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Spatial Capacity of Multiple Access Wireless
Networks
Charles Bordenave

Abstract— We study the capacity of multiple access networks
both on uplink and downlink. In our model each user requires
a given signal to interference plus noise ratio (SINR) and the
capacity region is obtained as a solution of a power allocation
problem. In this paper, we emphasize on the differences between
uplink and downlink. The mathematical analysis of the capacity
region is led in the framework of ergodic point processes and
we exhibit the links between the geometry of the network and
its capacity region. On the downlink we pay attention to various
network architectures and levels of cooperation between base
stations: macrodiversity, load balancing and traditional cellular
networks.

Index Terms— spatial capacity, CDMA networks, macrodiver-
sity, spatial point processes, power control, spectral radius.

I. I NTRODUCTION

T HIS paper deals with the capacity of wireless multiple
access networks. Primarily, it covers the analysis of

CDMA networks (Code Division Multiple Access) inmacro-
diversity. In a network in macrodiversity the base stations
are fully coordinated and they jointly code (for downlink)
or decode (for uplink) the emitted signals. Macrodiversity
networks supersedes the traditionalcellular architecture of
wireless networks where each user is attached to a unique base
station based on its location. As an intermediate architecture,
there areload balancednetworks, where each user is attached
to a unique base station but this allocation depends on the
whole configuration of the network. Computing the load
capacity of such networks is an important issue of wireless
communications. This problem relies on finding a power
allocation satisfying all users in the network.

The problem of power control and load constraints in
CDMA networks has drawn much attention. However, most
authors are only considering CDMA networks without macro-
diversity. On the downlink in the seminal papers of Gilhousen
et al. [1] and Zander [2], [3], the authors rely the solution of
the power control problem to a condition of the type:

ρ(T ) < 1, (1)

where T is a square non negative matrix depending on the
channel state andρ(T ) denote the spectral radius ofT .
Baccelli et al. [4], [5] have developed a probabilistic geometric
model to analyze the feasibility condition given by Equation
(1). The users and the base stations are instances of spatial
point processes and the authors compute the probability that a
base station satisfies the SINR ratio requirement of each users
in its cell. In this paper, we extend the geometric model of
Baccelli et al. to networks in macrodiversity.
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On the uplink, Hanly [6], [7] has solved the power control
problem for finite networks in macrodiversity. The solutionof
the power control problem reduces to a condition of the type:

M
∑

i=1

hi < N, (2)

whereN and M are the numbers of base stations and users
respectively andhi is the SINR requirement of theith user. In
the present paper, we generalize the work of Hanly to infinite
networks where users and base stations are instance of ergodic
point processes.

The feasibility conditions given by Equations (1) and (2)
can be understood as a condition of the type:”ρ < 1” where
ρ is the load of the network. In this paper, we compute the
value of the load both on uplink (denoted byρ↑), and downlink
(denoted byρ↓) in a probabilistic setting where the channel
condition depends on the relative positions of users and base
stations. This modelling contribution will enable to understand
better what is the impact of the geometry of the network in
its capacity. On the uplink, if the mean SINR requirement is
denoted byh, the mean number of users (respectively base
stations) per surface unit isλu (resp. λs) we will obtain
(Theorem 2):

ρ↑ = h
λs

λu
, (3)

hλs is the mean SINR requirement per surface unit, so that
the geometrical term of the uplink load reduces to1/λu.

On the downlink for a network withN base stations andM
users, we will prove, for networks either cellular, load balanced
or in macrodiversity, that the downlink load is asymptotically
equal, asM grows large, to:

ρ↓ ∼ hMγ, (4)

(Theorem 4) whereγ is explicitly computed and depends on
the relative position of the base stations.

Both Equations (3) and (4) show that the load may be
decomposed as a mean SINR requirement per surface unit
(hλs on the uplink,hM on the downlink) and a geometric term
(1/λu on the uplink andγ on the downlink). This decoupling
between mean SINR and geometry is of prime interest: given
a required level of user quality of service, we can design a
network architecture.

On the downlink, another consequence of our results is the
comparison between the various possible levels of cooperation
between base stations: macrodiversity, load balancing and
cellular networks. We will hint that the main improvement
between a fixed cell network and a macrodiversity network
seems to be in the flexibility into affecting each user to
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a specific base station and not on the possibility to share
a user between several base stations (Theorem 3). In other
words, load balancing is as efficient as user sharing (i.e.
macrodiversity). We will prove that the constantγ appearing in
Equation (4) is the same for a network in macrodiversity, load
balanced or for an optimal cellular network. On the contrary,
as already known, for the uplink, macrodiversity has a much
larger impact and appears as a major improvement compared
to traditional cellular network structure.

In this paper, we are primarily concerned by the impact
of the locations of users and base stations on the capacity of
the network. To this end, somewhat artificially, the path gain
between a user located atx and a base station located aty
will be set asL(x, y). Averaging over the channel conditions
we will often assume that the path gain depends only on the
distance betweenx andy. This assumption is not meant to be
realistic, however it captures the spatial features of wireless
networks.

The remainder of this paper is organized as follows. Section
II is devoted to the macrodiversity on the uplink. In§II-A, we
introduce our model, its key features are the spatial location
of base stations and users, and the SINR requirements of
each user. In§II-B we extend Hanly’s Theorem to ergodic
spatial point processes of users and base stations and establish
Equation (3).

In Section III, we analyze the downlink. We present the
model in §III-A and establish a necessary and sufficient
condition for the feasibility of the power control problem in
§III-B. §III-C gives a characterization of the optimal power
allocation. This characterization establishes a bound on the
increase of capacity brought by macrodiversity in a network.
In §III-D, we pay attention to the limit downlink load as the
number of users grows large and we establish Equation (4).
At last, in §III-E we extend our results to infinite networks
and prove a negative result for the feasibility of power control
problem when the point process of users is a Poisson point
process.

II. U PLINK

A. Model description

We consider a network consisting ofM users andN base
stations. The users are located at points{Xi}1≤i≤M ∈ R

2

and the base station at points{Yj}1≤j≤N ∈ R
2. We denote

by U(x, y) the channel gain fromy to x, x, y ∈ R
2. |U(x, y)|

represents the path loss due to shadowing, fading and distance
attenuation effects.

In an uplink multiple access network in macrodiversity, each
user sends independently from the other a signal and the base
stations are jointly decoding the received signals. This kind of
channel is known as multi-receiver networks (see Hanly and
Whiting [8]). A base stationj receives a signal equal to the
sum of all the signals sent by the users plus an external white
Gaussian noise. Letw = (wj)1≤j≤N denote the power of
the noise vector,U = (U(Xi, Yj))1≤i≤M,1≤j≤N , the channel
matrix. The useri sends a signalsi. Let s = (si)1≤i≤M be
the vector of the signal sent by users. Then mathematically

the signals received by the base stations is aR
M×1 vector:

v = U ′s + w.

We set the channel bandwidth to∆Hz and we suppose that
useri requires a rateRi in bits per second. LetSi = E(|si|

2)
and ηj = E(|wj |

2) denote the powers of the signals. If the
users are sending their signals independently, it is known (see
[8]) that the rate vector(R1, ..., RM ) is achievable if and only
if there existsS ∈ R

M
+ such that:

∀i, Ri ≤ ∆log2(1 +

N
∑

j=1

Si|U(Xi, Yj)|
2

ηj +
∑

m 6=i Sm|U(Xm, Yj)|2
).

We restrain ourselves to the sufficient condition:

∀i, Ri ≤ ∆log2(1 +

N
∑

j=1

Si|U(Xi, Yj)|
2

ηj +
∑M

m=1 Sm|U(Xm, Yj)|2
).

This last condition is only sufficient but whenM is large it is
expected not to be far from being necessary. LetL(Xi, Yj) =
|U(Xi, Yj)|

2 denote the attenuation function. Thus, feasibility
of a given rate vector is equivalent to a minimal requirement
on the signal to interference ratio:

∀i, hi ≤
∑

j

L(Xi, Yj)Si

ηj +
∑

m L(Xm, Yj)Sm
, (5)

wherehi = 2Ri/∆ − 1, with an abuse of languagehi will be
called the SINR requirement of useri. The power allocation
problem is stated as follows, for a given vector of bit rates
(Ri)i does there exists a power vector(Si)i such that the set
inequalities (5) is satisfied. The following theorem solvesthe
power allocation problem:

Theorem 1 (Hanly): Suppose that for alli, j, L(Xi, Yj) >
0 and ηj > 0.

Then, there exists a solution of (5) if and only if

M
∑

i=1

hi < N.

This theorem is surprising , since the feasibility condition
does not rely on the geometry of the network (i.e. the coeffi-
cientsL(Xi, Yj)).

B. Stochastic Model

In this paragraph, we generalize the work done by Hanly
in [6] for stochastic infinite networks. This generalization
proves that Hanly’s Theorem is not due to the finiteness
of the network but is intrinsic to uplink communications in
macrodiversity.

We follow the probabilistic setting of [4]. The set of users
is a marked point processΠu = {(Xi, hi)}i, whereXi is the
location of the useri andhi is its SINR requirement. We model
similarly the base stations by a point processes onR

2: Πs =
{(Yj , ηj)}j , ηj is the noise power. We can supposeηj > 0 and
hi > 0 for all i, j. Moreover,Πu andΠs are supposed to be
a stationary and ergodic marked point processes. We denote
by λu (resp. λs) the intensity ofΠu (resp. Πs) which are
assumed to be finite. The Palm probability of the processΠu

(resp.Πs) is denoted byP 0
u (resp.P 0

s ), (for an introduction
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to Palm probability, refer to Daley and Vere-Jones [9]). We
assume thatE0

u(h0) < ∞. We remind thatE0
u(h0) may be

understood as the mean SINR requirement of typical user. At
last, we consider a radial positive attenuation function, that is:
L(x, y) = l(|x − y|).

In infinite networks, the power control problem is still given
by the set of inequalities (5). A SINR vector(hi)i≥0 > 0 is
feasible, if there exists a power allocation(Si)i≥0 such that
the set of inequalities (5) is satisfied.

Following Hanly [6], we introduce:

G :

{

R+
N → R+

N

(Si)i 7→
(

hi(
∑

j
L(Xi,Yj)

ηj+
∑

∞

m=0
SmL(Xm,Yj)

)−1
)

i

The power allocation problem is equivalent to findingS ∈
R+

N such that, component-wise:G(S) ≤ S.
Lemma 1: With the foregoing assumptions, there exists a

power allocation satisfying (5) with probability0 or 1.
Proof: The event {Equation(5) has a solution} =

{there existsS, such thatG(S) ≤ S} is invariant under a
translation onR2 since the valueG(S) does not change if we
translate simultaneously all users and all base stations. Thus,
by ergodicity, this event has probability0 or 1.

We define theuplink loadby:

ρ↑ =
λu

λs
E0

u(h0). (6)

The following result is a natural extension of Theorem 1.
Theorem 2: We assume thatE0

s (η−1
0 ) < +∞ and that one

of the two following conditions holds:

- x 7→ xl(x) is in L1(R) andx 7→ xl(x) is non-increasing,
- or, there existsβ > 1 such thatx 7→ xβl(x) is integrable.

then

- If ρ↑ > 1, then (5) has almost surely no solution.
- If ρ↑ < 1, then (5) admits almost surely a solution.

An analogy can be made between this theorem and the
stability of G/G/s queues. The intensity of user arrival isλu,
λuE0

u(h0) is the mean SINR requirement per surface unit and
λs plays the role of the number of service booths per surface
unit. As for G/G/s queues, the limit caseλu

λs
E0(h0) = 1

is harder and the power allocation problem is not solved for
these networks.

As for finite networks, The feasibility condition depends
only on the bit rates requirement and the density of users and
base stations in the network.

The technical hypothesis onl(x) is used to ensure a rapid
decay of the tail of the shot-noise process

∑

i l(|Xi|). It covers
a usual model for the attenuation function:l(x) ∼ x−α, α >
2. The assumptionE0

s (η−1
0 ) < +∞ simplifies the proof of

the sufficient condition. The result should hold for weaker
assumptions.

The proof of Theorem 2 can be found in Appendix. The
main idea is to follow the lines of the original proof of
Theorem 1 and use ergodicity to ensure convergence and some
uniform bounds on shot noise processes.

III. D OWNLINK

A. Model Description

We consider the same network as in the previous section,
with the same notations. There areM users andN base sta-
tions. In a downlink multiple access network in macrodiversity,
the base stations are jointly coding a signal for each user
and users are decoding independently. This kind of channel
is known as multiple input multiple output (MIMO) broadcast
channel (see in particular Caire and Shamai [10], Goldsmith,
Jindal and Vishwanath [11]). A useri receives a signal equal
to the sum of all the signals sent by the base stations plus an
external white Gaussian noise. As above,w = (wi)i denote
the noise vector,U = (U(Xi, Yj))i,j , the channel matrix and
Ui = (U(Xi, Yj))j the channel vector toi . The base station
j sends a signalsij to the useri. Let si = (sij)j be the vector
of the signal sent toi. Then the signals received by users is a
vector of sizeN equal to

u = U

M
∑

i=1

si + w,

Let Γi be the covariance matrix of(sij)1≤j≤N and ηi =
E(|wi|

2) the power of the noise ati. User i requires a rate
Ri in bits per second. If we make the assumption, that for all
j, for all m 6= i, the signalssmj are regarded as noise by the
base stations in the coding of signalsi, the gaussian channel
capacity theorem (refer to Cover and Thomas [12]) implies
that the rate vectorR = (R1, ..., RM ) is achievable if:

∀i, Ri ≤ ∆log2(1 +
U∗

i ΓiUi

ηi + U∗
i

∑

m 6=i ΓmUi
). (7)

(This last condition is only sufficient and it is not necessary.)
In this work, we only consider achievable rates satisfying in
Equation (7) in the case whereΓi is diagonal: the base stations
are sending uncorrelated signals to each user. This is a natural
assumption for an efficient coding. We noteSij = Γi(j, j)
and lij = L(Xi, Yj) = |U(Xi, Yj)|

2 the attenuation function.
Thus the rate vectorR = (R1, ..., RM ) is achievable if there
exists a power allocation(Sij) such that:

∀i, Ri ≤ ∆log2(1 +

∑

j L(Xi, Yj)Sij

ηi +
∑

j L(Xi, Yj)
∑

m 6=i Smj
),

thus, lettinghi = 1−2−Ri/∆, feasibility of a given rate vector
is equivalent to the existence a power allocation(Sij) such
that:

∀i, hi ≤

∑

j L(Xi, Yj)Sij

ηi +
∑

j L(Xi, Yj)
∑

m Smj
. (8)

The set of inequalities (8) is our macrodiversity model for
multiple access downlink networks. Note that the definitionof
the SINRhi = 1−2−Ri/∆ is not consistent with the definition
of hi on the uplink (that ishi = 2Ri/∆ − 1). However since
they will play exactly the same role, we use the same notation
for these two scalars, in the limit∆ large, they are equivalent.
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B. Power Allocation Algebras

In this section, we study the power allocation problem (8),
following Baccelli, Blaszczyszyn and Tournois [4].

We introduce the set of stochastic matrices:

A = {A = (aij) ∈ R
M×N , A ≥ 0, ∀i

∑

j

aij = 1}.

A matrix A in A will be called an allocation matrix.
The following obvious lemma restates Equation (8).
Lemma 2: An power allocation(Sij)1≤i≤M,1≤j≤N is a

solution of (8) if and only if there exists a non-negative matrix
A ∈ A such that:

∀i, j aijhi ≤
L(Xi, Yj)Sij

ηi +
∑

j L(Xi, Yj)
∑

m Smj
. (9)

For a fixed A = (aij), the restatement given by Equa-
tion (9) reduces our problem to a power allocation problem
without macrodiversity as it is addressed in [4]. OurM × N
macrodiversity network is equivalent to aMN ×N fixed cell
network: each userXi is subdivided into N independent users
(Xj

i )1≤j≤N , Xj
i is affiliated to base stationj and has SINR

requirement ofaijhi. We define the linear mapping:

T :

{

A → R
N×N

A 7→ T = (
∑

i aijhi
lik

lij
)1≤j,k≤N

.

Let ρ(T ) denotes the spectral radius of the square matrixT .
We then have the following necessary and sufficient condition:

Proposition 1: Let,

ρ↓ = min
A∈A

ρ(T (A)). (10)

Equation (9) has a solution if and only ifρ↓ < 1.
ρ↓ is thedownlink loadof the network. Sinceρ(T + T̃ ) ≤

ρ(T ) + ρ(T̃ ), ρ↓ is computed as an optimization of a convex
function over a convex set.

Proof: Note that ρ↓ = ρ(T (A∗)), A∗ ∈ A. This
proposition is a consequence of Propositions 3.1 to 3.3 of
[4] in the finite dimensional case. For the reader convenience,
we sketch the main idea. Consider the allocation matrixA∗.
The base stationj guarantees an individual signal to noise
ratio of at leasthiaij to useri. We defineSj has the total
power emitted by stationj: Sj =

∑

i Sij . Let S = (Sj)j be
the vector of total emitted powers, by elementary calculations
that Equation (9) implies component-wise:S ≥ T (A∗)S + b,
whereb contains the noise of the channel. This inequality is
solved by the Perron-Frobenius theory, and the existence of
a non-negative vectorS relies on whether or not the spectral
radius ofT (A∗) is less than one. It remains to prove that if
the inequality for the total emitted powersS has a solution,
then it is possible to compute the individual powersSij .

On the uplink, the feasibility of the power control problem
did not depend on the geometry of the network. On the
downlink, on the contrary, in the computation ofρ↓, the
locations of the users is relevant.

Lemma 3: IfA ∈ A∗:

1

N

M
∑

i=1

hi ≤ ρ(T (A)) ≤

M
∑

i=1

hi. (11)

The right hand side bound of (11) is simply obtained by
removing all base stations but one in the network. This bound
cannot be improved without taking into account the locations
of the users (see Remark 1). We can compare the left hand
side with Theorem 1. On the uplink, there is a solution to
the power allocation if and only if1/N

∑M
i=1 hi < 1. On the

downlink this condition is only necessary.
Proof: For any matrixT , trace(T ) =

∑M
i=1 hi =

∑

j λj ,
where(λj)j are the eigenvalues ofT . Sinceρ(T ) is the largest
eigenvalue, we deduce the left hand side.

It remains the right hand side of Equation (11). Consider the
allocation matrixA ∈ A where thejth column is 1 and all the
others are set to0. We immediately check:ρ(T (A)) =

∑

i hi.

Remark 1:There exists configurations such that the two
bounds of Equation (11) are reached.

A limit configuration reaching left hand side of Equation
(11). Consider a network on a line and suppose to simplify:
M = KN , K integer. Then place the base stationsYj at
locationsjr and placeK users(Xj

1 , ..., Xj
K) at jr. Consider

now the allocationA = (aij), aij taking value1 if Xi is an
Xj

m and 0 otherwise. We can check directly that ifL(x, y)
goes to0 as the distance betweenx and y goes to infinity,
ρ(T (A)) tends to 1

N

∑M
i=1 hi asr tends toward infinity.

A configuration reaching right hand side of Equation (11).
Consider, the case where allM users are at the same location.
We definelj = L(Xi, Yj) > 0 and let D be the diagonal
matrix whose diagonal is(l1, ..., lN). In this case, we have
T = D−1MD, with Mjk =

∑

i aijhi. T and M have the
same spectral radius. Then notice thatM = U11t, whereU
and 11 are R

N positive vectors and it follows thatρ(T ) =
ρ(M) = 11tU =

∑

i hi.

C. Optimal Power Allocation

In this paragraph, we state an interesting property shared
by the optimal allocation matricesA ∈ A∗ = {A ∈ A :
ρ(T (A)) = ρ↓}.

For the sake of simplicity, we will suppose that for allx, y ∈
R

2, L(x, y) > 0. We can also suppose that ifT = T (A) where
A ∈ A∗:

∀j, k, Tjk > 0. (12)

Indeed, ifTjk = 0 for somek, then thejth row is equal to
0. Thus,T and the sub-matrix ofT obtained by removing the
jth row and thejth column have the same spectral radius.

For A ∈ cA, we define two sets:

I(A) = {i ∈ {1, .., M}, ∃ai,j ∈ (0, 1) for somej},

J(A) = {(i, j), ai,j ∈ (0, 1)}.

I(A) is understood as the set of users for which two or
more base stations are actively contributing to satisfy itsSINR
requirement. For a discrete setK, |K| denotes the cardinal of
K. We have the following theorem:

Theorem 3: We assume that for all integern, for all
sequencesi1, ..., in of {1, ..., M} and for all sequences of
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distinct integersj1, ..., jn of {1, ..., N}, we have (withjn+1 =
j1):

n
∏

k=1

lik,jk

lik,jk+1

6= 1. (13)

Then ifA ∈ A∗:

|J(A)| − |I(A)| < N. (14)
Corollary 1: If A ∈ A∗, |I(A)| < N .
This theorem gives an upper bound to the number of users

which are really in macrodiversity, i.e. to the number of users
which are receiving a signal from more than two different base
stations. Provided that the assumption is satisfied, this upper
bound does not depend on the geometry. This bound is also
surprisingly small: on a typical wireless network,M � N ,
so the proportion of users in macrodiversity is small.

We denoteÃ = {A ∈ A : ∀i, j aij ∈ {0, 1}}, the set of
allocation matrices such that each user is affiliated to a unique
base stations, theload-balanced downlink loadis defined as:

ρ̃↓ = min
A∈Ã

ρ(T (A)).

ρ̃↓ is the load corresponding to a network where each user is
affiliated to a unique base station.

In view of Theorem 3, we may guess thatρ̃↓/ρ↓ is close
to 1. In fact, in the special case,N = 2 (two base stations)
we can actually show that the two minima are equal. In the
§III-D, we will state that this intuition makes sense whenM
grows large.

Assumption (13) is not very restrictive in our context. In a
probabilistic setting, it would be easily almost surely satisfied.

The proof of Theorem 3 is postponed to Appendix. It does
not contain any intuition on the result. Note however that even
if Theorem 3 may be surprising in view of its application, it is
quite natural ifρ↓ is seen as the minimum of a convex function,
T 7→ ρ(T ), on a compact convex set,A. With reasonable
assumptions, this minimum is reached on the boundary of the
setA, that is the subset of̃A

D. Asymptotic Load

Even for the simplest probabilistic models, the computation
of ρ↓ is by far less easy than the computation ofρ↑. In this
paragraph, we show however that it is possible to compute the
scaling limit ofρ↓ when the number of users tends to infinity.

The N base stations are fixed and deployed in a bounded
region Ω ⊂ R

2. We consider an ergodic sequence of users
{Xi, hi}i∈Z with hi independent ofXi, 0 < E(h0) < ∞,
Xi ∈ Ω and for all measurable subsetA ⊂ Ω, P (Xi ∈ A) =
∫

A λ(x)dx. λ(x) is the spatial intensity (or density here) of
users inΩ. As last the attenuationL(x, y) is positive.

We pay attention to the load in the network when the
set of users is{Xi, h

(M)
i }1≤i≤M where h

(M)
i = hi/M is

the scaled SINR of useri. In this paragraph, we need to
explicit the dependency of the problem inM so that we define
AM = {A = (aij) ∈ R

N×N

+ : for i > M aij = 0, for 1 ≤
i ≤ M

∑

j aij = 1}, A∞ is simply denoted byA and we
introduce the linear mapping:

TM :

{

A → R
N×N

A 7→ T = (
∑

i aijh
(M)
i

lik

lij
)1≤j,k≤N

,

T1 is simply denoted byT (this is consistent with its definition
in §III-B). The downlink load associated to the set of users
{Xi, h

(M)
i }1≤i≤M is by definition:

ρ
(M)
↓ = min

A∈AM

ρ(TM (A)) =
1

M
min

A∈AM

ρ(T (A)).

For load balanced allocations, we define similarly,ÃM and
ρ̃
(M)
↓ .
Lemma 4: There exists0 < ρ∞↓ ≤ ρ̃∞↓ such that almost

surely:

lim
M→∞

ρ
(M)
↓ = ρ∞↓ and lim

M→∞
ρ̃
(M)
↓ = ρ̃∞↓ . (15)

Proof: For p < q ∈ N, we defineAp,q = {A =
(aij) ∈ R

N×N

+ : for i /∈ {p, · · · , q} aij = 0, for i ∈
{p, · · · , q}

∑

j aij = 1}, the set of allocations matrices
for users indexed fromp to q. Note that ifA1,p ∈ A1,q, we
haveT (A1,q) = T (A1,p) + T (Ap+1,q), where the matrices
A1,p ∈ A1,p andAp+1,q ∈ Ap+1,q are obtained fromA1,q by
setting to0 all rows not in{1, p} and{p + 1, q} respectively.
Since,ρ(T + T̃ ) ≤ ρ(T ) + ρ(T̃ ) we deduce:

min
A∈A1,q

ρ(T (A)) ≤ min
A∈A1,p

ρ(T (A)) + min
A∈Ap+1,q

ρ(T (A)).

The existence ofρ∞↓ and ρ̃∞↓ follows then directly from
Kingman’s subadditive ergodic theorem. The positivity ofρ∞↓
is a consequence of Lemma 3.

Before stating the main result of this paragraph, we need a
couple of definitions.

A set of measurable functions,fj : R
2 → R, 1 ≤ j ≤ N

is said to besingular if there exists a measurable setA
of positive Lebesgue measure and a constantC such that
fj(x) = Cfk(x) for some j 6= k. By extension, the base
stations locations is said to be singular if the set of attenuation
functionsx 7→ L(x, Yj) is singular. This notion of singularity
is purely technical and it is not a strong assumption in view
of applications.

A tessellation is a collection of measurable sets partitioning
the region Ω, we denote byV = {V = (Vj)1≤j≤N :
almost everywhere

∑

j 11Vj
(x) = 1} the set of tessellation

composed ofN sets. We identify two tessellationsV andV ′

in V if for all j, 11Vj
and 11V ′

j
are almost everywhere (a.e.)

equal.
Theorem 4: If the base stations locations are non singular

then

ρ∞↓ = ρ̃∞↓ = E(h0)γ,

where

γ = min
V ∈V

ρ(T ′(V ))

andT ′(V )j,k =
∫

Vj

L(x,Yk)
L(x,Yj)

λ(x)dx.
This theorem sheds a new light on the downlink load when

the number of users is large. First, it strengthens the intuition
that macrodiversity and load balancing lead to the same level
of load in the network. Secondly, we have been able to com-
pute explicitly the limit behavior of the asymptotic behavior
of the network. As an example, a practical consequence is the
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following approximation for a set ofM users located at(Xi)
with SINR requirement(hi), from Equation (15) we get:

ρ↓ ∼ γ
M
∑

j=1

hi,

We have completely decoupled the SINR requirement and the
geometry of the network which is contained in the scalarγ.

There is a third consequence of Theorem 4. DefineV ∗ =
(V ∗

j )j as the optimal tessellation (defined up to null measure
sets) such that:

ρ(T ′(V ∗)) = γ.

We consider a traditional cellular network architecture with
associated cellsV ∗

j with M users(Xi) distributed according to

λ(x)dx with SINR requirement(h(M)
i ). The useri is attached

to base stationj if Xi ∈ V ∗
j : that is the associated allocation

matrix A∗
M satisfies: fori ≤ M , a∗

ijM
= 11(Xi ∈ Vj). The

cellular downlink loadis equal toρ
(M)
↓ = ρ(TM (A∗

M )). As
the number of usersM grows large, from the law of large
number,ρ(M)

↓ tends toE(h0)γ. Therefore an optimal cellular
architecture has asymptotically the same load than a network
in macrodiversity.

The proof of Theorem 4 is postponed to Appendix.
Example 1: Hexagonal Grid.
Ω = [0, 1]2 is seen as a torus to avoid boundary effects,

and the users are uniformly distributed onΩ. We suppose
that the set of base stations is located on a regular hexagonal
grid of radiusR = 1/L, with L integer. We index our base
station with two indices in{0, · · · , L−1} and with a complex
representation ofR2, the base station(p, q) is located atYp,q =
R(p + qei π

3 ). Let {Vj} be the Voronoi Tessellation of the
hexagonal network (that is,x ∈ Vj if for all j′ 6= j, |x−Yj | <
|x − Yj′ |). If L(x, y) = l(|x − y|), then the symmetry of the
network leads to

γ =

∫

V0,0

I(x)

l(|x|)
dx,

where I(x) =
∑

j l(|x − Yj |). This last equation has an
intuitive meaning: in a symmetric network, the optimal cellular
architecture is obtained by equalizing the individual loadof
each base station.

E. Infinite Networks

In the previous paragraph, we have computed the downlink
load as the number of users grows large and the number of
base stations is fixed. As on the uplink, it is an appealing
idea to computeρ↓ for infinite networks, that is when both
the numbers of users and base stations are infinite. The power
control problem is still given by the set of inequalities (8)and
Lemma 2 remains obviously true. Thus, we can still follow
the line of [4]. We can still defineA and the linear mapping
T . Proposition 1 has an infinite dimensional analogue.

First, we recall some results on infinite recurrent matrices.
Let us denote byT n = (T n

jk), thenth power ofT . The power
series Tjk(z) =

∑

n T n
jkzn have a common convergence

radiusR(T ) = 1
ρ(T ) ; ρ(T ) is by definition the spectral radius

of T . Tjj(R) is finite or infinite at the same time for allj,

makingT respectivelytransientor recurrent. For more refer
to Seneta [13]. As a consequence of Propositions 3.1 to 3.3
of [4].

Proposition 2: Let,

ρ↓ = min
A∈A

ρ(T (A)),

- if ρ↓ < 1 then Equation (8) has a solution ,
- if ρ↓ > 1 then Equation (8) does not admit any solution,
- if ρ↓ = 1 and ρ↓ = ρ(T (A∗)), Equation (8) has a

solution if T (A∗) is transient.
We model base stations and users by considering two point

processes onR2: Πs = {Yj}j and Πu = {(Xi, hi, ηi)}i, hi

and ηi are the marks of the point process. The marks are
supposed identically distributed, independent and independent
of the rest of the model. We suppose that the point process
of usersΠu is a stationary Poisson process of intensityλu >
0. At last, we consider a radial attenuation function, that is:
L(x, y) = l(|x − y|). As usual, we can supposel(r) > 0 for
all r ∈ R

+.
We have the following negative result:
Theorem 5: Fort ∈ R, let lt : r 7→ l(max(r − t, 0)), we

denote by‖·‖∞ the uniform norm. If:

lim
t→0

‖
lt
l
‖∞ = 1, (16)

then:
ρ↓ = +∞, almost surely.

Assumption (16) is used to get a continuity of the entries of
T (A) with respect to the users’ locations{Xi}i∈N. However,
the theorem should be true for a larger class of attenuation
functions.

This result asserts that whatever the intensity of base stations
is, there is no solution of the power allocation problem. It
implies that some admission congestion protocol must be
enforced in a CDMA network on the downlink. Otherwise,
as the proof of Theorem 5 shows, there will always be a local
concentration of users which saturates the whole network. If
we compare to Theorem 2, this result is in complete opposition
with what happens on the uplink. Theorem 5 is somewhat
disappointing, the stationary point process for users’ location
framework does not lead to a right concept of spatial load.

The proof of Theorem 5 relies on classical results on
spectral radius (see [13] for details).

Lemma 5: Let T and S be non-negative matrices (possibly
infinite), then:

- if ∀j, k Tjk ≥ Sjk, thenρ(T ) ≥ ρ(S),
- for all square sub-matrix̃T of T , ρ(T ) ≥ ρ(T̃ ).
Proof of Theorem 5.Without loss of generality we can

suppose thathi > 0, indeed
∑

i 11(hi > 0)δXi,hi,ηi
is still

a poisson point process with independent marks. LetR, h be
some positive real numbers andM an integer. The eventAi =
{Πu(B(Xi, R)) ≥ M} ∩ {∀Xk ∈ B(Xi, R), hk > h} has
a positive probability, providedh small enough. Hence using
the independency property of Poisson processes,

∑

i 11Ai
= ∞

almost surely. We consider one of these configurations.
Without loss of generality, we can also supposei = 1 and

X1 = 0: ∀k ∈ {1...M}, Xk ∈ B(0, R) andhk > h.
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Fix 1 > ε > 0 from Hypothesis (16), forε small enough,
there existsR such that:

∀x ∈ B(0, R), ∀y ∈ R
2, |l(|x − y|) − l(|y|)| ≤ l(|y|)ε.

Hence, for allXi ∈ B(0, R) we easily check:

∣

∣

∣

L(0, Yk)

L(0, Yj)
−

L(Xi, Yk)

L(Xi, Yj)

∣

∣

∣
≤

ε

1 − ε

L(0, Yk)

L(0, Yj)
. (17)

Let T = T (A), we have

Tjk ≥ T̃jk = h
M
∑

i=1

aij
L(Xi, Yk)

L(Xi, Yj)
,

and, by lemma 5,ρ(T ) ≥ ρ(T̃ ).
Now, if T̃ (N) denotes the sub-matrix of̃T extracted from

the firstN rows andN columns, from (17), we deduce:

T̃
(N)
jk ≥ h(1 −

ε

1 − ε
)
L(0, Yk)

L(0, Yj)

M
∑

i=1

aij . (18)

Moreover, there existsN such that
∑N

j=1

∑M
i=1 aij ≥

M(1− ε). For suchN , define, theN ×N matrix, T̂ (N), with
T̂

(N)
jk is equal to the right hand side of (18). From lemma 5,

ρ(T̃ ) ≥ ρ(T̃ (N)) ≥ ρ(T̂ (N)). Computing the spectral radius
of T̂ (N), we obtain:

ρ(T ) ≥ ρ(T̂ (N)) ≥ hM(1 − 2ε).

We thus have proved thatρ(T ) cannot be upper bounded.

APPENDIX I
PROOF OFTHEOREM 2

The following lemma on shot noise processes is needed in
the proof. In what follows,| · | is the Euclidean norm and
B(x, R) is the closed ball of centerx and radiusR.

Lemma 6: LetΠ = {(Xi, Zi)}i be a stationary marked
point process onRd×R+. We supposeΠ has a finite intensity
λ and E0(Z0) < ∞. Let α < 1 and x 7→ l(x) a non-
negative function onR. If x 7→ xd−1l(x) is integrable and
x 7→ xd−1l(x) is non-increasing on a neighborhood of+∞,
or if there existsε > 0 such thatx 7→ xd−1+εl(x) is integrable.
Then, almost surely:

lim inf
R→+∞

sup
x∈B(0,αR)

∑

Xi /∈B(0,R)

Zil(|x − Xi|) = 0.

Proof: Suppose for example,x 7→ xd−1l(x) is non-
increasing on a neighborhood of+∞ For n integer, let
Cn(R) = {x ∈ R

d : x ∈ B(0, (n + 1)R)\B(0, nR)}. We
can write for allx ∈ B(0, αR):

∑

Xi /∈B(0,R)

Zil(|x−Xi|) ≤
∞
∑

n=1

l((n−α)R)
∑

Xi

Zi11Xi∈Cn(R).

If πd denote thed-dimensional Lebesgue measure of the
unit ball, from Campbell formuli, we deduce:

E sup
x∈B(0,αR)

∑

Xi /∈B(0,R)

Zil(|x − Xi|)

≤ λ

∞
∑

n=1

l((n − α)R)

∫

Rd

∫ +∞

0

z11x∈Cn(R)P
0(dz)dx

≤ λ

∞
∑

n=1

l((n − α)R)E0(Z0)πdR
d((n + 1)d − nd)

≤ λCRE0(Z0)
∞
∑

n=1

l((n − α)R)Rd−1nd−1,

whereC is a constant depending on the dimensiond only.
From the hypothesis onx 7→ xd−1l(x), we can apply the
dominated convergence theorem to conclude:

lim
R→+∞

E sup
x∈B(0,αR)

∑

Xi /∈B(0,R)

Zil(|x − Xi|) = 0.

In order to get the result in almost sure convergence, it
suffices to recall that from any sequence converging inL1,
we can extract a sequence converging almost surely. We thus
obtain the stated result. The casex 7→ xd−1+εl(x) in L1(R)
is similar.

The next lemma will be used to build a stationary solution.
The proof is straightforward.

Lemma 7: With the hypothesis of Theorem 2, the mapping
G as it is defined in§II-B is continuous onG−1(R+

∗
N
) for the

L∞-norm: ‖S‖= supi∈N |Si|.
Proof of theorem 2. The idea is to follow the proof of Hanly
in the finite case and use ergodicity and the uniform bound
given by Lemma 6 to extend to infinite case.

Caseρ↑ > 1.
Suppose that there exists a solution of (5) with a positive

probability. From Proposition 1, this solution exists almost
surely, we denote the solution byS = (Si). We have
component-wiseG(S) ≤ S. Let 0 = (0)i∈N, notice that almost
surely for all i, G(0)i > 0. The functionG is monotonous
component-wise: ifS ≤ S′ thenG(S) ≤ G(S′). We deduce
that G(0) ≤ G(S) ≤ S and for all i, Gn(0)i is an increasing
sequence and is upper bounded bySi. This sequence converges
toward S∗

i , which by continuity (Lemma 7) satisfiesS∗ =
G(S∗). SinceG is invariant under a translation, we can define
a solution(S∗

i ) as a mark onΠu. For the sake of simplicity, we
drop the′′∗′′ exponent inS∗ and suppose directlyG(S) = S,
Si > 0.

We consider the thinned point process:Πu,t =
∑

i 11Si<tδ{Xi,hi,Si}, this marked point process is still station-
ary and ergodic. Letλu,t be its intensity. The Palm probability
of Πu,t is P 0

u,t(·) = P 0
u (·|S0 ∈ [0, t)), (see Baccelli and

Brémaud [14]). Letα < 1, and, to simplify notations, let
NR = Πs(B(0, R)), MR = Πu(B(0, R)) and Mt,R =
Πu,t(B(0, R)). Now, from the ergodicity of our model, almost
surely:

lim
R→+∞

1

NR

MαR
∑

i=1

hi = ρ↑, and lim
R→+∞

Mt,αR

NR
=

λu,t

λs
α2.

(19)
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Let Zj = η−1
j , now, from Lemma 6, almost surely:

lim inf
R→+∞

sup
Xi∈B(0,αR)

∑

Yj /∈B(0,R)

Zjl(|Xi − Yj |) = 0. (20)

The integrability of E0
u(h0) implies that

limt→+∞ E0
u(h011(h0 ≥ t)) = 0. This last limit implies

thanks to ergodicity and an exchange of limit (justified by
Fubini’s Theorem):

lim
t→∞

lim
R→∞

1

NR

MαR
∑

i=1

hi11(hi ≥ t) = 0. (21)

Then we do the following decomposition:

1

NR

MαR
∑

i=1

hi =
1

NR

∑

Xi∈Πt
u∩B(0,αR)

hi +
1

NR

MαR
∑

i=1

hi11(hi ≥ t).

(22)
The first term of the right hand side of Equation (22), sayA,
is upper bounded by:

A =
1

NR

∑

Xi∈Πt
u∩B(0,αR)

∞
∑

j=1

SiL(Xi, Yj)

ηj +
∑∞

m=1 SmL(Xm, Yj)

≤
1

NR

∑

Xi∈Πt
u∩B(0,αR)

NR
∑

j=1

SiL(Xi, Yj)

ηj +
∑∞

m=1 SmL(Xm, Yj)

+
1

NR

∑

Xi∈Πt
u∩B(0,αR)

∑

Yj /∈B(0,R)

tZj l(|Xi − Yj |)

≤ 1 + t
M t

αR

NR
sup

Xi∈B(0,αR)

∑

Yj /∈B(0,R)

Zjl(|Xi − Yj |).

We can compute thelim infR→∞ of Equation (22) on both
side and then lett tends to infinity. From Equation (19), the left
hand side of the previous inequality converges toρ↑ whereas
from Equations ((19), (20) and (21), the right hand side is
bounded by1 (by letting t tends to infinity). Thusρ↑ ≤ 1 is a
necessary condition of the feasibility of the power allocation
problem.

Caseρ↑ < 1 and hi < h for all i.
The central argument of Hanly is a change of variables and

an application of Brouwer’s fixed point theorem (see Goebel
and Kirk [15]). Hanly defines:

g :

{

⊗

i∈N
(hi, +∞] → R

+N

(ti)i∈N 7→ ( hi

ti−hi
)i

,

and

fi :

{

R
+N

→ R
+

(Sm)m∈N 7→
∑∞

j=1
(Si+1)L(Xi,Yj)

ηj+
∑

∞

m=1
SmL(Xm,Yj)

.

Let ε > 0 and define:

φε :

{
⊗

i∈N
[hi(1 + ε), 1

ε ] →
⊗

i∈N
[hi(1 + ε), 1

ε ]
(ti)i∈N 7→ (Φε

i(t))i∈N

,

where:

Φε
i(t) =







fi ◦ gi(ti) if fi ◦ g(t) ∈ [hi(1 + ε), 1
ε ]

hi(1 + ε) fi ◦ g(t) < hi(1 + ε)
1
ε fi ◦ g(t) > 1

ε

From AssumptionE0
s (η−1

0 ) < +∞ and Lemma 6, it is
easy to see thatfi is continuous on

⊗

i∈N
[ hi

ε−1−hi
, 1

ε ] for the
L∞-norm. Thus,φε is a continuous map.

⊗

i∈N
[hi(1 + ε), 1

ε ]
is a compact convex set and hence by Brouwer’s fixed point
theorem: there existstε such thatφε(tε) = tε. We will first
show that we can extract a converging sequence fromtε.

We consider the thinned point process:Πq,w
s =

∑

j 11ηj>w11∑

i l(|Xi−Yj |)<qδ{Yj ,ηj}, this point process is still
stationary and ergodic. Letλq,w

s be its intensity. Since,
∑

j l(|Xi − Yj |) is almost surely finite for allj andηj > w,
for q large andw small, we still have:

λu

λq,w
s

E0
u(h0) > 1,

thus we can suppose directly that
∑

i l(|Xi − Yj |) < q and
ηj > w for all j.

Let a > h large enough to guarantee:ha−h
q
w < a and

supposetεi ≥ a. Then Sε
i = (g(tε))i ≤ hi

a−hi
. Hence

a ≤ tεi ≤ fi(S
ε) ≤ hi

ai−hi

∑

j
L(Xi,Yj)

ηj
< a. Thus, we have

proved: for alli, tεi ∈ [hi, a]. We thus can extract a sequence
tε converging towardt ∈

⊗

i∈N
[hi, a]. We now want to show

that limε→0 g(tε) exists. To do so, we prove that for alli, there
existsεi such that for allε < εi, tεi satisfies:tεi > hi(1 + εi).

Suppose that for somei, for all η > 0, there ex-
ists ε < η such that: tεi = hi(1 + ε). We consider
a sequence of suchε. Let Sε

m = (g(tε))m and Iε
j =

∑

m Sε
mL(Xm, Yj), the interference at base stationj. We have

Iε
j ≥ ε−1L(Xi, Yj), thus for all j: limε→0 Iε

j = +∞. Since

tεk = max(
∑

j
(Sε

k+1)L(Xk,Yj)
ηj+Iε

j

, hk(1 + ε)), by a dominated
convergence argument we deduce thatSε

k cannot be bounded,
hence for allk:

lim
ε→0

tεk = hk.

Sinceρ↑ < 1, there existsα > 1 such that:

λuα2

λs
E0

u(h0) < 1.

Thus, ergodicity implies:

lim
ε→0

lim
R

1

NR

MαR
∑

i=1

tεi =
λuα2

λs
E0

u(h0) < 1. (23)

Sincetε is a fixed point, we have forε < a−1:

1

NR

MαR
∑

i=1

tεi =
1

NR

MαR
∑

i=1

φε
i(t

ε) ≥
1

NR

MαR
∑

i=1

fi ◦ g(tε), (24)
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We write:

1

NR

MαR
∑

i=1

fi ◦ g(tε)

≥
1

NR

MαR
∑

i=1

NR
∑

j=1

L(Xi, Yj)(S
ε
i + 1)

ηj + Iε
j

≥
1

NR

NR
∑

j=1

Iε
j +

∑

i L(Xi, Yj)

ηj + Iε
j

−
1

NR

NR
∑

j=1

∑

Xi /∈B(0,αR)

L(Xi, Yj)(ε
−1 + 1)

w

≥
1

NR

NR
∑

j=1

Iε
j +

∑

i L(Xi, Yj)

ηj + Iε
j

− sup
y∈B(0,R)

∑

Xi /∈B(0,αR)

L(Xi, y)(ε−1 + 1)

w
.

Now, by letting R tends toward infinity, using Lemma 6,
we obtain:

lim inf
R→+∞

1

NR

MαR
∑

i=1

fi ◦ g(tε) ≥ lim
R

1

NR

NR
∑

j=1

Iε
j +

∑

i L(Xi, Yj)

ηj + Iε
j

,

We can apply the ergodic theorem for point processes (see
[9]):

lim inf
R→+∞

1

NR

MαR
∑

i=1

fi◦g(tε) ≥ E0
s (

Iε
0

η0 + Iε
0

)+E0
s (

∑

i L(Xi, 0)

η0 + Iε
0

),

letting ε tends toward0 and using the dominated convergence
theorem, we conclude that:

lim
ε→0

lim inf
R→+∞

1

NR

MαR
∑

i=1

fi ◦ g(tε) ≥ 1.

This last inequality together with (24) contradicts (23). Thus
we cannot havetεi = hi(1 + ε) an infinite number of times.
We have proved that forε < εi, tεi > hi(1+ εi). Sincegi(t) =

hi

t−hi
is a continuous map on[hi(1 + εi), a], we can define:

S∗
i = gi(ti) = limε→0 gi(t

ε
i). From the continuity offi:

fi(S
∗) = hi

S∗
i + 1

S∗
i

,

which is equivalent to:

hi =

∞
∑

j=1

S∗
i L(Xi, Yj)

ηj +
∑∞

m=1 S∗
mL(Xm, Yj)

.

This concludes the proof of the theorem whenhi < h for
all i.

Caseρ↑ < 1, general case.
Let h > 0, we consider a new user point process:Π′

u =
∑

id
hi

h eδ
{Xi,hd

hi
h
e−1}

. Since, by hypothesis, the marked point
process{(Xi, hi)} is ergodic, Π′

u is a stationary ergodic
marked point process, its marks:hdhi

h e−1 are upper bounded
by h. Moreover, if we find a power allocation satisfying (5)
for Π′

u, by additivity of (5), we have found a solution of (5)
for Πu. A direct computation shows thatλ′

u ≤ λu(
E0

u(h0)
h +

P 0
u (h0 ≥ h)). Hence forh large enough,λ

′

u

λs
E0

u′(h0) < 1.
This conclude the proof in the general case.

APPENDIX II
PROOF OFTHEOREM 3

In the following,‖·‖ is any given norm onRN×N and〈·, ·〉
is the usual scalar product onRN . I is the identity matrix
in R

N×N . Two lemmas are necessary before turning to the
proof. The first lemma is simply an expansion of order1 of
T 7→ det(xI − T ) in the neighborhood ofT .

Lemma 8: LetΦT (x) be the characteristic polynomial of
T and Adj(T ) its adjoint; for all H ∈ R

N×N we have:

ΦT+H(x) = ΦT (x)+
∑

j,k

HjkAdj(xI−T )jk+o(‖H‖). (25)

For T ∈ T (A), we define:HT = {H ∈ R
N×N : T + H ∈

T (A)}.
Lemma 9: IfT ∈ T (A∗) then on a neighborhoodV0 of the

null matrix:

∀H ∈ HT ∩ V0, 〈HvT , wT 〉 ≤ 0, (26)

where,vT and wT are respectively the left and right eigen-
vectors ofT associated to eigenvalueρ(T ).

Proof: From Equation (12),T is primitive, hence
(from Seneta [13]):Adj(ρ(T )I − T ) = Φ′

T (ρ(T ))wT v′T and
Φ′

T (ρ(T )) > 0. For x = ρ(T ), Equation (25) reduces to:

ΦT+H(ρ(T )) = Φ′
T (ρ(T ))〈HvT , wT 〉 + o(‖H‖). (27)

If T ∈ T (A∗), thenρ(T + H) ≥ ρ(T ) for all H ∈ HT .
This impliesΦT+H(ρ(T )) ≤ 0 for H sufficiently small. (26)
follows from (27) andΦ′

T (ρ(T )) > 0.
We can now prove Theorem 3.

Proof of Theorem 3.
Let A = (aij) ∈ A∗ andT = T (A). w andv are the right

and left eigenvectors ofT associated toρ(T ). For eachi0 ∈ I,
we can findj1 6= j2 such thatai0,j1 > 0 and ai0,j1 > 0, we
define the matriceAε by:

(Aε)ij = Aij + εδi,i0δj,j1 − εδi,i0δj,j2 (δ is the Kronecker
symbol).

For ε > 0 small enoughAε andA−ε are inA, henceH =
T (Aε)− T and−H = T (A−ε)− T are both inHT . We can
apply Lemma 9 and it follows:

0 = 〈Hv, w〉

= (
∑

k

li0kvk)(
wj1

li0j1

−
wj2

li0j2

)

The last equality implies, sinceli0k > 0 andvk > 0:

wj1

li0j1

=
wj2

li0j2

(28)

The end of the proof relies on a simple argument on graphs.
Let I = I(A) and J = J(A), without loss of generality, we
can supposeI = {1, ..., |I|}. Let Ji = {j, (i, j) ∈ J}.

We now define the embedded non-oriented graphsGi on the
set {1,..,N} of base stations. We put an edge inGi between
j1, j2 if there exists an integeri0 ≤ i such thatj1 and j2 are
in Ji0 . From what precedes, this implies (28).

Similarly we define the graphJi by putting an edge between
j1 and j2 if j1 and j2 are in Ji. By construction, we have
∪l

i=1Ji = Gl.
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We now remark that Assumption (13) together with Equa-
tion (28) implies that if there is a path leading fromj1 to j2
in Gi, there cannot be any edge betweenj1 and j2 in Ji+1.
In other words, a set of connected nodes inGi and a set of
connected nodes inJi+1 cannot have more than one common
node.

Let Ni be the number of non-isolated nodes inGi andnc(i)
be the number of connected components inGi not reduced to
an isolated node. We obtain:

N1 = |J1|.

The constraint on our embedded graphs implies that adding the
edges ofJi+1 to Gi can either merge two distinct connected
components ofGi, increase a connected component or add a
new connected component. In these three possible cases, the
following formula is satisfied:

Ni+1 = Ni + |Ji+1| + nc(i + 1) − nc(i) − 1,

at last, by summing this last equation from1 to |I| − 1, we
obtain

|J | − |I| ≤ N − nc(|I|),

which in turn implies Equation (14). Since|Ji| ≥ 2, |J | ≥ 2|I|
and the corollary follows.

APPENDIX III
PROOF OFTHEOREM 4

Let V = (Vj)j a tessellation inV and A(M) ∈ AM the
allocation matrix corresponding to the cellular network with
cells (Vj)j : for i ≤ M , aij

(M) = 11(Xi ∈ Vi). By ergodicity,
for all j, k a.s. we have:

lim
M→∞

T (A(M))jk = E(h0)

∫

Vj

L(x, Yk)

L(x, Yj)
λ(x)dx.

The spectral radius is a continuous function of the entries of
the matrix. Hence, taking the infimum overV , we thus deduce:

ρ∞↓ ≤ ρ̃∞↓ ≤ E(h0)γ.

It remains to prove thatE(h0)γ ≤ ρ∞↓ . To this end, we define
the following set of measurable functions:

F = {f = (fj)1≤j≤N : fj : Ω → R+, a.e.
∑

j

fj(x) = 1}.

F is the convex hull of the set of tessellations.
Let A(M) = (a

(M)
ij ) be a sequence of allocation matrices

such thatρ(M)
↓ = ρ(T (A(M)))/M . We define the empirical

allocation measureµ(M)
j as,

µ
(M)
j =

1

M

M
∑

i=1

a
(M)
ij δXi

.

For eachj, the sequence{µ(M)
j }M is tight, so that we may

extract a converging subsequence to a limit measureµj (for
the weak convergence of measures). Notice that:

N
∑

j=1

µ
(M)
j =

1

M

M
∑

i=1

δXi
,

letting M tends to infinity, we get:

N
∑

j=1

µj = `λ,

with `λ(A) =
∫

A λ(x)dx. In particular µj is absolutely
continuous with respect tòλ. Let f∗

j be the Radon-Nikodym
derivative of µj with respect to`λ.

∫

Ω
λ(x)dx = 1 implies

that f∗ = (f∗
j ) ∈ F . If h(x) =

∑

i 11(x = Xi)hi, the entry
(j, k) of the matrixT (A(M))/M is equal to:

∫

h(x)
L(x, Yk)

L(x, Yj)
µ(M)(dx)

The spectral radius is a continuous function of the entries of
the matrix (remember that the size ofT (A(M)) is fixed to
N × N , so no continuity problem may occur). We obtain:

ρ∞↓ = E(h0)ρ(T ′(f∗)).

where

T ′(f)j,k =

∫

L(x, Yk)

L(x, Yj)
fj(x)λ(x)dx.

(Assume first thathi takes a finite number of distinct values
and then extend to the general case).

It remains to prove thatρ(T ′(f∗)) = γ. First note that by
definition of ρ∞↓ :

ρ(T ′(f∗)) = min
f∈F

ρ(T ′(f)). (29)

So thatρ(T ′(f∗)) is the minimum of a convex function over
a compact convex set. The last step is the following Lemma:

Lemma 10: If the base stations locations are not singular
then

γ = min
V ∈V

ρ(T ′(V )) = min
f∈F

ρ(T ′(f))

This lemma is a continuous analog of Theorem 3.
Proof: We consider thef∗ ∈ F given by Equation

(29). Let E = f∗
1 (]0, 1[)−1 ∩ f∗

2 (]0, 1[)−1. In this proof, `
will denote the Lebesgue measure. We need to show that
`(E) = 0. Suppose instead that`(E) > 0, we can suppose
without loss of generality that̀(E) < +∞. For ε0 small
enough, there existsE′ ⊂ E with `(E′) > 0 such that for all
x ∈ E′, min(f1(x), f2(x)) > ε and max(f1(x), f2(x)) <
1 − ε. Let A ⊂ E′ and let f ε

1(x) = f1(x) + ε11A(x),
f ε
2(x) = f2(x) − ε11A(x) and f ε

j (x) = fj(x) for j 6∈ {1, 2}.
If 0 < ε < ε0, f ε andf−ε are inF .

Let T = ρ(T ′(V ∗)) and w and v are the right and left
eigenvectors ofρ(T ) = γ. We can apply Lemma 9 toH =
T ′(f ε) and−H = T ′(f−ε), we deduce that:

0 = 〈Hv, w〉

= ε

∫

A

(
∑

k

L(x, Yk)vk)(
w1

L(x, Y1)
−

w2

L(x, Y2)
)λ(x)dx.

The last equality implies,

w1

∫

A

1

L(x, Y1)
dx = w2

∫

A

1

L(x, Y2)
dx. (30)

Thus, for allA includedE′, such that̀ (A) > 0:

1

`(A)

∫

A

1

L(x, Y1)
dx −

w1

w2

1

`(A)

∫

A

1

L(x, Y1)
dx = 0.
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We can apply Theorem 1.40 of [16] and conclude that a.e. in
E′:

L(x, Y1) =
w1

w2
L(x, Y2).

This contradicts our hypothesis the non singularity assumption.
Therefore`(E) = 0. We have also proved that the minimum
is uniquely reached (up to null measure sets).
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2003, he prepares his Ph.D degree in applied mathematics in ajoint INRIA–
ENS research group in Paris under the supervision of François Baccelli. His
professional interests are in applied probability and in particular in modeling
of spatial communication networks, in random geometric graphs, and in
performance evaluation of computer and communication systems.
E-mail: Charles.Bordenave@ens.fr
WWW: www.di.ens.fr/̃ bordenav


