a, z) = 1 for all (x, ν, a, z).

Note that, due to (8), the processes AN
i (t), ZN evolve

quickly while the empirical measure νN(t) evolves slowly.
Remark that the s-transitions of the various particles may
be correlated. Finally the process ZN may depend on the
transitions of the particles. The particle system is thus in
interaction with its environment.

We make the assumptions that the transitions F N
s con-

verges to limiting transitions Fs when N tends to ∞. We
assume as well that the transition kernels KN

α converges to
Kα. These technical assumptions can be found in [6].

In what follows, we characterize the evolution of the sys-
tem when the number of particles grows. According to (8),
as N → ∞, the chains XN

i (t) slow down hence to derive
a limiting behavior we define: qN

i (t) = XN
i ([Nt]). When

N → ∞, the environment processes evolve rapidly, and the
particles see an average of the environments. We define the
average transition rates for a particle in state x = (v, y) by

F s(x, α) =
X

z∈Z

X

a∈A

Fs(x, α, a, z)πv(a)πα(z). (9)

A.2 Transient regimes

Theorem 6. Suppose that the initial values qN
i (0), i =

1, . . . , N , are i.i.d. and such that their empirical measure
µN

0 converges in distribution to a deterministic limit Q0 ∈
P(X ). There exists a probability measure Q on D(R+,X )1

such that for all finite set I of I particles:

lim
N→∞

L(qN
i (.), i ∈ I) = Q⊗I , weakly.

The above theorem states that the trajectories of the par-
ticles becomes independent when the number of particles
grows large. The independence allows us to derive an ex-
plicit expression for the system state evolution.
Define Qn(t) = Q(t)({xn}) where X = {xn, n ∈ N}. Qn(t)
is the limiting (when N → ∞) probability that a particle is
in state xn at time t.

Theorem 7. For all time t > 0, for all n ∈ N,

dQn

dt
=

X

s∈S

X

m:s(xm)=xn

Qm(t)F s(xm, Q(t)) (10)

−
X

s∈S

Qn(t)F s(xn, Q(t)).

The differential equations (10) have a natural simple in-
terpretation, e.g.

P

s∈S

P

m:s(xm)=xn
Qm(t)F s(xm, Q(t)), is

the total mean incoming flow of particles to state xn.

A.3 Stationary regime
We now characterize the stationary behavior of the system

in the mean field limit. To do so, we make two additional
assumptions:
(i) For all N , the Markov chain ((XN

i (k), ZN (k))k∈N is pos-
itive recurrent. The set of the stationary distributions πN

st

of a particle is tight.
(ii) The dynamical system (10) is globally stable: there ex-
ists a measure Qst = (Qn

st) ∈ P(X ) satisfying for all n:
X

s∈S

X

m:s(xm)=xn

Qm
stF s(xm, Qst) = Qn

st

X

s∈S

F s(xn, Qst),

(11)
and such that for all Q ∈ P(D(R+,X )) satisfying (10), for
all n, limt→+∞ Qn(t) = Qn

st. Then the asymptotic indepen-
dence of the particles also holds in the stationary regime,
and Qst is the limiting distribution of a particle:

Theorem 8. For all subsets I ⊂ N of finite cardinal |I |,

lim
N→∞

Lst

“

(qN
i (.))i∈I

”

= Q
⊗|I|
st weakly in P(D(R+,X )|I|).

1D(R+,X ) denotes the space of right-continuous with left
limits functions with values in X .


