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Abstract

Consider a branching random walk on the real line. Madaule [25] showed the renormal-
ized trajectory of an individual selected according to the critical Gibbs measure converges
in law to a Brownian meander. Besides, Chen [12] proved that the renormalized trajectory
leading to the leftmost individual at time n converges in law to a standard Brownian ex-
cursion. In this article, we prove that the renormalized trajectory of an individual selected
according to a supercritical Gibbs measure also converges in law toward the Brownian ex-
cursion. Moreover, refinements of this results enables to express the probability for the
trajectories of two individuals selected according to the Gibbs measure to have split before
time t, partially answering a question of [14].

1 Introduction
A branching random walk on the real line is a particle system on R defined as follow : It starts
with an unique individual sitting at the origin, forming the 0th generation of the process. At
time 1, this individual dies and gives birth to children, which are positioned on R according to
a point process of law L. These children form the 1st generation. Similarly, at each time n ∈ N,
every individual z of the (n− 1)st generation dies, giving birth to children positioned according
to an independent copy of L translated from the position of z.

We denote by T the genealogical tree of the process. Obviously T is a Galton-Watson tree.
For any individual z ∈ T, we write |z| for the generation to which z belongs and V (z) ∈ R for
the position of z. With these notations, (V (z), |z| = 1) has law L. If z ∈ T, for all k ≤ |z|, we
denote by zk the ancestor of z alive at generation k. The collection of positions (V (z), z ∈ T),
together with the genealogical informations, defines the branching random walk.
∗ICJ, Université Lyon 1
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Throughout this paper, we suppose that the point process law L satisfies some integrability
conditions. We assume that the Galton-Watson tree is supercritical, or in other words, that

(1.1) E

∑
|z|=1

1
 > 1.

Note that we do not assume P
(∑
|z|=1 1 =∞

)
= 0, hence a given individual may have infinitely

many children in this branching random walk. Under assumption (1.1), the survival set

(1.2) S := {∀n ∈ N,∃z ∈ T, |z| ≥ n}

is of positive probability.
Assume also that we are in the so-called “boundary case” defined in [4], i.e.

(1.3) E

∑
|z|=1

e−V (z)

 = 1 and E

∑
|z|=1

V (z)e−V (z)

 = 0,

Under mild assumptions, a branching random walk can be reduced to this case by an affine
transformation –see Appendix A in [21] for a detailed discussion of this question. Furthermore,
we assume the following integrability assumptions to hold

(1.4) σ2 := E

∑
|z|=1

V (z)2e−V (z)

 <∞,
as well as

(1.5) E
[
X(log+X)2

]
+ E

[
X̃ log+ X̃

]
<∞,

where

(1.6) X :=
∑
|z|=1

e−V (z) and X̃ :=
∑
|z|=1

V (z)+e
−V (z).

Finally, we also assume the point process law L is non-lattice, i.e.

(1.7) ∀a, b > 0, P ({aV (z) + b, |z| = 1} ⊂ Z) < 1.

It follows from (1.3) and the branching property of the branching random walk that

Wn,1 =
∑
|z|=n

e−V (z) and Zn =
∑
|z|=n

V (z)e−V (z)

are martingales. Chen [13] proved that given (1.4), (1.5) is necessary and sufficient to obtain the
almost sure convergence of (Zn) toward a non-negative random variable Z∞. Moreover, we have
S = {Z∞ > 0} a.s.
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Let β > 1, we write Wn,β = ∑
|z|=n e

−βV (z). Madaule [26] proved the convergence in finite-
dimensional distributions of

(
n3β/2Wn,β, β > 1

)
. This result in particular implies the convergence

in law of the extremal process of the branching random walk toward a proper limiting point
process, which is a randomly shifted decorated Poisson point process with exponential intensity.

In this article, we consider a probability measure on the nth generation of the branching
random walk, defined on the set {Wn,β > 0} = {{|z| = n} 6= ∅} by

νn,β = 1
Wn,β

∑
|z|=n

e−βV (z)δz,

which is often called the Gibbs measure in the literature. We prove that on the survival event S
of the branching random walk, the trajectory followed by an individual chosen according to νn,β
converges, when suitably rescaled, to a Brownian excursion. For a given individual z ∈ T such
that |z| ≤ n, we define

H(n)(z) :=
(
V (zbtnc)√

σ2n
, 0 ≤ t ≤ |z|

n

)
,

the Brownian normalization of the trajectory followed by individual z up to time |z|. For all
a < b, we denote by D([a, b]) the space of càdlàg1 functions on [a, b], equipped with the Skorokhod
distance. To shorten notation, we will write D([0, 1]) as D. The function H(n)(z) is an element
of D([0, |z|

n
]). For all β > 1 and n ∈ N, on the event {Wn,β > 0}, we denote the image measure

of νn,β by H(n)(·) by µn,β, i.e. the measure defined on D as

µn,β = 1
Wn,β

∑
|z|=n

e−βV (z)δH(n)(z).

The following theorem, which is the main result of the article, gives the asymptotic behaviour of
the measure µn,β as n→∞.

Theorem 1.1. For all β > 1, conditionally on the survival event S of the branching random
walk, we have

lim
n→∞

µn,β =
∑
k∈N

pkδε(k) in law,

where (ε(k)) is a sequence of i.i.d. normalized Brownian excursions, and (pk, k ∈ N) follows an
independent Poisson-Dirichlet2 distribution with parameter ( 1

β
, 0).

An heuristic for this result is developed in the forthcoming Section 1.1.

Remark 1.2. A direct consequence of Theorem 1.1 is that the –annealed– measure E(µn,β|S)
converges weakly to the law of a normalized Brownian excursion.

1Left-continuous functions with right limits at each point.
2For a definition of the two-parameters Poisson-Dirichlet distribution, see [31]
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The case of a critical Gibbs measure β = 1 has been investigated in [25]. It is proved that

lim
n→∞

µn,1(F ) = F (M) in probablity,

where M is a Brownian meander. Formally, in the case β = ∞, the measure µn,∞ is the
uniform measure on the trajectories leading to the leftmost position at time n, which has been
treated in [12]. For β < 1, Pain [29] proved that the trajectory of a particle chosen according
to νn,β behaves as a random walk with positive drift. In particular, after removing the drift,
the rescaled trajectory converges toward a Brownian path. Moreover, Pain also obtained the
asymptotic behaviour of trajectories sampled according to the law µn,βn with βn → 1 as n→∞,
giving a detailed account of the phase transition occurring at β = 1 for this measure.

Using the techniques leading to Theorem 1.1, we obtain informations on the genealogy of
two individuals sampled according to the Gibbs measure νn,β. For z, z′ ∈ T, we set MRCA(z, z′)
to be the generation at which the most recent common ancestor of z and z′ was alive, in other
words,

MRCA(z, z′) = max{k ≤ min(|z|, |z′|) : zk = z′k}.

Derrida and Spohn conjectured in [14] that for any β > 1

(1.8) ν⊗2
n,β

(
MRCA(z, z′)

n
∈ dx

)
=⇒
n→∞

ρβδ1 + (1− ρβ)δ0,

where ρβ is a random variable such that limβ→∞ ρβ = 1 and limβ→1 ρβ = 0 in probability. When
individuals are sampled according to νn,β with β < 1, Chauvin and Rouault [11] proved that
MRCA(z, z′) converges in law, thus ρβ = 0 for β < 1. This result was then extended by Pain [29],
who proved the same convergence holds when considering νn,βn with βn → 1.

The conjecture of Derrida and Spohn was partially proved by Bovier and Kurkova [7] for
some binary branching processes with Gaussian increments, by Arguin and Zindy [3] for the
overlapping probability in the 2-dimensional discrete Gaussian free field, and by Jagannath [22]
for the binary branching random walk. In these articles, the main step of the proofs consist
in proving that the model satisfies the so-called Ghirlanda-Guerra identities. These identities
then imply the convergence in (1.8), with ρβ being the sum of the squares of the elements of a
Poisson-Dirichlet distribution with parameter ( 1

β
, 0). We mention that after the first appearance

of this article, the conjecture (1.8) was proved for general branching random walks in [28], using
simple considerations on the limiting extremal process of the branching random walk.

We note here that an immediate consequence of Theorem 1.1 is the following result reminis-
cent of the conjecture of Derrida and Spohn. It characterises the law of first splitting time of
trajectories before time t.

Corollary 1.3. For any β > 1, we have

ν⊗2
n,β

(
inf{t > 0 : V (zbntc) 6= V (z′bntc} ∈ dx

)
=⇒
n→∞

ρβδ1 + (1− ρβ)δ0,

where (pk, k ≥ 1) has Poisson-Dirichlet distribution with parameter ( 1
β
, 0) and ρβ = ∑

k∈N p
2
k.
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This corollary can be seen as an explicit computation of the well-known fact that in a branch-
ing random walk, two individuals within distance O(1) from the leftmost position are either close
relatives, or their ancestral lineages split early in the process. In the context of Gibbs measure,
the probability of an early splitting is 1 − ρβ. Moreover, we observe that when β → ∞, 1 − ρβ
goes to zero. This is consistent with the fact that µn,∞ only puts mass on particles which are
at the leftmost position at time n, which are eventually close relatives when (1.7) is verified3.
Similarly, when β → 1, 1 − ρβ goes to 1 ; therefore the corresponding paths are asymptotically
independent, which coincides with the weak convergence obtained in [25, Equation (3.3)].

1.1 Link between the Gibbs measure and the extremal process
To prove Theorem 1.1, the main idea is to understand, for all continuous bounded function F ,
the tail decay of the random variable

(1.9) µ̃n,β(F ) := n3β/2Wn,β × µn,β(F ) = n3β/2 ∑
|z|=n

e−βV (z)F (H(n)(z)),

with µ̃n,β the non-normalized version of µn,β, like in Chen [12] and Madaule [26]. This tail decay
is then used to obtain the limit Laplace transform of µ̃n,β(F ) in Proposition 4.1, thanks to the
branching property of the branching random walk. We expose here an interpretation of the
convergence obtained in Theorem 1.1, as well as the main steps of the proof given in this article.
We begin with a heuristic for the reason the aforementioned convergence to hold.

We first recall that Madaule [26] proved the convergence of the extremal process of the
branching random walk ∑|z|=n δV (z)− 3

2 logn toward a Cox process with intensity Z∞ex, decorated
by i.i.d. point processes. This convergence can be interpreted as follows. Recall (see e.g. [27,
Theorem 4.5]) that particles close to the minimal position at time n are with high probability
either close relatives (their MRCA is n − o(n)) or come from distinct families (their MRCA is
o(n)). For each n ∈ N, we call a “local leader” an individual being the smallest4 among all
its relatives with a most recent common ancestor alive at a generation larger than n/2. The
family of positions of local leaders forms a family of (mostly) i.i.d. random variables, which
thus converge toward a Poisson point process with intensity Z∞exdx. However, close relatives of
these local leaders are within distance O(1) from their positions. Hence the relative positions of
families with respect to their local leader converge toward i.i.d. point processes, that form the
decorations of the limiting process. This interpretation was made rigorous in [28].

We now recall that Chen [12] proved that the rescaled path followed by the individual reach-
ing the minimal position at time n converges toward a Brownian excursion. As the most recent
common ancestor between local leaders is of order 1, each of them can be considered as indi-
vidual reaching the minimal position at time n − O(1) of an independent branching random
walk. Therefore, the trajectory of each local leader converges toward an independent Brownian
excursion. The limiting normalized trajectories of all close relatives to a given local leader are

3If (1.7) does not hold, then this is no longer true and individuals from distinct families can be at the leftmost
position at the same time, cf Pain [29, Footnote 3].

4Breaking ties uniformly at random.
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the same as the one of the local leader, as they only split from the leader’s trajectory in the last
few steps, and the normalization will make this difference disappear –this is a reason why we
consider uniformly continuous functions in our main theorem.

Therefore, Theorem 1.1 becomes natural in sight of the following observation : sampling the
limiting trajectory of a family at random in a decorated Poisson point process with intensity Z∞ex
according to the Gibbs measure with parameter β is the same thing as sampling it according to a
Poisson-Dirichlet distribution with parameter ( 1

β
, 0) (this can be observed in [28, Theorem 4.1]).

The main steps of the proof of Theorem 1.1 follow loosely from the above heuristic. In sight
of the many-to-one lemma, which states that additive moments of the branching random walk
can be computed through random walk estimates, we first prove in Lemma 2.5 that the rescaled
shape of a random walk conditioned to stay non-negative and end up at distance O(log n) of 0
is asymptotically independent from the endpoint of that random path. If there were an unique
family of individuals close to the minimal position at time n, this would allow us to decouple
the choice of the individual using the supercritical Gibbs measure (which is concentrated on
the individuals close to the minimal position) and the trajectory followed by the family (which
converges toward a Brownian excursion).

This decoupling can actually be achieved (in Proposition 3.1) by conditioning the minimal
position mn to be small, say smaller than 3

2 log n − A for A large enough. Indeed, in this
event of small probability, only one local leader reaches this unusually small minimal position,
hence only one family is charged by the Gibbs measure with high probability. Conditioning
the minimal displacement to be small is similar to conditioning the random variable Wn,β to be
large, therefore the above observation allows an explicit computation of the tail of the Laplace
transform of µ̃n,β(F ).

The proof of Theorem 1.1 finally follows from a standard branching argument. We cut the
branching random walk at a large but finite generation k. Each subtree is then an independent
branching random walk, and the ones that contribute to Wn,β will typically be the ones with a
small minimal position at time n − k. Therefore, using the estimate of the tail of the Laplace
transform allows to give an expression of the Laplace transform. To conclude, it is then enough
to compare this Laplace transform with the one of ∑k∈N pkF (ε(k)).

Organization of the paper. We introduce in Section 2.1 the spinal decomposition and the
many-to-one lemma. We obtain in Section 2.2 some random walk estimates, including the asymp-
totic independence between the rescaled shape and the limiting position of random walk condi-
tioned to make an excursion. We compute in Section 3 a tight estimate on the tail of the Laplace
transform of µ̃n,β(F ). Finally the proofs of Theorem 1.1 and Corollary 1.3 are given in Section 4.

2 Many-to-one lemma and random walk estimates
We introduce in a first time the Lyon’s change of measure of the branching random walk and the
spinal decomposition. This result enables to compute additive moments of the branching random
walk using random walk estimates. In a second part, we consider a centered random walk with
finite variance, conditioned to stay above 0 until time n and ending at time n at distance of
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order o(
√
n), and obtain the asymptotic independence with the rescaled shape and the endpoint

of this random walk.

2.1 Lyon’s change of measures and the many-to-one lemma
For any a ∈ R, let Pa be the probability measure of the branching random walk started from
a, and let Ea be the corresponding expectation. We recall that (Wn,1, n ∈ N) is a non-negative
martingale with respect to the natural filtration Fn = σ(u, V (u), |u| ≤ n). We define a new
probability measure Pa on F∞ such that for all n ∈ N,

(2.1) dPa

dPa

∣∣∣∣
Fn

= eaWn,1.

The so-called spinal decomposition, introduced by Lyons in [24] gives an alternative construction
of the measure Pa, by introduction of a special ray, the “spine”, along which reproduction is
modified.

We introduce another point process law L̂ with Radon-Nikodým derivative∑` e
−` with respect

to the law of L. The branching random walk with spine starts with one individual located at
a at time 0, denoted by ω0. It generates its children according to the law L̂. Individual ω1 is
chosen among the children z of ω0 with probability proportional to e−V (z). Then, for all n ≥ 1,
individuals at the nth generation die, giving birth to children independently according to the
law L, except for the individual ωn which uses the law L̂. The individual ωn+1 is chosen at
random among the children z of ωn, with probability proportional to e−V (z). We denote by T
the genealogical tree of this process, and by P̂a the law of (V (u), u ∈ T, (ωn, n ≥ 0)) as we just
defined.

Proposition 2.1. For any n ∈ N, we have P̂a

∣∣∣
Fn

= Pa

∣∣∣
Fn

. Moreover, for any z ∈ T such that
|z| = n, we have P̂a (ωn = z |Fn ) = e−V (z)

Wn,1
, and (V (ωn), n ≥ 0) is a centered random walk under

P̂a, starting from a, and with variance σ2.

In particular, this proposition implies the many-to-one lemma, which has been introduced
for the first time by Peyrière in [30], and links additive moments of the branching random walks
with random walk estimates.

Lemma 2.2. There exists a centered random walk (Sn, n ≥ 0), starting from a under Pa, with
variance σ2 such that for all n ≥ 1 and g : Rn → R+ measurable, we have

(2.2) Ea

 ∑
|z|=n

g(V (z1), · · ·V (zn))
 = Ea

[
eSn−ag(S1, · · ·Sn)

]
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Proof. We use Proposition 2.1 to compute

Ea

 ∑
|z|=n

g(V (z1), · · ·V (zn))
 = Ea

 e−a
Wn,1

∑
|z|=n

g(V (z1), · · ·V (zn))


= e−aÊa

 ∑
|z|=n

1{z=ωn}eV (z)g(V (z1), · · ·V (zn))


= Êa

[
eV (ωn)−ag(V (ω1), · · · , V (ωn))

]
.

Therefore we define the random walk S under Pa to have the same law as (V (ωn), n ≥ 0) under
P̂a, which ends the proof.

2.2 Approximation of a random walk excursion
In this subsection, (Sn, n ≥ 0) is a centered random walk on R with finite variance σ2, which is
non-lattice, i.e. the support of the law of S1 is not included in some discrete additive subgroup
of R. We write, for 0 ≤ m ≤ n, S[m,n] = minm≤k≤n Sk and Sn = S[0,n] the minimal position of
the random walk until time n. We introduce in a first time a piece of notation, before computing
the probability for a random walk to make an excursion of length n above 0, and the asymptotic
independence between the endpoint and the shape of the excursion, on that event.

We denote by Cb(D) be the set of continuous bounded functions from D to R, as well as
Cub (D) ⊂ Cb(D) the collection of uniformly continuous functions. In this section, we often prove
the estimates for uniformly continuous functions in a first time, before extending them to any
continuous bounded functions.

2.2.1 Some random walk notation and preliminary results

The ballot theorem. We present the following estimates, which bound the probability for a
random walk to make an excursion of length n above a given level. Let λ ∈ (0, 1). There exists
a constant c1 > 0 such that for any b ≥ a ≥ 0, x, y ≥ 0 and n ≥ 1, we have

(2.3) Px

(
Sn ∈ [y + a, y + b], Sn ≥ 0, S[λn,n] ≥ y

)
≤ c1(1 + x)(1 + b− a)(1 + b)n−3/2.

This classical estimate can be found for example in [2, Lemma 2.4].

Ladder epochs and height processes. We denote by (τ+
k , k ≥ 0) and (H+

k , k ≥ 0) the
strictly ascending ladder epochs and the height process, writing τ+

0 = 0, H+
0 = 0 and, for k ≥ 1,

(2.4) τ+
k = inf{n > τ+

k−1 : Sn > H+
k−1} and H+

k = Sτ+
k
.

Note that (τ+
k , k ≥ 0) and (H+

k , k ≥ 0) are renewal processes, i.e., random walks with i.i.d. non-
negative increments. Similarly, we write τ− and H− the strictly ascending ladder epoch and the
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height process associated to −S. It is given in [23, Theorem A] that there exist two constants
C± > 0 such that

(2.5) P(τ±1 > n) = P(min
k≤n

(∓Sk) ≥ 0) = C±√
n

+ o(n−1/2).

Renewal function. We write V −(·) (respectively V +(·)) the renewal function associated to
(H−k , k ≥ 0) (resp. (H+

k , k ≥ 0)), defined by

(2.6) ∀x ≥ 0, V −(x) =
∑
k≥0

P
(
H−k ≤ x

)
.

Observe that V − is a non-decreasing, right-continuous function with V −(0) = 1. We can rewrite
V − in the following way

(2.7) V −(x) =
∑
k≥0

P (−x ≤ Sk < Sk−1)

As a consequence of the Renewal Theorem in [17, p. 360], there exist two constants c± > 0 such
that

(2.8) V ±(x) ∼x→∞ c±x.

Local measure of the random walk staying non-negative. We introduce, for n ≥ 1, the
measure

(2.9) π+
n (x, dy) := Px

(
Sn ≥ 0, Sn ∈ dy

)
,

Let K > 0, it has been proved by Doney [16] that uniformly in x = o(
√
n) and y = o(

√
n),

(2.10) π+
n (x, [y, y +K]) = 1

σ
√

2πn3/2
V −(x)

∫
[y,y+K]

V +(z)dz (1 + on(1)) .

and that uniformly in x = o(
√
n) and y ∈ [0,∞),

(2.11) π+
n (x, [y, y +K]) = C−y

σ2n3/2 e
− y2

2nσ2KV −(x) + o(n−1).

Obviously, similar estimates hold for π− the measure associated to −S.

Random walk conditioned to stay non-negative. We observe that the renewal function
V − is invariant for the semigroup of the random walk killed when it first enters the negative
half-line (−∞, 0), i.e.

(2.12) ∀x ≥ 0, ∀N ∈ N, V −(x) = E
[
V −(x+ SN)1{SN≥−x}

]
.
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This equality can be found in [23].
Using (2.12), for all x ≥ 0, we define the probability measure P↑x by

(2.13) P↑x(B) := 1
V −(x)Ex

(
1BV −(SN);SN ≥ 0

)
,

for N ≥ 1 and B ∈ σ(S0, . . . SN). We call P↑x the law of the random walk conditioned to
stay positive. For any positive sequence (xn) such that xn√

σ2n
→ x ≥ 0, we have the following

invariance principle, proved in [9, Theorem 1.1],

(2.14) ∀F ∈ Cb(D), E↑xn
(
F
(
Sbntc√
σ2n

; t ∈ [0, 1]
) )
−−−→
n→∞

Ex

(
F (R)

)
,

where R = (R(t); t ≥ 0) is a three-dimensional Bessel process.
We also state another functional central limit theorem related to (2.14), which has been

proved by Iglehart [19], Bolthausen [6] and Doney [15].

(2.15) ∀F ∈ Cb(D), E
(
F
(
Sbntc√
σ2n

; t ∈ [0, 1]
) ∣∣∣∣Sn ≥ 0

)
−−−→
n→∞

E
(
F (M)

)
,

where M = (M(t); t ∈ [0, 1]) is a Brownian meander process. The following equality from
Imhof [20] reveals the relation between these two limit processes. For any t ∈ (0, 1],

(2.16) ∀Φ ∈ Cb(D[0, t]), E [Φ(M(u), u ≤ t)] =
√
π

2 E
[ √

t

R(t)Φ(R(u), u ≤ t)
]
.

Decomposition of the excursions. We write ρtx,y = (ρtx,y(s), s ∈ [0, t]) for a 3-dimensional
Bessel bridge of length t ∈ [0, 1] between x and y, where x, y ∈ R+. Intuitively,

(2.17) ∀F ∈ Cb(D), E
(
F (ρtx,y)

)
= Ex

(
F (R(s), s ∈ [0, t])

∣∣∣∣R(t) = y
)
.

For all λ ∈ (0, 1), G1 ∈ C(D([0, λ])), G2 ∈ C(D([0, 1− λ])) and x ∈ D we set

G1 ? G2(x) = G1(xs, s ≤ λ)G2(xs+λ, s ≤ 1− λ).

Lemma 2.3. Let ε = (εt, t ∈ [0, 1]) be a normalized Brownian excursion. We write (Mt, t ∈
[0, λ]) and (ρ1−λ

x,0 (t), x ∈ R+, t ∈ [0, 1−λ] two independent processes, withM a Brownian meander
of length λ and ρ1−λ

x,0 a Bessel bridge between x and 0 of length 1− λ. We have

(2.18) E [G1 ? G2(ε)] =
√

2
π

1
λ1/2(1− λ)3/2 E

[
M(λ)e−

M(λ)2
2(1−λ)G1 (M)G2

(
ρ1−λ
M(λ),0

)]
.

Proof. We show that both sides in (2.18) are equal to

(2.19)
√

2
π

∫ ∞
0

x2

λ3/2(1− λ)3/2 e
− x2

2λ(1−λ) E
[
G1

(
ρλ0,x

)]
E
[
G2

(
ρ1−λ
x,0

)]
dx.
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Recall that ε has the same law as ρ1
0,0 a 3-dimensional Bessel bridge of length 1. Conditioning

on the value of ρ1
0,0(λ), we have

E [G1 ? G2(ε)] = E
[
G1

(
ρ1

0,0(s), s ≤ λ
)
G2

(
ρ1

0,0(s), λ ≤ s ≤ 1
)]

=
∫ ∞

0
P
(
ρ1

0,0(λ) ∈ dx
)

E
[
G1

(
ρ1

0,0(s), s ≤ λ
)
G2

(
ρ1

0,0(s), λ ≤ s ≤ 1
) ∣∣∣∣ρ1

0,0(λ) = x
]
,

where the density of ρ1
0,0(λ) is P

(
ρ1

0,0(λ) ∈ dx
)

=
√

2
π

1
λ3/2(1−λ)3/2x

2e−
x2

2λ(1−λ) 1x≥0dx. It hence
follows that

E [G1 ? G2(ε)]

=
√

2
π

∫ ∞
0

dx
x2

λ3/2(1− λ)3/2 e
− x2

2λ(1−λ) E
[
G1

(
ρ1

0,0(s), s ≤ λ
)
G2

(
ρ1

0,0(s), λ ≤ s ≤ 1
) ∣∣∣∣ρ1

0,0(λ) = x
]
.

Applying the Markov property at time λ yields

E
[
G1

(
ρ1

0,0(s), s ≤ λ
)
G2

(
ρ1

0,0(s), λ ≤ s ≤ 1
) ∣∣∣∣ρ1

0,0(λ) = x
]

= E
[
G1

(
ρ1

0,0(s), s ≤ λ
) ∣∣∣∣ρ1

0,0(λ) = x
]

E
[
G2

(
ρ1−λ
x,0

)]
= E

[
G1

(
ρλ0,x

)]
E
[
G2

(
ρ1−λ
x,0

)]
.

As a consequence

E [G1 ? G2(ε)] =
√

2
π

∫ ∞
0

x2

λ3/2(1− λ)3/2 e
− x2

2λ(1−λ) E
[
G1

(
ρλ0,x

)]
E
[
G2

(
ρ1−λ
x,0

)]
dx.

On the other hand, writing

Γ(G1, G2, λ) =
√

2
π

1
λ1/2(1− λ)3/2 E

[
M(λ)e−

M(λ)2
2(1−λ)G1 (M)G2

(
ρ1−λ
M(λ),0

)]
,

by (2.16) we have

Γ(G1, G2, λ) =
√

2
π

1
λ1/2(1− λ)3/2 E

[
G1 (M)M(λ)e−

M(λ)2
2(1−λ)G2

(
ρ1−λ
M(λ),0

)]

= 1
(1− λ)3/2 E

[
G1 (R(s); s ∈ [0, λ]) e−

R(λ)2
2(1−λ)G2

(
ρ1−λ
R(λ),0

)]
,

where (R(s); 0 ≤ s ≤ λ) is a Bessel process independent with (ρ1−λ
x,0 ). We now condition on the

value of R(λ) –recall that the law of R(λ) is P(R(λ) ∈ dx) =
√

2
πλ3x

2e−x
2/(2λ)1x≥0dx– to obtain

Γ(G1, G2, λ)

= 1
(1− λ)3/2

∫ ∞
0

P
(
R(λ) ∈ dx

)
E
[
G1 (R(s); s ∈ [0, λ]) e−

R(λ)2
2(1−λ) E

[
G2

(
ρ1−λ
R(λ),0

)] ∣∣∣∣R(λ) = x

]

=
√

2
π

∫ ∞
0

x2

λ3/2(1− λ)3/2 e
− x2

2λ(1−λ) E
[
G1

(
ρλ0,x

)]
E
[
G2

(
ρ1−λ
x,0

)]
dx.
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We conclude that E [G1 ? G2(ε)] = Γ(G1, G2, λ).

2.2.2 Asymptotic independence of the endpoint and the shape of the trajectory in
a random walk excursion

For n ∈ N, let S(n) be the normalized path of the random walk S, defined, for t ∈ [0, 1] by

(2.20) S(n)
t := Sbntc√

σ2n
,

also written S when the value of n is unambiguous. Clearly, (S(n)
t , t ∈ [0, 1]) ∈ D. We prove in

this section that conditionally on {Sn ≥ 0} and {Sn = o(
√
n)}, the endpoint Sn is asymptotically

independent of rescaled shape S of the excursion.
We begin with the following estimate, for a random walk starting at time 0 within distance

√
n

from the boundary.
Lemma 2.4. Let (yn)n≥1 be a non-negative sequence such that limn→∞

yn
n1/2 = 0. There exists

C? = C+
σ

(with C+ the constant defined in (2.5)) such that for all K ∈ R+ and F ∈ Cb(D), we
have

(2.21) lim
n→∞

sup
x∈R+

∣∣∣∣∣nExσ
√
n

[
F (S(n));Sn ≥ yn, Sn ∈ [yn, yn +K]

]
− C?g(x)E

(
F (ρ1

x,0)
) ∫ K

0
V +(z)dz

∣∣∣∣∣ = 0,

where g : x 7→ xe−
x2
2 1{x≥0} and ρ1

x,0 is a three-dimensional Bessel bridge of length 1 from x to 0.
Proof. The proof of this lemma is largely inspired by the arguments in [10]. By to Lemma A.1
of [29], it is enough to prove this convergence for any F ∈ Cub (D).

Let n ∈ N and F uniformly continuous, we have, in terms of the local measure

(2.22) Exσ
√
n (F (S);Sn ≥ yn, Sn ∈ [yn, yn +K])

=
{
Exσ

√
n−yn (F (S)|Sn ≥ 0, Sn ∈ [0, K]) + on(1)

}
π+
n (xσ

√
n− yn, [0, K]).

Recall that (2.10) and (2.11) give estimates of π+
n (x, [y, y +K]) when x = o(

√
n). We first

extend this result by showing there exists C? > 0 such that uniformly in x ∈ [0,∞),

(2.23) π+
n (x, [0, K]) = C?

n

∫ K

0
V +(z)dzg

(
x

σ
√
n

)
+ o

( 1
n

)
.

Let n ∈ N, we write S−k = Sn−k − Sn for 0 ≤ k ≤ n, the “time-reversal random walk”, which has
the same law as −S. We observe that

π+
n (x, [0, K]) =Px (Sn ≥ 0, Sn ∈ [0, K]) = P

(
min

0≤k≤n
S−k ≥ S−n − x ≥ −K

)
=

n∑
j=0

P
(
T = j, min

0≤k≤n
S−k ≥ S−n − x ≥ −K

)
,

12



where T := min{j ≤ n : S−j = min0≤k≤n S
−
k }. Applying the Markov property at time T = j

yields that

(2.24) π+
n (x, [0, K]) =

n∑
j=0

E
(

1{−K≤S−j <min0≤k≤j−1 S
−
k }π

−
n−j(0, [x−K − S−j , x])

)
=

n∑
j=0

τj,

where τj := E
(

1{−K≤S−j <min0≤k≤j−1 S
−
k }π

−
n−j(0, [x−K − S−j , x])

)
for all 0 ≤ j ≤ n. Applying

(2.11) to π−, uniformly in y ≥ 0, we have

(2.25) π−n (0, [y, y +K]) = C+

σn

(
g( y

σ
√
n
)K + on(1)

)
.

Therefore,
∑

0≤j≤
√
n

τj = C+

σn

(
g( x

σ
√
n
) + on(1)

) ∑
0≤j≤

√
n

E
[
1{−K≤S−j <min0≤k≤j−1 S

−
k }(K + S−j )

]

= C+

σn

(
g( x

σ
√
n
) + on(1)

)(∫ K

0
V +(z)dz + on(1)

)
.(2.26)

Using (2.25), we observe there exists c2 > 0 such that for all n ∈ N and y ≥ 0, π−n (0, [y, y+K]) ≤
c2(1+K)
n+1 , which implies

∑
√
n<j≤n

τj ≤
∑

√
n<j≤n

c2

n− j + 1E
[
1{−K≤S−j <min0≤k≤j−1 S

−
k }(1 +K + S−j )

]

≤
∑

√
n<j≤n

c2(1 +K)
n− j + 1 P(Sj ≥ 0, Sj ≤ K) by time-reversal

≤
∑

√
n<j≤n

c3(1 +K)2

(n− j + 1)j3/2 using (2.3),

so ∑√n<j≤n τj = o(n−1). As a consequence, for C? = C+
σ

, uniformly in x ≥ 0, (2.24) becomes

(2.27) π+
n (x, [0, K]) = C?

n
g( x

σ
√
n
)
∫ K

0
V +(z)dz + o(n−1).

Plugging this result into (2.22), we obtain that, uniformly in x ≥ 0

Exσ
√
n (F (S);Sn ≥ yn, Sn ∈ [yn, yn +K])

= C?g(x)
n

∫ K

0
V +(z)dzE(xσ

√
n−yn) [F (S) |Sn ≥ 0, Sn ∈ [0, K] ] + o(n−1).

As limx→∞ g(x) = 0, it remains to prove that for any K0 > 0 fixed,

(2.28) lim
n→∞

sup
x∈[0,K0]

∣∣∣E(xσ
√
n−yn) [F (S) |Sn ≥ 0, Sn ∈ [0, K] ]− E(F (ρx,0))

∣∣∣ = 0.
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Let K0 > 0 and ε > 0, we prove that (2.28) holds for any F ∈ Cb(D([0, 1− ε])).
Let M := b(1− ε)nc. For any x ≥ 0, applying the Markov property at time M gives

Ex (F (S) |Sn ≥ 0, Sn ∈ [0, K] ) = Ex [F (S);Sn ≥ 0, Sn ∈ [0, K]]
Px [Sn ≥ 0, Sn ∈ [0, K]]

=
Ex

[
F (S)1{SM≥0}PSM (Sn−M ≥ 0, Sn−M ∈ [0, K])

]
π+
n (x, [0, K])

=
Ex

[
F (S)1{SM≥0}π

+
n−M(SM , [0, K])

]
π+
n (x, [0, K]) .

We set xn := xσ
√
n− yn. By change of measures introduced in (2.13), we observe that

Exn [F (S) |Sn ≥ 0, Sn ∈ [0, K] ] =
E↑xn

[
F (S) V

−(xn)
V −(SM )π

+
n−M(SM , [0, K])

]
π+
n (xn, [0, K])

=E↑xn
[
F (S)fnε,xn( SM

σ
√
n
)
]
,

where we write (recalling that M = bn(1− ε)c)

(2.29) fnε,xn(z) := V −(xn)
π+
n (xn, [0, K])

π+
n−M(zσ

√
n, [0, K])

V −(zσ
√
n) .

On the other hand, for a Bessel bridge ρ1
x,0, by the Markov property at time 1− ε,

(2.30) E
(
F (ρ1

x,0)
)

= Ex

[
F
(
R(s); s ∈ [0, 1− ε]

)
fε,x

(
R(1− ε)

)]
,

where

(2.31) fε,x(z) := e−z
2/(2ε)

ε3/2e−x2/2 .

As a result,∣∣∣Exn [F (S) |Sn ≥ 0, Sn ∈ [0, K] )− E
(
F (ρ1

x,0)
)∣∣∣

≤
∣∣∣E↑xn [F (S)fnε,xn( SM

σ
√
n
)
]
− E↑xn

(
F (S)fε,x( SM

σ
√
n
)
)∣∣∣

+
∣∣∣∣E↑xn (F (S)fε,x( SM

σ
√
n
)
)
− Ex

[
F
(
R(s); s ∈ [0, 1− ε]

)
fε,x

(
R(1− ε)

)]∣∣∣∣ ,
which leads to∣∣∣Exn [F (S) |Sn ≥ 0, Sn ∈ [0, K] )− E

(
F (ρ1

x,0)
)∣∣∣

≤ sup
z≥0,x∈[0,K]

∣∣∣fnε,xn(z)− fε,x(z)
∣∣∣ ||F ||∞

+
∣∣∣E↑xn (F (S)fε,x( SM

σ
√
n
)
)
− Ex [F (R(s); s ∈ [0, 1− ε]) fε,x (R(1− ε))]

∣∣∣ .
14



By use of (2.23) and (2.10), we have

(2.32) lim
n→∞

sup
z≥0,x∈[0,K]

∣∣∣fnε,xn(z)− fε,x(z)
∣∣∣ = 0.

It follows from (2.14) that

(2.33) lim
n→∞

sup
x∈[0,K]

∣∣∣∣∣E↑xn
(
F (S)fε,x(

SM
σ
√
n

)
)
− Ex

[
F
(
R(s); s ∈ [0, 1− ε]

)
fε,x

(
R(1− ε)

)]∣∣∣∣∣ = 0.

As a result, to complete the proof of Lemma 2.4, it is enough to check the tightness of S un-
der Pxn (· |Sn ≥ 0, Sn ∈ [0, K] ), as the previous equation gives convergence in finite dimensional
distributions of this quantity. By Theorem 15.3 of [5], for any η > 0, it suffices to say that

(2.34) lim
δ→0

lim
n→∞

sup
x∈[0,K]

Pxn

(
sup

0≤k≤δn
Sn−k ≥ ησ

√
n

∣∣∣∣∣Sn ≥ 0, Sn ∈ [0, K]
)

= 0,

which holds immediately by time reversal properties.

Using Lemma 2.4, we obtain the main result of this section, the joint convergence of this
normalized path and the terminal position in a random walk excursion.

Lemma 2.5. Let f : R+ → R be a Riemann-integrable function such that there exists a non-
increasing function f̂ verifying |f(x)| ≤ f̂(x) and

∫
R+
xf̂(x)dx <∞. Let (rn) be a non-negative

sequence such that lim supn→∞ rn
logn < ∞. There exists a constant C1 > 0 such that for all such

functions f , λ ∈ (0, 1) and F ∈ Cb(D),
(2.35)

lim
n→∞

sup
y∈[0,rn]

∣∣∣∣∣n3/2E
[
F (S) f(Sn − y);Sn ≥ 0, S[λn,n] ≥ y

]
− C1E [F (ε)]

∫
R+
f(x)V +(x)dx

∣∣∣∣∣ = 0,

where ε = (εt, t ∈ [0, 1]) is a standard Brownian excursion.

Proof. This lemma is a slight refinement of Lemma 2.4 in [12], which proved the above conver-
gence for any function F that depends only on the values of S on the interval [0, α] for some
α < 1. Without loss of generality, we assume 0 ≤ F ≤ 1. Similarly, up to a decomposition of f
in its positive and negative part, we can assume without loss of generality that f is non-negative.
For convenience, we set

(2.36) χ(F, f) := E
[
F (S)f(Sn − y);Sn ≥ 0, S[λn,n] ≥ y

]
.

For any K > 0, writing fK(x) = f(x)1{x∈[0,K]}, we observe that

χ(F, f) = χ (F, fK) + χ (F, f − fK) .
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As 0 ≤ F ≤ 1, we have χ (F, f − fK) ≤ χ (1, f − fK) (using the fact that f ≥ fK), and

χ (1, f − fK) ≤
∞∑
j=K

E
(
f(Sn − y);Sn ≥ 0, S[λn,n] ≥ y, Sn ∈ [y + j, y + j + 1]

)

≤
∞∑
j=K

f̂(j) P
(
Sn ≥ 0, S[λn,n] ≥ y, Sn ∈ [y + j, y + j + 1]

)
︸ ︷︷ ︸

≤c1(2+j)n−3/2

,

by use of (2.3). As
∫∞

0 xf̂(x)dx <∞, we have limK→∞
∑∞
j=K(2 + j)f̂(j) = 0.

Therefore, we only need to estimate χ(F, fK), and, as f is Riemann-integrable, it is enough
to consider functions of the form 1{x∈[0,K]}, for K ∈ R. We now compute an equivalent of

χ(F,K) := χ(F,1{[0,K]}) = E
[
F (S);Sn ≥ 0, S[λn,n] ≥ y, Sn ≤ y +K

]
.

Using Lemma A.2 of [29], we only need to prove the uniform convergence for F = G1 ? G2
where G1 ∈ Cub (D([0, λ])) and G2 ∈ Cub (D([0, 1 − λ])) are two uniformly continuous bounded
functions. We prove that uniformly in y ∈ [0, rn], we have

(2.37) lim
n→∞

∣∣∣∣∣n3/2χ(G1 ? G2(S), K)− C1E [G1 ? G2(ε)]
∫ K

0
V +(x)dx

∣∣∣∣∣ = 0.

Applying the Markov property at time m = mn := bλnc, we have

(2.38) χ (G1 ? G2, K) = E
[
G1 (St; t ∈ [0, λ]) ΨK,G2

(
Sm
σ
√
n

)
;Sm ≥ 0

]
,

where for x ≥ 0,

ΨK,G2(x) := Exσ
√
n

[
G2

(
Sbn(t+λ)c−m

σ
√
n

; t ∈ [0, 1− λ]
)

;Sn−m ≤ y +K,Sn−m ≥ y
]
.

Recall that ρtx,y is a 3-dimensional Bessel bridge of length t between x and y. Using Lemma 2.4,
uniformly in x ≥ 0 and y ∈ [0, rn], we have

ΨK,G2(x) = C?
(1− λ)n

∫ K

0
V +(z)dzψ(x) + o(n−1),

where ψ(x) := g
(

x√
1−λ

)
E
[
G2

(
ρ1−λ
x,0

)]
and C? = C+

σ
. As a consequence, (2.38) becomes

χ (G1 ? G2, K)

= C?
(1− λ)n

∫ K

0
V +(z)dzE

[
G1 (St; t ∈ [0, λ])ψ

(
Sm
σ
√
n

)
;Sm ≥ 0

]
+ o(n−1)P (Sm ≥ 0)

= C+C−

σ(1− λ)
√
λn3/2

∫ K

0
V +(z)dzE

[
G1

(
Sbntc
σ
√
n

; t ∈ [0, λ]
)
ψ
(
Sm
σ
√
n

)∣∣∣Sm ≥ 0
]

+ o(n−3/2),

where the last equality is a consequence of (2.5).
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Using (2.15), conditionally on {Sm = Sbλnc ≥ 0}, the normalized random walk S(n) converges
in law to a Brownian meander of length λ, writtenM = (M(t), 0 ≤ r ≤ λ). Therefore, uniformly
in y ∈ [0, rn],

χ (G1 ? G2, K) = C+C−

σ(1− λ)
√
λn3/2

∫ K

0
V +(z)dzE [G1 (M)ψ (M(λ))] + o(n−3/2)

= C+C−
σn3/2

∫ K

0
V +(z)dzΓ(G1, G2, λ) + o(n−3/2),

where we write

Γ(G1, G2, λ) = 1
λ1/2(1− λ)3/2 E

[
G1 (M)M(λ)e−

M(λ)2
2(1−λ) E

[
G2

(
ρ1−λ
M(λ),0

)]]
,

with (M(t); 0 ≤ r ≤ λ) and (ρ1−λ
x,0 (t); t ∈ [0, 1], x ∈ R+) two independent processes. Applying

Lemma 2.3, we have, uniformly in y ∈ [0, rn],

(2.39) χ(G1 ? G2;K) = C1

n3/2

∫ K

0
V +(z)dz × E (G1 ? G2(ε)) + o(n−3/2),

where C1 := C+C−
σ

√
π
2 , which leads to (2.37), therefore concluding the proof.

This lemma can be extended, using standard computations, to the following estimate, which
enables to choose the starting point uniformly in [0, rn].

Lemma 2.6. Under the hypotheses of Lemma 2.5, we have

(2.40) lim
n→∞

sup
a,y∈[0,rn]

∣∣∣∣∣n3/2E
[
F (S) f(Sn − y);Sn ≥ −a, S[λn,n] ≥ y

]
− C1V

−(a)E [F (ε)]
∫
R+
f(x)V +(x)dx

∣∣∣∣∣ = 0.

Proof. Again, by Lemma A.1 of [29], we can suppose that F ∈ Cub (D). Up to decomposing f
into its positive and its negative part, we assume without loss of generality that f ≥ 0. We set

(2.41) χa(F, f) := E
[
F (S)f(Sn − y);Sn ≥ −a, S[λn,n] ≥ y

]
.

Decomposing with respect to the first time at which the random walk hits its minimum, we prove
that uniformly in a ∈ [0, rn], χa(F, f) ≈ V −(a)χ(F, f). Let τ := inf{0 ≤ k ≤ n : Sk = Sn}, we
show that τ ≤

√
n with high probability. By Markov property at time k, we have

χa(F, f) =
n∑
k=0

E
(
F (S)f(Sn − y); τ = k, Sn ≥ −a, S[λn,n] ≥ y

)
≤

n∑
k=0

E
(
f(Sn − y); τ = k, Sn ≥ −a, S[λn,n] ≥ y

)
≤

n∑
k=0

E
(
ζ(Sk, n− k)1{Sk−1>Sk≥−a}

)
,
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where ζ(x, n− k) := E(f(Sn−k − y + x);Sn−k ≥ 0, S[λn−k,n−k] ≥ y − x).
On the one hand, observe that

ζ(x, n− k) ≤E
(
f(Sn−k − y + x)1{Sn−k≥y−x};Sn−k ≥ 0

)
≤
∞∑
j=0

E
(
f(Sn−k − y + x)1{Sn−k∈[y−x+j,y−x+j+1]};Sn−k ≥ 0

)

≤
∞∑
j=0

f̂(j)P (Sn−k ∈ [y − x+ j, y − x+ j + 1], Sn−k ≥ 0) ,

which, by (2.3), is bounded by

c1

∞∑
j=0

f̂(j)(j + y − x+ 2)
(n− k)3/2 ≤ c1

(1− λ)3/2n3/2 2(1 + y − x)
∞∑
j=0

(1 + j)f̂(j).

As
∫
xf̂(x)dx <∞, uniformly in a, y ∈ [0, rn], x ∈ [−a, 0] and k ≤ λn, we have

(2.42) ζ(x, n− k) ≤ c2(1 + y + a)n−3/2.

On the other hand, by (2.3), P(Sk−1 > Sk ≥ −a) ≤ c1(1+a)2k−3/2. As a consequence, writing
kn = b

√
nc, we have

λn∑
k=kn+1

E
(
F (S)f(Sn − y); τ = k, Sn ≥ −a, S[λn,n] ≥ y

)
≤c3n

−3/2(1 + y + a)(1 + a)2
λn∑

k=kn+1
k−3/2

≤c4
(1 + log n)3

k
1/2
n

n−3/2.

Thus

χa(F, f) =
λn∑
k=0

E
(
F (S)f(Sn − y); τ = k, Sn ≥ −a, S[λn,n] ≥ y

)

=
kn∑
k=0

E
(
F (S)f(Sn − y); τ = k, Sn ≥ −a, S[λn,n] ≥ y

)
+ o(n−3/2).

We now prove that maxk≤τ Sk ≤ n1/4 with high probability. Let M > 0, by Markov property
and (2.42),

kn∑
k=0

E
(
F (S)f(Sn − y); τ = k,max

j≤k
Sj ≥M,Sn ≥ −a, S[λn,n] ≥ y

)

≤
kn∑
k=0

E
(
ζ(Sk, n− k)1{Sk−1>Sk≥−a;maxj≤k Sj≥M}

)

≤c2n
−3/2(1 + y + a)

kn∑
k=0

P
(
Sk−1 > Sk ≥ −a; max

j≤k
Sj ≥M

)
.
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We recall that (τ−k , H−k )k≥0 are the strict descending epochs and heights of (Sn). For all k ≥ 1,
the sequence

({
Sn−τ−

k−1
+H−k−1, n ≤ τ−k − τ−k−1

}
, k ≥ 0

)
is i.i.d. Letting

M−
k := max{Sn +H−k−1, τ

−
k−1 ≤ n ≤ τ−k },

we deduce that (H−k −H−k−1,M
−
k ) is i.i.d. Consequently,

kn∑
k=0

P
(
Sk−1 > Sk ≥ −a; max

j≤k
Sj ≥M

)
≤ P(M−

1 ≥M) +
∑
k≥1

P(H−k ≤ a,M−
1 < M, . . . ,M−

k < M +H−k−1,M
−
k+1 > M +H−k )

≤ P(M−
1 ≥M) +

∑
k≥1

P(H−k ≤ a,M−
k+1 > M +H−k )

≤ P(M−
1 ≥M) +

∑
k≥1

P(H−k ≤ a)P(M−
1 > M)

≤ V −(a)P(M−
1 > M).

According to Corollary 3 in [15], P(M−
1 > n) = c

n
+ o(n−1). Taking M = n1/4 yields

kn∑
k=0

E
(
F (S)f(Sn − y); τ = k,max

j≤k
Sj ≥ n1/4, Sn ≥ −a, S[λn,n] ≥ y

)
= o(n−3/2).

Finally, by uniform continuity of F , we have

χa(F, f) =
kn∑
k=0

E
(
F (S)f(Sn − y); τ = k,max

j≤k
Sj ≤ n1/4, Sn ≥ −a, S[λn,n] ≥ y

)
+ o(n−3/2)(2.43)

=
kn∑
k=0

E
(
ζ(Sk, n− k, F )1{Sk−1>Sk≥−a}

)
+ o(n−3/2),

where

ζ(x, n− k, F ) := E

F( Sb(n−k)tc√
σ2(n− k)

, t ∈ [0, 1]
)
f(Sn−k − y + x);Sn−k ≥ 0, S[λn−k,n−k] ≥ y − x

 .
Observe that for k ≤

√
n, the asymptotic behavior of ζ(x, n− k, F ) follows from that of χ(F, f).

It follows from (2.35) that uniformly in k ≤ kn, x ∈ [−a, 0] and a, y ∈ [0, rn],

ζ(x, n− k, F ) = C1

n3/2 E (F (ε))
∫ ∞

0
f(z)V +(z)dz + o(n−3/2).

Going back to (2.43), we have

χa(F, f) =
kn∑
k=0

E
(
ζ(Sk, n− k, F )1{Sk−1>Sk≥−a}

)
+ o(n−3/2)

= C1

n3/2 E (F (ε))
∫ ∞

0
f(z)V +(z)dz

kn∑
k=0

P (Sk−1 > Sk ≥ −a) + o(n−3/2).
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Observe also that ∑∞k=0 P (Sk−1 > Sk ≥ −a) = V −(a) and that uniformly in a ∈ [0, rn],
∞∑

k=kn+1
P (Sk−1 > Sk ≥ −a) = on(1).

We conclude that uniformly in y, a ∈ [0, rn],

(2.44) lim
n→∞

n3/2χ(F, f) = C1V
−(a)E (F (ε))

∫ ∞
0

f(z)V +(z)dz,

which ends the proof.

3 Laplace transform of the Gibbs measure
We recall that for a branching random walk (V (u), u ∈ T) and β > 1,

µ̃n,β(F ) = n
3β
2
∑
|u|=n

e−βV (u)F (Hn(u)).

This section is devoted to the computation of the Laplace transform of µ̃n,β(F ), which is closely
related to the already known estimates on the minimal displacement of the branching random
walk. Therefore, we define Mn as the smallest occupied position in the n-th generation, i.e.,

(3.1) Mn := inf
|u|=n

V (u),

with the convention inf ∅ := ∞. We denote by m(n) an individual chosen uniformly at random
in the set {u : |u| = n, V (u) = Mn} of leftmost individuals at time n.

The rest of this section is devoted to the proof of the following result.

Proposition 3.1. Let β > 1, under (1.3), (1.4) and (1.5), there exists Cβ > 0 such that for all
non-negative F ∈ Cb(D) and ε > 0, there exists (A,N) ∈ R+ × N such that

(3.2) sup
n≥N

sup
x∈[A, 32 logn−A]

∣∣∣∣exx E
[
1− exp

(
−e−βxµ̃n,β(F )

)]
− CβE

(
F (ε)

1
β

)∣∣∣∣ ≤ ε,

where ε is a standard Brownian excursion.

Observe that if F = θ ∈ R+ is a constant, Proposition 3.1 is: For all ε > 0, there exists
(A,N) ∈ R+ × N such that

(3.3) sup
n≥N

sup
x∈[A, 32 logn−A]

∣∣∣∣exx E
(
1− exp

(
−θe−βxµ̃n,β(1)

))
− Cβθ

1
β

∣∣∣∣ ≤ ε,

which is a straightforward consequence of [26, Proposition 2.2] (applying this result with d = 1).
Therefore, it is enough to prove, using Lemma 2.5 that

E
[
exp

(
−e−βxµ̃n,β(F )

)]
≈ E

[
exp

(
−e−βxµ̃n,β(1)F (ε)

)]
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where ε is a Brownian excursion independent of the branching random walk. This is done in
Lemma 3.6.

However, to realize this substitution, we first need to restrict the space on which we compute
the Laplace transform of µ̃n,β to an event of in which there is a unique family of particles in the
neighborhood of the minimal displacement at time n, which followed a random walk excursion.
The tail of the Laplace transform of µ̃n,β on the whole space is well-approached by its tail on that
subspace. The computation of the tail of a random variable by considering it on a subspace is a
fruitful technique in branching processes, and can be tracked back at least to [8]. This method
was used by Aı̈dékon [1] to obtain a precise estimate on the tail of the maximal displacement of
the branching random walk.

For all n ∈ N, following [1], we write an = 3
2 log n and an(z) = an − z. For all x ∈ R,

F ∈ Cb(D,R+) and E a measurable event, we write

Σ(n, x, F ) := E
[
exp

(
−e−βxµ̃n,β(F )

)]
and ΣE(n, x, F ) := E

[
exp

(
−e−βxµ̃n,β(F )1E

)]
.

For λ ∈ (0, 1), L,L0 ≥ 0 and z > K0 > 0, we define the set of individuals

(3.4) JLλ,z,K0,L0(n) =
{
u ∈ T : |u| = n, V (u) ≤ an(z − L),mink≤n V (uk) ≥ −z +K0,

minλn≤k≤n V (uk) ≥ an(z + L0)

}
.

For simplicity, we often write Jλ,z,K0,L0(n) instead of J0
λ,z,K0,L0(n). We now consider the following

event

(3.5) En := {m(n) ∈ Jλ,x−∆,K0,L0(n)}.

At the end of the section, we will choose ∆ < L0 � K0 � x, and L ∈ {0, L0}. We prove in a
first time that Σ and ΣEn are close to each other.

Lemma 3.2. There exists α1 > 0 small enough such that for all ε > 0, there exists ∆ε,1 ≥ 1
such that such that for all ∆ ≥ ∆ε,1, L0 ≥ 2∆/α1, x ≥ 2eK0+∆/ε and n ≥ 1, we have

(3.6) 0 ≤ ΣEn(n, x, F )− Σ(n, x, F ) ≤ εxe−x.

Proof. Observe that

ΣEn(n, x, F ) =E
[
exp

(
−e−βxµ̃n,β(F )

)
;En

)
+ P (Ec

n) ,

Σ(n, x, F ) =E
[
exp

(
−e−βxµ̃n,β(F )

)
;En

]
+ E

[
exp

(
−e−βxµ̃n,β(F )

)
;Ec

n

]
.

As a consequence,

(3.7) 0 ≤ ΣEn(n, x, F )− Σ(n, x, F ) = E
(
1− exp{−e−βxµ̃n,β(F )};Ec

n

)
.

We observe that 1− e−W =
∫∞
0 e−u1{W≥u}du, thus

ΣEn(n, x, F )− Σ(n, x, F ) = E
[∫ ∞

0
e−u1{e−βxµ̃n,β(F )≥u}du;Ec

n

]
=
∫ ∞

0
e−uP

(
e−βxµ̃n,β(F ) ≥ u;Ec

n

)
du.
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Using the fact that F is non-negative bounded, we have

ΣEn(n, x, F )− Σ(n, x, F ) ≤
∫ ∞

0
e−uP

(
µ̃n,β(1) ≥ u

‖F‖∞
eβx;Ec

n

)
.

Let ∆ ∈ (1, x− 1), as Ec
n ⊂ {Mn ≥ an(x−∆)} ∪ (Ec

n ∩ {Mn ≤ an(x−∆)}), we have

(3.8) ΣEn(n, x, F )− Σ(n, x, F )

≤
∫ ∞

0
e−uP

(
µ̃n,β(1) ≥ u

‖F‖∞
eβx;Mn ≥ an(x−∆)

)
du︸ ︷︷ ︸

P†

+
∫ ∞

0
e−u P (Mn ≤ an(x−∆);Ec

n)︸ ︷︷ ︸
P‡

du.

On the one hand,

P‡ =P
(
m(n) /∈ Jλ,x−∆,K0,L0(n);Mn ≤ an(x−∆)

)
≤P (∃z : |z| = n, V (z) ≤ an(x−∆), z /∈ Jλ,x−∆,K0,L0(n))
≤
(
eK0 + e−c6L0x

)
e−x+∆(3.9)

applying Lemma 3.3 in Aı̈dékon [1].
On the other hand, by change of variables,

(3.10) P† =
∫
R
βe−e

βy+βy P
(
µ̃n,β(1) ≥ 1

‖F‖∞
eβ(x+y);Mn ≥ an(x−∆)

)
︸ ︷︷ ︸

P†(x,y)

dy.

To bound P†(x, y), we use Proposition 4.6 of [26] (more precisely Equation (4.15) of that article).
For all 0 ≤ K ≤ ∆, one sees immediately that, for |y| ≤ K,

P†(x, y) = P
(
µ̃n,β(1) ≥ 1

‖F‖∞
eβ(x+y);Mn ≥ an(x−∆)

)

≤
∑

j≥∆+y
P
(
µ̃n,β(1) ≥ 1

‖F‖∞
eβ(x+y);Mn − an(0) ∈ [j − (x+ y); (j + 1)− (x+ y)]

)

≤ c7(x+ y)e−(x+y)e−α(∆+y)

≤ c8xe
−xe(1+α)K−α∆,(3.11)

where α > 0 is a given constant depending only on the law of the branching random walk. In
the same way, for |y| > K, we have

P†(x, y) ≤ P
(
µ̃n,β(1) ≥ 1

‖F‖∞
eβ(x+y)

)
≤ c9(x+ y)e−(x+y)1{x+y≥1} + 1{y+x≤1}

≤ c9xe
−x1{y>K} + c9e

−(x+y)1{−K>y≥1−x} + 1{x+y≤1}.(3.12)
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Combining (3.11) with (3.12) yields

P† ≤ c8xe
−xe(1+α)K−α∆ + c9xe

−x
∫ ∞
K

βe−e
βy+βydy

+ c9xe
−x
∫
{1−x≤y<−K}

βe−e
βy+βy−ydy +

∫ 1−x

−∞
βe−e

βy+βydy

≤ c8xe
−xe(1+α)K−α∆ + c10xe

−x
(
e(1−β)K + e(1−β)x

)
.

Take K = α∆
α+β . There exists c11 > 0 such that

(3.13) P† ≤ (c8 + c10)xe−xe−
(β−1)α∆
α+β + c10xe

−xe(1−β)x ≤ c11xe
−xe−

(β−1)α∆
α+β ,

for all x ≥ 2eK0+∆/ε ≥ 1.
Using (3.9) and (3.13), inequality (3.8) becomes

(3.14) ΣEn(n, x, F )− Σ(n, x, F ) ≤ c11xe
−xe−

(β−1)α∆
α+β +

(
eK0 + e−c6L0x

)
e−x+∆.

We set α1 := min{ (β−1)α
α+β , c6} and L0 ≥ 2∆/α1, we have

ΣEn(n, x, F )− Σ(n, x, F ) ≤ c12xe
−xe−α1∆ + eK0+∆

x
xe−x.

Since α1 > 0, for all ε > 0, there exists ∆ε,1 > 1 such that c12e
−α1∆ε,1 ≤ ε/2. For all ∆ ≥ ∆ε,1

and x ≥ 2eK0+∆/ε we obtain finally that

(3.15) ΣEn(n, x, F )− Σ(n, x, F ) ≤ εxe−x,

which ends the proof.

In what follows, we prove that on the set En, the individuals who make the most important
contribution to µ̃n,β(F ) are the ones who are geographically close to m(n). For any L ≥ 1, let

(3.16) µ̃Ln,β(F ) := n3β/2 ∑
u∈JL

λ,x−∆,K0,L0
(n)
e−βV (u)F (H(n)(u)) and W̃L

n,β := µ̃Ln,β(1).

In the same way as above, for any measurable event E, we denote

(3.17) ΣL
E(n, x, F ) := E

[
exp

(
−e−βxµ̃Ln,β(F )1E

)]
.

We now prove the following lemma.

Lemma 3.3. There exists α2 > 0 such that for all ε > 0 there exists ∆ε,2 ≥ 1 such that for all
∆ ≥ ∆ε,2, L = L0 ≥ 2∆/α2, x ≥ 2eK0+∆/ε and n ≥ 1, we have

(3.18) 0 ≤ ΣL
En(n, x, F )− ΣEn(n, x, F ) ≤ εxe−x.
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Proof. As µ̃n,β(F ) ≥ µ̃Ln,β(F ), we have

ΣL
En(n, x, F )− ΣEn(n, x, F ) = E

[
exp

(
−e−βxµ̃Ln,β(F )

)
− exp

(
−e−βxµ̃n,β(F )

)
;En

]
≥ 0,

We observe that, for all 0 ≤ W1 ≤ W2,(
e−W1 − e−W2

)
1{W2−W1≥0} ≤|W1 −W2|1{0≤W2−W1≤δ} + 1{W2−W1>δ}

≤δ + 1{W2−W1>δ}.

Applying this inequality with δ = e−β∆, W1 = µ̃Ln,β(F ) and W2 = µ̃n,β(F ) gives

ΣL
En(n, x, F )− ΣEn(n, x, F ) ≤ e−β∆P (En) + P

(
µ̃n,β(F )− µ̃Ln,β(F ) ≥ eβ(x−∆);En

)
.

As En ⊂ {Mn ≤ an(x−∆)}, we have

(3.19) ΣL
En(n, x, F )− ΣEn(n, x, F ) ≤ e−β∆P

(
Mn ≤ an(x−∆)

)
+ P�,

where

P� := P

n3β/2 ∑
|u|=n

1{
u/∈JL

λ,x−∆,K0,L0
(n)
}e−βV (u) ≥ eβ(x−∆);Mn ≤ an(x−∆)

 .
From (3.19), on the one hand we recall (see e.g. the proof of the upper bound of Theorem 4.1
in [27]) there exists c12 > 0 such that for all x ≥ ∆ + 1,

P (Mn ≤ an(x−∆)) ≤ c12(x−∆)e−(x−∆).

On the other hand, by Proposition 4.6 of [26], there exists α2 ∈ (0, β − 1) such that for L = L0,

(3.20) P� ≤ eK0+∆e−x + c13xe
−xe−α2L0+∆.

As a consequence,

ΣL
En(n, x, F )− ΣEn(n, x, F ) ≤ c14xe

−x
(
e−α2∆ + e−α2L0+∆

)
+ eK0+∆e−x.

For any ε > 0, there exists ∆ε,2 > 0 such that c14e
−α2∆ε,2 ≤ ε/4. We set ∆ ≥ ∆ε,2, L0 ≥ 2∆/α2

and x ≥ 2eK0+∆/ε, and obtain that

(3.21) 0 ≤ ΣL0
En(n, x, F )− ΣEn(n, x, F ) ≤ εxe−x

which ends the proof.

Recall that m(n) is uniformly chosen from the set of leftmost individuals at time n. For any
1 ≤ k ≤ n, we use m(n)

k to represent the ancestor of m(n) at generation k. We prove now that
the individuals who make significant contributions to µ̃ are the close relatives of m(n). We write,
for k ≤ n

(3.22) µ̂Ln,k,β(F ) := n3β/2 ∑
u∈JL

λ,x−∆,K0,L0
(n)

1{
u≥m(n)

k

}e−βV (u)F (H(n)(u)),

and for E a measurable event

(3.23) Σ̂L
E(n, k, x, F ) := E

[
exp

(
−e−βxµ̂Ln,k,β(F )1E

)]
.
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Lemma 3.4. For all ε > 0 and L0 ≥ 1, there exist K = Kε,L0 > 0, B = Bε,L0 ≥ 1 and
N = Nε,L0 ≥ 1 such that for all K0 ≥ K + L0, n ≥ N and b ≥ B,

(3.24) 0 ≤ Σ̂L0
En(n, n− b, x, F )− ΣL0

En(n, x, F ) ≤ εxe−x.

Before giving the proof of Lemma 3.4, we state a result about the branching random walk
under P̂. Recall that (ωk; k ≥ 0) is the spine of T. For any integer b ≥ 0, we define

(3.25) ξn(z, L, b) := {∀k ≤ n− b, min
u≥ωk;|u|=n

V (u) ≥ an(z) + L}.

Fact 3.5. For any η > 0 and L > 0, there exists K(η) > 0, B(L, η) ≥ 1 and N(η) ≥ 1 such that
for any b ≥ B(L, η) ≥ 1, n ≥ N(η) and z ≥ K ≥ K(η) + L,

(3.26) P̂ (ξn(z, L, b)c, ωn ∈ Jλ,z,K,L(n)) ≤ η(1 + L)2(1 + z −K)n−3/2.

Fact 3.5 is a slight refinement of Lemma 3.8 in [1], so we feel free to omit its proof. Using
this result, we prove Lemma 3.4 as follows.

Proof. As µ̂L0
n,k,β(F ) ≤ µ̃L0

n,β(F ), we have Σ̂L0
En(n, n− b, x, F )− ΣL0

En(n, x, F ) ≥ 0. We also observe
that

Σ̂L0
En(n, n− b, x, F )− ΣL0

En(n, x, F ) = E
[
exp

(
−e−βxµ̂L0

n,n−b,β(F )
)
− exp

(
−e−βxµ̃L0

n,β(F )
)

;En
]
.

By change of measures, we have

Σ̂L0
En(n, n− b, x, F )− ΣL0

En(n, x, F )

=Ê

exp
(
−e−βxµ̂L0

n,n−b,β(F )
)
− exp

(
−e−βxµ̃L0

n,β(F )
)

Wn

;m(n) ∈ Jλ,x−∆,K0,L0(n)


=Ê

eV (ωn)1{V (ωn)=Mn,ωn∈Jλ,x−∆,K0,L0 (n)}∑
|u|=n 1{V (u)=Mn}

[
exp

(
−e−βxµ̊L0

n,n−b,β(F )
)
− exp

(
−e−βxµ̃L0

n,β(F )
)] ,

where
µ̊L0
n,k,β(F ) := n3β/2 ∑

u∈JL0
λ,x−∆,K0,L0

(n)

1{u≥ωk}e
−βV (u)F (Hn(u)).

Observe that 0 ≤ exp{−e−βxµ̊L0
n,n−b,β(F )} − exp{−e−βxµ̃L0

n,β(F )} ≤ 1. Moreover, on the event
ξn(x−∆, L0, b), we have µ̊L0

n,n−b,β(F ) = µ̃L0
n,β(F ). Therefore,

Σ̂L0
En(n, n− b, x, F )− ΣL0

En(n, x, F ) ≤Ê

eV (ωn)1{V (ωn)=Mn,ωn∈Jλ,x−∆,K0,L0 (n)}∑
|u|=n 1{V (u)=Mn}

; ξcn(x−∆, L0, b)


≤Ê
[
eV (ωn)1{V (ωn)=Mn,ωn∈Jλ,x−∆,K0,L0 (n)}; ξ

c
n(x−∆, L0, b)

]
≤n3/2e−x+∆P̂ (ξcn(x−∆, L0, b), ωn ∈ Jλ,x−∆,K0,L0(n)) .(3.27)
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Applying Fact 3.5 to η = εe−∆/(1 + L0)2 shows that

(3.28) Σ̂L0
En(n, n− b, x, F )− ΣL0

En(n, x, F ) ≤ εxe−x,

holds for n ≥ N(η), b ≥ B(L0, η) and x > K0 ≥ K(η) + L0, which ends the proof.

We now study Σ̂L0
En(n, n − b, x, F ), to prove Proposition 3.1. We begin with the following

estimate, which brings out the Brownian excursion.

Lemma 3.6. For any ε > 0, set ∆ = ∆ε := ∆ε,1 ∨ ∆ε,2 and L0 = 2∆
α1∧α2

. Let K = Kε,L0 > 0,
B = Bε,L0 ≥ 1 and N = Nε,L0 ≥ 1 as in Lemma 3.4. For all K0 ≥ K + L0, n ≥ N and b ≥ B,
there exists nε ≥ N such that for all n ≥ nε and x ≥ 2eK0+∆/ε,

(3.29)
∣∣∣Σ̂L

En(n, n− b, x, F )− E
[
exp

(
−e−βxµ̃n,β(1)F (ε)

)]∣∣∣ ≤ εxe−x.

Proof. By change of measures, we have

Σ̂L0
En(n, n− b, x, F ) = E

[
exp

(
−e−βxµ̂L0

n,n−b,β(F )1En
)]

= Ê

eV (ωn)1{V (ωn)=Mn,ωn∈Jλ,x−∆,K0,L0 (n)}∑
|u|=n 1{V (u)=Mn}

exp
(
−e−βxµ̊L0

n,n−b,β(F )
)+ P(Ec

n).

First, we are going to compare it with E
[
exp

(
−e−βxµ̂L0

n,n−b,β(1)F (ε)1En
)]

, which equals to

Ê

eV (ωn)1{V (ωn)=Mn,ωn∈Jλ,x−∆,K0,L0 (n)}∑
|u|=n 1{V (u)=Mn}

exp
(
−e−βxµ̊L0

n,n−b,β(1)F (ε)
)+ P(Ec

n).

The strategy is to show that

Υ̂L0
En(n, n− b, x, F ) :=Σ̂L0

En(n, n− b, x, F )−P(Ec
n)

and Υ̂L0
En(n, n− b, x, F (ε)) :=E

[
exp

(
−e−βxµ̂L0

n,n−b,β(1)F (ε)1En
)]
−P(Ec

n)

are both close to the same quantity as n→∞. Then we compare

E
[
exp

(
−e−βxµ̂L0

n,n−b,β(1)F (ε)1En
)]

with E
[
exp

(
−e−βxµ̃n,β(1)F (ε)

)]
.

We set
(3.30)

Z :=
eV (ωn)1{V (ωn)=Mn,ωn∈Jλ,x−∆,K0,L0 (n)}∑

|u|=n 1{V (u)=Mn}
and Zb :=

eV (ωn)1{V (ωn)=Mn,ωn∈Jλ,x−∆,K0,L0 (n)}∑
|u|=n 1{V (u)=Mn,u≥ωn−b}

,

so that Υ̂L0
En(n, n− b, x, F ) = Ê

[
Ze−e

−βxµ̊
L0
n,n−b,β(F )

]
.

26



Under the measure P̂, on the set ξn(x−∆, L0, b), we have Z = Zb, thus

(3.31) Υ̂L0
En(n, n− b, x, F )

= Ê
[
Zbe

−e−βxµ̊L0
n,n−b,β(F ); ξn(x−∆, L0, b)

]
+ Ê

[
Z exp

(
−e−βxµ̊L0

n,n−b,β(F )
)

; ξcn(x−∆, L0, b)
]
.

Recall that under P̂, we have

µ̊L0
n,n−b,β(F ) = n3β/2 ∑

u∈JL0
λ,x−∆,K0,L0

(n)

1{u≥ωn−b}e
−βV (u)F (Hn(u)).

For n� b large and |u| = n, we define the path H̃n
s (u) = V (ubns∧(n−b)c)

σ
√
n

, ∀s ∈ [0, 1]. Observe that,
for all u ≥ ωn−b, H̃n(u) is identical to H̃n(ωn). For all ε0 > 0, let

(3.32) XF,ε0 := F
(
H̃n
s (ωn); s ∈ [0, 1]

)
∨ ε0.

We prove that Υ̂L0
En(n, n− b, x, F ) is close to Ê

[
Zb exp

(
−e−βxµ̊L0

n,n−b,β(1)×XF,ε0

)]
. It follows

from (3.31) that

(3.33)
∣∣∣Υ̂L0

En(n, n− b, x, F )− Ê
[
Zb exp

(
−e−βxµ̊L0

n,n−b,β(1)×XF,ε0

)]∣∣∣
≤
∣∣∣Ê [

Zb
(
exp

(
−e−βxµ̊L0

n,n−b,β(F )
)
− exp

(
−e−βxµ̊L0

n,n−b,β(1)×XF,ε0

))
; ξn(x−∆, L0, b)

]∣∣∣
Ê
[
Z exp

(
−e−βxµ̊L0

n,n−b,β(1)×XF,ε0

)
+ Zb exp

(
−e−βxµ̊L0

n,n−b,β(F )
)

; ξcn(x−∆, L0, b)
]
.

As |0 ≤ Z ≤ Zb ≤ eV (ωn)1{V (ωn)=Mn,ωn∈Jλ,x−∆,K0,L0 (n)}, by (3.27) and Fact 3.5 applied to η =
εe∆

2(1+L0)2 , this quantity is bounded from above by
(3.34)∣∣∣Ê [

Zb
(
exp

(
−e−βxµ̊L0

n,n−b,β(F )
)
− exp

(
−e−βxµ̊L0

n,n−b,β(1)×XF,ε0

))
; ξn(x−∆, L0, b)

]∣∣∣+ εxe−x.

It remains to bound the first term of (3.34). We compare µ̊L0
n,n−b,β(F ) with µ̊L0

n,n−b,β(1)×XF,ε0 ,
by comparing F (H̃n

s (u); s ∈ [0, 1]) with F (H(n)
s (u); s ∈ [0, 1]).

Recall that F is a continuous function on D[0, 1]. Let us consider a relative compact A ⊂
D[0, 1] which means that

max
f∈A

max
0≤x≤1

|f(x)| ≤M, lim sup
δ↓0

sup
f∈A

w(f, δ) = 0,

where M > 0 and w(f, δ) := inf(ti) maxti−1≤s≤t<ti |f(s) − f(t)| with 0 = t0 < t1 < · · · < tK = 1
and max(ti − ti−1) ≥ δ is the continuous modulus of D. Then F is uniformly continuous in A.

According to the weak convergence in D[0, 1] obtained in Lemma 2.5, for any ε0 > 0, there
exists a compact Kf ⊂ D[0, 1] such that for n ≥ n(f,Kf , ε0),

sup
y∈[0,rn]

n3/2E
[
1{S/∈Kf}f(Sn − y);Sn ≥ 0, S[λn,n] ≥ y

]
≤ ε0.
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Similarly, by Lemma 2.6, one could find a compact K ′f such that for all a ∈ [0, rn] and all n
sufficiently large,

sup
y∈[0,rn]

n3/2E
[
1{S/∈K′

f}f(Sn − y);Sn ≥ −a, S[λn,n] ≥ y
]
≤ ε0V

−(a).

Now we take two compacts K1 = K ′1{[0,2L0]}
and K2 = K ′GL0,b

with GL0,b given below. Then
K = K1∪K2 is also a compact. Since F is uniformly continuous in the compactK, for ε0 > 0, there
exists δ0 > 0 such that on the set {maxn−b≤k≤n V (uk) ≤ δ0

√
n}∩ {H̃n(ωn) ∈ K}∩ {Hn(u) ∈ K},

|F (H̃n
s (u); s ∈ [0, 1])− F (H(n)

s (u); s ∈ [0, 1])| ≤ ε0.

And on the complement set, |F (H̃n
s (u); s ∈ [0, 1]) − F (H(n)

s (u); s ∈ [0, 1])| ≤ 1 as 0 ≤ F ≤ 1.
One then observes that∣∣∣Ê [

Zb
(
exp

(
−e−βxµ̊L0

n,n−b,β(F )
)
− exp

(
−e−βxµ̊L0

n,n−b,β(1)×XF,ε0

))
; ξn(x−∆, L0, b)

]∣∣∣
≤ Ê

[
Zbe

−βx
∣∣∣̊µL0
n,n−b,β(F )− µ̊L0

n,n−b,β(1)×XF,ε0

∣∣∣ ; ξn(x−∆, L0, b)
]

≤ Υ?
n + Υn,K,ωn + Υn,K(ξn)(3.35)

where

Υn,K(ξn) :=2Ê

Zbe−βxn3β/2 ∑
u∈JL0

λ,x−∆,K0,L0
(n)

1{u≥ωn−b}e
−βV (u)1{Hn(u)/∈K}; ξn(x−∆, L0, b)

 ,

Υ?
n :=2Ê

Zbe−βxn3β/2 ∑
u∈JL0

λ,x−∆,K0,L0
(n)

1{u≥ωn−b}e
−βV (u)

(
ε0 + 1{maxn−b≤k≤n V (uk)≥δ0

√
n}
) ,

Υn,K,ωn :=2Ê

Zbe−βxn3β/2 ∑
u∈JL0

λ,x−∆,K0,L0
(n)

1{u≥ωn−b}e
−βV (u)1{H̃n(ωn)/∈K}


Note that Υ?

n by the Markov property at time n− b is equal to

(3.36) 2n3/2e−x+(β−1)(L0−∆)Ê
[
GL0,b,ε0 (V (ωn−b)− an(z + L0)) ;

min
0≤k≤n−b

V (ωk) ≥ −z +K0, min
λn≤k≤n−b

V (ωk) ≥ an(z + L0)
]

where GL0,b,ε0(t) is defined as

(3.37) Êt

eV (ωb)1{V (ωb)=Mb;min0≤k≤b V (ωk)≥0,V (ωb)≤L0}∑
|u|=b 1{V (u)=Mb}

∑
|u|=b

e−βV (u)1{min0≤k≤b V (uk)≥0,V (u)≤2L0}×

(
ε0 + 1{max0≤k≤b V (uk)≥δ0

√
n}
).

28



To bound GL0,b,ε0(t), we return to the probability P and observe that

GL0,b,ε0(t) = e(1−β)tE

 ∑
|u|=b

e−βV (u)1{min0≤k≤b V (uk)≥−t,V (u)≤2L0−t}

×
(
ε0 + 1{max0≤k≤b V (uk)≥δ0

√
n}
)

1{
min0≤k≤b V (m(b)

k
)≥−t,V (m(b))≤L0−t

},
which is bounded by

e(1−β)tE

∑
|u|=b

e−βV (u)1{min0≤k≤b V (uk)≥−t,V (u)≤2L0−t}
(
ε0 + 1{max0≤k≤b V (uk)≥δ0

√
n}
) .

By Many-to-one lemma,

GL0,b,ε0(t) ≤ Et

(
e(1−β)Sb(ε0 + 1{max0≤k≤b Sk≥δ0

√
n});Sb ≤ 2L0, Sb ≥ 0

)
≤ 2Pt(Sb ≤ 2L0) ≤ 2P(2L0 − Sb ≥ t).

We observe that the function t 7→ P(2L0 − Sb ≥ t) is non-increasing, and∫ ∞
0

tP(2L0 − Sb ≥ t)dt ≤ 1
2E((2L0 − Sb)2) <∞.

Using the dominated convergence theorem, we have

(3.38) lim
n→∞

∫
R+
GL0,b,ε0(t)tdt ≤ 1

2E((2L0 − Sb)2)ε0.

Moreover, the function GL0,b,ε0 is Riemann-integrable. Therefore, using Lemma 2.5 proves
that for all n sufficiently large,

Υ?
n ≤ c16ε0xe

−x+(β−1)(L0−∆).

Similarly, one sees that Υn,K,ωn is equal to

2n3/2e−x+(β−1)(L0−∆)Ê
[
GL0,b (V (ωn−b)− an(z + L0)) ;

Hn(ωn−k) /∈ K, min
0≤k≤n−b

V (ωk) ≥ −z +K0, min
λn≤k≤n−b

V (ωk) ≥ an(z + L0)
]
,

where GL0,b(t) as

Êt

eV (ωb)1{V (ωb)=Mb;min0≤k≤b V (ωk)≥0,V (ωb)≤L0}∑
|u|=b 1{V (u)=Mb}

∑
|u|=b

e−βV (u)1{min0≤k≤b V (uk)≥0,V (u)≤2L0}

.
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Similarly to GL0,b,ε0 , GL0,b is Riemann-integrable and
∫
R+
GL0,b(t)tdt ≤ 1

2E((2L0 − Sb)2). So
Lemma 2.6 can be applied and we could find the compact K ′GL0,b

⊂ K as desired. Consequently,
for all n sufficiently large,

Υn,K,ωn ≤ 2ε0V
−(x)e−x+(β−1)(L0−∆).

It remains to bound Υn,K(ξn). Observe that by change of measures,

Υn,K(ξn) ≤ 2Ê

Ze−βxn3β/2 ∑
|u|=n

1{
u∈JL0

λ,x−∆,K0,L0
(n)
}e−βV (u)1{Hn(u)/∈K}


=2e−βxn3β/2E

 ∑
|u|=n

1{
u∈JL0

λ,x−∆,K0,L0
(n)
}e−βV (u)1{Hn(u)/∈K};En


≤2e−βxn3β/2E

[
e(1−β)Sn ; Sn ≤ an(x−∆− L0), Sn ≥ −x+ ∆ +K0,

S[λn,n] ≥ an(x−∆ + L0),S /∈ K

]
≤2e−x+(β−1)(L0−∆)E

[
1{S/∈K};Sn − y ∈ [0, 2L0], Sn ≥ −x+ ∆ +K0, S[λn,n] ≥ y

]
with y = an(x−∆ + L0). As we choose K ′1{[0,2L0]}

⊂ K, it follows that

Υn,K(ξn) ≤ 2ε0V
−(x)e−x+(β−1)(L0−∆).

Applying these estimates to (3.35), for all n large enough, we have
∣∣∣Ê [Zb (exp

(
−e−βxµ̊L0

n,n−b,β(F )
)
− exp

(
−e−βxµ̊L0

n,n−b,β(1)×XF,ε0

))
; ξn(x−∆, L0, b)

]∣∣∣
≤ 2c16ε0e

(β−1)(L0−∆)xe−x.

In view of (3.33) and (3.34), we can choose ε0 > 0 sufficiently small so that

(3.39)
∣∣∣Υ̂L0

En(n, n− b, x, F )− Ê
[
Zb exp

(
−e−βxµ̊L0

n,n−b,β(1)×XF,ε0

)]∣∣∣ ≤ 2εxe−x.

In the similar way, we get that

(3.40)
∣∣∣∣Υ̂L0

En(n, n− b, x, F (ε))− Ê
[
Zb exp

(
− e−βxµ̊L0

n,n−b,β(1)×
(
F (ε) ∨ ε0

))]∣∣∣∣ ≤ 2εxe−x.

We now consider the quantity ex

x
Ê
[
Zb exp

(
−e−βxµ̊L0

n,n−b,β(1)×XF,ε0

)]
and show that it is

close to ex

x
Ê
[
Zb exp

(
−e−βxµ̊L0

n,n−b,β(1)× (F (ε) ∨ ε0)
)]

. However, we can not compare these quan-
tities directly, thus we prove that

ex

x
Ê
[
Zb
(
1− exp

(
−e−βxµ̊L0

n,n−b,β(1)×XF,ε0

))]
∼n→∞

ex

x
Ê
[
Zb
(
1− exp

(
−e−βxµ̊L0

n,n−b,β(1)× (F (ε) ∨ ε0)
))]

.
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Applying the equation
1− e−λW =

∫
R+
λe−λt1{W≥t}dt

with λ = XF,ε0 leads to

(3.41)
ex

x
Ê
[
Zb
(
1− exp

(
−e−βxXF,ε0µ̊

L0
n,n−b,β(1)

))]
=
∫
R+

ex

x
Ê
[
ZbXF,ε0e

−tXF,ε0 ; µ̊L0
n,n−b,β(1) ≥ teβx

]
dt

=
∫
R
β
ex

x
Ê
[
Zbe

βyXF,ε0e
−eβyXF,ε0 ; µ̊L0

n,n−b,β(1) ≥ eβ(x+y)
]
dy,

by change of variables t = eβy. Applying the Markov property at time n− b implies that

(3.42) ex

x
Ê
[
Zbe

βyXF,ε0e
−eβyXF,ε0 ; µ̊L0

n,n−b,β(1) ≥ eβ(x+y)
]

= n3/2 e
∆

x
Ê

eβyXF,ε0e
−eβyXF,ε0fL0,b (V (ωn−b)− an(z + L0), y + ∆) ;

min
0≤k≤n−b

V (ωk) ≥ −z +K0, min
λn≤k≤n−b

≥ an(z + L0)
,

where z = x−∆ and

(3.43) fL0,b(z, y) := Êz

eV (ωb)−L01{V (ωb)=Mb}∑
|u|=b 1{V (u)=Mb}

1{min0≤k≤b V (ωk)≥0,V (ωb)≤L0}

× 1{∑
|u|=b e

−βV (u)1{min0≤k≤b V (uk)≥0,V (u)≤2L0}≥e
β(y−L0)

}.
According to Lemma 5.4 in [26], fL0,b is Riemann integrable and bounded by P(Sb ≤ L0− z).

For all y ∈ R+ and n ≥ 10b, we have

(3.44) ex

x
Ê
[
Zbe

βyXF,ε0e
−eβyXF,ε0 ; µ̊L0

n,n−b,β(1) ≥ eβ(x+y)
]
≤ c17e

βye−ε0e
βy

,

which is integrable with respect to the Lebesgue measure. Using (3.42), then using Proposi-
tion 2.1 to identify (V (ωk), k ≥ 0) with a random walk and applying Lemma 2.5, we obtain that
for any y ∈ R, as n→∞,

lim
n→∞

ex

x
Ê
[
Zbe

βyXF,ε0e
−eβyXF,ε0 ; µ̊L0

n,n−b,β(1) ≥ eβ(x+y)
]

= C1
e∆V −(z −K0)

x

∫
R+
fL0,b(z, y + ∆)V +(z)dzE

[
eβy (F (ε) ∨ ε0) e−eβy(F (ε)∨ε0)

]
.
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By the exact same arguments, we have

C1
e∆V −(z −K0)

x

∫
R+
fL0,b(z, y + ∆)V +(z)dzE

[
eβy (F (ε) ∨ ε0) e−eβy(F (ε)∨ε0)

]
= lim

n→∞

ex

x
Ê
[
Zbe

βy (F (ε) ∨ ε0) e−eβy(F (ε)∨ε0); µ̊L0
n,n−b,β(1) ≥ eβ(x+y)

]
.

Therefore, applying the dominated convergence theorem, (3.41) becomes

ex

x
Ê
[
Zb
(
1− exp

(
−e−βxXF,ε0µ̊

L0
n,n−b,β(1)

))]
=
∫
R
β
ex

x
Ê
[
Zbe

βyXF,ε0e
−eβyXF,ε0 ; µ̊L0

n,n−b,β(1) ≥ eβ(x+y)
]
dy

=
∫
R
β
ex

x
Ê
[
Zbe

βy (F (ε) ∨ ε0) e−eβy(F (ε)∨ε0); µ̊L0
n,n−b,β(1) ≥ eβ(x+y)

]
dy + on(1)

= ex

x
Ê
[
Zb
(
1− exp

(
−e−βx (F (ε) ∨ ε0) µ̊L0

n,n−b,β(1)
))]

+ on(1).(3.45)

Thus, we obtain that for all n sufficiently large,∣∣∣∣∣exx Ê
[
Zb exp

(
−e−βxµ̊L0

n,n−b,β(1)×XF,ε0

)]
− ex

x
Ê
[
Zb exp

(
− e−βxµ̊L0

n,n−b,β(1)× (F (ε) ∨ ε0)
)] ∣∣∣∣∣ ≤ ε.

In view of (3.39) and (3.40), we checked that for all n sufficiently large,

(3.46)
∣∣∣Υ̂L0

En(n, n− b, x, F )− Υ̂L0
En(n, n− b, x, F (ε))

∣∣∣ ≤ 5εxe−x.

It hence follows that for all n sufficiently large,

(3.47)
∣∣∣Σ̂L0

En(n, n− b, x, F )− E
[
exp

(
−e−βxµ̂L0

n,n−b,β(1)F (ε)1En
)]∣∣∣ ≤ 5εxe−x.

It remains to compare E
[
exp

(
−e−βxµ̂L0

n,n−b,β(1)F (ε)1En
)]

with E
[
exp

(
−e−βxµ̃n,βF (ε)

)]
(re-

call that µ̃n,β was defined in (1.9)).
Applying Lemmas 3.2, 3.3 and 3.4 to E

(
exp{−e−βxµ̃n,β(1)F (ε)}

)
implies that

(3.48) 0 ≤ E
[
exp

(
−e−βxµ̂L0

n,n−b,β(1)F (ε)1En
)]
− E

[
exp

(
−e−βxµ̃n,β(1)F (ε)

)]
≤ 3εxe−x.

As a consequence, for all n sufficiently large,

(3.49)
∣∣∣Σ̂L0

En(n, n− b, x, F )− E
[
exp

(
−e−βxµ̃n,βF (ε)

)]∣∣∣ ≤ 8εxe−x,

which completes the proof.

We now prove Proposition 3.1.
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Proof of Proposition 3.1. For any non-negative F ∈ Cb(D) and ε > 0, we choose ∆ = ∆ε :=
∆ε,1 ∨ ∆ε,2 and L = L0 = 2∆

α1∧α2
. Set K0 = Kε,L0 + L0, n ≥ nε and A ≥ 2eK0+∆/ε, we observe

that∣∣∣Σ(n, x, F )− E
[
exp

(
−e−βxµ̃n,β(1)F (ε)

)]∣∣∣
≤ |Σ(n, x, F )− ΣEn(n, x, F )|+

∣∣∣ΣL0
En(n, x, F )− ΣEn(n, x, F )

∣∣∣
+
∣∣∣Σ̂L0

En(n, n− b, x, F )− ΣL0
En(n, x, F )

∣∣∣
+
∣∣∣Σ̂L0

En(n, n− b, x, F )− E
(
exp

(
−e−βxµ̃n,β(1)F (ε)

)]∣∣∣ .
Using Lemmas 3.2, 3.3, 3.4 and 3.6, we have

(3.50)
∣∣∣Σ(n, x, F )− E

[
exp

(
−e−βxµ̃n,β(1)F (ε)

)]∣∣∣ ≤ 4εxe−x,

where µ̃n,β(1) and F (ε) are independent. Recall that Σ(n, x, F ) = E
[
exp

(
−e−βxµ̃n,β(F )

)]
. It

hence follows that

(3.51)
∣∣∣∣exx E

[
1− exp

(
−θe−βxµ̃n,β(F )

)]
− ex

x
E
[
1− exp

(
−θe−βxµ̃n,β(1)F (ε)

)]∣∣∣∣
≤ ex

x

∣∣∣Σ(n, x, F )− E
[
exp

(
−e−βxµ̃n,β(1)F (ε)

)]∣∣∣ ≤ 4ε.

We replace θ by θF (ε), and then deduce from (3.3) that for all n sufficiently large,∣∣∣∣exx E
[
1− exp

(
−θe−βxµ̃n,β(1)F (ε)

)∣∣∣ ε]− Cβθ 1
βF (ε)

1
β

∣∣∣∣ ≤ ε.

In particular, for all n sufficiently large,∣∣∣∣exx E
[
1− exp

(
−θe−βxµ̃n,β(1)F (ε)

)]
− Cβθ

1
βE

[
F (ε)

1
β

]∣∣∣∣ ≤ ε.

Going back to (3.51), we have∣∣∣∣exx E
(
1− exp{−θe−βxµ̃n,β(F )}

)
− Cβθ

1
βE[F (ε)

1
β ]
∣∣∣∣ ≤ 5ε,

which completes the proof and gives Proposition 3.1.

4 Proof of Theorem 1.1 and Corollary 1.3
We apply the Laplace transform estimates obtained in the previous section to prove the main
results of this article. We first study the convergence of the Laplace transform of µ̃n,β(F ). We
recall that Zn = ∑

|u|=n V (u)e−V (u) is a martingale, and that Z∞ = limn→∞ Zn a.s.
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Proposition 4.1. Under (1.1), (1.3), (1.4) and (1.5), for any α ≥ 0 and any non-negative
F ∈ Cb(D),

(4.1) lim
l→∞

lim sup
n→∞

E
[
1{Zl>0}e

−αZl−µ̃n+l,β(F )
]

= lim
l→∞

lim inf
n→∞

E
[
1{Zl>0}e

−αZl−µ̃n+l,β(F )
]

= E
[
exp

(
−CβZ∞E

(
F (ε)

1
β

))
e−αZ∞1{Z∞>0}

]
.

In particular, conditionally on the survival event S, we have

(4.2) lim
n→∞

E
[
e−µ̃n,β(F )

∣∣∣S] = E
[
exp

(
−CβZ∞E

(
F (ε)

1
β

))∣∣∣S] .
Remark 4.2. Theorem 1.1 is a consequence of (4.2). However (4.1) enlightens the appearance
of Z∞.
Proof. Note that (4.2) is a direct consequence of (4.1) as S = {Z∞ > 0}. We observe that

(4.3) µ̃n+l,β(F ) =
(
n+ l

n

) 3β
2 ∑
|u|=l

e−βV (u)n
3β
2

∑
|v|=n+l
v≥u

e−β(V (v)−V (u))F (Hn+l(v)).

For |u| = l, v ≥ u with |v| = n+ l and t ∈ [0, 1], we write H(n),u(v)t := V (vl+bntc)−V (u)√
σ2n

and

µ̃
(u)
n,β(F ) := n3β/2 ∑

|v|=n+l
v≥u

e−β(V (v)−V (u))F
(
H(n),u(v)

)
.

If we compare µ̃n+l,β(F ) with ∑|u|=l e−βV (u)µ̃
(u)
n,β(F ), we obtain that for any compact K0 and for

all sufficiently large n and log n� `,

χn :=
∣∣∣∣µ̃n+l,β(F )−

∑
|u|=l

e−βV (u)µ̃
(u)
n,β(F )

∣∣∣∣
≤on(1)µ̃n+`,β +

∑
|u|=`

e−βV (u)1{max1≤k≤` V (uk)≥logn}µ̃
(u)
n,β(1)

+ µ̃n+`,β(1{H(n+`) /∈K0} + 1{H(n),v` /∈K0;max1≤k≤` V (uk)≤logn})

As long as we could prove the convergence in probability of χn towards zero, the convergence
in law of ∑|u|=l e−βV (u)µ̃

(u)
n,β(F ) holds also for µ̃n+l,β(F ). In fact, by Proposition 4.6 of [26], µ̃n+`,β

is tight. Moreover, one sees that P(max|u|=` max1≤k≤` V (uk) ≥ log n)→ 0 as n ↑ ∞. So we only
need to consider µ̃n,β(1{H(n) /∈K0}) for some well chosen compact K0. Observe that for any δ > 0,

P
(
µ̃n,β1{H(n) /∈K0} ≥ δ

)

≤P(inf V (u) ≤ −y) + P

n3β/2 ∑
|u|=n

e−βV (u)1{min1≤k≤n V (uk)≥−y;H(n)(u)/∈K0} ≥ δ


≤e−y + P

n3β/2 ∑
|u|=n

e−βV (u)1{min1≤k≤n V (uk)≥−y;H(n)(u)/∈K0} ≥ δ


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We are going to take y ≥ 1 large enough so that the first term is sufficiently small. For C ≥ 3/2
a large constant and L ≥ 0, x = log δ

β
, one sees that

(4.4) P

n3β/2 ∑
|u|=n

e−βV (u)1{min1≤k≤n V (uk)≥−y;H(n)(u)/∈K0} ≥ 2δ
 ≤ P1 + P2

where

P1 :=P

n3β/2 ∑
|u|=n

e−βV (u)1{min1≤k≤n V (uk)≥−y,minn/2≤k≤n V (uk)≤an(x+L)} ≥ eβx


P2 :=P

n3β/2 ∑
|u|=n

e−βV (u)1{min1≤k≤n V (uk)≥−y,minn/2≤k≤n V (uk)≥an(x+L);H(n)(u)/∈K0} ≥ eβx


Observe that

P1 =Py

n3β/2 ∑
|u|=n

e−βV (u)1{min1≤k≤n V (uk)≥0,minn/2≤k≤n V (uk)≤an(x−y+L)} ≥ eβ(x−y)


which by Lemma 4.9 of [26] is bounded by C1(1 + y)e−C2L−x with C1, C2 > 0. Let us take L = y.
Then by Markov inequality and Many-to-one lemma, one sees that

P2 ≤n3β/2e−βxE
[
e(1−β)Sn ;Sn ≥ −y, S[n/2,n] ≥ an(x+ y); S /∈ K0

]
=e−x+(β−1)yn3/2E

[
e(1−β)(Sn−an(x+y));Sn ≥ −y, S[n/2,n] ≥ an(x+ y); S /∈ K0

]
By Lemma 2.6, for any η > 0, we could find a compact K0 = Kf for f(t) = e(1−β)t which is
Riemann integrable such that

sup
y∈[0,an]

n3/2E
[
e(1−β)(Sn−an(x+y));Sn ≥ −y, S[n/2,n] ≥ an(x+ y); S /∈ K0

]
≤ η(1 + y).

Then given δ > 0, for any ε > 0, we take y = yε ≥ 1 such that e−y + C1(1 + y)e−C2y−x ≤ ε/2,
and we take the compact K0 for η = ε

2(1+yε)e
−(β−1)yεδ1/β. These choices imply that

P
(
µ̃n,β1{H(n) /∈K0} ≥ 2δ

)
≤ ε.

Similar arguments work for µ̃n+`,β1{H(n),v` /∈K0;max1≤k≤` V (uk)≤logn}. We hence conclude the conver-
gence in probability of χn to zero.

It remains to prove the convergence in law for ∑|u|=l e−βV (u)µ̃
(u)
n,β(F ). Applying the Markov

property at time l, we have

E
[
e−αZl1{Zl>0}e

−
∑
|u|=l e

−βV (u)µ̃
(u)
n,β

(F )
]

= E

e−αZl1{Zl>0}
∏
|u|=l

Ψ(V (u))
 ,
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where Ψ : x 7→ E
[
e−e

−βxµ̃n,β(F )
]
. For any 1 ≤ l ≤ n, we set Ξn,l :=

{
|u| = l : log l

3 ≤ V (u) ≤ log n
}

,
and we prove that ∏|u|=l Ψ(V (u)) ≈ ∏u∈Ξn,l Ψ(V (u)) with high probability. Note that

(4.5) lim
n→∞

∑
u∈Ξn,l

V (u)e−V (u) = Zl a.s. for l large enough,

as lim inf l→∞ Ml

log l = 1
2 >

1
3 (see [18]).

We first observe that

E
[
e−αZl1{Zl>0}e

−
∑
|u|=l e

−βV (u)µ̃
(u)
n,β

(F )
]
≤ E

e−αZl1{Zl>0}
∏

u∈Ξn,l
Ψ(V (u))

 .
By Proposition 3.1, for any ε > 0, there exist L,N such that for any n ≥ N , l ≥ L and u ∈ Ξn,l,

(4.6)
∣∣∣Ψ(V (u))− 1 + ψβV (u)e−V (u)

∣∣∣ ≤ εV (u)e−V (u)n,

where ψβ = CβE
[
F (ε)

1
β

]
. This yields

E
[
e−αZl1{Zl>0}e

−
∑
|u|=l e

−βV (u)µ̃
(u)
n,β

(F )
]
≤ E

e−αZl1{Zl>0}
∏

u∈Ξn,l

(
1− (ψβ − ε)V (u)e−V (u)

)
≤ E

[
e−αZl1{Zl>0}e

−
∑

u∈Ξn,l
V (u)e−V (u)(ψβ−ε)]

,

where the last inequality follows from the fact that for any x ≥ 0, 1− x ≤ e−x. By (4.5) and the
convergence of the derivative martingale, we have

lim sup
n→∞

E

e−αZl1{Zl>0}e
−
∑
|u|=l e

−βV (u)µ̃(u)
n,β

(F )
 ≤ E

[
e−(α+ψβ−ε)Zl1{Zl>0}

]
.

Letting l→∞ then ε→ 0, it leads to
(4.7)

lim sup
l→∞

lim sup
n→∞

E

e−αZl1{Zl>0}e
−
∑
|u|=l e

−βV (u)µ̃(u)
n,β

(F )
 ≤ E

e−
(
α+CβE

(
F (ε)

1
β

)
Z∞

)
1{Z∞>0}

 .
The lower bound follows from similar arguments. Applying once again the Markov property

at time l,

E

e−αZl1{Zl>0}e
−
∑
|u|=l e

−βV (u)µ̃(u)
n,β

(F )
 ≥ E

e−αZl1{Zl>0,3Ml≥log l}
∏
|u|=l

Ψ(V (u))
 .
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Therefore,

E

e−αZl1{Zl>0}e
−
∑
|u|=l e

−βV (u)µ̃(u)
n,β

(F )


≥ E

e−αZl1{Zl>0,3Ml≥log l}
∏

u∈Ξn,l
Ψ(V (u))×

∏
|u|=l,u6∈Ξn,l

Ψ(V (u))


= E

e−αZl1{Zl>0,3Ml≥log l}
∏

u∈Ξn,l
Ψ(V (u))×

∏
|u|=l,V (u)≥logn

Ψ(V (u))
 .

For n ≥ 1 large enough, by [26, Proposition 2.1], there exists c > 0 such that

(4.8) ∀x ≥ log n, 1−Ψ(x) ≤ cxe−x.

Consequently, (4.6) yields

E

e−αZl1{Zl>0}e
−
∑
|u|=l e

−βV (u)µ̃(u)
n,β

(F )


≥E

e−αZl1{Zl>0,3Ml≥log l}
∏
|u|=l

(
1−

[
1{V (u)≤logn}ψβ + c1{V (u)≥logn} + ε

]
V (u)e−V (u)

)
≥E

[
e−αZl1{Zl>0,3Ml≥log l}e

−(1+ε)
∑
|u|=l(1{V (u)≤logn}ψβ+c1{V (u)≥logn}+ε)V (u)e−V (u)

]
,

for l ≥ 1 large enough, as for any x > 0 small enough, 1−x ≥ e−(1+ε)x. Letting n→∞, we have

lim inf
n→∞

E

e−αZl1{Zl>0}e
−
∑
|u|=l e

−βV (u)µ̃(u)
n,β

(F )
 ≥ E

[
1{Zl>0,3Ml≥log l}e

−(α+(1+ε)(ψβ+ε))
]
.

Finally, using the fact that S = {Z∞ > 0} and that lim inf l→∞Ml/ log l > 1/3, we obtain, letting
l→∞ then ε→ 0

lim inf
l→∞

lim inf
n→∞

E
[
e
−
∑
|u|=l e

−βV (u)µ̃
(u)
n,β

(F )
e−αZl1{Zl>0}

]
≥ E

e−
[
α+CβE

(
F (ε)

1
β

)]
Z∞1{Z∞>0}

 .
This last equation, as well as (4.7), completes the proof of (4.1).

We now prove that for any F ∈ Cb(D), we have

(4.9) µn,β(F )=⇒
n→∞

∑
k∈N

pkF (ε(k)),

where (ε(k)) is a sequence of i.i.d. normalized Brownian excursions, and (pk, k ∈ N) follows an
independent Poisson-Dirichlet distribution with parameter ( 1

β
, 0), which by [5, Theorem 5.2] is

enough to conclude the proof of Theorem 1.1.

37



Proof of Theorem 1.1. We recall that µn,β is defined on S by µn,β(F ) = µ̃n,β(F )
µ̃n,β(1) , for F ∈ Cb(D).

To prove the convergence in law of µn,β, we start by identifying the limit law of µ̃n,β.
Let (∆k, k ∈ N) be a Poisson point process on R with intensity exdx and (ε(k), k ∈ N) be an

independent sequence of i.i.d. normalized Brownian excursions, independent from the branching
random walk. We introduce a random measure µ̃∞,β on D by

µ̃∞,β = Zβ
∞

∞∑
k=1

e−β(∆k−c?(β))δε(k) ,

where c?(β) := log Cβ

−
∫
R(e−e−βu−1)eudu . We first prove that for any non-negative F ∈ Cb(D),

(4.10) µ̃n,β(F )=⇒
n→∞

µ̃∞,β(F ).

We compute the Laplace transform of µ̃∞,β(F ). As S = {Z∞ > 0}, for any θ > 0, we have

E
[
exp (−θµ̃∞,β(F )) 1{S}

]
= E

[
exp

(
−θZβ

∞

∞∑
k=1

e−β[∆k−c?(β)]F (ε(k))
)

1{Z∞>0}

]

= E
[
exp

(
−
∞∑
k=1

φ
(
θe−β[∆k−logZ∞−c?(β)]

))
1{Z∞>0}

]
,

where φ : x 7→ log E
[
exp

(
−uF (ε(1))

)]
. By Campbell’s formula,

E
[
exp (−θµ̃∞,β(F )) 1{S}

]
= E

[
exp

(∫
R
eφ(θe−β[x−logZ∞−c?(β)])+x−1dx

)
1{Z∞>0}

]
.

As φ
(
θe−β[x−logZ∞−c?(β)]

)
= log E

[
exp

(
−θe−β[x−logZ∞−c?(β)]F (ε(1))

)∣∣∣Z∞], it yields

E
[
exp (−θµ̃∞,β(F )) 1{S}

]
= E

[
exp

(∫
R

E
[
exp

(
−θe−β[x−logZ∞−c?(β)]F (ε(1))

) ∣∣∣∣Z∞]− 1
)
exdx1{Z∞>0}

]
= E

[
exp

(
E
[∫

R

(
exp

(
−θe−β[x−logZ∞−c?(β)]F (ε(1))

)
− 1

)
exdx

∣∣∣∣Z∞])1{Z∞>0}

]
.

By change of variables u = x− logZ∞ − c?(β)− 1
β

[
log θ + logF (ε(1))

]
, we obtain that

E
[∫

R

(
exp

(
−θe−β[x−logZ∞−c?(β)]F (ε(1))

)
− 1

)
exdx

∣∣∣∣Z∞]
=E

[∫
R

(
e−e

−βu − 1
)
eu+logZ∞+c?(β)+ 1

β [log θ+logF (ε(1))]du
∣∣∣∣Z∞]

=ec?(β)Z∞E
[(
θF (ε(1))

) 1
β

] ∫
R

(
e−e

−βu − 1
)
eudu = −CβZ∞E

(
(F (ε(1))θ)

1
β

)
,

since c?(β) = log Cβ

−
∫
R(e−e−βu−1)eudu . We thus end up with

E
[
exp (−θµ̃∞,β(F )) 1{S}

]
= E

[
exp

{
− CβZ∞E

(
(F (ε(1))θ)

1
β

) }
1{Z∞>0}

]
.
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Consequently, by Proposition 4.1, for any θ > 0 we have

lim
n→∞

E
[
1{Z∞>0}e

−θµ̃n,β(F )
]

= E
[
1{Z∞>0}e

−θµ̃∞,β(F )
]
,

which concludes (4.10) by Lévy’s theorem.
Furthermore, for any F ∈ Cb(D) and θ1, θ2, θ3 ∈ (0,∞), setting F+ (respectively F−) the

positive (resp. negative) part of F , we have

lim
n→∞

E
[
1{Z∞>0}e

−θµ̃n,β(θ1F++θ2F−+θ3)
]

= E
[
1{Z∞>0}e

−θµ̃∞,β(θ1F++θ2F−+θ3)
]
,

yielding
(µ̃n,β(F+), µ̃n,β(F−), µ̃n,β(1)) =⇒

n→∞
(µ̃∞,β(F+), µ̃∞,β(F−), µ̃∞,β(1)) .

Using the fact that µ̃∞,β(1) > 0 a.s. on S, we have

µn,β(F ) = µ̃n,β(F+)− µ̃n,β(F−)
µ̃n,β(1) =⇒

n→∞

∑
k≥0

e−β∆k∑∞
j=0 e

−β∆j
F (ε(k)) on S.

Remark 4.3. We obtain in a similar way the joint convergence of (µn,β(F1), · · ·µn,β(Fk)), for
any (F1, . . . , Fk) ∈ Cb(D)k.

Using [31, Proposition 10], for a Poisson point process (∆k, k ≥ 0) of intensity ex, we have(
e−β∆k∑∞
j=0 e

−β∆j
, k ≥ 0

)
(d)=(pk, k ≥ 0),

where (pk) is a process of Poisson-Dirichlet distribution with parameters ( 1
β
, 0).

We conclude this article proving that Theorem 1.1 implies Corollary 1.3.

Proof of Corollary 1.3. We first observe that for all t ∈ (0, 1), the function

φt : (f, g) ∈ D2 7→ 1{∀s<t,f(s)=g(s)}

is almost everywhere continuous for the law µ⊗2
∞,β. Therefore, by Portmanteau theorem, we have

lim
n→∞

µ⊗2
n,β(φt) = µ⊗2

∞,β(φt) =
∑
k≥0

p2
k in law,

by Theorem 1.1. This proves that for all t ∈ (0, 1)

lim
n→∞

µ⊗2
n,β

(
inf{s > 0 : V (zbnsc) 6= V (z′bnsc} ≥ t

)
= ρβ in law.

We now prove this convergence in law holds simultaneously for all t ∈ (0, 1). For any n ∈ N
and t ∈ (0, 1), set

F (n,β)(t) = µ⊗2
n,β

(
inf{s > 0 : V (zbnsc) 6= V (z′bnsc} ≤ t

)
.
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By monotonicity of repartition functions, we have F (n,β)(t) ≥ F (n,β)(s) for all t ≥ s. Moreover,
by dominated convergence theorem, we have

lim
n→∞

E(F (n,β)(t)− F (n,β)(s)) = E(F (∞,β)(t))− E(F (∞,β)(s)) = 0.

As a result, F (n,β)(t) − F (n,β)(s) being a non-negative random variable, this implies that it
converges to 0 in probability. Therefore, by Slutsky’s lemma, we have

lim
n→∞

(F (n,β)(t), F (n,β)(t)− F (n,β)(s)) = (1− ρβ, 0) in law.

With this line of reasoning, we prove that the convergence of F (n,β)(t) to 1 − ρβ holds simulta-
neously for all t ∈ (0, 1) ∩Q. Therefore, we obtain the convergence

lim
n→∞

µ⊗2
n,β

(
inf{t > 0 : V (zbntc) 6= V (z′bntc} ∈ dx

)
= ρβδ1 + (1− ρβ)δ0 in law,

which concludes the proof.
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