
Branching-stable point measures and processes
Jean Bertoin∗ Aser Cortines† Bastien Mallein‡

October 2, 2018

Abstract

We introduce and study the class of branching-stable point measures,
which can be seen as an analog of stable random variables when the
branching mechanism for point measures replaces the usual addition. In
contrast with the classical theory of stable (Lévy) processes, there exists
a rich family of branching-stable point measures with negative scaling ex-
ponent, which can be described as certain Crump-Mode-Jagers branching
processes. We investigate the asymptotic behavior of their cumulative dis-
tribution functions, that is, the number of atoms in (−∞, x] as x → ∞,
and further depict the genealogical lineage of typical atoms. For both
results, we rely crucially on the work of Biggins.

Keywords: Branching random walk, Lévy processes, stable laws, point pro-
cesses, self-similarity.
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1 Introduction
Recall that a random variable ξ1 with values in Rd has a (strictly) stable dis-
tribution if and only if for every integer n ≥ 2, the sum of n i.i.d. copies of
ξ1 has the same law as a(n)ξ1, where a(n) is some sequence of positive num-
bers. Excluding implicitly the degenerate case when ξ1 ≡ 0, there exists then
an index α ∈ (0, 2] such that a(n) = n1/α, and the distribution of ξ1 is called
α-stable. This family of probability laws arises naturally in a variety of weak
limit theorems and plays therefore an important role in the analysis of many
random processes (see, for instance, [BBK+09, CW92, Sat13, ST94] and refer-
ences therein). In this article, we introduce and study a class of random point
measures satisfying an analogous property, where the addition of random vari-
ables is replaced by branching mechanism for point processes. We expect that
similarly, this family shall describe attractors for natural dynamics involving
branching mechanisms.

To present more precisely our purpose and results, it is convenient to set up
right now some notation that we will use throughout this work. We write
P for the space of non-decreasing sequence x = (xk)k≥1 in (−∞,∞] with
limk→∞ xk = ∞, and endow P with the topology of pointwise convergence.
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This space is canonically identified with the space of locally finite point mea-
sures giving finite mass to (−∞, 0] by

x '
∑
k≥1

δxk ,

with the convention δ∞ = 0. In other words, the k-th element xk of x is viewed
as the location of the k-th left-most atom of a locally finite point measure, with
the convention that xk =∞ if that point measure has total mass less than k. We
shall view thus x ∈ P both as a non-decreasing sequence and as a point measure,
often going from one interpretation to the other without explicit mention of it.

The following two basic operators on P will play an important role in the
sequel. First, the translation operator with displacement y ∈ R simply trans-
forms x = (xk)k≥1 into y+x := (y+xk)k≥1. Second, the dilation operator with
a factor c > 0, transforms x into cx := (cxk)k≥1.

We also equip P with an internal composition law t corresponding to su-
perposition; specifically x t y denotes the sequence in P obtained by arranging
the elements of x and y (elements are repeated according to their multiplicities)
in the non-decreasing order. When we think of x and y as locally finite point
measures, x t y then simply corresponds to the sum1 of the two.

Next, we denote the integral of a function g : R→ R+ with respect to x by

〈x, g〉 :=
∫

(−∞,∞)
g(x)x(dx) =

∑
k≥1

g(xk).

In the case when g = 1A is the indicator function of some subset A ⊆ R, we
simply write x(A) := 〈x,1A〉 for the number of atoms of x in A.

A branching random walk can be viewed as a spatial population model in
discrete time, started from a single ancestor located at the origin. The locations
of the individuals at the first generation, i.e. the children of the ancestor, form
a random point measure, say Ξ. In turn, individuals at the second generation
are positioned with respect to their respective parents according to i.i.d. copies
of Ξ, and so on and so forth for the next generations. In the present framework,
a branching random walk can be described as a P-valued random process X :=
(Xn)n≥0 started from X0 = (0,∞,∞, . . .), which fulfills the following branching
property. There exists a sequence (X(k))k∈N of i.i.d. copies of X, which are
further independent of X1, such that for all n ≥ 0, we have

Xn+1 =
⊔
k≥1

(xk + X(k)
n ), with (xk)k≥1 = X1.

We call the law of X1 (and sometime, by a slight abuse, X1 itself) the reproduc-
tion law of the branching random walk X. The lecture notes [Shi15] provide a
self-contained introduction to this topic.

We are interested here in the sub-family of reproduction laws satisfying an
additional self-similarity property, which is analogous to scaling for random
variables (and therefore we rather use for it the notation S).

1However, in order to avoid a possible confusion with the translation operator, we prefer to
use the notation xty rather than x+y. Beware also that cx, viewed as a measure, is different
from assigning mass c to each atom of x and rather corresponds to dilating the location of
each atom by a factor c.
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Definition 1.1. Let S1 be a random point measure in P such that

E (〈S1, e−ϑ〉) <∞ for some ϑ ≥ 0, (1.1)

where e−ϑ(x) = e−ϑx. We call S1 branching-stable if it fulfills the following
property: there exists a sequence of positive real numbers (a(n))n≥1 such that
for each n ≥ 1, there is the identity in distribution

Sn
(d)=a(n)S1, (1.2)

where (Sn)n≥0 denotes a branching random walk with reproduction law S1.

Remark 1.2. This definition is different from that in [ZZ15], to whom we refer
for another natural notion of branching-stability

Condition (1.1) in Definition 1.1 is a non-degeneracy requirement for the
Laplace transform of the intensity measure which is fairly standard for branching
processes and lies at the heart of many useful tools in this area. In particular,
it is essential in the article [BM17b], which shall further play an important role
here. Note also that it ensures that for all n ∈ N, E(Sn((−∞, x])) < ∞ for
every x ∈ R, and a fortiori that Sn ∈ P a.s.

Two degenerate examples of random point measures fulfilling (1.1) and (1.2)
are S1 = (∞, . . .) = 0 a.s. and S1 = (0,∞,∞, . . .) = δ0 a.s. (then the normaliz-
ing sequence (a(n))n≥1 can be chosen arbitrarily). We henceforth only consider
non-degenerate cases. There are further obvious examples with a trivial branch-
ing mechanism, that are associated to stable Lévy processes. Specifically, con-
sider for some α ∈ (0, 2) a random walk (Sn)n≥0 with step distribution given by
an α-stable random variable, and set Sn = δSn . Then (Sn)n≥0 can be viewed
as a branching random walk with a unique offspring for each atom at each
generation. Obviously (1.1) holds with ϑ = 0 and also (1.2) with a(n) = n1/α.

The starting point of our work is the observation that the family of bran-
ching-stable point measures is actually quite large. To start with, we observe
in Lemma 2.1 that the normalizing sequence in (1.2) has necessarily the form
a(n) = nε/α with ε = ±1 and α > 0. We call εα the scaling exponent. We shall
prove in Proposition 2.3 that the case of a positive scaling exponent is always
trivial, in the sense that a branching-stable point measure for which ε = +1 is
always given by a single atom whose location has an α-stable distribution. In
particular, the only non-degenerate cases with a positive scaling exponent occur
for 0 < α ≤ 2. The family of branching-stable point measures with negative
scaling exponent turns out to be much more interesting, as we shall now explain.

Recall first from [BM17b]2 that a random point measure X1 satisfying (1.1)
is called infinitely ramified if for every n ≥ 1, it has the same distribution as the
n-th generation of some branching random walk. In other words, for each n ≥ 1,
there exists a branching random walk X(n) = (X(n)

k )k≥0 such that X1
(d)=X(n)

n .
Infinite ramification can thus be seen as a branching version of the notion of
infinitely divisibility3. In this direction recall e.g. from [Sat13], that every in-
finitely divisible variable ξ1 arises as the value at time t = 1 of a Lévy process

2Beware however that in [BM17b], we considered point measures whose atoms can be
ranked in non-increasing order rather than in non-decreasing order as here, so the results
taken from there are rephrased after an obvious reflexion x 7→ −x.

3Different notions of infinite divisibility have been studied in the context of point processes,
see notably [MKM78] and [Kal77].
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(ξt)t≥0. A similar connection was established in [BM17b] between infinitely ram-
ified point measures and so-called branching Lévy processes. Roughly speaking,
a branching Lévy process is a càdlàg process in continuous time with values
in P, whose atoms move (independently of one-another) according to a certain
Lévy process, and give birth to children in a Poissonian fashion; we stress that
the total branching rate may be infinite. We refer to Section 1 in [BM17b] for
a precise definition and a characterization of such processes, and to Section 5
of the same paper for a rigorous construction. It is proven in that article, that
every infinitely ramified point measure X1 can be obtained as the value at time
t = 1 of a branching Lévy process (Xt)t≥0.

Any branching-stable point measure is infinitely ramified, and hence we es-
sentially have to determine the class of branching Lévy processes which fulfill
a scaling property analogous to (1.2) (see forthcoming Lemma 2.1(ii). In The-
orem 2.4, we prove that branching-stable point measures with negative scaling
exponent are associated to branching Lévy processes without spatial displace-
ment (i.e. individuals are static and eternal) and for which the so-called branch-
ing Lévy measure (which characterizes the statistics of reproduction events) is
self-similar. More explicitly, such branching Lévy processes can be viewed as a
special class of Crump-Mode-Jagers branching processes (see Crump and Mode
[CM68], Jagers [Jag89]; we shall write simpy CMJ branching processes in the
sequel) in which individuals beget progenies according to a time-homogeneous
Poisson point process with a scale-invariant intensity measure, and such that all
children are located at the right of their parents. We also provide an equivalent
description in terms of a branching random walk (Zn)n≥0 in R2

+, where atoms
record the birth times and locations of individuals in the CMJ process.

In the second part of the article, we present some properties of branching-
stable point measures with negative scaling exponents. Relying on classical
results due to Biggins [Big77, Big92], we investigate the asymptotic behavior of
the cumulative distribution function S1((−∞, x]) as x → ∞. We establish in
Theorem 3.4 the convergence in distribution of this normalized quantity

lim
x→∞

S1((−∞, x])
E (S1((−∞, x])) = W in law, (1.3)

where W is the limit of the so-called Biggins’ additive martingale. It turns
out that the mean E (S1((−∞, x])) can be computed explicitly in terms of the
so-called Wright generalized Bessel function, and in particular its asymptotic
expansion as x→∞ is already known in the literature.

Finally, in the last section of this paper, we study the genealogy of the atoms
of S1, from the viewpoint of CMJ processes (since each atom of S1 corresponds
to some individual in a CMJ process, one can thus define a genealogy in that
respect). We shall describe the ancestral lineage of typical atoms, as well as the
asymptotic position of the left-most atom at the n-th generation as n→∞. As
we shall see (Proposition 4.3) the asymptotic position of such particle is rather
different from the one in classical branching random walks. For the latter,
Addario-Berry and Reed [ABR09] and Hu and Shi [HS09] independently proved
that the minimal position mn satsfies mn = nv − c logn + OP(1) as n → ∞,
where v ∈ R and c > 0 are explicit constants, and OP(1) represents a tight
sequence of random variables. This result was improved by Aı̈dékon [Aı̈d13],
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who proved that

lim
n→∞

mn − nv + c logn = G in law,

where G is a mixture of Gumbel random variables. In our case, we show that
the left-most particle at the n-th generation in S1 behaves like n(α+1)/α. In this
direction, information due to Biggins [Big78] about the shape of the associated
2-dimensional branching random walk (Zn)n≥0 plays a crucial role.

Organization of the paper. The rest of the article is organized as follows. In
Section 2, we unveil the fine structure of branching-stable point processes, and
in particular prove the main result of the article, namely, Theorem 2.4, which
characterizes the law of branching-stable point measure with negative scaling
exponent in terms of CMJ branching processes. In Section 3, we study in more
details the cumulative distribution function of branching-stable point measures,
obtaining the convergence in law for this process. Finally, in Section 4, we turn
our attention to the genealogy of atoms.

2 The structure of branching-stable point mea-
sures

The purpose of this section is to describe precisely the structure of branching-
stable point measures. We implicitly exclude the degenerate case4 when all the
atoms are located at 0 a.s. This enables us to assert that the real number a(n) >
0 in (1.2) is unique (for instance, by considering the distribution of the smallest
non-zero atom). As a consequence, there is the identity a(nk) = a(n)a(k) for
all integers n, k ≥ 1.

Our analysis crucially relies on [BM17b], in which it is shown that every in-
finitely ramified point measure can be viewed as some branching Lévy processes
evaluated at time t = 1. A branching-stable point measure is a fortiori infinitely
ramified, and we specialize some results of [BM17b] in the present setting.

Lemma 2.1. Let S1 be a random point measure that fulfills (1.1) and (1.2).
Then there exist:
• a càdlàg process in continuous time (St)t≥0 with values in P, started from
S0 = δ0 and taking the value S1 at time t = 1;
• a real number εα with α > 0 and ε = ±1;
such that the following assertions hold.

(i) The process S = (St)t≥0 fulfills the branching property: for every r > 0,
there exists a sequence S(k) of i.i.d. copies of S such that

St+r =
⊔
k≥1

(xk + S(k)
t ), with (xk)k≥1 = Sr,

for every t ≥ 0.
4In short, if either S1 is empty a.s., or reduced to a single atom at 0 a.s., then (1.2) and

(1.1) hold plainly. On the other hand, if all the atoms of S1 are located at 0 a.s., but the
number of atoms is neither equal to 0 a.s. or 1 a.s., then (1.2) must fail.
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(ii) The process (St)t≥0 is self-similar with scaling exponent εα, in the sense
that for every c > 0, there is the identity in distribution

(Scεαt)t≥0
(d)= (cSt)t≥0 .

Remark 2.2. We stress that the law of the process (St, t ≥ 0) in Lemma 2.1 is
uniquely determined by the law of S1. Indeed, its one-dimensional marginals
are characterized by (ii), and therefore, by the branching property (i), the finite
dimensional marginals are uniquely determined as well. The fact that the pro-
cess is càdlàg enables us to conclude. This contrasts with [BM17b], in which the
question of uniqueness of the branching Lévy process associated to an infinitely
ramified point measure is still pending.

Proof. Theorem 1.1 in [BM17b] ensures the existence of a càdlàg process (St)t≥0

that satisfies (i). More precisely, (1.2) entails that for every n ≥ 0, if (X(n)
k )k≥0

denotes a branching random walk with reproduction law 1
a(2n)S1, then for each

` = 0, 1, . . . , n, the variable X(n)
2` has the same law as

a(2`)
a(2n)S1 = 1

a(2n−`)S1
(d)= X(n−`)

1 .

This implies that (X(n)
2`k)k≥0 is a version of the branching random walk (X(n−`)

k )k≥0,
and then by Kolmogorov’s extension theorem, there exists a so-called nested
branching random walk (St, t ∈ D) indexed by the set of rational dyadic num-
bers D, such that for every n ≥ 0, (Sk2−n)k≥0 is a version of the branching
random walk (X(n)

k )k≥0. By Proposition 3.2 of [BM17b], the process (St, t ∈ D)
can be extended in a unique way in a càdlàg process (St)t≥0 which satisfies the
branching property (i).

Then (1.2) yields for every integer k ≥ 1

Sk2−n
(d)= a(k)
a(2n)S1.

As a consequence we can define unambiguously a(k2−n) = a(k)/a(2n) for dyadic
rational numbers, and from the right-continuity of the process (St)t≥0, one read-
ily deduces that t 7→ a(t) has a right-continuous extension to all real numbers
t > 0. Plainly, the function a is multiplicative, thus there exists some exponent
γ ∈ R such that a(t) = tγ .

We then note that the case γ = 0 would yield a degenerate branching-stable
point measure. Indeed, this is seen from letting n → ∞ in the identity in
distribution S2−n

(d)=S1 and using the facts that (St)t≥0 has càdlàg paths and
that S0 reduces to a single atom at 0 a.s.

Therefore γ 6= 0 and we conclude that (ii) holds with 1/γ replaced by εα,
first in the sense of finite dimensional distributions, and then in the sense of
processes since the sample paths are càdlàg a.s. The proof is complete.

We call any process (Xt)t≥0 with càdlàg paths in P such that the non-
degeneracy condition for the Laplace transform (1.1) holds for X1, and which
fulfills the branching property (i) and the scaling property (ii) of Lemma 2.1,
a branching-stable process with scaling exponent εα. Then plainly X1 is a
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branching-stable point measure, and there is thus a one-to-one and onto corre-
spondence between distributions of branching-stable point measures and distri-
butions of branching-stable processes.

Upon the simple reflexion St 7→ −St, branching-stable processes can be
viewed as a special class of branching Lévy processes as defined in [BM17b], and
it has been shown there that the distribution of the latter is determined by a
triplet, analogous to the characteristic triplet for Lévy processes. It would thus
be natural now to identify the subclass of characteristic triplets of branching
Lévy processes that correspond to branching-stable processes. However we shall
rather follow a slightly different road for which the scaling property is easier to
exploit, and which yields a simpler representation of branching-stable processes
than that the general construction in [BM17b].

The structure of branching-stable processes depends crucially on the sign
ε of the scaling exponent. More precisely, we show that if ε = +1, then the
branching-stable process has a trivial branching mechanism (no death or re-
production event occurs). If ε = −1, then reproduction events occur, but the
particles do not move. We first treat the case when ε = +1.
Proposition 2.3. Assume that ε = +1.

(i) If α > 2, then S1 is degenerate.

(ii) If 0 < α ≤ 2, then there exists an α-stable Lévy process (ξt)t≥0 such that
St is reduced to a single atom at ξt, viz. St = δξt for all t ≥ 0, a.s.

Proof. By the self-similarity property of Lemma 2.1(ii), we have for all c > 0

Scα([−1, 1])(d)=(cS1)([−1, 1]) = S1([−1/c, 1/c]).

Letting c→ 0+ and recalling that S0 = δ0, we see that S1(R) = 1 a.s., meaning
that S1 is reduced to a single atom. Plainly, the same holds more generally for
St for all t ≥ 0. If we write ξt for the location of the unique atom of St, then
the branching property of the process (St)t≥0 translates into independence and
stationarity of the increments of (ξt)t≥0. The latter further inherits càdlàg paths
and self-similarity from (St)t≥0, so (ξt)t≥0 must be an α-stable Lévy process.
Since the latter are degenerate when α > 2, this completes the proof.

Our purposes in the rest of this section are, first to provide a construction
of fairly natural examples of branching-stable processes with a negative scaling
exponent −α, and second, to show that actually any branching-stable process
with scaling exponent−α can be obtained by this construction. In this direction,
we start by introducing some notation.

We write P∗+ for the space formed by the sequences x = (xk)k≥1 ∈ P with
xk ∈ (0,∞] for all k ≥ 1 and x1 < ∞. The building block of our construction
consists of a finite measure λ 6= 0 on P∗+ such that

c(λ) :=
∫
P∗+

∑
k≥1

x−αk λ(dx) <∞. (2.1)

We first define a sigma-finite measure Λ∗ on P∗+, such that for every measurable
functional F : P∗+ → R+,∫

P∗+
F (x)Λ∗(dx) :=

∫ ∞
0

yα−1
∫
P∗+

F (yx)λ(dx)dy. (2.2)
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Next consider a Poisson point process N on (0,∞) × P∗+ with intensity
dt×Λ∗(dx). Viewing each atom (t,x) of N as a sequence of atoms ((t, xk))k≥1
on the fiber {t} × (0,∞) (and ignoring atoms (t,∞) if any), N induces a point
process Z1 on (0,∞)2 defined by

〈Z1, f〉 :=
∫

(0,∞)×P∗+
〈x, f(t, ·)〉N(dt, dx),

where f is a generic measurable nonnegative function on (0,∞)2 and

〈x, f(t, ·)〉 =
∑
k≥1

f(t, xk).

Note from elementary Poissonian calculus that if we write µ1 for the intensity
measure of Z1, then for every t, a > 0, we have

µ1((0, t]× (0, a]) = E(Z1((0, t]× (0, a]))

= t

∫
P∗+

∑
k≥1

1{xk≤a}Λ
∗(dx)

= t

∫
P∗+

∑
k≥1

∫ ∞
0

1{yxk≤a}y
α−1dyλ(dx)

= α−1taα
∫
P∗+

∑
k≥1

x−αk λ(dx)

= α−1c(λ)taα.

We thus get the identity

µ1(dt,dx) = c(λ)xα−1dtdx, (t, x) ∈ (0,∞)2. (2.3)

We now view Z1 as the point process describing the reproduction of an
individual in a CMJ branching process in R+. That is, an atom of Z1 at
(t, x) ∈ R2

+ is interpreted as a birth event occurring when the age of the parent
is t and where the child is located at distance x at the right of its parent. Note
that the parent may beget several children at the same age, this corresponds
to the situation where (t,x) is an atom of N with x ∈ P∗+ having more than
one atom. We stress that infinitely many births happen on every finite time
interval, although this is usually not the case for standard CMJ processes.

The construction of this CMJ branching process can be realized as follows
using a branching random walk (Zn)n≥0 on R2

+ with reproduction law Z1. We
consider the point measure

⊔
n≥0 Zn that consists of all the atoms (t, x) ap-

pearing in the branching random walk (Zn)n≥0, possibly repeated according to
their multiplicities. We interpret this point measure on R2

+ as a population of
static individuals living in R+, which grows as time passes. An atom (t, x) of⊔
n≥0 Zn marks the birth of a new individual at time t and position x. Once an

individual is born, it remains at its birth position forever. For every t ≥ 0, we
write Xt for the point process on R+ that represents the locations of particles
alive at time t, viz.

〈Xt, g〉 =
∞∑
n=0

∫
[0,t]×R+

g(x)Zn(ds,dx), (2.4)
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where g : R+ → R+ stands for a generic measurable function, and of course
Z0 = δ(0,0) as usual.

Theorem 2.4. (i) The process (Xt)t≥0 constructed above is branching-stable
with scaling exponent −α.

(ii) Conversely, for every branching-stable process with scaling exponent −α,
say (St)t≥0, there exists a finite measure λ on P∗+ satisfying (2.1), such
that (Xt)t≥0 and (St)t≥0 have the same law.

We stress that different finite measures λ on P∗+ may yield via (2.2) the
same measure Λ∗ and hence the same branching-stable process (Xt)t≥0 (in law);
however, if we further impose that λ({x ∈ P∗+ : x1 6= 1}) = 0, then uniqueness
of λ follows; see the forthcoming Lemma 2.9.

The proof of the first part of Theorem 2.4 is rather easy:

Proof of Theorem 2.4(i). The key point in the definition (2.2) of Λ∗ is that for
every c > 0 and measurable functional F : P∗+ → R+, one has∫

P∗+
F (cx)Λ∗(dx) =

∫ ∞
0

yα−1
∫
P∗+

F (cyx)λ(dx)dy

= c−α
∫ ∞

0
rα−1

∫
P∗+

F (rx)λ(dx)dr

= c−α
∫
P∗+

F (x)Λ∗(dx).

In words, the image of Λ∗ by the operator which dilates locations of atoms by
a factor c is c−αΛ∗. By the mapping theorem for Poisson point processes, the
image of N on R+ × P∗+ by the map (t, x) 7→ (c−αt, cx) is also Poisson with
intensity dt× Λ∗(dx), and thus has the same distribution as N.

As a consequence, the distribution of the point process Z1 on R+ × R+ is
invariant for the map (t, x) 7→ (c−αt, cx), and then the same also holds for
the branching random walk (Zn)n≥0. A fortiori, the law of the point process∑
n≥0 Zn is invariant for the map (t, x) 7→ (c−αt, cx), and this entails the self-

similarity of the process (Xt)t≥0.
The branching property of (Xt)t≥0 is readily seen from the interpretation

of (Xt)t≥0 as a CMJ branching process. Recall that individuals are static and
beget children around their position according to a Poisson point process with
intensity dt×Λ∗(dx). In this setting, the translation invariance of the Lebesgue
measure dt entails that the reproduction process of individuals is also invari-
ant by time shift (meaning that the reproduction is age-independent), and the
branching property of (Xt)t≥0 follows from the restriction theorem of Poisson
point measures.

It remains to verify that (1.1) holds for S1 = X1. In this direction, note
from (2.3) that for every r > 0, there is the identity

E

(∫
(0,∞)2

e−rs−xZ1(ds,dx)
)

= r−1c(λ)Γ(α).
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We choose r > c(λ)Γ(α), so that the geometric series
∑
n≥0(r−1c(λ)Γ(α))n

converges. This entails that∫
(0,∞)

e−rt E (〈Xt, e−1〉) dt = r
∑
n≥0

E

(∫
(0,∞)2

e−rs−xZ1(ds,dx)
)
<∞,

and thus (1.1) holds for ϑ = 1 (and then more generally for any ϑ > 0, by
scaling).

The reflected branching-stable process (−Xt)t≥0 is a branching Lévy pro-
cess in the terminology of [BM17b] (recall that reflexion is needed to fit the
framework there). More precisely, comparing the construction here and that in
[BM17b] actually identifies its characteristics (σ2, a,Λ): the Gaussian coefficient
is σ2 = 0, the drift coefficient is a = 0, and the so-called branching Lévy mea-
sure Λ is simply the image of Λ∗ by the map x 7→ (0,−x1,−x2, . . .) (recall that
parents survive at every birth event and remain at the same location, which
explains that the first coordinate is always 0).

In particular, for every θ > 0, we have∫
P∗+

∞∑
i=2

eθyiΛ(dy) =
∫
P∗+

∞∑
k=1

e−θxkΛ∗(dx)

=
∫ ∞

0
yα−1

∫
P∗+

∞∑
k=1

e−yθxkλ(dx)

= θ−αΓ(α)
∫
P∗+

∞∑
k=1

x−αk λ(dx)

= c(λ)Γ(α)θ−α.

As a consequence, we see that both the requirement (1.4) in [BM17b] as well as
the more demanding ones of Corollary 6.8 (from the same paper) are satisfied.

One could establish Theorem 2.4(ii) by showing that conversely, the char-
acteristics (σ2, a,Λ) of any branching Lévy process that is further self-similar
with a negative scaling exponent are necessarily given by σ2 = a = 0 and a
branching Lévy measure Λ as above. This would require working with cen-
soring techniques developed in [BM17b], and would make the interpretation of
branching-stable processes as CMJ branching processes less clear, so we shall
rather follow a slightly different approach.

The first step of the proof of Theorem 2.4(ii) consists in the following obser-
vation.

Lemma 2.5. Let (St)t≥0 be a branching-stable process with negative scaling
exponent −α. For all t > 0, we have

St({0}) = 1 , St((−∞, 0)) = 0 and St((0,∞)) =∞ a.s.

Proof. Just as in the proof of Proposition 2.3, we have for all a > 0

Sa−α([−1, 1])(d)=S1([−1/a, 1/a]).

Letting now a→∞, we see that S1({0}) = 1 a.s., meaning that S1 has always
a unique atom at 0, and by self-similarity, this extends to St for all t ≥ 0.
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The second assertion of the statement is proved by contradiction. Suppose
that P(St((−∞, 0)) ≥ 1) = p > 0 for some t > 0. Then by self-similarity,
the same holds for all t > 0, and thus P(St((−∞, 0])) ≥ 2) = p > 0. We
take t = 2−n and deduce from Lemma 2.1(ii) that S1((−∞, 0]) is stochastically
bounded from below by the size of the 2n-th generation of a Galton-Watson
process with reproduction law ν with ν(0) = 0 and ν(1) ≤ 1− p. It follows that
S1((−∞, 0]) =∞ a.s., which contradicts the fact that S1 ∈ P a.s.

Recall that the degenerate case S1 = δ0 a.s. has been excluded, and therefore
P(S1((0,∞)) > 0) > 0. Then essentially the same argument as above shows that
we must have St((0,∞)) =∞ a.s. for all t > 0.

Lemma 2.5 shows that St always consists of a single atom at 0 and a non-
decreasing sequence of atoms in (0,∞). It incites us to view that atom at 0 as
the ancestor of a population and those in (0,∞) as an element of P∗+ describing
the descent of that ancestor at time t. That is, using the branching property, we
view (St)t≥0 as a population model in [0,∞), such that individuals are eternal
and static, and beget progeny located at their right as time passes. In this
direction, we recall the natural genealogical structure of the branching-stable
process as described in Section 6.1 in [BM17b] (see in particular Lemma 6.2 of
that paper for the proof of its existence). Roughly speaking, for every t ≥ 0
and every j ≥ 1, one can define a càdlàg path xj,t : [0, t]→ [0,∞), where xj,t(s)
shall be viewed as the ancestor at time s of the j-th atom of St (in particular
the terminal value xj,t(t) is the j-th atom of St). In other words, xj,t describes
the ancestral lineage of the j-th atom of St.

Lemma 2.6. For every t ≥ 0 and every j ≥ 1, the ancestral lineage xj,t is a
non-decreasing step function a.s.

Proof. We recall the pathwise many-to-one formula ([BM17b, Lemma 6.4]): For
every non-negative measurable functional f on the space of càdlàg paths on [0, t],
we have

E

∑
j≥1

f(xj,t(s) : 0 ≤ s ≤ t)

 = E
(

e−θξt+tκ(θ)f(ξs : 0 ≤ s ≤ t)
)
,

where (ξs)s≥0 is a certain Lévy process and κ(θ) = logE(〈S1, e−θ〉) (recall the
non-degeneracy condition (1.1)).

In this setting, Lemma 2.5 implies that ξt ≥ 0 a.s. and P(ξt = 0) > 0, so
(ξs)s≥0 must be a compound Poisson process in [0,∞). In particular, its paths
are non-decreasing step functions a.s. We complete the proof using the pathwise
many-to-one formula with f(x) = 1 − 1{x is a non-decreasing step function} and the
union bound.

Lemma 2.6 enables us to define a birth-time and a generation for each atom
of St. Specifically, the birth-time of the j-th atom of St is the instant bj,t ≤ t
at which its ancestral lineage makes its last jump,

bj,t := inf{s ≤ t : xj,t(s) = xj,t(t)},

and its generation gj,t is the number of jumps of its ancestral lineage,

gj,t := #{0 < s ≤ t : xj,t(s−) < xj,t(s)}.
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Plainly, if t′ > t, the j-th atom of St is also the j′-th atom of St′ for some j′ ≥ j,
and then the ancestral lineage xj′,t′ remains constant on the time interval [t, t′],
so the birth-time and generation remain of course unchanged.

We can now define for every n ≥ 0 the point process Yn in R2
+ whose

atoms are given by the birth-times and locations of the atoms with generation
n that appear in the branching-stable process. Specifically, for every t ≥ 0 and
B ∈ B(R+), we set

Yn([0, t]×B) := #{j ≥ 1 : gj,t = n & xj,t(t) ∈ B}.

Observe that for every t ≥ 0, one recovers St as

St(B) =
∑
n≥0

Yn([0, t]×B), B ∈ B(R+),

so the proof of Theorem 2.4(ii) is now reduced to establishing that the process
(Yn)n≥0 is actually a branching random walk, and that its reproduction law
Y1 is of the same type as Z1 for an appropriate choice of λ.

Lemma 2.7. The process (Yn)n≥0 is a branching random walk in R2
+.

Proof. We shall establish the first claim by approximation based on discrete time
skeletons. For every fixed ` ≥ 0, we consider the restriction of the branching-
stable process to times in D` := {k2−` : k ≥ 0}. Clearly (St)t∈D` is a branching
random walk in discrete time, whose ancestral lineages are simply obtained from
those of (St)t≥0 by restriction to D`.

For t ∈ D`, we write b(`)
j,t for the birth-time of the j-th atom of St and g

(`)
j,t

for its generation as viewed from the skeleton (St)t∈D` , that is

b
(`)
j,t := inf{s ≤ t, s ∈ D` : xj,t(s) = xj,t(t)} = 2−`d2`bj,te,

and
g

(`)
j,t := #{s < t, s ∈ D` : xj,t(s) < xj,t(s+ 2−`)}.

We also write Y(`)
n for the random point measure such that for every t ∈ D`

and B ∈ B(R+):

Y(`)
n ([0, t]×B) = #{j ≥ 1 : g(`)

j,t = n & xj,t(t) ∈ B}.

In particular, Y(`)
0 = δ(0,0) and Y(`)

1 is the point process induced by the
birth-times and locations of individuals of the first generation. These form an
optional line in the terminology of Jagers [Jag89] at which the strong branching
property holds (Theorem 4.14 in [Jag89]). By iteration, we get that (Y(`)

n )n≥0
is a branching random walk in R2

+.
To conclude the proof, we simply need to consider limits as `→∞. Indeed,

we have plainly for every dyadic rational time t and j ≥ 1 that |b(`)
j,t−bj,t| ≤ 2−`,

and it also follows from Lemma 2.6 that g(`)
j,t = gj,t provided that ` is sufficiently

large. Since the restriction of Yn to [0, t]× R+ is given by∑
j≥1

1{gj,t=n}δ(bj,t,xj,t(t)),

12



and similarly the restriction of Y(`)
n to [0, t]× R+ by∑

j≥1
1{

g
(`)
j,t

=n
}δ(b(`)

j,t
,xj,t(t)),

we deduce that almost surely, the point measure Y(`)
n converges vaguely on R2

+
to Yn as ` → ∞. On the other hand, because children are always born at
the right of their parent (and are of course also born after their parent), vague
convergence suffices to ensure that the branching property for (Y(`)

n )n≥0 can be
transferred to (Yn)n≥0.

We now turn our attention to the reproduction law of the branching random
walk (Yn)n≥0, and in this direction, it is convenient to handle all together the
atoms of the first generation which are born at the same time. That is, we
consider the point measure M on (0,∞)×P∗+, where the atoms (t,x) of M are
such that x = (xk)k≥1 ∈ P∗+ is the ranked sequence of the atoms of the first
generation in the branching-stable process which are born at time t > 0. In
particular, we have∫

(0,∞)×P∗+
〈x, f(t, ·)〉M(dt,dx) = 〈Y1, f〉,

for every measurable nonnegative function f on (0,∞)2, with the notation

〈x, f(t, ·)〉 =
∑
k≥1

f(t, xk).

Lemma 2.8. In the notation above, M is a Poisson point process in (0,∞)×P∗+
with intensity dt⊗M(dx), where M is some measure on P∗+ which satisfies the
following self-similarity property: for every c > 0, the image of M by the dilation
x 7→ cx is c−αM .

Proof. Let A ⊂ P∗+ be a measurable set with a := sup{x1 : x ∈ A} < ∞, and
introduce the process

NA(t) = M([0, t]×A), t ≥ 0,

which counts the number of times when the ancestor begets a progeny in A.
Plainly NA(t) < ∞ a.s. for every t ≥ 0, since otherwise the point measure St
would have infinitely many atoms in [0, a]. The branching property of (St)t≥0
implies that the counting process NA has independent and stationary incre-
ments in the natural filtration generated by the branching-stable process and
its genealogy. Thus NA is a Poisson process with intensity which we denote by
M(A).

Next, if we consider the counting processes NA1 , NA2 , . . . associated to pair-
wise disjoint measurable sets Ai ⊂ P∗+, we get a family of Poisson processes
in the same filtration which have no common jump-times and therefore they
are independent. This entails that M is a Poisson point process, that M is a
measure on P∗+ with M(A) <∞ whenever sup{x1 : x ∈ A} <∞, and that the
intensity of M is given by dt⊗M(dx).

We finally note from the self-similarity property of branching-stable pro-
cesses that the reproduction law Y1 is invariant by the scaling transformation
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which maps every atom (t, x) ∈ (0,∞)2 to (c−αt, cx). This entails that the
law of M is invariant by the transformation (t,x) 7→ (c−αt, cx). A fortiori, the
same holds for its intensity dt⊗M(dx), and in turn this shows the self-similarity
property of M .

We can now complete the proof of Theorem 2.4(ii) by checking that the
measure M in Lemma 2.8 has necessarily the form (2.2).

Lemma 2.9. Let M be a measure on P∗+ with M({x ∈ P∗+ : x1 ≤ 1}) < ∞,
such that for every c > 0, the image of M by the dilation x 7→ cx is c−αM .
There exists a unique finite measure m on P∗+ with m({x ∈ P∗+ : x1 6= 1}) = 0
such that ∫

P∗+
F (x)M(dx) =

∫ ∞
0

yα−1
∫
P∗+

F (yx)m(dx)dy,

for every measurable function F : P∗+ → R+.

Proof. The self-similarity entails thatM({x ∈ P∗+ : x1 ≤ y}) = cyα for all y > 0,
where c is some finite constant. We then consider a regular disintegration of M
with respect to x1; specifically there is a kernel (m(y,dx))y>0 of finite measures
on P∗+ such that for every measurable functional G : R+ × P∗+ → R+,∫

P∗+
G(x1,x)M(dx) =

∫ ∞
0

yα−1
∫
P∗+

G(y,x)m(y,dx)dy.

The self-similarity of M further implies that for every c > 0, the image of
m(y,dx) by the dilation x 7→ cx coincides with m(cy,dx) for almost all y > 0,
which enables us to define a finite measure m on P∗+ such that for almost all
y > 0, m(y,dx) coincides with the image of m by the dilation x 7→ yx, and the
representation of the statement follows.

3 Asymptotic behavior of the cumulative distri-
bution function

The purpose of this section is to analyze the asymptotic behaviors of St([0, x])
as x → ∞, respectively as t → ∞, where (St)t≥0 is a branching-stable process
with scaling exponent −α. Of course, the two are closely related, thanks to the
scaling property, and with no loss of generality, we shall mainly consider the
first and further focus on the case t = 1.

Recall from the previous section that (Zn)n≥0 is the branching random walk
in the quadrant R2

+ from which the branching-stable process (St)t≥0 is con-
structed (thanks to Theorem 2.4(ii), we may agree from now on that S = X in
the notation there), and write µn for its intensity measure, that is∫

(0,∞)2
f(t, x)µn(dt,dx) = E(〈Zn, f〉).

Lemma 3.1. For every n ≥ 1, there is the identity

µn(dt, dx) = c(λ)nΓ(α)n

(n− 1)!Γ(αn) t
n−1xnα−1dtdx.
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Proof. For n = 1, this identity has been already checked in (2.3). Then recall
that the intensity measures in a branching random walk are given by convolution
powers of the intensity of the reproduction law, so µn = µ∗n1 . The general
formula follows straightforwardly, for instance by computing Laplace transforms.

For the sake of simplicity, we assume throughout the rest of this work that

c(λ)Γ(α) = 1, (3.1)

as the general case can be recovered easily by dilation. Hence, Lemma 3.1 reads

E(〈Zn, f〉) = 1
(n− 1)!Γ(αn)

∫ ∞
0

∫ ∞
0

f(t, x)tn−1xnα−1dtdx. (3.2)

This yields the intensity measure of the branching-stable point measure St,
whose cumulative distribution function bears a simple relation to so-called
Wright (generalized Bessel) function

φ(%, β, z) :=
∞∑
k=0

zk

k!Γ(%k + β) .

We refer to Gorenflo, Luchko and Mainardi [GLM99] for a survey of analytic
properties of this function and its applications to partitions in combinatorics
and to certain PDE’s of fractional order.

Proposition 3.2. (i) For every x > 0 and t > 0, we have

E(St([0, x])) = φ(α, 1, txα).

(ii) For every θ > 0, we have

E

(∫
[0,∞)

e−θxSt(dx)
)

= exp(tθ−α).

Proof. The first assertion follows immediately from (3.2), the construction of St
in terms of (Zn)n≥0, and the definition of Wright functions above. Indeed, by
(2.4), we have

E(St([0, x])) =
∑
n≥0

E
(
〈Zn,1{[0,t]×[0,x]}〉

)
=
∑
n≥0

1
(n− 1)!Γ(αn)

∫ x

0

∫ t

0
sn−1ynα−1dtdy

=
∞∑
n=0

tn

n!
xnα

Γ(αn+ 1) = φ(α, 1, txα).

The second then derives readily from the first and the identity∫ ∞
0

e−θxxβ−1dx = θ−βΓ(β),

which concludes the proof.
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We next point at the following consequence of Proposition 3.2(i), which is
obtained by specializing Wright’s asymptotic expansion (Theorem 2 in Wright
[Wri35] or Theorem 2.1.2 in [GLM99]) of φ(%, β, z) as z →∞ to our setting.

Corollary 3.3. It holds that

E(S1([0, x])) ∼
exp

(
(α+ 1)(x/α)α/(α+1))√

2π(α+ 1)α1/(α+1)xα/(α+1)
as x→∞.

The main result of this section is a weak limit theorem for St([0, x]) properly
normalized, which reinforces considerably Corollary 3.3. It relies on the follow-
ing assumption on the measure Λ (or, equivalently on λ): for some p ∈ (1, 2],
we have∫

P

∑
k≥1

e−xk
p

Λ(dx) =
∫ ∞

0
yα−1

∫
P

∑
k≥1

e−yxk
p

λ(dx)dy <∞. (3.3)

Theorem 3.4. Assume (3.3) holds for some p ∈ (1, 2]. Then as x→∞, there
is the convergence in distribution:

x
α

2(α+1) exp
(
−(α+ 1)(x/α)α/(α+1)

)
S1([0, x]) =⇒W,

where W is a positive random variable in Lp(P) with

E(W ) =
(

2πα1/(1+α)(α+ 1)
)−1/2

.

The scaling property enables us of course to rephrase Corollary 3.3 in the
form

E(St([0, 1])) ∼
exp

(
(α+ 1)(t/αα)1/(α+1))√

2π(α+ 1)(αt)1/(α+1)
as t→∞,

and, in turn, provided that (3.3) holds, Theorem 3.4 as

t
1

2(α+1) exp
(
−(α+ 1)(t/αα)1/(α+1)

)
St([0, 1]) =⇒W as t→∞. (3.4)

Still assuming (3.3), it is interesting to point out that, for every a > 0, there is
also the strong (i.e. almost sure) convergence

lim
t→∞

√
t exp

(
−(α+ 1)(a/α)α/(α+1)t

)
St([0, at]) = a−

α
2(α+1)W (a), (3.5)

where W (a) is a random variable with the same distribution as W ; see the
forthcoming Corollary 3.7 for an (essentially) equivalent result. Formally, one
recovers (3.4) from (3.5) by taking a = 1/t. We stress however that the con-
vergence in (3.5) holds in the strong sense, whereas those in Theorem 3.4 and
(3.4) hold only in the weak sense; see Remark 3.8 below.

The proof of Theorem 3.4 relies crucially on results due to Biggins [Big77,
Big92]. We observe from the branching property and Proposition 3.2(ii), that
for every θ > 0, the process

Wt(θ) := exp(−tθ−α)
∫

[0,∞)
e−θxSt(dx) , t ≥ 0

is a positive martingale, with terminal values W (θ) := limt→∞Wt(θ).
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Proposition 3.5. (i) The process (W (er))r∈R is stationary.

(ii) If (3.3) holds for some p ∈ (1, 2], then for every θ > 0, the martingale
(Wt(θ))t≥0 is bounded in Lp(P) with terminal value W (θ) > 0 a.s.

Proof. (i) Recall from our notation for dilations that for every point measure
x ∈ P and a > 0, there are the identities

〈ax, g〉 =
∫

[0,∞)
g(y)(ax)(dy) =

∑
k≥1

g(axk) =
∫

[0,∞)
g(ay)x(dy).

The scaling property of Theorem 2.4(i) implies that for every c > 0, the pro-
cesses (cθSt : t ≥ 0, θ > 0) and (θSc−αt : t ≥ 0, θ > 0) have the same distribu-
tion. Hence the limits

lim
t→∞

e−t(cθ)−α
∫

[0,∞
e−cθxSt(dx) = W (cθ)

and
lim
t→∞

e−tc
−αθ−α

∫
[0,∞

e−θxSc−αt(dx) = W (θ)

have the same law, simultaneously for all θ > 0.
(ii) Essentially, this follows from the version of Biggins’ martingale conver-

gence theorem for branching Lévy processes which has been recently established
in [BM17a]. To fit the setting of [BM17a], we rather consider the reflected pro-
cess (−St)t≥0.

Recall from the discussion after the proof of Theorem 2.4(i) that (−St)t≥0
is a branching Lévy process with branching Lévy measure Λ. Further Propo-
sition 3.2(ii) identifies the so-called cumulant as κ(θ) = θ−α (this can also be
checked directly from the Lévy-Khintchine type formula (5.4) in [BM17b]). The
conditions κ(pθ) < pκ(θ) and κ(qθ) < ∞ for some q > p obviously hold for all
θ > 0 and p > 1. We then deduce from Proposition 1.4 in [BM17a] that the
martingale (Wt(θ))t≥0 is bounded in Lp(P) whenever∫

P
〈x̃, eθ·〉p1{〈x̃,eθ·〉>2}Λ(dx) <∞,

with the notation x̃ = (0,−x1,−x2, . . .), that is∫
P

(
〈x, e−θ·〉+ 1

)p 1{〈x,e−θ·〉>1}Λ(dx) <∞.

It is easily seen that this is equivalent to (3.3).

Remark 3.6. Using the branching property of the branching Lévy process, one
can obtain an identity in distribution that characterizes the law of the terminal
value W (θ). This equation is often called the smoothing transform (see [Liu98,
BK05, ABM12]). The process (W (er), r ∈ R) therefore has multiple features of
interest, that justify further investigations.

We can now lift from Corollary 4 of Biggins [Big92] the following local limit
theorem.
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Corollary 3.7. Assume (3.3) for some p ∈ (1, 2], and let f : R → R be a
directly Riemann integrable function with compact support. Then

lim
t→∞

√
t exp

(
−(α+ 1)θ−αt

) ∫
R+

f(y − αθ−α−1t)St(dy)

= W (θ)√
2πα(α+ 1)θ−α−2

∫
R
f(y)eθydy,

where the limit is uniform for θ in compact subsets of (0,∞), almost surely.

Corollary 3.7 describes the precise asymptotic behaviour of the point mea-
sure St in the neighbourhood of −κ′(θ)t for any 0 < θ < ∞, where κ′(θ) =
−αθ−α−1, and in this regime, the limit involves the terminal value W (θ) of
the additive martingale as an asymptotic weight. Roughly speaking, recalling
from the first statement in Proposition 3.5 that the distribution of W (θ) does
not depend on θ and using the scaling property of (St)t≥0, yields the proof of
Theorem 3.4 by establishing that a similar behaviour holds for the boundary
case θ = 0, but with weak convergence instead of strong convergence.

Proof of Theorem 3.4. Specialising Corollary 3.7 for θ = 1 and the directly
Riemann integrable f(x) = 1{−a≤x≤0} for some given a > 0, we get

lim
t→∞

√
2πtα(α+ 1)e−(α+1)tSt([αt− a, αt]) = (1− e−a)W (1) a.s.

By the scaling property, this translates into the weak convergence as t→∞√
2πtα(α+ 1)e−(α+1)tS1([αt1+1/α − at1/α, αt1+1/α]) =⇒ (1− e−a)W,

where W denotes a random variable distributed as W (1). Since a can be picked
arbitrarily large, we deduce that for all y > 0, one has

lim inf
t→∞

P
(√

2πtα(α+ 1)e−(α+1)tS1([0, αt1+1/α]) > y
)
≥ P (W > y) .

On the one hand,∫ ∞
0

P
(√

2πtα(α+ 1)e−(α+1)tS1([0, αt1+1/α]) > y
)

dy

=
√

2πtα(α+ 1)e−(α+1)t E
(
S1([0, αt1+1/α])

)
,

and we see from Corollary 3.3 that this quantity converges to 1 as t→∞. On
the other hand, recall from Proposition 3.5(ii) that∫ ∞

0
P (W > y) dy = E(W ) = 1.

We deduce from a version of Scheffé’s lemma that actually

lim
t→∞

P
(√

2πtα(α+ 1)e−(α+1)tS1([0, αt1+1/α]) > y
)

= P (W > y) in L1(dy).

Setting x = αt1+1/α and W = W/
√

2π(α+ 1)α1/(α+1), yields our claim.
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Remark 3.8. Note from the stationarity of (W (er), r ∈ R), that one has plainly
the weak convergence

W (θ) =⇒W both as θ → 0+ and θ →∞.

To see that the convergence above cannot hold in the almost sure sense, observe
from stationarity that for any r ∈ R, the pair (W (1),W (2)) has the same distri-
bution as (W (er),W (2er)). Thus, if W (er) converged almost surely as r →∞,
say towards W (∞), then so would W (2er), which would force W (1) = W (2) a.s.
This is absurd, because obviously for every t > 0, Wt(1) 6= Wt(2) with positive
probability, so the terminal values of these two uniformly integrable martingales
cannot coincide a.s. This explains why the convergence in Theorem 3.4 cannot
be strengthened to a.s. convergence either.

4 On the genealogy of atoms
The aim of this section is to investigate the genealogy of atoms of a branching-
stable point measure with negative scaling exponent, viewed as individual in a
CMJ branching process. We first describe the ancestral lineage of a typical par-
ticle at generation n (often referred to as the spine), and then turn our attention
to asymptotic results concerning the minimal position of such particles.

Recall first that S1 is constructed as the superposition of the projections on
the x-axis of the point measures 1{t≤1}Zn(dt,dx) for n ≥ 0. In this direction,
if (t, x) is an atom in Zn with t ≤ 1, we call t the birth-time of the atom x in
S1 and n the generation of x. In this case, we further denote by

0 < t1 < . . . < tn := t, and 0 < x1 < . . . < xn := x,

the birth-times and, respectively, the positions of the ancestors of x. To shorten
the notation we shall often use an upper-bar, e.g. t and x, to denote the corre-
sponding n-dimensional vectors.

The first result in this Section is a many-to-one type formula which describes
the distribution of (t, x) for “typical” atoms at generation n. In this direction,
let (Sn)n≥0 denote a random walk on R+ whose increments have the gamma
distribution with parameter (α, 1), that is with density Γ(α)−1xα−1e−x for x >
0. Let also (Ui)i≥1 be i.i.d. copies of a uniform random variable on [0, 1], and
set An := U1 · · ·Un for n ≥ 1, where the notation A refers to age.

Proposition 4.1. For every n ≥ 1 and f :
(
[0, 1] × R+

)n → R+ measurable,
we have:

E

(∫
[0,1]×R+

f
(
(1− ti, xi)i≤n

)
Zn(dt, dx)

)
= E

(
f
(
(Ai, Si)i≤n

)
eSn

n−1∏
i=1

Ai

)
.

(4.1)

Remark 4.2. As a check, a direct application of Proposition 4.1 with f(t, x) =
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1{xn≤a} gives

E
(
Zn
(
[0, 1]× [0, a]

))
= E

(∫
[0,1]×R+

1{xn≤a}Zn(dt,dx)
)

= E
(
1{Sn≤a}e

Sn
n−1∏
i=1

Ai

)
= 1

(n− 1)!

∫ a

0
ey y

αn−1e−y

Γ(αn) dy

= aαn

n!Γ
(
αn+ 1

) ,
which is in agreement with Lemma 3.1.

Proof. The proof is done by induction. The case n = 1 merely follows from
(2.3). Next, assume that the formula has been established for some n ≥ 1,
consider a measurable function f :

(
[0, 1]× R+

)n+1 → R+ and define for every
0 < t1 < . . . < tn < 1 and 0 < x1 < . . . < xn

F
(
(1− ti, xi)i≤n

)
= E

(∫
[0,1−tn]×R+

f
(
(1− t1, x1), . . . , (1− tn, xn), (1− tn − t, xn + y)

)
Z1(dt, dy)

)
.

The branching property and (conditional) Fubini’s theorem show that

E

(∫
[0,1]×R+

f
(
(1− tj , xj)j≤n+1

)
Zn+1(dt,dx)

)

= E

(∫
[0,1]×R+

F
(
(1− ti, xi)i≤n

)
Zn(dt,dx)

)

= E
(
F
(
(Ai, Si)i≤n

)
eSn

n−1∏
i=1

Ai

)
,

(4.2)

where the last equality stems from the induction assumption.
By Lemma 3.1 and Campbell’s formula, we see that F

(
(1 − ti, xi)i≤n

)
is

equal to∫ 1−tn

0

∫ ∞
0

f
(
(1− t1, x1), . . . , (1− tn, xn), (1− tn − s, xn + y)

)
y−α−1c(λ)dsdy.

Next, we use the change of variables u = s/(1 − tn) and the normalization
assumption (3.1) to rewrite the above as

(1− tn)
∫ 1

0

∫ ∞
0

f
(
(1− t1, x1), . . . ,

(
(1− tn)(1− u), xn + y)

)
ey y
−α−1e−y

Γ(α) dudy.

Let Un+1 be a uniform random variable and γn+1 an independent gamma(α, 1)
random variable, so the above, and hence F

(
(1− ti, xi)i≤n

)
, reads

(1− tn)E
(
f
(
(1− t1, x1), . . . ,

(
(1− tn)Un+1, xn + γn+1)

)
eγn+1

)
. (4.3)
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Plugging (4.3) into (4.2) yields

E

(∫
[0,1]×R+

f
(
(1− tj , xj)j≤n+1

)
Zn+1(dt, dx)

)

= E
(
f
(
(Ai, Si)i≤n+1

)
eSn+1

n∏
i=1

Ai

)
,

which concludes the proof.

We borrow the terminology from the branching random walk literature and
call (An, Sn) the spine of S1 in generation n. The many-to-one formula is a
powerful tool in the study of branching random walks. Classically, it is used
to calculate quantities depending on the first moment of Zn. For example,
one can recover the first formula in Proposition 3.2 with t = 1 by choosing
f(t, x) = 1{xn≤x} in (4.1) and summing over all possible n ∈ N.

We shall now rely on Lemma 4.1 to derive asymptotic results about the
minimal particle in Zn restricted to the strip [0, 1]× R+, namely,

zn := sup{z; Zn
(
[0, 1]× [0, z]

)
= 0}. (4.4)

By scaling, zn determines the law of the minimal position in Zn restricted to any
strip [0, a]×R+ for all a > 0. In the next proposition, we obtain the asymptotic
behavior of zn as n→∞, which turn out to be rather different from the one in
classical branching random walks [Aı̈d13].

Proposition 4.3. It holds that

lim
n→∞

zn
n(α+1)/α = cα in probability, (4.5)

with cα := αe−(α+1)/α

Proof of the lower-bound. By first moment estimates, the many-to-one Propo-
sition 4.1 yields for every η > 0

P
(
zn ≤ (1− η)cαn

α+1
α

)
= P

(
Zn
(
[0, 1]× [0, (1− η)cαn

α+1
α ]) ≥ 1

)
≤
[
(1− η)cα

]αn
n(α+1)n

n!Γ
(
αn+ 1

)
. exp

(
nα log(1− η)

)
,

where the notation . means that the left-hand side is smaller than the right-
hand side up to a constant factor (not depending on n). In particular, this last
quantity is summable over n, so in view of Borel-Cantelli lemma, we get

lim inf
n→∞

znn
−α+1

α ≥ cα a.s.

The proof of the upper-bound relies on shape-type results for the convex
hull of Zn due to Biggins [Big78, Big80]. First, we use (2.3) to compute the
log-Laplace transform κ(a, b) of Z1 for a, b > 0:

κ(a, b) := logE
(∫

e−(at+bx)Z1(dt,dx)
)

= − log(abα).
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We then compute its Legendre transform κ∗:

κ∗(p, q) := inf
a,b>0

{
κ(a, b) + pa+ bq}

=
{

1 + α+ log p+ α log(q/α) if p, q > 0,
∞ otherwise.

Next we let Jn be the set of atoms in Zn re-scaled by 1/n, so that

Zn :=
∑
z∈Jn δnz,

and denote by Hn its convex hull. We readily lift from [Big78, Section 3] the
following statement.

Proposition 4.4. Let Cα := {(p, q) : κ∗(p, q) ≥ 0} and intCα be its interior.
Then we have

intCα ⊂ lim inf
n→∞

Hn ⊂ lim sup
n→∞

Hn ⊂ Cα a.s.

With Proposition 4.4 in hands, we can complete the proof of Proposition 4.3
by establishing the converse upper-bound. We stress that our argument only
yields an upper-bound in probability, because we rely on the scaling property
of Zn to apply Proposition 4.4.

Proof of the upper-bound. To start with, notice that the set Cα in Proposi-
tion 4.4 is given by

Cα = {(p, q) : pqα ≥ ααe−(1+α)},

and recall that cα = αe−(α+1)/α.
Next, the scaling property of Zn yields that Zn[0, 1]×[0, t1/αx] and Zn[0, t]×

[0, x] have the same distribution. Therefore, fixing η > 0 arbitrarily small and
setting x = (cα + η)n and t = n, we get

P
(
Zn([0, 1]× [0, (cα + η)n(α+1)/α]) = 0

)
= P

(
Zn([0, n]× [0, (cα + η)n]) = 0

)
.

Recalling that Hn stands for the convex hull obtained from the atoms of Zn
re-scaled by 1/n, the above yields

P
(
znn
−α+1

α ≥ cα + η
)
≤ P

(
(1, cα + η) /∈ Hn

)
(4.6)

Then, observe that κ∗(1, cα + η) > 0 and hence (1, cα + η) ∈ intCα. On the
other hand, Proposition 4.4 states that intCα ⊂ lim infHn a.s. Putting the
pieces together, this implies that the right-hand side of (4.6) tends to zero as
n→∞, concluding the proof.
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