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Abstract— We study the capacity of multiple access networks ~ On the uplink, Hanly [6], [7] has solved the power control
both on uplink and downlink. In our model each user requires problem for finite networks in macrodiversity. The solutioi

a given signal to interference plus noise ratio (SINR) and 8 1ha nower control problem reduces to a condition of the type:
capacity region is obtained as a solution of a power allocatin

problem. In this paper, we emphasize on the differences bewen M

uplink and downlink. The mathematical analysis of the capaity Z h; < N, 2

region is led in the framework of ergodic point processes and |

we exhibit the links between the geometry of the network and )

its capacity region. On the downlink we pay attention to varous Where N and M are the numbers of base stations and users

network architectures and levels of cooperation between s respectively and; is the SINR requirement of thé" user. In

stations: macrodiversity, load balancing and traditional cellular  the present paper, we generalize the work of Hanly to infinite

networks. networks where users and base stations are instance ofi@rgod
Index Terms— spatial capacity, CDMA networks, macrodiver-  point processes.

sity, spatial point processes, power control, spectral rads. The feasibility conditions given by Equations (1) and (2)
can be understood as a condition of the type< 1”7 where
|. INTRODUCTION p is theload of the network. In this paper, we compute the

value of the load both on uplink (denoted py), and downlink
?enoted byp,) in a probabilistic setting where the channel

L . i ondition depends on the relative positions of users and bas
CDMA networks (Code Division Multiple Access) imacro- stations. This modelling contribution will enable to unstand

diversity. In a network in macrodiversity the base Stationsetter what is the impact of the geometry of the network in

are fully coordinated and they jointly code (for dovynlinlﬂts capacity. On the uplink, if the mean SINR requirement is

denoted byh, the mean number of users (respectively base
networks supersedes the traditiore@llular architecture of . yi, o ( P y
tations) per surface unit ig, (resp. ;) we will obtain

wireless networks where each user is attached to a uniqee bS eorem 2):

station based on its location. As an intermediate architect ' A

there ardoad balancechetworks, where each user is attached pr = h)\—, 3)

to a unique base station but this allocation depends on the o )

whole configuration of the network. Computing the load”s 1S the mean SINR requirement per surface unit, so that

capacity of such networks is an important issue of wirele£3€ geometrical term of the uplink load reducesi fo\,,.
communications. This problem relies on finding a power On the downlink for a network witt\" base stations antl/

allocation satisfying all users in the network. users, we wiII_ prove, for networks eit_her ceIIu_Iar, Ioadamj(_ad
The problem of power control and load constraints iA" N macrodiversity, that the downlink load is asymptadtica

CDMA networks has drawn much attention. However, mo§dual, asM grows large, to:

authors are only considering CDMA networks without macro- p| ~ hMy, ()

diversity. On the downlink in the seminal papers of Gilhause

et al. [1] and Zander [2], [3], the authors rely the solutidn o Theorem 4) wherey is explicitly computed and depends on

HIS paper deals with the capacity of wireless multipl
access networks. Primarily, it covers the analysis

the power control problem to a condition of the type: the relative position of the base stations.
Both Equations (3) and (4) show that the load may be
p(T) <1, (1) decomposed as a mean SINR requirement per surface unit

where T is a square non negative matrix depending on tt{8*s On the uplink/.)7 on the downlink) and a geometric term
channel state ang(T") denote the spectral radius af. (L/Au Onthe uplink andy on the downlink). This decoupling
Baccelli et al. [4], [5] have developed a probabilistic gestric betwee_n mean SINR and geqmetry is o_f prime interest: given
model to analyze the feasibility condition given by Equatio® required level of user quality of service, we can design a
(1). The users and the base stations are instances of spéﬁﬁwork arch|te(_:ture. .
point processes and the authors compute the probabiliatha ©N the downlink, another consequence of our results is the
base station satisfies the SINR ratio requirement of eadts usg?MParison between the various possible levels of coaperat

in its cell. In this paper, we extend the geometric model between base stations: macrodiversity, load balancing and
Baccelli et al. to networks in macrodiversity. cellular networks. We will hint that the main improvement

between a fixed cell network and a macrodiversity network
ENSI/INRIA, 45 rue d’Ulm, 75230 Paris ; e-mail: charles.temdve@ens.fr. seems to be in the flexibility into affecting each user to



a specific base station and not on the possibility to shatees signals received by the base stations B*a*! vector:
a user between several base stations (Theorem 3). In other
words, load balancing is as efficient as user sharing (i.e.
macrodiversity). We will prove that the constanappearingin We set the channel bandwidth it8Hz and we suppose that
Equation (4) is the same for a network in macrodiversitydloauseri requires a rateR; in bits per second. Le$; = E(|s;|?)
balanced or for an optimal cellular network. On the contrarsnd n; = E(|w;|?) denote the powers of the signals. If the
as already known, for the uplink, macrodiversity has a muglsers are sending their signals independently, it is kn@ee (
larger impact and appears as a major improvement compagj) that the rate vectofRy, ..., Rys) is achievable if and only

v="U's +w.

to traditional cellular network structure. if there existsS € RY such that:
In this paper, we are primarily concerned by the impact N )
of the locations of users and base stations on the capacity %7 R; < Alogy(1 + Z |U( i)l ).

the network. To this end, somewhat artificially, the pattngai N+ 2 mapi SmlU(Xm, Y5)[2

between a user located atand a base station located st ) . -

will be set asL(z,y). Averaging over the channel conditions/Vé restrain ourselves to the sufficient condition:

we will often assume that the path gain depends only on the N _ Cv)|2

distance betweem andy. This assumption is not meant to be Vi, R; < Alogy(1+ Z i;'U(X“ Y3l

realistic, however it captures the spatial features of les® =1 M5 2= Sm|U (X, V)|

networks. This last condition is only sufficient but whe¥ is large it is
The remainder of this paper is organized as follows. Sectierpected not to be far from being necessary. LeX;,Y;) =

Il is devoted to the macrodiversity on the uplink.9h-A, we  |U(X;,Y;)|? denote the attenuation function. Thus, feasibility

introduce our model, its key features are the spatial lopatiof a given rate vector is equivalent to a minimal requirement

of base stations and users, and the SINR requirementsoafthe signal to interference ratio:

j=1

2)'

each user. Ir§ll-B we extend Hanly’s Theorem to ergodic Cvaa
. ; : _ L(X;,Y;)S
spatial point processes of users and base stations andigstab Vi, h; < E , (5)
i = 1j + D L(Xon, Y5) S
Equation (3). J

In Section Ill, we analyze the downlink. We present the, .., _ 9Rr./A _{ \with an abuse of languade will be

mode_l_ in §llI-A and ??Fabl'Sh a necessary and SUﬁ'C'e_rEalled the SINR requirement of usérThe power allocation
condition for the feasibility of the power control problem i roblem is stated as follows, for a given vector of bit rates
§ll-B. _§III-C gives a chargctgrization qf the optimal poweERi)i does there exists a pov(/er vectdh); such that the set
allocation. This characterization establishes a boundhen 0 ajities (5) is satisfied. The following theorem soltes
increase of capacity brought by macrodiversity in a networ, ower allocation problem:

In §l1I-D, we pay attention to the limit downlink load as the Theorem 1 (Hanly): Suppose that for allj, L(X;,Y;) >
number of users grows large and we establish Equation (6)andn- < 0. Y

At last, in §llI-E we extend our results to infinite networks !
and prove a negative result for the feasibility of power coint
problem when the point process of users is a Poisson point M
process. 21 hi <N.

Then, there exists a solution of (5) if and only if

This theorem is surprising , since the feasibility conditio
does not rely on the geometry of the network (i.e. the coeffi-
Il. UPLINK )
cientsL(X;,Y;)).

A. Model description

We consider a network consisting 8 users andV base B. Stochastic Model
stations. The users are located at poifi#§;}1<i<n € R? In this paragraph, we generalize the work done by Hanly
and the base station at poin¥;}1<j<n € R?. We denote in [6] for stochastic infinite networks. This generalizatio
by U(z,y) the channel gain frony to z, z,y € R% |U(z,y)| proves that Hanly’s Theorem is not due to the finiteness
represents the path loss due to shadowing, fading and déstaof the network but is intrinsic to uplink communications in
attenuation effects. macrodiversity.

In an uplink multiple access network in macrodiversity,feac We follow the probabilistic setting of [4]. The set of users
user sends independently from the other a signal and the bisa marked point proceds$, = {(X;, hi)}:, whereX; is the
stations are jointly decoding the received signals. Thigllaf location of the useiandh; is its SINR requirement. We model
channel is known as multi-receiver networks (see Hanly asdnilarly the base stations by a point processeRénIl, =
Whiting [8]). A base statiory receives a signal equal to the{(Y;,n;)};, n; is the noise power. We can suppage> 0 and
sum of all the signals sent by the users plus an external white> 0 for all ¢, j. Moreover,II,, andIl, are supposed to be
Gaussian noise. Let = (w;)1<j<n denote the power of a stationary and ergodic marked point processes. We denote
the noise vectorl/ = (U(X;,Y;))1<i<m1<j<n, the channel by A\, (resp.);) the intensity ofIl, (resp.IL,) which are
matrix. The user sends a signa;. Let s = (s;)1<i<m be assumed to be finite. The Palm probability of the prodéss
the vector of the signal sent by users. Then mathematicaftgsp.Il;) is denoted byP? (resp.P?), (for an introduction



to Palm probability, refer to Daley and Vere-Jones [9]). We I1l. D OWNLINK
assume that?(hg) < oo. We remind thatE? (hy) may be o
understood as the mean SINR requirement of typical user. At Model Description

last, we consider a radial positive attenuation functibaf is: We consider the same network as in the previous section,

Lz, 9) - [z = yl). ~ with the same notations. There aké users andV base sta-

In infinite networks, the power control problem is still give tj5ns. In a downlink multiple access network in macrodiitgrs
by the set of inequalities (5). A SINR vectéh;)i>o > 0iS the phase stations are jointly coding a signal for each user
feasible, if there exists a power allocati¢fi;);>o such that 5nq ysers are decoding independently. This kind of channel

the set O_f inequalities (5) i_S satisfied. is known as multiple input multiple output (MIMO) broadcast
Following Hanly [6], we introduce: channel (see in particular Caire and Shamai [10], Goldsmith
N N Jindal and Vishwanath [11]). A usérreceives a signal equal
G- Ry©W — Ry to the sum of all the signals sent by the base stations plus an
(Si)i +— (hi(zj m+Z:L:(O)gﬁsz%))71 )l external white Gaussian noise. As aboue= (w;); denote

the noise vectory = (U(X,,Y;));,;, the channel matrix and
The power allocation problem is equivalent to findifige Ui = (U(X;,Y})); the channel vector to . The base station
R, such that, component-wis&(S) < S. j sends a signal;; to the uset. Lets; = (s;5); be the vector
Lemma 1: With the foregoing assumptions, there existsCh the signgl sent ta. Then the signals received by users is a
power allocation satisfying (5) with probability or 1. vector of sizeN equal to
Proof: The event {Equation(5) has a solutioh = M
{there existsS, such thatGZ(5) < S} is invariant under a w = UZSZ' T w,
translation oriR? since the valug(S) does not change if we pt
translate simultaneously all users and all base statiomss,T

by ergodicity, this event has probabilityor 1. ] Let I'; be the covariance matrix dfs;;)i<j<n andn; =
We define theuplink loadby: E(|lw;]?) the power of the noise at Useri requires a rate
R; in bits per second. If we make the assumption, that for all
py = ﬁEO(hO). ©6) j., for all m # i, the signalss,,,; are regarded as noise by the
As ¢ base stations in the coding of signg| the gaussian channel

) ) ) capacity theorem (refer to Cover and Thomas [12]) implies
The following result is a natural extension of Theorem 1. o+ ihe rate vectoR — (R1,..., Rar) is achievable if:

Theorem 2: We assume thaf (5, ') < +oc and that one
of the two following conditions holds:

‘T U;

Vi, R; < Alogy(1+ *Ul v

- o+ zl(z) isin L}(R) andx — xl(x) is non-increasing, N + US> i TmUi
- or, there exists? > 1 such thatz — 2°1(z) is integrable.

) ()

(This last condition is only sufficient and it is not neceg9ar
In this work, we only consider achievable rates satisfying i
- If p; > 1, then (5) has almost surely no solution. Equation (7) in the case whelg is diagonal: the base stations
- If p; < 1, then (5) admits almost surely a solution.  are sending uncorrelated signals to each user. This is aahatu
An analogy can be made between this theorem and thgsumption for an efficient coding. We nate; = I'i(j, j)
stability of G/G/s queues. The intensity of user arrivahis andli; = L(X;,Y;) = |U(X;,Y;)|* the attenuation function.
M\ E2(ho) is the mean SINR requirement per surface unit anthus the rate vectoR = (R, ..., Ry) is achievable if there
\s plays the role of the number of service booths per surfag&ists a power allocatio(iS;;) such that:
unit. As for G/G/s queues, the limit casgxE®(hg) = 1
is harder and the power allocation problems is not solved forw R < Alog,(1 + Zj L(X;,Y;)Si; )
these networks. o= M+ (X3, Y5) 32z Smg
As for finite networks, The feasibility condition depends
only on the bit rates requirement and the density of users ahds, lettingh; = 1—2-7/2 feasibility of a given rate vector
base stations in the network. is equivalent to the existence a power allocat{$h;) such
The technical hypothesis difiz) is used to ensure a rapidthat:
decay of the tail of the shot-noise proc@ss!(|X;|). It covers vi. < > L(X5,Y5) S
a usual model for the attenuation functidf) ~ =%, a > O T i+ Y DXL Y)Y, Sy
2. The assumptionZ?(n; ') < +oco simplifies the proof of ’
the sufficient condition. The result should hold for weaker The set of inequalities (8) is our macrodiversity model for
assumptions. multiple access downlink networks. Note that the definitdén
The proof of Theorem 2 can be found in Appendix. Ththe SINRh,; = 1—2~Fi/A is not consistent with the definition
main idea is to follow the lines of the original proof ofof h; on the uplink (that ish; = 2%/4 — 1). However since
Theorem 1 and use ergodicity to ensure convergence and sdahey will play exactly the same role, we use the same notation
uniform bounds on shot noise processes. for these two scalars, in the limik large, they are equivalent.

then

(8)



B. Power Allocation Algebras The right hand side bound of (11) is simply obtained by
In this section, we study the power allocation problem (85?moving all base stations but one in the network. This bound

following Baccelli, Blaszczyszyn and Tournois [4]. cannot be improved without taking into account the location

of the users (see Remark 1). We can compare the left hand

side with Theorem 1. On the uplink, there is a solution to

We introduce the set of stochastic matrices:

A={A=(a;;) e RN A>0,vi Zaij =1} the power allocation if and only if /N S h; < 1. On the
J downlink this condition is only necessary.
. : M
A matrix A in A will be called an allocation matrix. Proof: For any matrixT, traceT’) = >_,_, hi = _; Aj,
The following obvious lemma restates Equation (8). where()\;), are the eigenvalues @f. Sincep(T') is the largest

Lemma 2: An power allocationS;;)i<i<ari<j<y iS a eigenvalu_e, we dgduce the !eft hand sid_e. .
A € A such that: allocation matrix4 € A where thej*" column is 1 and all the

- others are set t0. We immediately checko(7 (A4)) = >, hi.
Vi,j aijh < L(X’HY])S’LJ (9) ]

, T omi 2 DXL YG) 3, Smj Remark 1:There exists configurations such that the two
For a fixedA = (ai;), the restatement given by Equay ) nds of Equation (11) are reached.

tion (9) reduces our problem to a power allocation problem
without _mac_rodlversny asitis addressed in [4]. me N (11). Consider a network on a line and suppose to simplify:
macrodiversity network is equivalent todd N x N fixed cell M = KN, K integer. Then place the base statiris at
network: each usek; is subdivided into N independent usersl’ocationsjr, and placek users(X?, .., X1) at jr. Consider
(X7)1<j<n, X7 s affiliated to base statio and has SINR |, he liocationd — (aij), ai %a;kir;g valuel i X, is an
requirement ok;;h;. We define the linear mapping: X7 and0 otherwise. We can check directly that if(z, y)
A — RNxXN goes to0 as the distance betweenandy goes to infinity,
T: { A - T=(Y, aijhi%)lgj,ng ‘ p(T(A)) tends toy Zi]\il h; asr tends toward infinity.
! A configuration reaching right hand side of Equation (11).

Let p(T') denotes the spectral radius of the square mdtrix Consider, the case where all users are at the same location.
We then have the following necessary and sufficient conlitione definel; = L(X;,Y;) > 0 and let D be the diagonal

A limit configuration reaching left hand side of Equation

Proposition 1: Let, matrix whose diagonal igl,, ...,Iy). In this case, we have
: T = D-'MD, with M;; = > a;jh;. T and M have the
= T(A)). 1 P A
L %ﬁp( (4)) (10) same spectral radius. Then notice thdt = U1?, whereU
N iti i —
Equation (9) has a solution if and only i, < 1. and 1 are R positive vectors and it follows thas(7T) =

p, is thedownlink loadof the network. Sincey(T" + T) < p(M) =1'U = 3, hi.
p(T) + p(T), p, is computed as an optimization of a convex
function over a convex set.

Proof: Note thatp, = p(7(A*)), A* € A. This
proposition is a consequence of Propositions 3.1 to 3.3 ofln this paragraph, we state an interesting property shared
[4] in the finite dimensional case. For the reader convergen®y the optimal allocation matriced € A* = {A € A :
we sketch the main idea. Consider the allocation matix (7 (A)) = p,}.

The base station guarantees an individual signal to noise For the sake of simplicity, we will suppose that forally €

ratio of at leasth;a;; to useri. We defineS; has the total R*, L(z,y) > 0. We can also suppose thatlif= 7/(4) where

power emitted by statiop: S; = >, Si;. Let S = (S;); be A €A™

the vector of total emitted powers, by elementary calcoreti Vi, k, T, > 0. (12)

that Equation (9) implies component-wisg> 7 (A*)S + b,

whereb contains the noise of the channel. This inequality kdeed, if T, = 0 for somek, then the;j*" row is equal to

solved by the Perron-Frobenius theory, and the existencelpfThus,T" and the sub-matrix of” obtained by removing the

a non-negative vecto$ relies on whether or not the spectrai’”” row and the;j*” column have the same spectral radius.

radius of 7 (A*) is less than one. It remains to prove that if For A € cA, we define two sets:

the inequality for the total emitted powefshas a solution,

then it is possible to compute the individual powéts. =
On the uplink, the feasibility of the power control problem o

did not depend on the geometry of the network. On the J(4) = 1{(i,5),ai; € (0,1)}.

downlink, on the contrary, in the computation of, the I(A)

locations of the users is relevant.
Lemma 3: IfA € A*:

C. Optimal Power Allocation

I(A)={ie{1,..,M},3a;; € (0,1) for somej},

is understood as the set of users for which two or
more base stations are actively contributing to satisf$itdR
requirement. For a discrete skt | K| denotes the cardinal of
1M M K. We have the following theorem:
N Zhi <p(7T(4)) < Zhi- (11)  Theorem 3: We assume that for all integer for all

i=1 i=1 sequencesy, ...,i, of {1,...,M} and for all sequences of



distinct integersjy, ..., j» of {1, ..., N}, we have (withj,,.; = 77 is simply denoted by{ (this is consistent with its definition

71): . in §l11-B). The downlink load associated to the set of users
11 Lix i 41, (13) {X;, h" V1 <i< s is by definition:
=i i (M) . 1
Then if A € A*: pp = min p(Tu(A)) = 7 Auin p(T (A)).
Corollary 1: If IJJE(/Q*|,7|I|(II§§P|<<NZ_V' (14) N(]I;?r load balanced allocations, we define similaﬂw and

This theorem gives an upper bound to the number of uséks _ _ - -
which are really in macrodiversity, i.e. to the number ofrsse  Lemma 4: There exis®8 < p* < p° such that almost
which are receiving a signal from more than two differentbaSurely:

stations. Provided that the assumption is satisfied, thieup ) (M) . M) aeo

bound does not depend on the geometry. This bound is also h}linoo py =pp and thloo P =P (15)
surprisingly small: on a typical wireless network{ > N, Proof: Forp < ¢ € N, we defineA,, = {4 =
so the proportion of users in macrodiversity is small. (a;) € RPN o fori ¢ {p,---.,q} a;y = 0, fori €

We denoted = {A € A: Vi, j a; € {0,1}}, the set of {p,---,q} > ;a;; = 1}, the set of allocations matrices
allocation matrices such that each user is affiliated to gqueni for users indexed fronp to ¢. Note that if A, , € A; 4, we
base stations, thipad-balanced downlink load defined as: have7 (A ) = T (A1) + T(Apy1,4), Where the matrices

. A peAipandAy 4 € Appr,q are obtained fromd, , by
PL= inelﬁp(T(A))' setting to0 all rows not in{1,p} and{p+ 1, q} respectively.

5, is the load corresponding to a network where each userif1ce:A(1'+ 1) = p(T) + p(T)) we deduce:

affiliated to a unique base station. . . .
In view of Theorem 3, we may guess that/p, is close 42 PZ(A) < min p(T(A)+  min p(T(4)).
to 1. In fact, in the special caseéy = 2 (two base stations) ) )
we can actually show that the two minima are equal. In the existence ofp? and ;7 follows then directly from
§111-D, we will state that this intuition makes sense whan Kingman's subadditive ergodic theorem. The positivitypgf
grows large. is a consequence of Lemma 3. ]
Assumption (13) is not very restrictive in our context. In a Before stating the main result of this paragraph, we need a
probabilistic setting, it would be easily almost surelyisfitd. couple of definitions.
The proof of Theorem 3 is postponed to Appendix. It does A set of measurable functiong; : R*? - R, 1 < j < N
not contain any intuition on the result. Note however thatrevis said to besingular if there exists a measurable set
if Theorem 3 may be surprising in view of its application gt i of positive Lebesgue measure and a constdnsuch that
quite natural ifp; is seen as the minimum of a convex functionf;(z) = Cfi(x) for some;j # k. By extension, the base
T +— p(T), on a compact convex sef. With reasonable stations locations is said to be singular if the set of atition
assumptions, this minimum is reached on the boundary of thctionsz — L(x,Y;) is singular. This notion of singularity

set A, that is the subset afl is purely technical and it is not a strong assumption in view
of applications.
D. Asymptotic Load A tessellation is a collection of measurable sets pariitign
Even for the simplest probabilistic models, the computatidhe region2, we denote byV = {V = (Vj)icj<n

of p, is by far less easy than the computationef In this ~almost everywheré_, 1y, (z) = 1} the set of tessellation

paragraph, we show however that it is possible to compute #@mposed ofV sets. We identify two tessellatioris and V"

scaling limit of p; when the number of users tends to infinityin V if for all j, 1y, and 1y, are almost everywhere (a.e.)
The N base stations are fixed and deployed in a boundedual.

region Q C R2. We consider an ergodic sequence of users Theorem 4: If the base stations locations are non singular

{Xi,hi}iez with h; independent ofX;, 0 < E(hy) < oo, then

X; €  and for all measurable subsdtC Q, P(X; € A) = P = p = E(ho)7,
J 4 Mz)dz. X(z) is the spatial intensity (or density here) of
users in2. As last the attenuatioh(z,y) is positive. where

We pay attention to the load in the network when the ~ = min p(T'(V))
set of users is{Xi,hf.M)}lgigM where hEM) = h;/M is Vev

the scaled SINR of uset. In this paragraph, we need to

o _ _ L(z,Yy)
explicit the dependency of the problemid so that we define and 7'(V)jr = fvj L( SA(x)dz.

(z,Y;)
Apr = {A = (ayy;) e RPN : fori > M a;; =0, for1 < This theorem sheds a new light on the downlink load when
i <M Y .a;; = 1}, A is simply denoted byd and we the number of users is large. First, it strengthens thetiotui
introduce the linear mapping: that macrodiversity and load balancing lead to the samé leve

RNXN of load in the network. Secondly, we have been able to com-
. A = , pute explicitly the limit behavior of the asymptotic behawvi
T : (M) 1, ) . .

A = T=(};a;h )1<jk<N of the network. As an example, a practical consequence is the

%
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following approximation for a set o}/ users located atX;) makingT respectivelytransientor recurrent For more refer

with SINR requirementh;), from Equation (15) we get: to Seneta [13]. As a consequence of Propositions 3.1 to 3.3
M of [4].
pL ~ thi, Proposition 2: Let,
! , p1 = min p(7(A)),
We have completely decoupled the SINR requirement and the AeA
geometry of the network which is contained in the scalar - if p; < 1 then Equation (8) has a solution ,

There is a third consequence of Theorem 4. Defiffe= - if p; > 1 then Equation (8) does not admit any solution,
(V7); as the optimal tessellation (defined up to null measure- if p; = 1 and p; = p(7 (A*)), Equation (8) has a
sets) such that: solution if 7(A*) is transient.

p(T' (V")) = 1. We model base stations and users by considering two point

processes oiR?: I, = {V;}; and 1, = {(X;, hi,mi) }is P

We consider a traditional cellular network architecturehwi :
and n; are the marks of the point process. The marks are

i * with M X;) distributed ding t i _ . . .
associated cells;" with M users(X,) distributed according to supposed identically distributed, independent and indépet

A(z)dz with SINR requirementh;"")). The useri is attached of the rest of the model. We suppose that the point process

to ba_lse statiorj if X; € Vi that is the associated allocation usersTl, is a stationary Poisson process of intensify>
matrix A}, satisfies: fori < M, af;, = 1(Xi € Vj). The At |ast, we consider a radial attenuation function, that is
cellular downlink loadis equal top{"" = p(7is(A3,)). As  L(x,y) = I(jx — y|). As usual, we can suppogé-) > 0 for
the number of userd/ grows large, from the law of large gJ| » € R+.

number,ﬁjM) tends toE(ho)y. Therefore an optimal cellular  We have the following negative result:

architecture has asymptotically the same load than a nktwor Theorem 5: Fort € R, letl; : r — l(max(r — t,0)), we

in macrodiversity. denote byj|-|| the uniform norm. If:

The proof of Theorem 4 is postponed to Appendix.

Example 1: Hexagonal Grid. lim||l—t|\oo =1, (16)

Q) = [0,1]? is seen as a torus to avoid boundary effects, =071
and the users are uniformly distributed éh We suppose then:
that the set of base stations is located on a regular hexhgona p| =400, almost surely
grid of radiusRk = 1/L, with L integer. We index our base Assumption (16) is used to get a continuity of the entries of
station with two indices i0, - -- , L—1} and with a complex 7 4) with respect to the users’ locatiofs\; };cx. However,
representation dk?, the base statiofp, ¢) is located at,, =  the theorem should be true for a larger class of attenuation

R(p + qe'%). Let {V;} be the Voronoi Tessellation of thefynctions.

hexagonal network (that is; € V; if forall j' # j, |z —Y;| < Thjs result asserts that whatever the intensity of basestat
|z — Yy [). If L(z,y) = I(|z — y), then the symmetry of the js there is no solution of the power allocation problem. It

network leads to implies that some admission congestion protocol must be
B I(x) d enforced in a CDMA network on the downlink. Otherwise,
7 Voo L(]Z]) “ as the proof of Theorem 5 shows, there will always be a local

concentration of users which saturates the whole netwérk. |
we compare to Theorem 2, this result is in complete oppaositio
with what happens on the uplink. Theorem 5 is somewhat
disappointing, the stationary point process for usersation
framework does not lead to a right concept of spatial load.
The proof of Theorem 5 relies on classical results on
E. Infinite Networks spectral radius (see [13] for details).
In the previous paragraph, we have computed the downlinkLemma 5: Let T and S be non-negative matrices (possibly
load as the number of users grows large and the numberirdinite), then:
base stations is fixed. As on the uplink, it is an appealing- if Vj, k T;; > S;x, thenp(T) > p(S),
idea to computep, for infinite networks, that is when both - for all square sub-matrix’ of T', p(T') > p(T).
the numbers of users and base stations are infinite. The poweProof of Theorem 5Without loss of generality we can
control problem is still given by the set of inequalities 8)d suppose that;; > 0, indeed_, 1(h; > 0)dx, 4,5, is still
Lemma 2 remains obviously true. Thus, we can still follova poisson point process with independent marks.eb be
the line of [4]. We can still defined and the linear mapping some positive real numbers aid an integer. The evet; =
7. Proposition 1 has an infinite dimensional analogue. {II,(B(X;,R)) > M} n{VX}, € B(X;,R), hi > h} has
First, we recall some results on infinite recurrent matrices positive probability, provided small enough. Hence using
Let us denote by = (T7;), then' power of . The power the independency property of Poisson processgsl 4, = oo
series Tjr(2) = >, Tj,2" have a common convergencealmost surely. We consider one of these configurations.
radiusR(T) = ﬁ; p(T) is by definition the spectral radius Without loss of generality, we can also suppase 1 and
of T. T};(R) is finite or infinite at the same time for ajl, X, =0: Vk € {1...M}, X}, € B(0,R) andhy, > h.

where I(z) = > .Il(lz — Y;[). This last equation has an
intuitive meaning: In a symmetric network, the optimal akdf
architecture is obtained by equalizing the individual lazd
each base station.



Fix 1 > € > 0 from Hypothesis (16), foe small enough,
there existsRk such that:

Vo € B(0,R),Yy € R?, [U(|lz —y]) = I(ly])] < I(yl)e.

Hence, for allX; € B(0, R) we easily check:

L(0,Y3)
L(0,Y;)

| L(Xi, V) ’< e L(0,Y}) a7

L(X.Y;) |7 1€ L(0,Y;)
Let T =7 (A), we have

L(X;,Y)

M
Tjp 2 Tjp = h) oy 7y
iy Lyj

i=1

and, by lemma 5p(T") > p(T).
Now, if T(") denotes the sub-matrix dF extracted from
the first N rows andN columns, from (17), we deduce:

M
e L(0,Y:)
=20y, ;a”'
>

Moreover, there existsV such thaty>" | 2 a; >
M (1 —¢). For suchN, define, theV x N matrix, 7™, with
Tj(,iv) is equal to the right hand side of (18). From lemma

T > h(1 -

(18)

5

If 7, denote thed-dimensional Lebesgue measure of the
unit ball, from Campbell formuli, we deduce:

sup Z

z€B(0,aR) X,¢B(0,R)

o] +o0
)\nzll((n—a)R) /R/O 2l,ec, () PP (dz)dx

IN

M8

<A I((n—a)R)E°(Zo)maRY((n +1)* — n9)
< ACRE°(Zy) i I((n — a)R)R¥*1nd=1

whereC is a constant depending on the dimensibanly.
From the hypothesis or — 2971i(x), we can apply the
dominated convergence theorem to conclude:

>

X;¢B(0,R)

lim FE

Z; —X;|)=0.
Rt o il(|x i) =0

sup
z€B(0,aR)

In order to get the result in almost sure convergence, it

suffices to recall that from any sequence convergind.in
we can extract a sequence converging almost surely. We thus

obtain the stated result. The case— z?~!'*¢/(z) in L!(R)
is similar. ]
The next lemma will be used to build a stationary solution.
The proof is straightforward.
" Lemma 7: With the hypothesis of Theorem 2, the mapping

7 (N n(N i i
p(T) > p(T™N)) > p(T™)). Computing the spectral radius .¢ it is defined irgll-B is continuous orG~1(RF") for the

of TV), we obtain:

p(T) > p(T™)) = hM(1 - 2¢),

We thus have proved tha{7") cannot be upper bounded.

APPENDIX |
PROOF OFTHEOREM 2

L*-norm: || S||= sup;ey |Sil-

Proof of theorem 2. The idea is to follow the proof of Hanly

in the finite case and use ergodicity and the uniform bound
given by Lemma 6 to extend to infinite case.

Casep; > 1.

Suppose that there exists a solution of (5) with a positive
probability. From Proposition 1, this solution exists akho
surely, we denote the solution by = (S;). We have
component-wisé&(S) < S. Let0 = (0);en, notice that almost

The following lemma on shot noise processes is neededSirely for alli, G(0); > 0. The functionG i/s monotonous
the proof. In what follows, - | is the Euclidean norm and c0mponent-wise: if5 < 5’ thenG:(S) < G(S’). We deduce

B(z, R) is the closed ball of center and radiusR.

Lemma 6: Letll = {(X;,Z;)}; be a stationary marke
point process oiR? x R .. We supposé& has a finite intensity
A and E°(Zy) < oo. Leta < 1 andz +— I(x) a non-
negative function oR. If x — 297 '(z) is integrable and
x — 2971 (x) is non-increasing on a neighborhood e,
or if there exists > 0 such thatr — z9~1*+¢|(z) is integrable.
Then, almost surely:

>

X;¢B(0,R)

Proof: Suppose for example; +— z?~!/(z) is non-
increasing on a neighborhood ofoc For n integer, let
Cn(R) = {x € R? : 2 € B(0,(n + 1)R)\B(0,nR)}. We
can write for allz € B(0, aR):

S Zillla-Xil) < Y in-

Xi¢B(0,R) n=1

liminf  sup
R—+00 z€B(0,aR)

A)R)Y " Zilx,cc.n):
Xi

that G(0) < G(S) < S and for all i, G*(0); is an increasing

d sequence and is upper bounded¥yThis sequence converges

toward S}, which by continuity (Lemma 7) satisfieS*
G(S*). SinceG is invariant under a translation, we can define
a solution(S;) as a mark ofl,,. For the sake of simplicity, we
drop the”«” exponent inS* and suppose directlg(S) = S,

S; > 0.

We consider the thinned point procesdl, ;
> i Ls,<t01x, n.,s,1, this marked point process is still station-
ary and ergodic. Lek,, ; be its intensity. The Palm probability
of I, is P),(-) = PJ(:|So € [0,t)), (see Baccelli and
Brémaud [14]). Leta < 1, and, to simplify notations, let
Np = II,(B(0,R)), Mp = I1,(B(0,R)) and M;r =
1T, .(B(0, R)). Now, from the ergodicity of our model, almost
surely:

Mt,aR _ )\u,t ag
Ngr

lim
R—+o00

1
lim —

MaR
h; = and
R—+o00 NR Z ’ pT,

i=1



Let Z; = 77].*1, now, from Lemma 6, almost surely:

liminf  sup Zi(|X; = Y;|) = (20)
R—+ x,eB(0,aR) ngz%(:o,zz) ! !

The integrabilty of E%(hg)  implies  that

limy— 400 EX(hol(ho > t)) = 0. This last limit implies

From AssumptionE?(n; ') < +oo and Lemma 6, it is
easy to see that; is continuous or), [ —1— > , 1] for the
L°e-norm. Thus¢* is a continuous mapR),y[hi(1 +¢€), 1]
is a compact convex set and hence by Brouwer’s fixed point
theorem: there exists™ such thatec(t€) = tc. We will first
show that we can extract a converging sequence ffom

thanks to ergodicity and an exchange of limit (justified by We consider the thinned point procesgiZ* =

Fubini's Theorem):

— >
Jim P}gnoo Z hil(h; > t) (21)
Then we do the following decomposition:
1 Mar
h; = h; + — hil(h; >t
NR Z Nrg Z * Nrg Z )
i=1 X;€llt,NB(0,aR)

(22)

The first term of the right hand side of Equation (22), shy
is upper bounded by:

DS

RXEH‘QBO&R ) j=1

SiL(X;,Y;)

A =
nj +Zm 1S L(Xm7y7)

1 S;L(X;,Y;)
< N 2 Zn S Sl (X, Y))
X,elltNB(0,aR) j=1 m=1 mo
1
t- > > tZ(|Xi - ;)
R x,entnB(0,aR) Y;¢B(0,R)
Mt
< 14t=2B gyp > Zi( X - Y5).
Ng Xi€B0aR) y S50

We can compute thBm infg_, ., of Equation (22) on both
side and then lettends to infinity. From Equation (19), the left *

hand side of the previous inequality convergeg{ovhereas

from Equations ((19), (20) and (21), the right hand side

bounded byl (by letting¢ tends to infinity). Thugp; <1is a
necessary condition of the feasibility of the power allomat
problem.

Casep; < 1 and h; < h for all 3.

> Lyyswly 10X, -v;)<q0{y; 5, this point process is still
stationary and ergodic. LeA?"™ be its intensity. Since,
>-; U(|X; —Y;]) is almost surely finite for allj andn; > w,
for ¢ large andw small, we still have:

Au
)\q W Eo(ho)

thus we can suppose directly that, (| X; — Y;|) < ¢ and
n; > w for all j.

Let « > h large enough to guaranteeaf—h% < a and
supposet; > a. Then S = (g(t9)): < aﬁl’hi. Hence
a <t < fi(Se) ki i3 L();“Y) < a. Thus, we have
proved: for alli, t¢ € [h;, a]. We thus can extract a sequence
t¢ converging toward € @;cnlhi,al. We now want to show
thatlim._.o g(¢€) exists. To do so, we prove that for althere
existse; such that for alle < ¢;, t§ satisfies:tS > h;(1 + ¢;).

Suppose that for some, for all » > 0, there ex-
ists ¢ < n such that:t{ = h;(1 + ¢). We consider
a sequence of such. Let S;, = (g(t)m and I{ =
> om S L(Xm, Y)), the interference at base statipriVe have
I; > e*lL(Xl,Y) thus for all j: lim. o I§ = +oc. Since

= max(}_; (5§ *}I)i(ff’“ 1) ,hi(1 + €)), by a dominated
convergence argument we deduce thatcannot be bounded,
,}ence for allk:

lim tf, = h.

The central argument of Hanly is a change of variables andSincep; < 1, there existsy > 1 such that:
an application of Brouwer’s fixed point theorem (see Goebel

and Kirk [15]). Hanly defines:
. { ®icn(hi ]

(ti)ien —
R+

— RJFN

(tlhflhl )7‘ ’

and

X

Let e > 0 and define:

®i€N[hi(1 +€), %]

¢E’{(>

— Rt
(S +DLXLY)
(Smlmen = 25t Gy S LX)

- ®i€N[hi(1 +€), %]

1i)ieN = (D5())ien ’
where:
fiogi(t:) if fiog(t) € [hi(1+e), 1]
Pi(t) = ¢ hi(l+e) fiog(t) <hi(l+e)
1 fiog(t) > 1

Ay 02

N u(ho) <1
Thus, ergodicity implies:

Mar

Lim lim —— Z t = 0(hg) < (23)
Sincet© is a fixed point, we have for < a=!
1 I\/IQR I\/[aR 1 MaR

- ; <( ;0g(t), (24
Ny 2t i2¢ R;fog() (24)



We write: APPENDIX I

Mar PROOF OFTHEOREM 3
Ng Z fiog(t) In the following, ||-|| is any given norm oRY > and (-, -)
Mur N is the usual scalar product dR”. I is the identity matrix
e Sy L(X:, Y;)(SF +1) in RV*N _ Two lemmas are necessary before turning to the
-~ Np = = n; + 15 proof. The first lemma is simply an expansion of ordeof
Nr e T — det(xI — T) in the neighborhood of .
> RS Z L+ LX,Y)) Lemma 8: Letdr(x) be the characteristic polynomial of
- Neim n; + 1§ T and Adj(T) its adjoint; for all H € RV*Y we have:
7_2 3 L(X:, Vi) (et +1) Cryp(r) = () +)_ HipAdj(el =T)u+o(| H|). (25)
J.k
J=1 XigB(0,aR) b ForT € T(A), we defineHr = {H e RV*N . T+ H ¢
RIS+ 30, L(X,Y;) T(A)}.
z Z e Lemma 9: IfT" € 7 (A*) then on a neighborhool, of the
’ null matrix:

ap Y HE M) ¥ 26
- ‘ HeHrNYy, (Hor, <0,
VEBO.R) x4 B0 R w NV, (Hvr,wr) (26)

Now, by letting R tends toward infinity, using Lemma 6, where,vr and wr are respectively the left and right eigen-
we obtain: vectors ofT" associated to eigenvalygT).

| Naoe S L(X.Y)) Proof: From Equation (12),7 is primitive, hence

lim inf — Z fiog(t?) > hm Z J : . v J2 - (from Seneta [13])Adj(p(T)] — T) = @7 (p(T))wrvy and
R—too N N 1 ;i + 15 O (p(T)) > 0. For x = p(T"), Equation (25) reduces to:

R =
=
We can apply the ergodic theorem for point processes (see Ory 11 (p(T)) = Oy (p(T))(Hop, wr) + o(|H|).  (27)
[9]):

If T € T(A*), thenp(T + H) > p(T) for all H € HT.

hmmf_ Z fiog(te) > EO( ) ES(M) This implies®r g (p(T)) < 0 for H sufficiently small. (26)

Bt N + Is Mo + 1 follows from (27) and®,(p(T)) > 0. u
letting € tends toward) and using the dominated convergence We can now prove Theorem 3.
theorem, we conclude that: Proof of Theorem 3.
Mg Let A = (a;;) € A* andT = T(A). w andv are the right
lim lim inf — Z fi o g(t9) and left eigenvectors df associated tp(T"). For eachi, € I,
€—0 R—+oo IV we can findj; # j» such thata,, ;, > 0 anda;, ;, > 0, we

This last inequality together Wlth (24) contradicts (23pus define the matricel® by:

we cannot have{ = h;(1 + ¢) an infinite number of times. (A%);j = Ajj + €0;.4,04.5, — €0:.4405.4, (0 is the Kronecker
We have proved that for < ¢;, t§ > h;(1+¢;). Sinceg;(t) = symbol).

tf;z- is a continuous map ofh (1 +¢),a], we can define:  Fore >0 small enoughd© and A~ are in A, henceH =

S* = gi(t;) = lim._ g;(5). From the continuity off;: T(A)—T and—H =T (A™¢) — T are both inH,. We can
S 11 apply Lemma 9 and it follows:
filS7) = hi——,
S; 0 = (Hv,w)
. . . i Wy, Wi,
which is equivalent to: _ Zlmkvk j - J2
) * v 10]1 10J2
h: = Z ’S;ZOL(X“ Yj) . .
5+ L=t S (X, Y) The last equality implies, sindg, ; > 0 and vy > 0:
This concludes the proof of the theorem whign< h for Wy _ Wiy (28)
all 4. ligjr  lioga

Casep; < 1, general case.
Let A > 0, we consider a new user point procebg; =
ZJ%M{X, Bhi-1y- Since, by hypothesis, the marked poin
i) h

process{(X;, h;)} is ergodic, II; is a stationary ergodic \yg now define the embedded non-oriented grajtan the

marked point process, its marldsf i1-1 are upper bounded set{1,..,N} of base stations. We put an edgedn between
by h. Moreover, if we find a power allocation satisfying (5).

, i1, jo if there exists an integely < i such thatj; and j, are
for IT/,, by additivity of (5), we have found a solution of (5)In Ji,. From what precedes, this implies (28).

h
for TI,.. A direct computation shows thaf, < A, (Zu(0) 4 Similarly we define the graplf; by putting an edge between
P%(hg > h)). Hence forh large enough#EO (ho) < 1. j1 andjs if j; andj; are inJ;. By construction, we have
This conclude the proof in the general case. Ul 7 = Gi.

The end of the proof relies on a simple argument on graphs.
et =1(A) andJ = J(A), without loss of generality, we
an supposé = {1, ..., |I|}. Let J; = {4, (4,5) € J}.
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We now remark that Assumption (13) together with Equdetting M tends to infinity, we get:
tion (28) implies that if there is a path leading frgimto j N
in G;, there cannot be any edge betwegnand js in J;y1. Z“J’ =0,
In other words, a set of connected nodegjinand a set of =

connected nodes iff;,.; cannot have more than one common . . .
node D1 with £x(A) = [, A(z)dz. In particular ; is absolutely

Let N, be the number of non-isolated nodesiinandn, (i) continuous with respect té,. Let f; be the Radon-Nikodym

be the number of connected componentgjmot reduced to ;:Iher;va;mie Of 1 W;[‘ [fezpectjoéA. ]{sz A(j))d(x - 1thlmp“(tes
an isolated node. We obtain: at f* = (f7) € 7. 1»536) = 2 1(z = Xi)hi, the entry
(4, k) of the matrix7 (A*))/M is equal to:

[ H T )

The constraint on our embedded graphs implies that addeng th L(z,Y;
edges of7;; to G; can either merge two distinct connectedpe gpectral radius is a continuous function of the entrfes o
components ofj;, increase a connected component or addife matrix (remember that the size 8i(A(™)) is fixed to

new connected component. In these three possible cases, ¥h¢ N so no continuity problem may occur). We obtain:
following formula is satisfied: o
P = E(ho)p(T'(f*).

Ny = |J1].

Ni+1 = Nz + |Ji+1| + ’Ilc(’L + 1) — n((z) — 1,
where

at last, by summing this last equation franto |I| — 1, we Ty — / L(x,Yy) Nz)d
obtain ()i L(z,}/j)fj(z) (z)de.
|J| = [I] < N —n.(|1]), (Assume first that; takes a finite number of distinct values

which in turn implies Equation (14). Sin¢d;| > 2, |J| > 2|I| and then _extend to the genetal i:ase). ,
and the corollary follows. It remains to prove thap(7'(f*)) = ~. First note that by
definition of p7°:
APPENDIX I p(T'(f*)) = ?éigp('f/(f)). (29)
PROOF OFTHEOREM4

Let V = (V}); a tessellation inV and AM) ¢ Ay, the
allocation matrix corresponding to the cellular networkhwi
cells (V;);: for i < M, a;;M) = 1(X; € V;). By ergodicity,
for all j,k a.s. we have:

So thatp(7'(f*)) is the minimum of a convex function over
a compact convex set. The last step is the following Lemma:

Lemma 10: If the base stations locations are not singular
then

= min p(7’ = min p(7”’
| v _glelgp( _ (V) lfnelgp( (f)
This lemma is a continuous analog of Theorem 3.

L . . Proof: We consider thef* € F given by Equation
The spectral radius is a continuous function of the entrfes &9)_ Let E = £:(]0,1)~* N £(0,1))~". In this proof, ¢

the matrix. Hence, taking the infimum ovir we thus deduce: will denote the Lebesgue measure. We need to show that
PP < 5% < E(ho)y. E(E) = 0. Suppose inst.ead thdtF) > 0, we can suppose
. . ~without loss of generality thaé(E) < +oco. For ¢y small
It remains to prove thaki(ho)y < p(°. To this end, we define enough, there exist&” c E with ¢(E’) > 0 such that for all
the following set of measurable functions: z € E', min(fi(z), f2(z)) > € and max(fi(z), f2(z)) <
1 —e Let A Cc E and let ff(z) = fi(z) + ela(x),
F={f=ih<j<n: f; : Q2 —= R4, ae. i(r) =1}. 1 )
U= Uhysn i@ =B 2 0 [0 =1 by p o) ety and fi(a) = £, for j ¢ {1.2).
) . If 0 <e<e, feandf~¢areinF.
F is the convex I?Au})l of the set of tessellations. Let T = p(7T'(V*)) andw and v are the right and left
Let A = (a;; ') be a sequence of allocation matricegigenvectors op(7) = . We can apply Lemma 9 té/ =
such thatp{™ = p(T(A())/M. We define the empirical 7/(f<) and—H = T(f~), we deduce that:

(M)y . _ ’
k}un T(AY ), = E(ho) /j (@.Y)) Ax)dz.

J

allocation measuraﬁM) as, 0 = (Hov,w)
M w1 w2
w1 = o [ (X Ll viu)( - A(2)da.
piM = M;agj )6x,. A ; L(z,Y1) L(z,Y2)
]; The last equality implies,
For eachj, the sequencé;é- )}M is tight, so that we may 1 1
extract a converging subsequence to a limit meagyréor 1/ mdm = w2/ mdﬂf- (30)
the weak convergence of measures). Notice that: A ot A 02
N " Thus, for all A included E’, such that/(A) > 0:
o _ 1 11 1 [ 1
Z“J’ *MZ(SX” / dx—ﬂ / dr = 0.
j=1 i=1 (A) J4 L(z,Y7) wa U(A) J4 L(z, Y1)



We can apply Theorem 1.40 of [16] and conclude that a.e. in
/.

B
L(z, Y1) = L L(2,Y3).
w2

This contradicts our hypothesis the non singularity asgiomp
Therefore/(E) = 0. We have also proved that the minimum
is uniquely reached (up to null measure sets). ]
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