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Abstract

Reinforced Galton–Watson processes describe the dynamics of a popu-
lation where reproduction events are reinforced, in the sense that offspring
numbers of forebears can be repeated randomly by descendants. More
specifically, the evolution depends on the empirical offspring distribution
of each individual along its ancestral lineage. We are interested here in
asymptotic properties of the empirical distributions observed in the pop-
ulation, such as concentration, evanescence and persistence. For this, we
incorporate tools from the theory of large deviations to our preceding
analysis [4, 5].
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1 Introduction
Given a locally finite rooted tree, which we think of as encoding the genealogical
structure of a population, we look at out-degree sequences along branches from
the root. For any vertex v different from the root, this defines the empirical
offspring distribution at v by

µv := 1
|v|

|v|−1∑
i=0

δd(vi), (1.1)

where |v| ≥ 1 denotes the generation of v, d(vi) the number of children begotten
by the forebear vi of v at generation i < |v|, and, as usual, δ designates a Dirac
measure.

The classical Galton–Watson tree is an elementary population model in
which individuals reproduce independently and with a fixed reproduction law.
An easy combination of the well-known many-to-one formula for Galton–Watson
trees and Sanov’s theorem entails that for any small enough neighborhood G of
some probability measure ϱ on N = {1, 2, . . .}, the mean number of vertices v
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at generation n with µv ∈ G goes to 0 or to ∞ exponentially fast as n → ∞,
depending on whether the entropy of ϱ relative to ν,

H(ϱ|ν) :=
∑

ϱ(k) log
(

ϱ(k)
ν(k)

)
, (1.2)

is larger or smaller than

⟨ϱ, ln⟩ :=
∑

ϱ(k) ln k. (1.3)

Here and throughout the rest of this text, the notation
∑

is used for summation
over k, and we denote by ln the restriction of the natural logarithm log to N.

In the first case, ϱ is almost-surely evanescent for the empirical offspring
distributions of the Galton–Watson tree, in the sense that with probability one,
we can find a neighborhood G of ϱ such that the number of vertices v with
µv ∈ G is finite. In the second case, ϱ is persistent with positive probability, as
a.s. on the event of survival of the tree, for any neighbourhood G of ϱ, there
will be infinitely many vertices v such that µv ∈ G. Precise stronger statements
will be given and proven in Section 2.3; they should be viewed as benchmarks
for the present study.

Reinforced Galton–Watson processes were introduced in [4] by incorporat-
ing random repetitions of reproduction events in the evolution of usual Galton–
Watson processes. This depends on a memory parameter q ∈ (0, 1), which
accounts for the frequency of repetitions. For every n ≥ 1, conditionally given
the offspring numbers of individuals up to generation n − 1, individuals at gen-
eration n reproduce independently one from the others and as follows. With
probability q, the number of children of v is sampled from the empirical off-
spring distribution µv, and with complementary probability 1 − q, it is rather
sampled from the reproduction law ν. In words, for every individual, with the
obvious exception of the ancestor, we pick a forebear uniformly at random on
its ancestral lineage. Then, either with probability q, this individual begets
the same number of children as the selected forebear, or with complementary
probability 1 − q, the number of its children is an independent sample from the
reproduction law ν.

The growth of the averaged population size of reinforced Galton–Watson pro-
cesses has been determined in [4] using generating function techniques, and then
the survival and a.s. growth rate have been further studied in [5] introducing
martingale techniques. Here, we incorporate tools from large deviations theory
to our analysis and investigate asymptotic properties of empirical offspring dis-
tributions of individuals at large generations. Our main result, Theorem 4.1,
states an exponential concentration around a specific reproduction law, and
provides a sufficient condition for a given reproduction law to be evanescent or
persistent; see Definition 2.1 below for a precise definition.

The rest of the present work is organized as follow. Section 2 is devoted to a
few preliminaries on trees, basic background from large deviations theory, and
the presentation of benchmark results about empirical offspring distributions
in classical Galton-Watson processes. Section 3 deals with versions of Sanov’s
Large Deviations Principle for reinforced sampling; it mainly stems from earlier
contributions by Budhiraja and Waterbury [12] and ourselves [4]. Our main
results are presented and proven in Section 4. Last, in Section 5, we also point
at a sufficient condition for survival of reinforced Galton–Watson processes,
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which generalizes than that obtained previously in [5] and follows directly from
our analysis.

2 Preliminaries
In this section, we first introduce some definition and properties related to the
study of genealogical trees. In particular, we define the notions of evanescence
and persistence for empirical offspring distributions. We then recall in Sec-
tion 2.2 the Large Deviations Principles on finite alphabets, before applying it
to the Galton-Watson tree in Section 2.3.

2.1 Some definition and a many-to-one formula
We fix a probability measure ν on Z+ = {0, 1, . . .} with support

S = {k ∈ Z+ : ν(k) > 0}.

We assume throughout this work that S is finite1, #S < ∞; the uninteresting
case when S ∩N is a singleton is further ruled out. Recall that the restriction of
the logarithmic function to S is denoted here by ln2; it will play an important
role for this study. This requires a few obvious conventions when 0 ∈ S, namely

ln 0 = −∞ , e−∞ = 0 , 0 ln 0 = 0. (2.1)

We write PS ⊂ RS for the simplex of probability measures ϱ on S; the
support of such ϱ may of course be a strict subset of S. We use the notation

⟨ϱ, λ⟩ =
∑

ϱ(k)λ(k), λ ∈ [−∞, ∞)S ,

where, by an earlier convention, the sum runs over k ∈ S (in particular, observe
that ⟨ϱ, ln⟩ = −∞ iff ϱ(0) > 0).

Next, consider any rooted tree, say T , such that out-degrees of vertices of
T always belong to S. It is convenient to use implicitly the Ulam-Harris-Neveu
framework3, which enables us to view T as a subset of the Ulam tree

⋃
n≥0 Nn.

We stress that T is fixed (deterministic) in this section; however the same no-
tation T will rather refer to a random tree from Section 2.3 onwards. Recall
that empirical offspring distributions µv of vertices of T have been introduced
in (1.1), so that µv ∈ PS . We now give a key definition for the present work.

Definition 2.1. We say that ϱ ∈ PS is:

(i) evanescent if there exists some neighborhood G of ϱ in PS such that

#{v ∈ T : µv ∈ G} < ∞,

1This restriction comes from our previous work [4, 5], in which we observed that a reinforced
Galton-Watson process with a reproduction law of unbounded support would grow at a super-
exponential rate, thus would require very different methods to study.

2We found convenient to write ln k for the logarithm of a positive integer k and log x when
the argument is a positive real number x, even though of course the first function is merely
the restriction of the second to Z+. That way, we treat ln as a vector in RS .

3In short, this amounts to enumerating progenies in T and agreeing that the name of a
child is obtained by aggregating its rank in the progeny at the end of the name of its parent;
see e.g. [20].
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(ii) weakly persistent if ϱ is not evanescent, that is, if

#{v ∈ T : µv ∈ G} = ∞

for any neighborhood G of ϱ in PS ,

(iii) strongly persistent if there exists an infinite line of descent (vn)n≥1 in
T with

lim
n→∞

µvn
= ϱ.

Remark 2.2. 1. The definition is only relevant for infinite trees, since by a
compactness argument, T is finite if and only if all probability laws on S
are evanescent.

2. Plainly, a law ϱ with ϱ(0) > 0 cannot arise as an empirical offspring
distribution, and thus is necessarily evanescent.

Example 2.3. We determine the persistent and evanescent laws for the tree T
constructed as follows: starting with a binary tree, we graft to each node of
that tree an infinite line. In this tree, each individual has either 1 or 3 children,
depending on whether they belong to the original binary tree or were later
added. This tree can be written with Ulam-Harris notation as:

T =
{

u ∈ ∪n∈Z+{1, 2, 3}n : if u(i) = 3 then u(j) = 1 for all i + 1 ≤ j ≤ |u|
}

.

The strongly persistent measures are δ1 and δ3, whereas tδ1 + (1 − t)δ3 is a
weakly persistent measure for all t ∈ (0, 1). There are no evanescent law in
P{1,3} in that example.

∅

1 23

3111 12 21 2213 23

Figure 1: A representation of the tree T constructed in Example 2.3 encoded
with its Ulam–Harris notation. The vertices of the original binary tree are
represented as circles.
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In the forthcoming Section 2.3, we will analyze the case when T is random
and encodes a Galton–Watson process with reproduction law ν. We study the
case of a multitype Galton–Watson tree in Section 2.4, generalizing the example
above. The reinforced version, which is the main purpose of this work, will then
be considered in Section 4.

We end this section by presenting a version of the well-known many-to-one
formula to compute the number of vertices at a fixed generation with a given
empirical offspring distribution in T . Imagine that we distinguish a (possibly
finite) line of descent (Un), randomly and recursively as follows. The root of
T is of course the first element U0 of the distinguished line. Then, for each
n ≥ 0, as long as the distinguished vertex Un is not a leaf of T , Un+1 is chosen
uniformly at random among the offspring of Un. If Un is a leaf of T , then the
distinguished line ends.

We shall refer to (Un) as a harmonic line4 in T . For each generation k

for which the vertex Uk is well-defined, we write d̂k = d(Uk) for the number
of children on the harmonic line at generation k. If the line has stopped by
generation k, we write d̂k = 0 by convention. For all n ∈ N, we denote by

µ̂n = 1
n

n−1∑
j=0

δ
d̂j

,

for the empirical offspring distribution at generation n of the harmonic line.
Note that µ̂n = µUn

provided the line survives up to generation n. We also
remark that µ̂(0) > 0 if and only if the line stopped before generation n.

Lemma 2.4 (Many-to-one formula). Take any (x0, . . . , xn−1) ∈ (S \ {0})n for
some n ≥ 1 and set µ = 1

n

∑n−1
j=0 δxj . Using the notation (1.3), we have

#{v ∈ T : |v| = n and dvj
= xj for all j < n}

= P
(

d̂0 = x0, . . . , d̂n−1 = xn−1

)
× exp(n⟨µ, ln⟩),

In particular, for any probability measure ϱ ∈ PS such that the measure nϱ is
integer-valued, there is the identity

#{v ∈ T : |v| = n and µv = ϱ} = P
(
µUn

= ϱ
)

× exp(n⟨ϱ, ln⟩).

Remark 2.5. We stress that in the case ϱ(0) > 0, ϱ cannot be an empirical
offspring distribution, and that the right-hand side in the statement equals 0 by
our conventions.

Proof. It is immediate from the definition of Un that for all v ∈ T with |v| = n,
we have

P(Un = v) = P(U1 = v1, . . . , Un = vn) =
n−1∏
j=0

1
d(vj) .

4To avoid a possible misunderstanding, we stress that Un shall not be thought of as vertex
picked uniformly at random amongst vertices at generation n, but rather results by selecting
a child uniformly at random in a progeny, generation after generation. Observe that for the
tree in Example 2.3, U2 belongs to the binary subtree of T with probability 4/9, despite these
vertices representing 4/7th of the second generation. Indeed, at each step, the harmonic line
has probability 2/3 to stay in the binary subtree.
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As a result, for any n ≥ 1 and (x0, . . . , xn−1) ∈ Sn, there is the identity

P (d(U0) = x0, . . . , d(Un−1) = xn−1)

=
∑

|v|=n

P(Un = v)1{d(v0)=x0,...,d(vn−1)=xn−1}

= 1∏n−1
j=0 xj

#{v ∈ T : |v| = n and d(vi) = xi for all i = 0, . . . , n − 1}.

The first claim follows readily rewriting
∏n−1

j=0 xj = exp(n⟨µ, ln⟩), the second
one by summing over all (x0, . . . , xn−1) such that

∑n−1
j=0 δxj

= nϱ.

2.2 Basic background from large deviations theory
We briefly recall in this section a few key facts from large deviations theory for
finite alphabets that will be needed later on, referring e.g. to [13, Chapters 2
and 3] and [11] for details and references.

We denote the logarithmic moment generating function of ν by

Λ0(λ) := log
(∑

ν(k)eλ(k)
)

, λ ∈ RS ;

the index 0 in Λ0 is meant to indicate later on that we are dealing with the
memory parameter q = 0. Its Fenchel-Legendre transform is defined as

Λ∗
0(µ) := sup

λ∈RS

(⟨µ, λ⟩ − Λ0(λ)) , µ ∈ RS .

Recall also from (1.2) that H(ϱ|ν) stands for the entropy of ϱ relative to ν, and
that the variational formula allows for the identification

H(ϱ|ν) = Λ∗
0(ϱ). (2.2)

The relative entropy of a measure is linked to large deviations theory by the
fundamental theorem of Sanov [13, Theorem 2.1.10]. Given some probability
space (Ω, A,P) and a sequence (ξi)i≥1 of random variables in S, we write

Ln := 1
n

n∑
i=1

δξi
, n ≥ 1

for the sequence of empirical measures they induce. Recall that (Ln)n≥1 satisfies
the Large Deviation Principle (LDP) with rate function I : PS → [0, ∞] if
the latter is a lower semi-continuous function, and if we have for every closed
F ⊂ PS ,

lim sup
n→∞

1
n

logP(Ln ∈ F ) ≤ − inf
ϱ∈F

I(ϱ),

and for every open G ⊂ PS ,

lim inf
n→∞

1
n

logP(Ln ∈ G) ≥ − inf
ϱ∈G

I(ϱ).

In this setting, Sanov’s Theorem states that if P0 is a probability measure under
which the sequence (ξi) is i.i.d. with law ν, then the sequence of empirical
measures (Ln)n≥1 satisfies the LDP under P0 with rate function

I0 = H(·|ν) = Λ∗
0. (2.3)
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The Gibbs Conditioning Principle (see [13, Section 3.3]) is an important
consequence of Sanov’s Theorem; it can be stated as follows. Recall that (ξi)
is i.i.d. with law ν under P0, and consider any closed convex subspace Γ of PS

with a non-empty interior. For any n ≥ 1, under the conditional probability
measure P0(· | Ln ∈ Γ), the sequence (ξi)1≤i≤n is exchangeable, and if νΓ,n

denotes its one-dimensional marginal distribution,

νΓ,n(k) := P0(ξ1 = k | Ln ∈ Γ), k ∈ S,

then
lim

n→∞
νΓ,n = arg min

Γ
H(·|ν),

where the right-hand side stands for the unique5 γ0 ∈ Γ such that

H(γ0|ν) = min
Γ

H(·|ν).

A related result in this setting concerns the most likely trajectory taken by
the process of empirical measures conditionally on the rare event {Ln ∈ Γ}. For
any sequence of positive integers (k(n))n≥1 with

lim
n→∞

k(n) = ∞ and lim sup
n→∞

k(n)/n ≤ 1,

there is the convergence in probability

lim
n→∞

P0(distPS
(Lk(n),γ0) < ε | Ln ∈ Γ) = 1, for all ε > 0, (2.4)

where distPS
stands, say, for the maximal distance on PS . In other words,

the most likely trajectory for Ln to end up in Γ consists in staying at all time
within a ball of radius ε centred at γ0. We also refer to Mogulskii’s Theorem
[13, Section 5.1] for a much deeper sample path LDP for random walks.

2.3 The benchmark case of Galton–Watson trees
This section focuses on the case when T is a Galton–Watson tree with repro-
duction law ν, i.e. without reinforcement. We write P0 for the distribution of
T , where the index 0 is again meant to stress that the memory parameter is
q = 0. We write also

mν :=
∑

kν(k)

for the mean reproduction number, and ν0 for the size-biased reproduction law,
that is

ν0(k) = kν(k)/mν , k ∈ S.

The following result will serve for us as a benchmark in the study of the
reinforced setting; it analyzes the empirical offspring distribution at a large
generation n of T . Although it is well-known that a typical individual at the nth
generation of a Galton-Watson process has an empirical offspring distribution
close to the size-biased reproduction law ν0 (see e.g. [3]), estimations of the
number of individuals with a given empirical offspring distribution appear to be
less well-known.

5Using the compactness of Γ, and the convexity of Γ and strict convexity of H(·|ν), the
existence of this unique minimizer is guaranteed.
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Theorem 2.6. Recall the notation (1.3). The following assertions hold for
usual Galton–Watson trees:

(i) Concentration around the size-biased reproduction law: For every
neighborhood G of ν0, there exists ε = ε(G) > 0 such that for all n ≥ 1,

E0(#{v ∈ T : |v| = n & µv ̸∈ G})) ≤ e−εn E0(#{v ∈ T : |v| = n}).

(ii) Evanescent laws: Any ϱ ∈ PS with

⟨ϱ, ln⟩ < Λ∗
0(ϱ)

is evanescent, P0-a.s.

(iii) Strongly persistent laws: For any ϱ ∈ PS with

⟨ϱ, ln⟩ > H(ϱ|ν),

ϱ is strongly persistent, P0-a.s. conditionally on non-extinction.

The quantities Λ∗
0(ϱ) and H(ϱ|ν) in (ii) and (iii) are identical by the varia-

tional formula (2.2); we used on purpose these two different naming conventions
to make comparison with the reinforced case in the forthcoming Theorem 4.1
more transparent. We also observe that if ϱ(0) > 0, then ⟨ϱ, ln⟩ = −∞ and the
condition in (ii) is automatically fulfilled (we already pointed out that such a
probability measure is necessarily evanescent).
Remark 2.7. 1. We know that E0(#{v ∈ T : |v| = n}) = mn

ν . Further, in
the critical or subcritical case mν ≤ 1, T is finite and any law ϱ ∈ PS

is obviously evanescent, P0-a.s. This does not contradict this claim of
concentration around the size-biased reproduction law in expectation.

2. Theorem 2.6 essentially shows that any distribution is either evanescent
of strongly persistent for a Galton-Watson tree (with edge cases when
⟨ϱ, ln⟩ = H(ϱ|ν) to be separately treated). We consider in Section 2.4
an example of a random tree with weakly –but not strongly– persistent
measures.

3. Given the concentration of the empirical offspring distribution of the pop-
ulation at time n around ν0, it is worth noting that immediate algebra
yield the identity

log mν − H(ϱ|ν) = ⟨ϱ, ln⟩ − H(ϱ|ν). (2.5)

This gives an intuitive reason for the importance of comparing the quan-
tities (1.2) with (1.3) as mentioned in the introduction to estimate the
presence of individuals with an empirical offspring distribution around ϱ.

Theorem 2.6 can be seen as a disguised version of [8, Theorem A] that
describe the distribution of individuals in a multidimensional branching random
walk. To see the connection, let us remark that

v ∈ T 7→ (|v|µv(j), j ∈ S)

is a branching random walk on ZS . In this branching random walk, an individ-
uals at position x ∈ ZS creates j children at position x + ej with probability
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ν(j), where ej(i) = 1{i=j}. Consequently, the set of non-empty vertices at the
nth generation of this branching random walk can be well-approached by nC,
where C = {x ∈ RS : Λ∗(x) < mν}. More precise estimates, such as the ones
obtained in [10, Theorem 5] for non-lattice branching random walks, could be
adapted to the current setting as well.

The proof of Theorem 2.6 will easily follow from the well-known spinal
decomposition which we now briefly present, tailored for our purposes. Let
a : S → R+ be a nonnegative function of the out-degrees such that∑

k∈S

ka(k)ν(k) = 1. (2.6)

The value of a(0) being irrelevant for (2.6), we always assume, without loss of
generality, that a(0) = 0. We then denote by νa the probability measure on S
given by

νa(k) = ka(k)ν(k).

The best known and most important example is when a(k) = 1/mν for all k ≥ 1;
then νa is the size-biased version ν0 of the reproduction law.

Recall that for every vertex v ∈ T , d(v) denotes its out-degree, |v| its gen-
eration, and vj its forebear at generation j ≤ |v|. It is seen from (2.6) and the
branching property that the process

W a
n :=

∑
|v|=n

n−1∏
j=0

a(d(vj)), n ≥ 1,

is a P0-martingale with expectation E0(W a
n ) = 1. In the case when a(k) ≡ 1/mν ,

W a
n is the fundamental martingale for Galton–Watson processes appearing e.g.

in [2, Theorem 1 on page 9]. This enables us to define a probability measure Pa
0

describing the joint law of a random tree T together with an infinite random
line of descent (V a

n )n≥0, usually referred to as a spine, as follows. For any n ≥ 1,
any subtree tn of the Ulam tree with height n and any v vertex of tn at height
n, if we write Tn for the subtree obtained by pruning T at generation n, then

Pa
0 (Tn = tn, V a

n = v) = P0(Tn = tn)
n−1∏
j=0

a(dtn(vj)), (2.7)

where dtn(vi) stands for the out-degree in tn of the forebear vi of v at generation
i < n.
Remark 2.8. In the case ν(0) = 0 when the probability of an empty progeny
equals zero, the harmonic line (Un) of Section 2.1 is infinite and can also be
viewed as a spine (V a

n ) for the function a(k) ≡ k−1/
∑

j−1ν(j). The martingale
is then trivial, W a

n ≡ 1.
We can now state a necessary and sufficient condition for the uniform inte-

grability of the martingale (W a
n ), extending the Kesten-Stigum L log L criterion

[18] for the case a ≡ 1/mν . This result can be seen as a version of Biggins’
theorem [7], we adapt here a proof by Lyons [19] of this fact.

Lemma 2.9. The following assertions hold:
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(i) Under Pa
0, the sequence (d(V a

n ))n≥0 of out-degrees along the spine is i.i.d.
with law νa.

(ii) If ∑
νa(k) log a(k) < 0,

then (W a
n )n≥1 is a uniformly integrable martingale under P0. Otherwise

limn→∞ W a
n = 0 a.s.

Proof. The first assertion is immediate from (2.7). For the second, note from
the first that under Pa

0 , the process

log

n−1∏
j=0

a(d(V a
j ))

 =
n−1∑
j=0

log a(d(V a
j )), n ≥ 1,

is a random walk with drift

Ea
0 (log d(V a

n )) =
∑

νa(k) log a(k).

If
∑

νa(k) log a(k) < 0, then log
(∏n−1

j=0 a(d(V a
j ))

)
is a random walk with

negative drift. It follows from the law of large numbers that

∞∑
n=1

n−1∏
j=0

a(d(V a
j )) < ∞, Pa

0-a.s.

Since out-degrees are bounded, we deduce from the spinal decomposition (see [9,
Section 12]) that lim supn→∞ W a

n < ∞, Pa
0-a.s. By Durrett’s criterion (see [14,

Theorem 4.3.5] or [9, Theorem 3]), this entails in turns the uniform integrability
under P0.

Reciprocally, if
∑

νa(k) log a(k) ≥ 0, the drift of log
(∏n−1

j=0 a(d(V a
j ))

)
is

well-defined and non-negative. Thus

lim sup
n→∞

W a
n ≥ lim sup

n→∞

n−1∏
j=0

a(d(V a
j )) = ∞ Pa

0-a.s.

Applying again Durrett’s criterion, we deduce that W a
n → 0 a.s. under P0.

We now have all the ingredients needed to establish Theorem 2.6.

Proof of Theorem 2.6. (i) The average population size of a Galton–Watson pro-
cess at generation n ≥ 0 is

E0(#{v ∈ T : |v| = n}) = mn
ν .

Take a(k) ≡ 1/mν and write P0 = Pa
0 . Since then

n−1∏
j=0

a(dtn
(vj)) = m−n

ν
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for any vertex vn at generation n in any tree tn with height n, we deduce from
(2.7) the identity

E0(#{v ∈ T : |v| = n & µv ̸∈ G})
E0(#{v ∈ T : |v| = n}) = P0(Ln ∈ F ),

where F = PS\G and

Ln := 1
n

n∑
i=1

δd(V a
i−1).

As we know from Lemma 2.9(i) that under P0, Ln is the empirical measure of
i.i.d. variables distributed according to the size-biased reproduction law ν0, we
deduce from Sanov’s large deviations upper-bound that

lim sup
n→∞

1
n

logP0(Ln ∈ F ) ≤ − inf
ϱ∈F

H(ϱ|ν0).

The entropy relative to ν0, ϱ 7→ H(ϱ|ν0), is a continuous map on PS which
is strictly positive except at ν0. Since F avoids a neighborhood of ν0, the
right-hand side above is strictly negative.

(ii) Let ϱ be as in the statement. By continuity of the entropy relative to ν,
we can find a closed neighborhood F of ϱ such that∑

ϱ′(k) log k < H(ϱ′|ν), for all ϱ′ ∈ F.

On the other hand, we have seen in (i) that

E0(#{v ∈ T : |v| = n & µv ∈ F}) = mn
ν × P0(Ln ∈ F );

and then again by Sanov’s large deviations upper-bound,

lim sup
n→∞

1
n

logE0(#{v ∈ T : |v| = n & µv ∈ F}) ≤ log(mν) − inf
ϱ′∈F

H(ϱ′|ν0).

It now suffices to write

H(ϱ′|ν0) =
∑

ϱ′(k) log
(

ϱ′(k)mν

kν(k)

)
= H(ϱ′|ν) + log(mν) −

∑
ϱ′(k) ln k,

see (2.5), to get

lim sup
n→∞

1
n

logE0(#{v ∈ T : |v| = n & µv ∈ F}) < 0.

Summing over generations yields

E0(#{v ∈ T : µv ∈ F}) < ∞,

and we conclude that ϱ is evanescent, P0-a.s.
(iii) Let ϱ be as in the statement; in particular ϱ(0) = 0. We set a(k) :=

ϱ(k)/(kν(k)) for k ∈ S –which satisfies (2.6)– so that ϱ = νa. By Lemma 2.9(i)
and the law of large numbers for the sequence (d(V a

n ))n≥0 of out-degrees along

11



the spine, we see that ϱ is strongly persistent Pa
0-a.s. On the other hand, we

have by the variational formula that∑
νa(k) ln k = ⟨ϱ, ln⟩ > H(ϱ|ν) = sup

λ∈RS

(⟨ϱ, λ⟩ − Λ0(λ)) .

Applying this inequality to λ(k) = log(ka(k)), so that Λ0(λ) = 0, we have∑
νa(k) ln k >

∑
νa(k) log(ka(k)),

so the assumption of Lemma 2.9(ii) holds.
Note from (2.7) that for every n ≥ 1, the distribution of Tn under Pa

0 is abso-
lutely continuous with respect to that under P0 with density W a

n , so the uniform
integrability of the martingale W a

n enables us to deduce that the distribution
of whole tree T under Pa

0 is again absolutely continuous with respect to that
under P0, with density given by the terminal value W a

∞. Hence ϱ is strongly
persistent with a strictly positive probability under P0, and the stronger claim
conditionally on non-extinction follows from a standard argument involving the
branching property.

We now conclude this section with a refinement of Theorem 2.6 which will
be useful in the next section. This result allows to estimate the almost sure
growth rate of the number of individuals with an empirical distribution in a
neighbourhood of ϱ.

Lemma 2.10. Let ϱ ∈ PS and G an open neighborhood of ϱ.

(i) If mν > 1 and ⟨ϱ, ln⟩ − H(ϱ|ν) > 0, then we have

lim inf
n→∞

1
n

log #{v ∈ T : |v| = n &µv ∈ G} ≥ ⟨ϱ, ln⟩ − H(ϱ|ν),

P0-a.s. on the survival event (i.e. when T is infinite).

(ii) If mν < 1, then we have

lim inf
n→∞

1
n

logP0(∃v ∈ T : |v| = n &µv ∈ G) ≥ ⟨ϱ, ln⟩ − H(ϱ|ν).

Proof. (i) We prove this result using an analogue reasoning to [6]. Let B be
an open (convex) ball centered at ϱ with radius r > 0 sufficiently small so that
the ball of same center and radius 2r is contained in G. We recall that, by
Lemma 2.9 and Sanov’s large deviations theorem, we have

lim inf
n→∞

1
n

logE0(#{v ∈ T : |v| = n &µv ∈ G}) ≥ ⟨ϱ, ln⟩ − H(ϱ|ν).

Using that this quantity is positive by our assumptions, we construct a super-
critical Galton-Watson tree embedded in T as follows. For all ε > 0 small
enough, we choose K such that

1
K

logE0(#{v ∈ T : |v| = K &µv ∈ B}) ≥ ⟨ϱ, ln⟩ − H(ϱ|ν) − ε > 0 (2.8)

The first generation of that Galton-Watson tree T (K) is given by {|v| = K :
µv ∈ B}, the second generation by the descendant of those with an empirical

12



offspring distribution between times K and 2K that belong to G, and so on.
By (2.8), this Galton-Watson tree is supercritical, with

lim inf
p→∞

1
pK

#{v ∈ T (K) : |v| = p} ≥ ⟨ϱ, ln⟩ − H(ϱ|ν) − ε,

a.s. on the survival of T (K). Moreover, by convexity of B, all individuals
v ∈ T (K) verify that µv ∈ B. Additionally, for all p > 0 large enough, we have
µvp

∈ G. We conclude that

P0

(
lim inf
n→∞

1
n

log #{v ∈ T : |v| = n &µv ∈ G} ≥ ⟨ϱ, ln⟩ − H(ϱ|ν)
)

> 0.

We then use the 0-1 law for Galton-Watson processes, since our event of interest
is hereditary, to conclude.

(ii) Without loss of generality again, we assume here that G is an open ball
centered at ϱ. The second moment method yields

P0(∃v ∈ T : |v| = n &µv ∈ G) ≥ E0 (#{v ∈ T : |v| = n &µv ∈ G})2

E0 (#{v ∈ T : |v| = n &µv ∈ G}2) .

By Lemma 2.9, we recall that

lim inf
n→∞

1
n

logE0 (#{v ∈ T : |v| = n &µv ∈ G})

= log mν + lim inf
n→∞

1
n

logP0(Ln ∈ G)

≥ − inf
µ∈G

(H(µ|ν) − ⟨µ, ln⟩),

with the same notation and computations as in the proof of Theorem 2.6(i).
On the other hand, we have

E0
(
#{v ∈ T : |v| = n &µv ∈ G}2)

= mn
νE0

(
#{v ∈ T : |v| = n &µv ∈ G}1{Ln∈G}

)
= mn

ν

n−1∑
k=0

E0
(
#{v ∈ T : |v| = n &µv ∈ G, |v ∧ Un| = k}1{Ln∈G}

)
+ mn

νP0(Ln ∈ G),

where |v ∧ Un| represents the time at which v splits from the harmonic line Un.
We write M = sup S for the largest possible number of children of an individual,
and remark that for all k ≤ n, we have

E0
(
#{v ∈ T : |v| = n &µv ∈ G, |v ∧ Un| = k}1{Ln∈G}

)
≤ Mmn−k

ν P0(Ln ∈ G).

Therefore

E0
(
#{v ∈ T : |v| = n &µv ∈ G}2)

≤ (n + 1)Mmn
νP0(Ln ∈ G).

As a result, another call to Sanov’s large deviations theorem yields

lim sup
n→∞

1
n

logE0
(
#{v ∈ T : |v| = n &µv ∈ G}2)

≤ − inf
µ∈G

(H(µ|ν) − ⟨µ, ln⟩).

13



We conclude by continuity of µ 7→ H(µ|ν) − ⟨µ, ln⟩ that

lim inf
n→∞

1
n

logP0(∃v ∈ T : |v| = n &µv ∈ G) ≥ − inf
µ∈G

H(µ|ν) − ⟨µ, ln⟩

≥ ⟨ϱ, ln⟩ − H(ϱ|ν).

2.4 Weak persistence in a two-type Galton-Watson tree
The purpose of this section simply to exhibit natural examples of random trees
in which there exist weakly but not strongly persistent laws for the empirical
offspring distributions. We stress that we do not aim to obtain either a general
result or optimal conditions.

Let ν, ν′ be two probability distributions on Z+ with finite support and
such that

mν =
∑

kν(k) > 1 > mν′ =
∑

kν′(k). (2.9)

So a ν-Galton-Watson tree is infinite with positive probability, while a ν′-
Galton-Watson tree is a.s. finite. We consider a two-type Galton-Watson pro-
cess, where each individual has a type in {1, 2}, and given its type, reproduces
independently from the rest of the population. We suppose that individuals of
type 1 reproduce by creating a random number of children of type 1 with law
ν, as well as one child of type 2. Particles of type 2 only create children of type
2, making a random number with law ν′.

Remarking that the total number of children of each individual of type 1 is
given by k + 1 for some k such that ν(k) > 0, we write

S = {k ≥ 2 : ν(k − 1) > 0} ∪ {k ≥ 1 : ν′(k) > 0},

with S the support of ν. We also define the operator τ associating to a prob-
ability measure ϱ its pushforward by k 7→ k − 1. We prove in this section the
following result.

Proposition 2.11. With the two-types tree T defined above, a law ϱ ∈ PS is

(i) strongly persistent if ⟨τϱ, ln⟩ > H(τϱ|ν);

(ii) weakly persistent if there exists s ∈ (0, 1) and µ,µ′ with

ϱ = sµ+ (1 − s)µ′,

such that the following two inequalities hold:

⟨τµ, ln⟩ > H(τµ|ν)

and

s⟨τµ, ln⟩ + (1 − s)⟨µ′, ln⟩ > sH(τµ|ν) + (1 − s)H(µ′|ν′).

Using this proposition, one can construct a variety of random trees with
weakly –but not strongly– persistent offspring distributions. For example, if
there exists k ∈ N such that ν′(k) > 0 but ν(k − 1) = 0, then any individual v
such that µv(k) > 0 must be of type 2. However, by (2.9), almost surely there
is no infinite line of individuals of type 2. Consequently, any law ϱ such that
ϱ(k) > 0 cannot be strongly persistent.
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Proof of Proposition 2.11. (i) This is an immediate consequence of Theorem 2.6,
using that the subtree T (1) of T , consisting of only individuals of type 1 is
a Galton-Watson tree with reproduction law ν, and the empirical offspring
distribution of v ∈ T (1) verifies µ(1)

v = τµv, with µ(1)
v representing the empirical

offspring distribution of v as an element of T (1).
(ii) Let ϱ, µ, µ′ and s as in the statement. By continuity of H(·|ν) and

H(·|ν′), we observe that there exist open neighborhoods O, G, G′ of ϱ, µ, µ′

respectively, such that for all (ξ, ξ′) ∈ G × G′, sξ + (1 − s)ξ′ ∈ O. We fix ε > 0
such that

⟨τµ, ln⟩ − H(τµ|ν) − ε > 0
and s⟨τµ, ln⟩ + (1 − s)⟨µ′, ln⟩ − (sH(τµ|ν) + (1 − s)H(µ′|ν′)) − 2ε > 0.

By Lemma 2.10(i), we observe that almost surely on the survival event, for
all n large enough, there will be at least

exp (sn (⟨τµ, ln⟩ − H(τµ|ν) − ε))

individuals v of type 1 at generation ⌊ns⌋ with empirical offspring distribution
µv ∈ G. In addition, by Lemma 2.10(ii), each of these individuals will give birth
to one individual of type 2, that has probability at least

exp ((1 − s)n (⟨µ′, ln⟩ − H(µ′|ν′) − ε))

to start a Galton-Watson tree of reproduction law ν′ creating at least one de-
scendant at generation n − ⌊ns⌋ − 1 with an empirical offspring distribution in
G′. Then, using Borel-Cantelli lemma, we conclude that almost surely on the
survival event, for all n large enough, there will be an individual |v| = n in T
with an empirical offspring distribution in O, completing the proof.

3 Reinforced sampling
We return here to the setting of Section 2.2, where the notation P0 was used for
a probability measure under which the ξi are i.i.d. with law ν. The dynamics of
reinforced Galton–Watson processes that have been depicted in the Introduction
incite us to define another probability measure denoted by Pq, where q ∈ (0, 1)
is the memory parameter, under which the sequence (ξi) rather describes balls
added successively to an urn in a Pólya type process.

Namely, we view S as a set of colors and imagine an urn containing colored
balls. In some probability space (Ω, A,Pq), we pick a ball uniformly at random
in the urn, observe its color and return it to the urn together with a new ball.
The color of the new ball is the same as that just sampled with probability q,
and with complementary probability 1 − q, its color is rather chosen randomly
according to ν. We then iterate independently, supposing for definitiveness that
at time n = 1, we add to an initially empty urn a single ball with random color
ξ1 distributed according to ν. We write ξn for the color of the n-th ball added
to the urn. It should be plain that under Pq, each variable ξi has again the law
ν; however the sequence with memory (ξi)i≥1 is not i.i.d., nor Markovian, nor
even stationary.

Just as in the previous section, we denote by (Ln)n≥1 the sequence of em-
pirical measures induced by the sequence of colors (ξi)i≥1. Perhaps the most
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basic result in the reinforced setting is that the Law of Large Numbers remains
valid, namely, Ln converges to ν as n → ∞, Pq-a.s. This is indeed a special
case of a much more general result for random urn schemes, see e.g. [1] or [17].
The main purpose of this section is to investigate the effect of reinforcement on
Sanov’s Theorem and some of its consequences. On our way, we briefly study a
function that has a crucial role in the analysis.

3.1 Reinforced Sanov’s theorem
Budhiraja and Waterbury [12] have established the LDP for a more general
family of reinforced chains on a finite alphabet, in which the rate function is
given in the form of an optimization problem. In the present setting, their main
result can be stated as follows.

Theorem 3.1 (After Budhiraja and Waterbury [12]). The sequence of empirical
measures (Ln) satisfies the LDP under Pq with rate function Iq : PS → R+ given
by

Iq(ϱ) = inf
η∈U(ϱ)

∫ 1

0
H(ηs|qψs + (1 − q)ν)ds,

where for all t ∈ (0, 1]

ψt = 1
t

∫ t

0
ηsds, (3.1)

and U(ϱ) denotes the collection of controls η = (ηs)s∈[0,1] in PS such that
ψ1 =

∫ 1
0 ηsds = ϱ.

Proof. Specializing [12, Theorem 2] gives the LDP for (Ln) with rate function

Iq(ϱ) := inf
η∈V(ϱ)

∫ ∞

0
e−sH(ηs|qϕs + (1 − q)ν)ds,

where
ϕt = ϱ−

∫ t

0
ηsds +

∫ t

0
ϕsds, (3.2)

and V(ϱ) denotes the collection of controls η = (ηs)s≥0 in PS such that ϕt ∈ PS

for all t ≥ 0. We then perform the simple change of variables s 7→ 1 − e−s and
get ∫ ∞

0
e−sH(ηs|qϕs + (1 − q)ν)ds

=
∫ 1

0
H(η− log(1−s)|qϕ− log(1−s) + (1 − q)ν)ds.

On the other hand, we remark that if η ∈ V(ϱ), then the solution to (3.2) is

ϕ− log(1−t) = 1
1 − t

(
ϱ−

∫ t

0
η− log(1−s)ds

)
= 1

1 − t

∫ 1

t

η− log(1−s)ds,

where for the second equality, we used that

lim
t→∞

e−tϕt = 0 = ϱ−
∫ ∞

0
e−sηsds.
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Then, writing ηt = η− log t and ψt = ϕ− log t, we obtain the alternative formula
for Iq of the statement, remarking that P(S) is convex, therefore for any possible
control, 1

t

∫ t

0 ηsds ∈ P(S) .

Solving explicitly the optimization problem in Theorem 3.1 to get an explicit
expression for the rate function Iq does not seem easy, and the purpose of the
next section is to offer an alternative characterization which will be much simpler
to analyze. Before this, we point at the following upper-bound which may be
quite sharp, at least in simple cases, as Example 3.4 below suggests.

Corollary 3.2. For every ϱ ∈ PS, there is the upper-bound

Iq(ϱ) ≤ H(ϱ|qϱ+ (1 − q)ν). (3.3)

Moreover, if ϱ is equivalent to ν, that is, ϱ(k) > 0 for all k ∈ S, and if ϱ ̸= ν,
then the inequality (3.3) is strict.

Proof. The first claim is immediate from Theorem 3.1. Indeed, for the constant
control ηs ≡ ϱ, we have ψt ≡ ϱ, and (3.3) follows.

Suppose now that ϱ ̸= ν and that ϱ(k) > 0 for all k ∈ S. Set

ϱx := ϱ+ x(ϱ− ν) for x ∈ R,

so ϱx ∈ PS provided that |x| is small enough. The function

h(x, y) := H(ϱx | qϱy + (1 − q)ν)

is C∞ on some neighborhood of (0, 0), and we have

h(x, y) = h(0, 0) + xg1 + yg2 + O(x2 + y2), (3.4)

where (g1, g2) = ∇h(0, 0).
The key observation is that

g2 < 0. (3.5)

Indeed, for y > 0 sufficiently small, we can express qϱy + (1 − q)ν as a convex
combination of qϱ+ (1 − q)ν and ϱ, namely

qϱy + (1 − q)ν =
(

1 − qy

1 − q

)
(qϱ+ (1 − q)ν) + qy

1 − q
ϱ.

By convexity of the function − log, this yields

h(0, y) ≤
(

1 − qy

1 − q

)
h(0, 0) + qy

1 − q
H(ϱ | ϱ) =

(
1 − qy

1 − q

)
h(0, 0),

and then
∂yh(0, 0) ≤ − q

1 − q
h(0, 0).

We have h(0, 0) > 0 as ϱ ̸= qϱ+ (1 − q)ν, and (3.5) holds.
We now return to the setting of Theorem 3.1 and consider the control η

given by

ηt =
{
ϱε if 0 ≤ t ≤ 1/2,
ϱ−ε if 1/2 < t ≤ 1,
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for some sufficiently small ε > 0. We get

ψt =
{

ϱε if 0 ≤ t ≤ 1/2,
ϱε(1/t−1) if 1/2 < t ≤ 1.

By the Taylor expansion (3.4), we deduce∫ 1

0
H(ηs|qψs + (1 − q)ν)ds

= 1
2h(ε, ε) +

∫ 1

1/2
h(−ε, ε(1/t − 1))dt

= 1
2h(0, 0) + 1

2(g1 + g2)ε + 1
2h(0, 0) − 1

2g1ε + g2ε

∫ 1

1/2
(1/t − 1)dt + O(ε2)

= h(0, 0) + g2ε log 2 + O(ε2).

Since we know from (3.5) that g2 < 0, we can choose ε > 0 sufficiently small so
that the integral in the right-hand side is strictly less than h(0, 0).

3.2 Fenchel-Legendre identification of the rate function
Using results of [4], we provide an alternative representation of the rate function
Iq as the Fenchel-Lengendre transform of a convex function Λq : RS → R+,
similar to (2.3). In order to deal later on with probability measures with support
strictly included in S, it is convenient to allow some coordinates of Λq to be equal
to −∞; recall the convention (2.1). For every λ ∈ [−∞, ∞)S , we set

Λq(λ) := log q − log
(∫ ∞

0

∏
(1 − teλ(k))ν(k)(1−q)/q

+ dt

)
, (3.6)

where x+ denotes the positive part of a real number x and the product in the
integral runs over k ∈ S (or, equivalently, over the k’s with λk > −∞). Needless
to say, the right-hand side is interpreted as −∞ when λ ≡ −∞.

Theorem 3.3. We have:

(i) For every λ ∈ [−∞, ∞)S, there is the limit

lim
n→∞

1
n

logEq (exp(⟨Ln, nλ⟩)) = Λq(λ).

(ii) As a consequence, the rate function Iq in Theorem 3.1 can be identified as
the Fenchel-Legendre transform Λ∗

q of Λq,

Iq(ϱ) = Λ∗
q(ϱ) := sup

λ∈RS

(⟨ϱ, λ⟩ − Λq(λ)) , ϱ ∈ PS .

Proof. (i) Essentially, this is a weaker (logarithmic) version of the main result
of [4]; see also the earlier articles [15, 16] in the case #S = 2. Actually, the
calculations in [4] are mostly done for the special case λk = ln k, but the method
works just as well for arbitrary λ. For the reader’s convenience, we briefly
present below the guiding line from [4], and skip explicit calculations to avoid
duplication.
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To start with, we set ak := eλk for k ∈ S, and point at the identities

exp(⟨Ln, nλ⟩) =
n∏

i=1
aξi

=
∏

a
#{i≤n:ξi=k}
k ,

where the product on the right-hand side runs for k ∈ S. Next, introduce an
independent standard Yule process Y = (Y (t))t≥0 and define for all t ≥ 0 and
k ∈ S,

Yk(t) := #{i ≤ Y (t) : ξi = k}.

We argued in [4, Section 2] that Y(t) = (Yk(t))k∈S is a multitype Yule process,
with space of types S. Since Y (t) has the geometric distribution with parameter
e−t, this yields

e−t
∞∑

n=0
(1 − e−t)n Eq (exp(⟨Ln, nλ⟩)) = Eq

(∏
a

Yk(t)
k

)
; (3.7)

see [4, Lemma 2.1].
The probability generating function of Y(t) that appears in the right-hand

side of (3.7) has been determined in [4, Sections 3 and 4] by solving a system of
non-linear differential equations; see notably Proposition 4.3 and Corollary 4.4
there. In particular, we can derive the asymptotic behavior of the right-hand
side of (3.7) as t → ∞.

All what is needed now is to deduce the asymptotic behavior of the moment
generating function Eq (exp(⟨Ln, nλ⟩)) as n → ∞ from that of (3.7) as t → ∞.
This is achieved by the singularity analysis performed in [4, Section 5], under
the condition that the maximum of λ is reached at a single location. One gets

lim
n→∞

exp(−nΛq(λ))Eq (exp(⟨Ln, nλ⟩)) = c

for some explicit constant c > 0; see [4, Theorem 1] for the special case λk =
ln k.

It only remains to consider the situation where the maximum of λ is reached
at two or more location, say j1, . . . , jℓ ∈ S with ℓ ≥ 2. But this case immediately
reduces to the preceding by considering a quotient space. Specifically set S̃ =
S\{j2, . . . , jℓ}, and then ν̃(i) = ν(i) for i ∈ S̃\{j1} and ν̃(j1) = ν(j1)+· · ·+ν(jℓ).
Then it should be plain that, in the obvious notation, the distribution of variable
⟨Ln, nλ⟩ under Pq is the same as that of ⟨L̃n, nλ̃⟩ under P̃q, where λ̃ is the
restriction of λ to S̃. We conclude that (i) still holds in this situation.

(ii) This follows from (i) by an application of the Gärtner-Ellis Theorem
[13, Theorem 2.3.6] and the uniqueness of the rate function, see e.g. [13,
Lemma 4.1.4] or [11, Theorem 1.15].

The Fenchel-Legendre transform Λ∗
q can be evaluated numerically, but un-

fortunately, it seems that there is no both general and explicit expression for
it (like the variational formula (2.2) in the case without memory q = 0), be-
cause the function Λq in (3.6) also cannot be computed explicitly in the first
place. There are nonetheless situations where calculations are available, for in-
stance whenever (1/q − 1)ν is integer valued6. The example below illustrates
the simplest case of all.

6Then t 7→
∏

(1 − teλ(k))ν(k)(1−q)/q is a polynom function in the variable t, which can
thus be integrated explicitly.
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Example 3.4. Suppose that S = {1, 2}, that the reproduction law is given by
ν(j) = 1/2 for j = 1, 2. Suppose further that q = 1/3, so that (1 − q)/q = 2.
Then Λq(x, y) is a symmetric function and for any x ≤ y, we find:

Λ1/3(x, y) = log(2) + y − log
(
3 − ex−y

)
.

Thus
∇Λ1/3(x, y) =

(
ex−y

3 − ex−y
, 1 − ex−y

3 − ex−y

)
,

and we further get for any 0 < p ≤ 1/2,

Λ∗
1/3(p, 1 − p) = Λ∗

1/3(1 − p, p) = p log
(

3p

p + 1

)
− log(2) + log

(
3

p + 1

)
.

On the other hand, we have for ϱ = (p, 1 − p) that

H(ϱ|qϱ+ (1 − q)ν) = p log
(

3p

p + 1

)
+ (1 − p) log

(
3(1 − p)

2 − p

)
,

and the upper-bound (3.3) is remarkably sharp in this case; see Figure 2.
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Figure 2: Graphs of H(ϱ|qϱ+(1−q)ν) (blue) and of Λ∗
q(ϱ) (red) for ϱ = (p, 1−p)

with p ∈ [0, 1/2] in Example 3.4. The function H(·|q · +(1 − q)ν) appears as a
very good approximation to Λ∗

q .

Remark 3.5. For every λ ∈ [−∞, ∞)S with λ := supS λ > −∞, the product in
(3.6) can be bounded from above by 1{t≤exp(−λ)}. It follows that

Λq(λ) ≥ log q + λ,

and then, one has for every ϱ ∈ PS ,

Λ∗
q(ϱ) ≤ − log q.

Observe that this agrees with (3.3), since obviously H(ϱ|qϱ+(1−q)ν) ≤ − log q.
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It follows from Theorem 3.3 that Λq is a convex function on RS , a fact that
however does not seem easy to verify directly. At the opposite, the next first two
claims are readily checked directly from the definition (3.6), without appealing
to Theorem 3.3.

Lemma 3.6. The following assertions hold:

(i) For any λ ∈ [−∞, ∞)S and any j ∈ S with λ(j) > −∞, Λq has a strictly
positive partial derivative in the j-direction at λ, ∂jΛq(λ) > 0.
For λ with λ(j) = −∞, we further set ∂jΛq(λ) = 0.

(ii) The gradient of Λq, ∇Λq := (∂jΛq)j∈S, induces a continuous function
on {λ ∈ [−∞, ∞)S : λk > −∞ for some k ∈ S} with values in PS. In
particular, the function Λq is C1 on RS.

(iii) For any λ ∈ [−∞, ∞)S with λ ̸≡ −∞ and ϱ = ∇Λq(λ), one has the
identity

Λq(λ) = ⟨ϱ, λ⟩ − Λ∗
q(ϱ).

For any ϱ′ ∈ Ps with ϱ′ ̸= ∇Λq(λ), one has also

Λq(λ) > ⟨ϱ′, λ⟩ − Λ∗
q(ϱ′).

Proof. (i-ii) Indeed, the Leibniz integral rule gives

∂jΛq(λ) = ν(j)(1/q − 1)
∫ ∞

0
teλ(j)

1−teλ(j)

∏
(1 − teλ(k))ν(k)(1−q)/q

+ dt∫ ∞
0

∏
(1 − teλ(k))ν(k)(1−q)/q

+ dt
> 0.

An integration by parts shows that for any λ ∈ [−∞, ∞)S with λ ̸≡ −∞, we
have ∫ ∞

0

∑
j∈S

ν(j)(1/q − 1) teλ(j)

1 − teλ(j)

∏
(1 − teλ(k))ν(k)(1−q)/q

+ dt

=
∫ ∞

0

∏
(1 − teλ(k))ν(k)(1−q)/q

+ dt,

which translates into ∑
j∈S

∂jΛq(λ) = 1.

All the other claims are straightforward.
(iii) Theorem 3.3(i) enables us to apply [13, Lemma 2.3.9].

We deduce some basic properties of the rate function Λ∗
q .

Corollary 3.7. The following assertions hold:

(i) The function Λ∗
q is strictly convex on PS.

(ii) For every ϱ ∈ PS, there exists λϱ ∈ [−∞, ∞)S with λϱ(k) > −∞ iff
ϱ(k) > 0, such that

Λ∗
q(ϱ) = ⟨ϱ, λϱ⟩ − Λq(λϱ).

Moreover we have
ϱ = ∇Λq(λϱ).
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Proof. (i) Indeed, the Fenchel-Legendre transform of a C1 function is always
strictly convex; see e.g. [21, Theorem 11.13].

(ii) Consider any sequence (λn) in RS such that ⟨ϱ, λn⟩ − Λq(λn) converges
to Λ∗

q(ϱ) as n → ∞. Observe that Λq(λ + c) = c + Λq(λ) for any λ ∈ RS and
any c ∈ R, so there is no loss of generality in assuming that λn := maxS λn = 0
for every n. Then, λn converges along some subsequence to, say, λϱ ∈ [−∞, 0]S
with λϱ = 0, and this yields the identity

Λ∗
q(ϱ) = ⟨ϱ, λϱ⟩ − Λq(λϱ).

Obviously λϱ(k) = −∞ can only occur when ϱ(k) = 0. In the converse direction,
suppose that λϱ(j) > −∞ for some j ∈ S with ϱ(j) = 0. Let λ′ ∈ [−∞, ∞)S

defined by λ′(k) = λϱ(k) if k ̸= j and λ′(j) = −∞. Then ⟨ϱ, λϱ⟩ = ⟨ϱ, λ′⟩
and Λq(λϱ) > Λq(λ′), which is absurd. Last, the claim that the gradient of Λq

evaluated at λϱ equals ϱ is plain, as λϱ is a critical point of ⟨ϱ, ·⟩ − Λq(·).

The strict convexity of the rate function Λ∗
q readily yields the convergence

in probability of the empirical distribution conditionally on a large class of rare
events, which is a reinforced version of (2.4); see also e.g [11, Theorem 1.4].

Corollary 3.8. Let Γ be a closed convex subspace of PS with a non-empty
interior. Then there is the convergence in probability

lim
n→∞

Pq(distPS
(Ln,γq) < ε | Ln ∈ Γ) = 1, for all ε > 0,

where γq = arg minΓ Λ∗
q is the unique location on Γ at which Λ∗

q attains its
minimum.

Remark 3.9. As a consequence of this result and Corollary 3.2, we observe that
contrarily to the usual Sanov’s theorem, the path followed by the process of em-
pirical measures, conditioned on being close to ϱ at a large time n, is not nearly
constant. Heuristically, this is due to the fact that it is less costly to influence
empirical measures at the start of the process than thereafter. Informally, a
thrifty strategy is thus to drive L during a relatively short time ⌊δn⌋ towards a
state from which the probability of reaching a neighborhood of ϱ at time n is
high.

4 Reinforced Galton–Watson processes
We now state the main results of this paper, which should be viewed as a
reinforced version of Theorem 2.6. Recall the notation (1.3), as well as that
in Theorems 3.1 and 3.3, and also Lemma 3.6. Last, note that for q = 0,
the probability measure ∇Λ0(ln) coincides with the size-biased version of the
reproduction law ν0.

Theorem 4.1. The following claims hold for reinforced Galton–Watson trees
with memory parameter 0 < q < 1:

(i) Exponential concentration: Define

νq := ∇Λq(ln).
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Then νq ∈ PS and for every neighborhood G of νq, there exists ε = ε(G) >
0 such that for all n ≥ 1,

Eq(#{v ∈ T : |v| = n & µv ̸∈ G})) ≤ e−εn Eq(#{v ∈ T : |v| = n}).

(ii) Evanescent laws: Any ϱ ∈ PS with

⟨ϱ, ln⟩ < Λ∗
q(ϱ)

is evanescent, Pq-a.s.

(iii) Strongly persistent laws: For any ϱ ∈ PS with

⟨ϱ, ln⟩ > H(ϱ|qϱ+ (1 − q)ν),

the probability under Pq that ϱ is strongly persistent is strictly positive.

Example 4.2. As in Example 3.4, consider the reproduction law ν = 1
2δ1 + 1

2δ2.
By Theorem 2.6(i), the empirical offspring distributions of vertices at generation
n ≫ 1 concentrated around the size-biased law ν0 = 1

3δ1 + 2
3δ2 in the Galton–

Watson case, whereas for the reinforced version with memory parameter q =
1/3, Theorem 4.1(i) shows that they rather concentrate around 1

5δ1 + 4
5δ2.

Proof of (i). The proof relies on previous estimates obtained in [4]. We shall use
these estimates, together with the many-to-one lemma, to compute the average
number of individuals at time n with a given empirical distribution.

We know from [4, Theorem 1.1] that

lim
n→∞

1
n

logEq(#{v ∈ T : |v| = n}) = Λq(ln). (4.1)

Next, the many-to-one formula of Lemma 2.4 entails that for any n ≥ 1 and
any measurable B ⊂ PS , there is the identity

Eq(#{v ∈ T : |v| = n & µv ∈ B}) = Eq

(
exp(n⟨µUn

, ln⟩)1µUn
∈B

)
.

The construction of the out-degree sequence (d(Un)) along a harmonic line
under Pq mirrors that of a reinforced sequence (ξn) until the first appearance
of the value 0 (which never occurs a.s. if and only if ν(0) = 0, i.e. if and
only if there are no empty offsprings). More precisely the former has the same
distribution as the latter stopped at the first index n at which ξn = 0. Using
that exp(n⟨Ln, ln⟩) = 0 if 0 appears in the sequence, in terms of the empirical
measure, this yields the equality

Eq(#{v ∈ T : |v| = n & µv ∈ B}) = Eq (exp(n⟨Ln, ln⟩)1Ln∈B) .

On the other hand, we know from Lemma 3.6(iii) that

Λq(ln) = ⟨νq, ln⟩ − Λ∗
q(νq)

and that

Λq(ln) > ⟨ϱ, ln⟩ − Λ∗
q(ϱ) for all ϱ ∈ PS , ϱ ̸= νq.
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By the Laplace principle, we deduce from Theorem 3.1 and Theorem 3.3(ii) that
for any closed F ∈ PS avoiding some neighborhood of νq,

lim sup
n→∞

1
n

logEq (exp(n⟨Ln, ln⟩1Ln∈F ) ≤ max
ϱ∈F

(
⟨ϱ, ln⟩ − Λ∗

q(ϱ)
)

< Λq(ln).

Recalling (4.1), this established the exponential concentration.

The argument for (ii) is similar, and actually a bit simpler.

Proof of (ii). Assume ⟨ϱ, ln⟩ < Λ∗
q(ϱ); by the lower semi-continuity of Λ∗

q , we
can find a closed neighborhood F of ϱ such that

sup
ϱ′∈F

(⟨ϱ′, ln⟩ − Λ∗
q(ϱ′)) = −2c < 0.

Then, just as in (i), we have for all n sufficiently large

Eq(#{v ∈ T : |v| = n & µv ∈ F}) ≤ e−cn,

and a summation over all generations enables us to conclude that

Eq(#{v ∈ T : µv ∈ F}) < ∞.

In particular, ϱ is evanescent Pq-a.s.

The proof of (iii) relies on the next technical estimate, which can be seen as
an extension of results obtained in [5, Section 5].

Lemma 4.3. Consider a function a : S → [0, 1/q) such that∑ ν(j)
1 − qa(j) = 1/(1 − q),

and then define πa ∈ PS by

πa(k) := (1 − q)a(k)
1 − qa(k) ν(k), k ∈ S.

If ∑
πa(k) log

(
a(k)

k

)
< 0,

then the probability under Pq that πa is strongly persistent is strictly positive.

Taking Lemma 4.3 for granted, we can easily establish the last part of The-
orem 4.1.

Proof of (iii). Let ϱ ∈ PS ; define

a(k) := ϱ(k)
qϱ(k) + (1 − q)ν(k) , k ∈ S.

So
H(ϱ|qϱ+ (1 − q)ν) =

∑
ϱ(k) log a(k)
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and we have also ϱ = πa. Therefore the condition of the statement

⟨ϱ, ln⟩ > H(ϱ|qϱ+ (1 − q)ν)

reads ∑
πa(k) log

(
a(k)

k

)
< 0.

This enables us to invoke Lemma 4.3.

The proof of Lemma 4.3 below may look indirect, however the guiding line
is close to that of Theorem 2.6(iii) in the case q = 0 without reinforcement.
In short, under a new probability measure Pa

q , we will construct a spine such
that the empirical offspring distribution along the spine approaches πa as the
generation goes to infinity. Then, we will have to check that the distribution
of the tree under Pa

q is absolutely continuous with respect to the initial law Pq.
This is the role of the inequality in the statement. This argument is similar to
that used in [5, Section 5]. To minimize the overlap with our previous work, we
shall just sketch here the proof of Lemma 4.3, focussing on changes needed in
key calculations. Of course, reader wishing to follow details may want to have
[5] at hand as well.

Sketch of the proof of Lemma 4.3. Let a be as in the statement. We first intro-
duce

ma(ϱ) :=
∑
k∈S

a(k)(qϱ(k) + (1 − q)ν(k)), ϱ ∈ PS .

This quantity should be interpreted as the conditional mean value of a(d(v)) for
the reinforced Galton–Watson process, given that v is a vertex with empirical
offspring distribution µv = ϱ. We further define, for any vertex v of the tree
aside the root,

Φa(v) :=
|v|−1∏
j=0

a(d(vj))/d(vj)
ma(µvj

) , (4.2)

where, as previously, vj denotes the forebear of v at generation j, and we agree
for definitiveness that for j = 0, ma(µ∅) =

∑
a(k)ν(k). It is immediate that

the process
Ma

n =
∑

|v|=n

Φa(v), n ≥ 1 (4.3)

is a nonnegative martingale with unit mean under Pq.
Much as for (2.7), this martingale serves to define a probability measure Pa

q

for the joint law of a random tree T together with a spine (V a
n )n≥0. Specifically,

for any n ≥ 1, any subtree tn of the Ulam tree with height n and any v vertex of
tn at height n, if we write Tn for the subtree obtained by pruning T at generation
n, then we set

Pa
q (Tn = tn, V a

n = v) := Pq(Tn = tn)Φa(v). (4.4)

The next key step of the proof lies in the observation that the evolution of the
degrees (d(V a

n )) along the spine can be described as a generalized Pólya urn,
whose scheme however differs from that in Section 3. See [5, Section 6.2].
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Specifically, think again of S as a set of colors; we also add a special color
denoted by ⋆. We define an urn process with balls having colors in S ∪ {⋆}
as follows. Let the urn contain two balls at the initial time n = 0, one with
a random color sampled according to ν and one with color ⋆. Imagine that a
ball with color k ∈ S has activity qa(k), meaning that the probability that it is
picked at some random drawing from the urn is proportional to qa(k), whereas
a ball with color ⋆ has activity (1 − q)

∑
a(j)ν(j). At each step, a ball is drawn

at random in the urn with probability proportional to its activity, its color is
observed and the ball is then replaced in the urn. If the color of the sampled ball
is j ∈ S, then we add to the urn one ball with color j and one ball with color ⋆.
If the sampled ball has color ⋆, then we add to the urn one ball with color ⋆ and
a second ball with random color in S, such that probability of adding the color
k is proportional to a(k)ν(k). Then the sequence of the successive colors of the
non-⋆ balls added to the urn step after step, has the same law as the sequence
(d(V a

n )) of out-degrees under Pa
q .

The upshot of the description above is that it enables us to determine the
asymptotic behavior of (d(V a

n )) using classical results on generalized Pólya urns
due to Athreya and Karlin [1], see also Janson [17]. This requires the compu-
tation of the principal spectral elements of the mean replacement matrix of the
urn re-weighted by activities. Namely, introduce A = (Ai,j)i,j∈S∪{⋆} defined for
i, j ∈ S by

Ai,j = qa(i)δi(j), Ai,⋆ = qa(i), A⋆,j = (1 − q)a(j)ν(j),

and finally,
A⋆,⋆ = (1 − q)

∑
a(k)ν(k).

One readily finds from our assumption (see [5, Lemma 5.5] for similar calcula-
tions) that the leading eigenvalue of A is 1 and the left-eigenvector can then be
chosen to coincide with πa on S.

The first consequence of the above spectral analysis for the Pólya urn is that
the empirical measure of out-degrees along the spine converges Pa

q -a.s. to πa

as the generation goes to infinity. On the other hand, one immediately verifies
that ma(πa) = 1. Thus

lim
n→∞

1
n

log Φa(V a
n ) =

∑
πa(k) log

(
a(k)

k

)
< 0, Pa

q -a.s.,

and therefore the series
∑∞

n=1 Φa(V a
n ) converges Pa

q -a.s. Using the same argu-
ment as in the proof of Lemma 2.9(ii), we conclude that the martingale Ma

n is
uniformly integrable under Pq, and it follows that πa is strongly persistent with
a strictly positive probability under Pq.

As an immediate application, we point out that any law on S with no atom at
0 can be made strongly persistent provided that the reinforcement is sufficiently
strong.

Corollary 4.4. Let any ϱ ∈ PS with ϱ(0) = 0 and ϱ(1) < 1. We may choose
the memory parameter sufficiently large such that

⟨ϱ, ln⟩ > (1 − q)H(ϱ|ν),
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and then the probability under Pq that ϱ is strongly persistent is strictly positive.
In particular, if

⟨ϱ, ln⟩
H(ϱ|ν) ∈ (1 − q, 1),

then ϱ is evanescent P0-a.s. and strongly persistent with strictly positive Pq-
probability.
Proof. Indeed ⟨ϱ, ln⟩ > 0 and H(ϱ|ν) < ∞, so we may choose q ∈ (0, 1) as in
the statement. It follows from the convexity of the relative entropy that

(1 − q)H(ϱ|ν) ≥ H(ϱ|qϱ+ (1 − q)ν),

and we conclude the proof of the first claim with an appeal to Theorem 4.1(iii).
The second assertion follows, by Theorem 2.6(ii) and the variational formula
(2.2).

The (contraposition of the) final result of this section result provides an
elementary necessary condition for a law to be strongly persistent with positive
probability.
Proposition 4.5. For any ϱ ∈ PS with

qmϱ + (1 − q)mν < 1,

the probability under Pq that ϱ being strongly persistent is zero.
Proof. Indeed there is then a neighborhood G of ϱ such that

sup
ϱ′∈G

(qmϱ′ + (1 − q)mν) < 1. (4.5)

Under Pq, consider any vertex v in T with µv ∈ G, and prune its descent as soon
as the empirical offspring distribution exits G. By subcriticality, (4.5) entails
that the pruned descent of v is finite, Pq-a.s.

Remark 4.6. Comparing Theorem 4.1(iii) and Proposition 4.5 shows that

⟨ϱ, ln⟩ ≤ H(ϱ, qϱ+ (1 − q)ν) as soon as qmϱ + (1 − q)mν = mqϱ+(1−q)ν < 1.

Actually, it follows immediately from Gibbs inequality that

mqϱ+(1−q)ν ≤ 1 =⇒ ⟨ϱ, ln⟩ ≤ H(ϱ, qϱ+ (1 − q)ν).

5 A sufficient condition for survival
We now conclude this work by pointing out that Lemma 4.3 also yields the
following sufficient condition for the survival of reinforced Galton-Watson pro-
cesses. Introduce the space of functions on S

A :=
{

a : S → [0, 1/q) :
∑ ν(j)

1 − qa(j) = 1
1 − q

}
,

and the function J : A → (−∞, ∞] given by

J(a) =
∑

ν(k) (1 − q)a(k)
1 − qa(k) log

(
a(k)

k

)
.

We also recall that the principal branch W0 of the Lambert W function is defined
for every x ≥ −1/e as the unique solution y ≥ −1 to the equation yey = x.
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Corollary 5.1. The reinforced Galton–Watson process survives for ever with a
strictly positive Pq-probability whenever

min
A

J < 0.

More precisely, J always reaches its minimum at a unique location a = arg min J ,
which is determined as the unique a ∈ A such that there exists some C > 0 with

a(j) = −q−1W0(−Cj), j ∈ S.

This is improves upon [5, Theorem 1.3], in which the sufficient condition for
survival is given by the stronger condition J(b) < 0, where b ∈ A is proportional
to the identity, i.e. b(k) = ck for a suitable c > 0. In the converse direction,
we believe that the reinforced Galton–Watson process should become eventually
extinct a.s. when minA J = J(a) > 0.

Proof. First, recall the notation of Lemma 4.3 and note that

J(a) =
∑

πa(k) log
(

a(k)
k

)
.

So if we assume that J(a) < 0, then the requirement of Lemma 4.3 holds
for π = πa, and the latter is strongly persistent with a strictly positive Pq-
probability. A fortiori the reinforced Galton–Watson process survives with a
strictly positive probability.

The proof of the second claim uses the method of Lagrange multipliers. To
start with, note that if 0 ∈ S and a ∈ A with a(0) > 0, then J(a) = ∞. An
argument of compactness and continuity shows that there exists some a ∈ A
with a(0) = 0 whenever 0 ∈ S, such that J(a) = inf J = min J . Next, the
function x 7→ x log x has a finite derivative at any x > 0, whereas its right-
derivative at x = 0 is −∞. It follows that if a ∈ A has a(k) = 0 for some k ̸= 0,
then a is not a local minimum of J ; hence a(k) > 0 for all k ∈ S\{0}.

The function J is C1 on {a : S\{0} → (0, 1/q)}, with a partial derivative in
the k-th coordinate given by

∂kJ(a) = (1 − q)ν(k)
1 − qa(k)

(
1 + 1

1 − qa(k) log
(

a(k)
k

))
.

So, if we introduce the constraint function

g(a) =
∑ ν(j)

1 − qa(j) ,

which has ∂kg(a) = qν(k)/(1−qa(k))2, then A = {a : g(a) = 1/(1−q)} and the
criticality of a forces the vectors ∂kJ(a) and ∂kg(a) to be proportional. This
entails the existence of some constant c ∈ R such that

log(a(k)/k) + 1 − qa(k) = c for all k ∈ S\{0}.

We rewrite the equation above as

−qa(k)e−qa(k) = −kC,

with C = ec > 0. Thus a(k) = −q−1W (−Ck), with W being one of the
two branches of Lambert’s W function. But since W−1(−Ck) ≤ −1, only
a(j) = −q−1W0(−Cj) fits the requirement qa(k) < 1. Since W0 is monotone
increasing, the constraint g(a) = 1/(1 − q) determines C, and we conclude that
J has indeed a unique minimum at the location given in the statement.
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