
Reinforced Galton-Watson processes II:
Large-time behaviors

Jean Bertoin∗ Bastien Mallein†

February 8, 2025

Abstract
Reinforced Galton-Watson processes have been introduced in [4] as

population models with non-overlapping generations, such that reproduc-
tion events along genealogical lines can be repeated at random. We in-
vestigate here some of their sample path properties such as asymptotic
growth rates and survival, for which the effects of reinforcement on the
evolution appear quite strikingly.
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1 Introduction and main results
Reinforcement is a fundamental concept in many sciences, including notably
Behavioral Psychology (as a key part of Skinner’s behavioral theory of learning
[10]) and Artificial Intelligence [7], where this terminology refers to methods
that increase the likelihood of certain evolutions in both natural and artificial
systems. It has been introduced in the setting of stochastic processes by Cop-
persmith and Diaconis in an influential unpublished article, where these authors
modified step after step the dynamics of a random walk on a graph, in such a
way that transitions which have already been often made in the past are more
likely to occur again in the future.

It is a recent development in Demography that a reinforcement feature can be
detected in the genealogy of human populations. In many human populations,
the fertility levels of parents and children are positively correlated [3, 9]; this
may be explained e.g. by socioeconomic, cultural or inherited factors. This
observation, sometimes referred to as Intergenerational Transmission of Fertility,
invalidates population models in which individuals reproduce independently one
from the others, and provides an incentive for the study of reinforced versions
which incorporate a dependency structure of fertility levels along lineages.

The Galton-Watson branching process is a population model in which every
individual reproduces independently of the others according a probability distri-
bution (ν(k))k≥0; any individual has probability ν(k) of having k children at the
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next generation. This population model was originally introduced to study the
evolution of human demography, namely the possible disappearance of family
names. It is well-known that this process almost surely dies out if and only if
the mean number of children of a given individual satisfies mGW :=

∑
kν(k) ≤ 1

and ν(1) < 1. We write

Sν := {k ≥ 1 : ν(k) > 0} (1.1)

for the strictly positive part of the support of the reproduction law ν, and
assume throughout this work that Sν has a maximal element k∗ ≥ 2. In other
words, k∗ is the maximal possible number of children; observe that k∗ ≥ 2
immediately implies ν(1) < 1.

We recently introduced in [4] a reinforced version of Galton-Watson pro-
cesses that involves random repetitions of reproduction events and depends on
a parameter q ∈ (0, 1). The evolution can be depicted as follows. Each in-
dividual at any generation n ≥ 1 picks a forebear uniformly at random on
its ancestral lineage, independently of the other individuals. Then either with
probability q, this individual begets the same number of children as the selected
forebear, or with complementary probability 1 − q, the number of its children
is an independent sample from the reproduction law ν. Reproduction events
that occurred at early stages of the process are thus more likely to be repeated
in the future, as they are common to a larger number of genealogical lines, and
informally speaking, the reinforced process thus keeps some memory of its past.
Clearly, the usual Galton-Watson evolution corresponds to the boundary case
q = 0 without reinforcement (i.e. without memory).

Let Z = (Z(n))n≥0 be a reinforced Galton-Watson process with reproduction
law ν and reinforcement parameter q ∈ (0, 1), started from a single ancestor.
More precisely, Z(n) denotes the size of the n-th generation, and for k ≥ 1,
we write Pk for the distribution of Z conditioned on Z(1) = k. Let us recall
a simplified version of our main result about the asymptotic behavior of the
averaged population size for large generations; see [4, Theorem 7.3]. As n → ∞,
we have

Ek∗(Z(n)) ∼
mn

ν,q

q + (1 − q)ν(k∗) , (1.2)

whereas
Ek(Z(n)) = o

(
mn

ν,q

)
for any k ∈ Sν with k ̸= k∗, (1.3)

where
mν,q := q∫ 1/k∗

0 Π(t)dt
, (1.4)

and
Π(t) :=

∏
k∈Sν

(1 − tk)ν(k)(1−q)/q, 0 ≤ t ≤ 1/k∗. (1.5)

We now present the motivations for the present work and our two main
results. Recall that for the usual Galton-Watson process ZGW with reproduction
law ν, not only the mean population size at the n-th generation is1

E(ZGW(n)) = mn
GW for all n ≥ 1,

1This has to be compared and contrasted with (1.2) and (1.3); recall also from [4, Propo-
sition 7.1(i)] that mGW = limq→0+ mν,q .
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but in the supercritical case where mGW > 1, there is the much more precise
pathwise convergence

lim
n→∞

m−n
GWZGW(n) = WGW a.s. and in L1.

Furthermore, in the original Galton-Watson process, the random variable WGW

vanishes exactly on the event of eventual extinction of ZGW. Our first main
result shows that reinforcement may change dramatically this property.

In this direction, we need to introduce some more notation. Consider the
sub-process Z∗ = (Z∗(n))n≥0 of the reinforced Galton-Watson process which
results by suppressing every progeny (together with its descent) that has size
strictly less than k∗. Since by construction, all the forebears of an individual
in this sub-process have exactly k∗ children, Z∗ is a true Galton-Watson pro-
cess under Pk∗ (recall that the latter denotes the distribution of the reinforced
Galton-Watson process when the ancestor has the maximal number k∗ of chil-
dren). Specifically, all individuals in this sub-process, with the exception of the
ancestor, have either k∗ children with probability q + (1 − q)ν(k∗), or 0 child
with complementary probability, independently one of each other’s. We write

m∗,q := k∗(q + (1 − q)ν(k∗)) (1.6)

for the mean reproduction number of Z∗ and stress that m∗,q ≤ mν,q; see [4,
Proposition 7.2].

Theorem 1.1. We have:

(i) If m∗,q ≤ 1, then

lim
n→∞

m−n
ν,qZ(n) = 0 in Pk∗-probability.

(ii) If m∗,q > 1, then

lim
n→∞

m−n
ν,qZ(n) = lim

n→∞
m−n

∗,q Z∗(n) := W∗ in L1(Pk∗).

Moreover the events {W∗ = 0} and {∃n ≥ 1 : Z∗(n) = 0} coincide Pk∗-a.s.

Remark 1.2. Comparing Theorem 1.1(i) with (1.2) shows that the main contri-
bution to the mean population size Ek∗(Z(n)) when m∗,q ≤ 1 is actually due to
exceptional events for which the population is much larger than expected, i.e.
Z(n) ≫ mn

ν,q. When m∗,q > 1, this is no longer the case. However, we expect
the survival event of Z to be strictly larger than {W∗ ̸= 0}, more precisely, that
Pk∗(infn Zn > 0, W∗ = 0) > 0.
Remark 1.3. Consider in this remark only the case when the reproduction law ν
has unbounded support. If we define a reinforced Galton-Watson process Z with
these parameters, then for all k ∈ Z+, we can define Z(k) counting individuals
in the reinforced process such that none of their ancestor had k ancestors or
more. Setting

∀1 ≤ j ≤ k, ν(k)(j) = ν(j) and ν(k)(0) = 1 − ν([1, k]),

we observe that Z(k) is a (ν(k), q) reinforced Galton-Watson process, and that

mν(k),q ≥ k(q + (1 − q)ν(k)) ≥ kq.
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As a result, we deduce from Theorem 1.1 that lim infn→∞ Zn/An > 0 with
positive probability for all A > 0, and E(Zn) grows super-exponentially fast
as n → ∞. This justifies our choice of only considering compactly supported
measures ν.

Our second main result concerns survival probabilities. For usual Galton-
Watson processes, ZGW survives with strictly positive probability if and only
it is super-critical, that is mGW > 1. In the reinforced setting, Theorem 1.1(i)
entails that Z becomes eventually extinct a.s. whenever mν,q ≤ 1; however we
conjectured in [4] that there should exist reproduction laws ν and reinforcement
parameters q such that mν,q > 1 and nonetheless, the reinforced Galton-Watson
process becomes extinct eventually almost surely.

In the converse direction, observe first that if qk∗ ≥ 1, then the true Galton-
Watson process Z∗ is supercritical, and the reinforced Galton-Watson process Z
obviously survives with strictly positive probability. In particular, observe that
if ν had unbounded support, then the reinforced Galton-Watson process would
always survive with positive probability. Assuming now that qk∗ < 1, we point
at the following sufficient condition for survival of Z.

Theorem 1.4. Suppose that qk∗ < 1, and that

k∗∑
j=1

(1 − q)jν(j)
1 − qj

> 1. (1.7)

Then the reinforced Galton-Watson process survives forever with strictly positive
probability, that is for any k ∈ Sν , we have

Pk(Z(n) ≥ 1 for all n ≥ 1) > 0.

Remark 1.5. (i) Condition (1.7) obviously holds whenever there exists some
j ∈ Sν such that

(1 − q)jν(j)
1 − qj

> 1.

This inequality can be written as j(q + (1 − q)ν(j)) > 1, and we ob-
serve that the left-hand side is the mean reproduction number of the true
Galton-Watson sub-process that results from the reinforced one by sup-
pressing every progeny (together with its descent) with size different from
j. That is, the true Galton-Watson sub-process is supercritical, hence it
survives with strictly positive probability. A fortiori the same holds for
the reinforced Galton-Watson process.

(ii) In the same vein, (1.7) also clearly holds when the usual Galton-Watson
process ZGW is supercritical, viz. mGW > 1. In the converse direction, it
is easy to construct reproduction laws ν with

mGW < 1 <

k∗∑
j=1

(1 − q)jν(j)
1 − qj

.

This provides further examples of reinforced process Z that may survive
in situations where usual Galton-Watson process ZGW becomes eventually
extinct a.s.
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(iii) The sufficient condition (1.7) corresponds exactly to the necessary and
sufficient condition for the survival of the branching process Z̃ in which
parents beget children according to the law ν with probability 1 − q, or
beget exactly as many children as their own parent with probability q.
The process Z̃ being a multitype Galton-Watson process, this claim is
easily checked by studying the Perron-Frobenius eigenvalue of the mean
reproduction matrix (qjδi,j + (1 − q)jν(j))i,j , where δ·,· is the Kronecker
symbol, see [2, Chapter 4].

Theorem 1.1 implies that mν,q > 1 is a necessary condition for survival.
Theorem 1.4 gives a different sufficient condition for survival, namely (1.7). As
a consequence, (1.7) entails mν,q > 1; however, we have not been able to check
this fact by purely analytic considerations. Despite these two conditions being
quite close to one another, the two are not identical as is being illustrated in
Figure 1.

p

q

0.25

0.1

survival

extinction

Figure 1: Phase diagram of the survival of a reinforced Galton-Watson process
with parameter (νp, q), where we have set νp = (1−4p)δ0+p(δ1+δ2+δ3+δ4), for
q ∈ [0, 0.25] and p ∈ [0, 0.1]. The blue line corresponds to the set of parameters
such that mνp,q = 1, the orange one to parameters such that

∑
(1−q)jνp(j)/(1−

qj) = 1. The grey domain corresponds to the set of parameters for which
mνp,q > 1 but (1.7) does not hold. Note that mGW > 1 for p > 0.1 and that
qk∗ = 4q ≥ 1 for q ≥ 0.25, which explains the boundary points of the curves.

The rest of this work is organized as follows. Section 2 dwells on the ob-
servation that reinforced Galton-Watson processes can be viewed as multitype
branching processes, where the type of an individual is defined by the sequence
of the numbers of children of its forebears. This enables us to recover the
branching property, of course at the cost of working with a rather large space
of types. In Section 3, we establish some bounds for such multitype branching
processes, which follow rather directly from (1.2) and (1.3). These bounds are
then used in Section 4 to establish Theorem 1.1.

Section 5 is in turn devoted to the proof of Theorem 1.4; let us briefly sketch
our approach which is fully independent of [4]. We start in Subsection 5.1 by
constructing a natural nonnegative martingale M for the reinforced Galton-
Watson process, which starts from M0 = 1 and vanishes as soon as Z becomes
extinct. This leads us to investigate whether M is uniformly integrable, since in
that case, the reinforced Galton-Watson process obviously survives with strictly
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positive probability. In this direction, we use M to define a tilted probability law
in Subsection 5.2, and describe the evolution of the reinforced Galton-Watson
process under the tilted law in terms of the so-called spinal decomposition.
Next, in Subsection 5.3, we interpret the evolution of the types along the spine
in terms of a generalized Pólya urn process. This permits us to determine
the asymptotic behavior of those types. The proof of Theorem 1.4 can then
be completed in Subsection 5.4 by applying classical arguments involving the
spinal decomposition and Durrett’s criterion for the uniform integrability of a
nonnegative martingale.

2 Reinforced Galton-Watson processes as mul-
titype branching processes

The reproduction law of an individual in a reinforced Galton-Watson process
depends on its entire ancestral lineage. Different individuals may partly share
the same ancestral lineage, and then their respective evolutions are not inde-
pendent. The Markov and the branching properties are therefore lost in this
process, but can nonetheless be recovered by endowing each individual with a
type that records the reproduction numbers of its forebears.

To start with, we briefly adapt to our setting the Ulam–Harris–Neveu frame-
work which enables to encode any population model with non-overlapping gen-
erations started from a single ancestor by its the genealogical tree T . Since in
our model, an individual has never more than k∗ children, we use the space of
finite (possibly empty) sequences in {1, . . . , k∗},

U :=
⋃
ℓ≥0

{1, . . . , k∗}ℓ,

as the universal tree that contains T .
The empty sequence ∅ is assigned to the ancestor of the population and

viewed as the root of the genealogical tree T . An individual at the ℓ-th genera-
tion is represented by some u = (u1, . . . , uℓ) ∈ T , and if this individual has k ≥ 1
children, the latter are represented in turn by the sequences uj := (u1, . . . , uℓ, j)
for j = 1, . . . , k. As in our setting, an individual can have k children only for
k ≥ 0 such that ν(k) > 0, the outer-degree d(u) of any individual u ∈ T always
belongs to the support of the reproduction law ν; moreover for any u ∈ T ,
d(u) = 0 if and only if u is a leaf of T . For u = (u1, . . . , uℓ) ∈ U and j ≤ |u| = ℓ,
we write u(j) = (u1, . . . , uj) for the prefix consisting of the first j letters of u,
which corresponds to the ancestor of u alive at generation j.

We further assign types to individuals that record outer-degree sequences
along ancestral lines. Recall from (1.1) the notation Sν for the strictly positive
part of the support of ν. We call type a (possibly empty) finite sequence t =
(d1, . . . , dℓ) in Sν , where dj should be thought of as the number of children of
the forebear j-generations backwards. We agree to write simply d1 instead of
(d1) when the type has just one element. We denote the space of types by

W :=
⋃
ℓ≥0

Sℓ
ν .

Types are associated to vertices of T using the following (deterministic) algo-
rithm. If an individual u ∈ T has type t = (d1, . . . , dℓ) and has k ≥ 1 children
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at the next generation, then all its children receive the type kt = (k, d1, . . . , dℓ).
The assignation of types is thus completely determined once the initial type t(∅)
of the ancestor and the genealogical tree T are known. The type t(∅) of the
ancestor may be either empty or a sequence of positive length, |t(∅)| = ℓ ≥ 1.
In the latter case, say t(∅) = (d1, . . . , dℓ), we may imagine that the ancestor
has also forebears before the origin of time, at generations −1, . . . , −ℓ. In all
cases, the length |t(u)| of the type of an individual u ∈ T is at least as large as
its generation |u|.

Counting occurrences of each d ∈ Sν in types is important in our analysis.
This incites us to introduce the space Mν of finite integer-valued measures on
Sν and define for all t = (d1, . . . , dℓ) ∈ W

ϖt =
ℓ∑

j=1
δdj

.

We simply call ϖt the ancestral reproduction measure of an individual of type t.
Plainly, if u ∈ T has k ≥ 1 children at the next generation, then all its children
have the same ancestral reproduction measure ϖt(u) + δk. The assignation of
ancestral reproduction measures to individuals is also completely determined by
the ancestral reproduction measure ϖt(∅) of the ancestor and the genealogical
tree T .

This setting enables us to view a reinforced Galton-Watson process as a
multitype branching process; see [5] for background. Recall that q ∈ (0, 1) is a
reinforcement parameter and ν a probability vector on {0, 1, . . . , k∗}. We just
need to specify the reproduction law πt of an individual as a function of its type
t. First, when this type is empty (which can only be the case for the ancestor),
we agree2 that the individual has almost surely k∗ children all with type k∗.
Next, when the type t is non-empty, the probability that this individual begets
no child equals

πt(0) = (1 − q)ν(0),
and the probability that it begets exactly k ≥ 1 children all of type kt and no
further children equals

πt(k) = (1 − q)ν(k) + q
ϖt(k)

|t|
, k ∈ Sν ,

where the length |t| of the type coincides with the total mass of its ancestral
reproduction measure ϖt. In particular, ϖt/|t| is the empirical distribution of
the numbers of children of the forebears of an individual of type t.

For every tree T and vertex u ∈ T , we write Tu for the subtree that stems
from u. Specifically a vertex v belongs to Tu if and only if uv (the concatenation
of the words u and v) is a vertex of T , and then we agree that the type of v in
Tu is the one of uv in T . We also write

T|ℓ := {u ∈ T : |u| ≤ ℓ}

for the restriction of the genealogical tree to the first ℓ generations.
2Recall that in the first part of this work, we are essentially concerned with the law Pk∗

when the ancestor has k∗ children, who all have type k∗. If we were working under law Pk

for k ∈ Sν , then we would have imposed that an individual with the empty type has exactly
k children all with type k.
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For every type t ∈ W, we write Pt for the law of the genealogical tree
T of the multitype branching process with the reproductions laws described
above conditioned on the ancestor having type t. We also write Et for the
corresponding expectation. With this formalism at hand, we can now recover
the branching property. The basic Markov-branching property for the multitype
branching process can be stated as follows.

Lemma 2.1. Let T be a fixed tree of height ℓ (i.e. such that supv∈T |v| = ℓ)
and an arbitrary initial type t ∈ W. We denote by t(u) the type of the vertex
u ∈ T that results from fixing t(∅) = t. Then, under the conditioned probability
measure Pt(·|T|ℓ = T ), the subtrees at level ℓ (Tu : u ∈ T and |u| = ℓ) are
independent and each Tu has the law Pt(u).

We will also use in the sequel the following consequence of Lemma 2.1. For
any initial type t ∈ W, every vertex u ∈ U , and every d ∈ Sν , under the
conditional probability measure Pt given that u ∈ T , that u has type t′ and
outer degree d(u) = d in T , the d subtrees Tu1, . . . , Tud are independent and
each has the law Pdt′ .

We further point at a useful domination property which should be intuitively
obvious.

Lemma 2.2. Consider two types t = (d1, . . . , dℓ) and t′ = (d′
1, . . . , d′

ℓ) with the
same length ℓ ≥ 1. We say that t dominates t′ if there is a permutation σ of
{1, . . . , ℓ} such that

dσ(j) ≥ d′
j for all j = 1, . . . , ℓ. (2.1)

In that case, we can construct two random genealogical trees T and T ′, the first
with the law Pt and the second with the law Pt′ , such that T is a subtree of T ′.

Observe that the existence of a permutation such that (2.1) holds can be
rephrased in terms of the empirical distribution of the number of children of the
forebears for individuals with types t and t′. More precisely, (2.1) holds if and
only if ϖt/|t| stochastically dominates ϖt′/|t′|.

Proof. We immediately see by inspection of the reproduction laws of the ances-
tor as a function of its type, that we can couple the number of children Z(1) of
the ancestor under law Pt with that Z ′(1) under Pt′ , such that Z(1) ≤ Z ′(1).
Then the types Z(1)t of the individuals at the first generation under Pt are also
dominated by the types Z ′(1)t′ under Pt′ . We can then complete the proof by
induction using the branching property of Lemma 2.1.

3 Some useful bounds
The purpose of this section is to establish some inequalities that will be needed
in the proof of Theorem 1.1. These follow readily from the framework develop
in the preceding section and the key estimates (1.2) and (1.3). For every n ≥ 0,
the integer-valued measure

Zn :=
∑

|u|=n,u∈T

δt(u), n ≥ 0,
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that counts the number of individuals at the n-th generation as a function of
their types, can be viewed as an enriched version of the reinforced Galton-
Watson process for which the types of individuals are recorded. In particular,
the total mass of ∥Zn∥ := Zn(W) under P∅ coincides with Z(n) under Pk∗ .

We start with the following generalization of the bounds (1.2) and (1.3) to
arbitrary fixed initial types. Recall the notation (1.4) and (1.6).

Lemma 3.1. Consider a type t = (d1, . . . , dℓ) with length |t| = ℓ. As n → ∞,
we have

Et (∥Zn∥) ∼
(

mν,q

m∗,q

)ℓ

mn
ν,q

when dj = k∗ for all j = 1, . . . , ℓ, whereas Et (∥Zn∥) = o
(
mn

ν,q

)
otherwise.

We mention that the approach in [4] would yield a much sharper estimate in
the second case. However, calculations would be technically rather demanding
and we prefer to establish the weaker result using only a much simpler argument,
as this suffices for our purpose.

Proof. We consider first the case when type of the ancestor of the reinforced
Galton-Watson process has length 1 and is given by j ∈ Sν with j ̸= k∗, and
work under Pj . We may imagine that the ancestor had a parent at generation
−1 and j − 1 siblings. This yields the identity

jEj (∥Zn∥) = Ej(Z(n + 1)),

and (1.3) entails that for any fixed ℓ ≥ 0,

Ej (∥Zℓ+n∥) = o
(
mn

ν,q

)
as n → ∞.

The probability under Pj that the individual (1, . . . , 1) at generation ℓ is present
in the population and has type (k∗, . . . , k∗, j) (i.e. all its forebears at generations
0, . . . , ℓ − 1 had k∗ children) is no less than ((1 − q)ν(k∗))ℓ > 0. It follows from
the branching property that

E(k∗,...,k∗,j) (∥Zn∥) ≤ ((1 − q)ν(k∗))−ℓEj (∥Zℓ+n∥) = o
(
mn

ν,q

)
.

An application of Lemma 2.2 completes the second claim of the statement.
We next work under P∅; recall from (1.2) that

E∅ (∥Zn+ℓ∥) = Ek∗(Z(n + ℓ)) ∼
mn+ℓ

ν,q

q + (1 − q)ν(k∗) .

We apply the branching property under P∅ at the ℓ-th generation. Recall that
the number of individuals at generation ℓ of type (k∗, . . . , k∗) (the sequence with
ℓ terms, all equal to k∗) is

Zℓ(k∗, . . . , k∗) = Z∗(ℓ),

and that Z∗ is a usual Galton-Watson process with mean reproduction number
m∗,q given that the ancestor has k∗ children. In particular, the mean number
of these individuals is

Ek∗(Z∗(ℓ)) = k∗mℓ−1
∗,q . (3.1)
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There are also Z(ℓ)−Z∗(ℓ) ≤ kℓ
∗ individuals with types different from (k∗, . . . , k∗),

and we know from the first part of this proof that as n → ∞, the average de-
scent of each of them at generation n + ℓ is o

(
mn

ν,q

)
. Therefore, the branching

property yields

E∅ (∥Zn+ℓ∥) ∼ Ek∗(Z∗(ℓ))E(k∗,...,k∗) (∥Zn∥) ,

and we conclude that

E(k∗,...,k∗) (∥Zn∥) ∼ 1
q + (1 − q)ν(k∗)

m∗,q

k∗

(
mν,q

m∗,q

)ℓ

mn
ν,q =

(
mν,q

m∗,q

)ℓ

mn
ν,q,

using (1.6) for the last equality.

A similar argument also yields the following uniform bounds.

Lemma 3.2. There is some finite constant cν,q depending only on the rein-
forcement parameter and the reproduction law, such that for any type t ∈ W
and any n ≥ 0, one has

Et (∥Zn∥) ≤ cν,q

(
mν,q

m∗,q

)|t|

mn
ν,q.

Proof. Consider first the case of the empty type, so |t| = 0. Recall that

E∅ (∥Zn∥) = Ek∗(Z(n)),

so by (1.2), we can find some finite constant c such that

E∅ (∥Zn∥) ≤ cmn
ν,q for all n ≥ 0.

Next, as it was already discussed previously, by focussing on individuals at
a given generation ℓ ≥ 1 whose forebears all had k∗ children and applying the
branching property of Lemma 2.1, we get the inequality

E∅ (∥Zn+ℓ∥) ≥ Ek∗(Z∗(ℓ))E(k∗,...,k∗) (∥Zn∥) .

The identity (3.1) entails our claim whenever t = (k∗, . . . , k∗) with cν,q =
cm∗,q/k∗. Finally, the general case for a type t follows from above by an appli-
cation of Lemma 2.2, since t is dominated by (k∗, . . . , k∗).

When the usual Galton-Watson process Z∗ is supercritical, we can also
bound the second moment of ∥Zn∥ by combining these inequalities with a com-
binatorial argument.

Lemma 3.3. If m∗,q > 1, then there exists a constant Cν,q such that for all
n ≥ 1, and t ∈ W, we have

Et

(
∥Zn∥2)

≤ Cν,q

(
mν,q

m∗,q

)2|t|

m2n
ν,q.
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Proof. Observe that we can write

∥Zn∥2 = ∥Zn∥ (∥Zn∥ − 1) + ∥Zn∥.

It is therefore enough to bound Et (∥Zn∥ (∥Zn∥ − 1)) (the mean number of cou-
ples of distinct individuals alive at generation n) to complete the proof.

For v ∈ T with |v| < n, we denote by

Zv
n =

∑
|u|=n

1{u(|v|)=v}δt(u)

the empirical counting measure of the types in the subpopulation at generation
n descending from the individual v. We can now write

Et (∥Zn∥ (∥Zn∥ − 1)) = Et

 ∑
|u|=n

1{u∈T } (∥Zn∥ − 1)


=

∑
|u|=n

Et

1{u∈T }

n−1∑
j=0

d(u(j))∑
k=1

1{u(j)k ̸=u(j+1)}∥Zu(j)k
n ∥

 ,

In words, we decompose the ∥Zn∥ − 1 individuals alive at generation n barring
u according to their most recent common ancestor with u. We obtain from the
branching property of Z that

Et (∥Zn∥ (∥Zn∥ − 1))

=
∑

|u|=n

n−1∑
j=0

Et

(
1{u∈T }(d(u(j)) − 1)Et(u(j+1)) (∥Zn−j−1∥)

)
≤

∑
|u|=n

n−1∑
j=0

Pt(u ∈ T )k∗cν,qmn−j−1
ν,q

(
mν,q

m∗,q

)|t|+j+1
,

where we used that d(u(j)) ≤ k∗ and |t(u(j)k)| = |t| + j + 1 Pt-a.s., and we
applied Lemma 3.2. As m∗,q > 1, we immediately obtain that

Et (∥Zn∥ (∥Zn∥ − 1)) ≤ k∗cν,q

m∗,q − 1

(
mν,q

m∗,q

)|t|

Et(∥Zn∥)mn
ν,q.

Applying again Lemma 3.2, the proof is now complete.

4 Proof of Theorem 1.1
This section is devoted to the proof of Theorem 1.1. We first show that under
the assumption m∗,q ≤ 1, Z(n)/Ek∗(Z(n)) converges to zero in probability.
We next prove that if m∗,q > 1, then Z(n)/Ek∗(Z(n)) converges in L1 to a
non-degenerate random variable.

(i) We assume here that m∗,q ≤ 1, that is the usual Galton-Watson process
Z∗ is critical or sub-critical, and therefore becomes eventually extinct Pk∗ -almost
surely. For any given ε > 0, we can choose a generation ℓ ≥ 1 sufficiently large
so that Pk∗(Z∗(ℓ) ≥ 1) ≤ ε2. In other words, with P∅-probability at least 1−ε2,
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all individuals at generation ℓ have at least one forebear that had strictly less
than k∗ children. Plainly, there are at most k∗

ℓ individuals at generation ℓ,
and the set of possible types for these individuals is also bounded by k∗

ℓ. The
branching property yields

Ek∗(m−n−ℓ
ν,q Z(n + ℓ), Z∗(ℓ) = 0)

≤ m−ℓ
ν,qk∗

ℓ max{m−n
ν,qEt (∥Zn∥) : |t| = ℓ, t ̸= (k∗, . . . , k∗)},

and we now see from Lemma 3.1 that the right-hand side can be bounded from
above by ε2 for all sufficiently large n. An application of the Markov inequality
now gives

lim
n→∞

Pk∗(m−n−ℓ
ν,q Z(n + ℓ) ≥ ε) ≤ 2ε,

and Theorem 1.1(i) is proven.
(ii) We now suppose that m∗,q > 1, i.e. that the usual Galton-Watson

process Z∗ is supercritical. Since its reproduction law has bounded support, the
process

W∗(n) := m−n
∗,q Z∗(n), n ≥ 0

is a martingale bounded in L2, and we write W∗ for its terminal value. Recalling
that the ancestor has k∗ children, we have

E∅(W∗) = E∅(W∗(n)) = k∗m−1
∗,q = 1

q + (1 − q)ν(k∗) .

Note that by (1.2) and (1.3), we have

lim
n→∞

Ek∗(m−n
ν,qZ(n)) = 1

q + (1 − q)ν(k∗) = E∅(W∗).

To prove that m−n
ν,q Z(n) converges to W∗ in L1, we use the following classical

variant of Scheffé’s lemma: a sequence of non-negative random variables (ξn)
converges in L1(P) to some random variable ξ whenever limn→∞ E(ξn) = E(ξ)
and limn→∞ ξn = ξ in probability. Note that the usual Scheffé’s lemma makes
the stronger requirement ξn → ξ a.s., but using that from any extraction of ξn

one can find a subsequence converging almost surely to ξ, the result still holds.
We denote by T∗ the Galton-Watson subtree of T obtained by only keeping

elements of T with outdegree k∗. Recall that #{|u| = ℓ : u ∈ T∗} = Z∗(ℓ). We
prove the convergence in probability of m−n

ν,q Z(n) to W∗ by decomposing Zn at
an intermediate generation ℓ as ∥Zn∥ = ∥Zℓ∗

n ∥ + Rn, where Zℓ∗
n is the point

measure on types associated to individuals at generation n in T with ancestors
at generation ℓ that belong to T∗. Using the branching property at generation ℓ,
we remark that ∥Zℓ∗

n ∥ is the sum of Z∗(ℓ) independent copies of ∥Zn−ℓ∥ under
law P(k∗,...,k∗), while Rn is the sum of at most k∗

ℓ independent copies of ∥Zn−ℓ∥
starting from initial conditions such that |t| = ℓ and t ̸= (k∗, . . . , k∗).

As a result, for each fixed ℓ > 0, we have by Lemma 3.1 that

lim
n→∞

E∅
(
m−n

ν,qRn

)
= 0.

In particular, m−n
ν,qRn converges to 0 in probability.

12



We now compute the mean and variance of ∥Zℓ∗
n ∥ conditionally on the first

ℓ generations of the process. Using the consequence of the branching property
described above, we have

E∅
(
|Zℓ∗

n |
∣∣T|ℓ

)
= Z∗(ℓ)E(k∗,...,k∗) (∥Zn−ℓ∥) ∼n→∞ mn

ν,qW∗(ℓ) a.s.

by Lemma 3.1. Similarly, we compute the conditional variance

E∅

((
∥Zℓ∗

n ∥ − E∅
(
∥Zℓ∗

n ∥
∣∣T|ℓ

))2 ∣∣T|ℓ

)
= Z∗(ℓ)E(k∗,...,k∗)

((
∥Zn−ℓ∥ − E(k∗,...,k∗) (∥Zn−ℓ∥)

)2
)

≤ Cν,qZ∗(ℓ)m2(n−ℓ)
ν,q

(
mν,q

m∗,q

)2ℓ

,

by Lemma 3.3. Therefore, for all ε > 0, applying a conditional Bienaymé-
Chebyshev inequality, we obtain that for all 0 ≤ ℓ ≤ n

P∅
(
m−n

ν,q

∣∣∥Zℓ∗
n ∥ − E∅

(
∥Zℓ∗

n ∥
∣∣T|ℓ

)∣∣ > ε
)

≤ Cν,qE∅(Z∗(ℓ))m−2ℓ
∗,q ε−2,

and we observe that this bounds converges to 0 as ℓ → ∞ uniformly in n.
Let ε > 0, we fix ℓ > 0 large enough such that

P∅(|W∗(ℓ) − W∗| > ε) < ε and Cν,qE∅(Z∗(ℓ))m−2ℓ
∗,q ε−2 ≤ ε,

then n ≥ ℓ large enough such that

P∅
(∣∣E∅

(
m−n

ν,q∥Zℓ∗
n ∥

∣∣Tℓ

)
− W∗(ℓ)

∣∣ > ε
)

≤ ε and P∅(m−n
ν,qRn > ε) ≤ ε,

we have
P∅

(
|m−n

ν,qZn − W∗| > 4ε
)

≤ 4ε,

which completes the proof.

5 Proof of Theorem 1.4
In this section, we will prove Theorem 1.4; let us briefly recall our approach
using the notation we introduced. We work from the viewpoint of multitype
branching processes under Pd for some arbitrary fixed d ∈ Sν . This is equivalent
to consider, under Pd, the subpopulation generated by one of the d individuals
at the first generation. We shall introduce a nonnegative martingale M =
(Mn)n≥1 starting from M0 = 1, which is naturally related to the dynamics of
the reinforced Galton-Watson process, and in particular vanishes as soon as Z
becomes extinct. Therefore Z survives on the event that the terminal value
M∞ is nonzero, and the latter happens with positive probability as soon as M
is uniformly integrable.

5.1 A natural martingale
We start by introducing some notation. For every type t, we set

mt := Et(Z(1)) =
∑

j

jπt(j),
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where, using the notation in Section 2, πt is the reproduction law of an indi-
vidual with type t. More explicitly, for a non-empty type t = (d1, . . . , dℓ) ∈ W,
we have

mt = (1 − q)mGW + q

ℓ

ℓ∑
j=1

dj , (5.1)

where mGW =
∑

j jν(j) is the mean reproduction number for the usual Galton-
Watson process with reproduction law ν. Recall that the type t((u(j)) of the
forebear u(j) of u at generation j ≤ |u| is given by the suffix of t(u) with length
j + |t(∅)|. We define, for u ∈ T ,

Φ(u) :=
|u|−1∏
j=0

1
mt(u(j))

, (5.2)

with the convention that Φ(∅) = 1. In words, for any individual u ∈ T , say
at generation |u| = k ≥ 1, 1/Φ(u) is the product of the mean reproduction
numbers of the forebears of this individual.

If follows immediately from the definition of the mean mt and the function
Φ that the process M = (Mn)n≥1 given by

Mn =
∑

u∈T ,|u|=n

Φ(u) (5.3)

is a martingale under Pt for any initial type t. Indeed, using the branching
property of Lemma 2.1 we have

Et

(
Mn+1

∣∣T|n
)

=
∑

u∈T :|u|=n

Φ(u)
mt(u)

Et(u)(|Z1|) = Mn.

In other words, Φ is mean-harmonic for the multitype branching process in
the sense of [5]. The main purpose of this section is to study the asymptotic
behavior of Mn as n → ∞.

Proposition 5.1. We assume that qk∗ < 1, and consider an arbitrary d ∈ Sν .

(i) If (1.7) holds, then the martingale M is uniformly integrable under Pd.

(ii) If
k∗∑

j=1

(1 − q)jν(j)
1 − qj

< 1, (5.4)

then the terminal value of the martingale M is M∞ = 0, Pd-a.s.

As it was already pointed out, Proposition 5.1(i) entails Theorem 1.4. The
rest of this section is devoted to the proof of Proposition 5.1. The analysis
relies on classical arguments involving a change of probability induced by the
martingale M and a decomposition of the branching process along the spine.
This leads us to investigate the asymptotic behavior of types along the spine,
for which we will rely on classical results by Athreya and Karlin [1] and Janson
[8] on Pólya urns with random replacements.
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5.2 Spinal decomposition
Let d ∈ Sν . In this section, we introduce two distributions, Pd and P̂d, the first
on the space of marked genealogical trees, and the second on the richer space of
marked genealogical trees with a distinguished infinite branch called the spine.
The spinal decomposition then identifies Pd as the projection of P̂d. As above,
we will write Ed, respectively Êd for the expectations associated to the law Pd

and P̂d respectively.
In this direction, recall from Section 2 that πt stands for the reproduction

law of an individual with type t. For any probability distribution π on Z+
with a finite and non-zero first moment, we also denote by π̂ the size-biased
distribution of π, defined by

π̂(k) = kπ(k)∑∞
j=0 jπ(j)

, k ≥ 1.

To start with, Pd is defined for every n ≥ 1 by

Pd(A) = Ed (Mn1A) , ∀A ∈ Fn,

where (Fn)n≥1 stands for the natural filtration on the space of genealogical trees
(with types) induced by generations. We next construct another distribution
involving a spine ς = (ς(n))n≥0, where the latter is a distinguished line of de-
scent, that is, a sequence of individuals such that for every n ≥ 0, ς(n + 1)
is a child of ς(n). Specifically, ς(0) = ∅ and we let ς(0) reproduce according
to the size-biased reproduction law π̂d. We then select an individual ς(1) uni-
formly at random amongst the, say, k children of ς(0) which have all the type
t(ς(1)) = (k, d). Again we let ς(1) reproduce according to the size-biased repro-
duction law π̂t(ς(1)), whereas each other individual u in the sibling reproduce
independently according to πu. And so on, and so forth, that is by induction at
every generation, individuals reproduce independently of one from the other’s,
in such a way that a non-spine individual with type t reproduce according to
the law πt, and the spine particle ς(n), say of type s, reproduces according to
the law π̂s. The next individual of the spine ς(n+1) is chosen uniformly among
the children of ς(n). The law of the resulting genealogical tree endowed with a
spine is denoted by P̂d.

The following result, which is referred to as the spine decomposition of a
multitype branching process, is a consequence of [5, Proposition 12.1 and Lem-
mas 12.2 and 12.3], our function Φ playing the role of the harmonic function h

in that article, and with P̂ corresponding to Q there.

Proposition 5.2 (Spine decomposition of the reinforced Galton-Watson pro-
cess). For all n ∈ N, we have

Pd

∣∣
Fn

= P̂d

∣∣∣
Fn

.

Moreover, for all n ∈ N and u ∈ U with |u| = n, we have

P̂d(ςn = u|Fn) =
Φ(u)1{u∈T }

Mn
.
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Remark 5.3. As usual, this spine decomposition result gives rise to a many-to-
one type lemma, yielding in particular to an alternative proof of [4, Equation
(2.1)]. We observe that

Et(∥Zn∥) = Êt

(
∥Zn∥
Mn

)
= Êt

 ∑
|u|=n

1{u=ς(n)}

Φ(u)

 = Êt

n−1∏
j=0

mt(ς(j))

 .

Using the definition of mt, we conclude that Et(∥Zn∥) can be computed as
the mean of the product of the number of children sampled along a randomly
selected line in the reinforced branching process.

In the next section, we study in more details the reproduction law of the
spine particle in terms of an urn model. It allows to describe the reinforced
Galton-Watson process under law P̂d as a multitype branching process with im-
migration, whose asymptotic behaviour can be studied. Then, using a classical
argument due to Durrett [6, Theorem 4.3.5] (see also [5, Theorem 3]), we are
able to provide necessary and sufficient conditions for the uniform integrability
of the martingale M , which we translate into Proposition 5.1 in Section 5.4.

5.3 Dynamics of the spine as a generalized Pólya urn
For n ≥ 0, let ξn+1 denote the number of children of ς(n), the individual on the
spine at generation n. We also agree that ξ0 ≡ d under P̂d; in particular, the
type of ς(n) is given by τ n := (ξn, ξn−1, . . . , ξ0). From the construction of P̂d in
the preceding subsection, ξ0 = d, ξ1 has the law π̂d, and we have for any k ≥ 1
that

P̂d(ξk+1 = j | ξ0, ξ1, . . . , ξk) = ckj ((1 − q)ν(j) + qϖτ k
(j)) , j ≥ 0,

where ck > 0 is the constant of normalization.
In this section, we shall first identify these dynamics as those of a generalized

Pólya urn. Next, we will determine the asymptotic behavior of the urn process
by identifying the principal spectral elements of its mean replacement matrix,
using classical results of Janson [8] in this field. This enables us to estimate the
value of the mean-harmonic function Φ defined in (5.2) along the spine.

Recall from (1.1) that Sν designates the strictly positive part of the support
of the reproduction law ν. We think of any k ∈ Sν as a color, and add a
special color denoted by ⋆. We define an urn process with balls having colors
in Sν ∪ {⋆} as follows. Imagine that a ball with color k ∈ Sν has activity qk,
meaning that the probability that it is picked at some random drawing from the
urn is proportional to qk, whereas a ball with color ⋆ has activity (1 − q)mGW.

At the initial time n = 0, the urn contains one ball with color d and one
ball with color ⋆. At each step n ≥ 1, a ball is drawn at random in the urn
with probability proportional to its activity. The ball is then replaced in the
urn and two new balls are added to the urn. If the color of the sample ball is
j ∈ Sν , then the first new ball has the color j and the second the color ⋆. If the
sampled ball has color ⋆, then the first new ball has the color ⋆ and the color
of the second is sampled according to the law size-biased reproduction law ν̂.
Write Xn the label of the non-⋆ ball added to the urn at time n. We also set
X0 = d as we initiate the urn with a ball with color d and a ball with color ⋆.
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Lemma 5.4. The sequence (Xn, n ≥ 0) of colors added to the urn as above has
the same law as (ξn, n ≥ 0) under P̂d.

Proof. For all n ≥ 0 and j ∈ Sν ∪ {⋆}, we denote by Nn(j) the number of balls
with color j in the urn after n steps. It is plain

Nn(⋆) =
∑

j∈Sν

Nn(j) = n + 1.

Moreover, for any j ∈ Sν , we have

P(Xn+1 = j|X0, . . . , Xn) = (1 − q)mGWNn(⋆)ν̂(j) + jqNn(j)
(1 − q)mGWNn(⋆) + q

∑
i∈Sν

iNn(i) ,

since {Xn+1 = j} is the event that at time n + 1, either a ball labelled j was
sampled, or a ball labelled ⋆ and the extra ball added was labelled j. Since
jν(j) = mGWν̂(j), this quantity can be rewritten as

P(Xn+1 = j|X0, . . . , Xn) = (1 − q)(n + 1)jν(j) + qjNn(j)
(1 − q)mGW(n + 1) + q

∑
i∈Sν

iNn(i)
= π̂τ n

(j),

where τ n = (Xn, . . . , X0). This proves that the dynamics of X are identical to
those of ξ under law P̂d.

We next study the asymptotic behaviour of Xn as n → ∞ by applying
general results of Athreya and Karlin [1] and Janson [8] on generalized Pólya
urns. Recall that Nn(j) denotes the number of balls with color j ∈ Sν ∪ {⋆} in
the urn after n steps. By [1, Section 4.2] or [8, Theorem 3.21], there exists a
constant c > 0 such that for any j ∈ Sν ∪ {⋆},

lim
n→∞

Nn(j)
n

= cλ1v1(j) a.s.,

where λ1 is the leading eigenvalue and v1 = (v1(j)) an associated left-eigenvector
of the matrix A = (Ai,j)i,j∈Sν ∪{⋆} is defined for i, j ∈ Sν by

Ai,j = qiδi,j , Ai,⋆ = qi, A⋆,j = (1 − q)jν(j), A⋆,⋆ = (1 − q)mGW. (5.5)

Roughly speaking, the matrix A is mean replacement matrix re-weighted by
activities. Beware that Janson [8] rather uses the notation A for the transposed
of our matrix; in particular left-eigenvectors v in our setting correspond to right-
eigenvectors in [8], and vice-versa. The following spectral properties of A are
the key to the analysis.

Lemma 5.5. The eigenvalues of the matrix A defined in (5.5) are all simple,
real and nonnegative. They are given by 0 and the #Sν positive solutions of the
equation

k∗∑
j=1

(1 − q)jν(j)
x − qj

= 1,
x

q
∈ R\Sν . (5.6)

Moreover, a left-eigenvector vλ associated to an eigenvalue λ ≥ 0 is given by

vλ(i) = (1 − q)iν(i)
λ − qi

for i ∈ Sν , and vλ(⋆) = 1,
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and similarly a right-eigenvector uλ associated to an eigenvalue λ ≥ 0 is given
by

uλ(i) = qi

λ − qi
for i ∈ Sν , and uλ(⋆) = 1.

Proof. We first remark that for each consecutive elements i, j of Sν , the function

x 7→
k∗∑

j=1

(1 − q)jν(j)
x − qj

,
x

q
∈ R\Sν ,

is decreasing from ∞ to −∞ on the interval (qi, qj). Additionally, this function is
also decreasing on (−∞, q min Sν) while staying non-positive, and is decreasing
on (qk∗, ∞) from ∞ to 0. Consequently, there are exactly #Sν roots to the
equation (5.6), all being positive.

We then consider any solution, say λ > 0, to (5.6) and check by immediate
computations that (λ, vλ) as defined in the statement are eigenvalues and asso-
ciated left-eigenvectors for the matrix A. Indeed, we have first for any j ∈ Sν ,∑

i∈Sν ∪{⋆}

vλ(i)Ai,j = qj
(1 − q)jν(j)

λ − qj
+ (1 − q)jν(j) = λvλ(j),

and then for j = ⋆,

∑
i∈Sν ∪{⋆}

vλ(i)Ai,⋆ = (1 − q)mGW +
k∗∑

i=1
qi

(1 − q)iν(i)
λ − qi

= (1 − q)
k∗∑

i=1

(
iν(i) + qi

iν(i)
λ − qi

)

= (1 − q)
k∗∑

i=1
iν(i) λ

λ − qi

= λ,

where the ultimate equality uses that λ solves (5.6).
We check by similar calculations for (0, v0) that∑

i∈Sν ∪{⋆}

v0(i)Ai,j = 0 for all j ∈ Sν ∪ {⋆}.

Finally, we verify in the same way that the uλ are also right-eigenvectors.
As a conclusion, we found #Sν + 1 different real eigenvalues of the square

matrix A of dimension #Sν + 1. They are hence all simple and there exist no
further eigenvalues.

We order the positive eigenvalues of the mean replacement matrix A in the
decreasing order, λ1 > λ2 > . . . > λ#Sν and then write simply vi = vλi and
ui = uλi for the corresponding left and right eigenvectors given in Lemma 5.5.
Note that u1 and v1 have positive coordinates (as it should be expected from
Perron-Frobenius’ theorem), and that we did not impose the usual normalization
that their scalar product should be 1, for the sake of simplicity. It is a well-
known fact that the first order asymptotic behaviour of Nn is determined by
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λ1 and v1, whereas the fluctuations depend on the sign of λ2 − λ1/2. More
precisely, we first apply [8, Theorem 3.21], to obtain the asymptotic behavior of
the number Nn(j) of balls with color j after n steps as n → ∞.

Lemma 5.6. We have for all j ∈ Sν that

lim
n→∞

Nn(j)
n

= v1(j) = (1 − q)jν(j)
λ1 − qj

, P̂d-a.s.

Proof. The matrix A is irreducible and aperiodic, and Lemma 5.5 entails that
the conditions (A1–6) of [8] are satisfied. By [8, Theorem 3.21], there exists
c > 0 such that for all j ∈ Sν ∪ {⋆}

lim
n→∞

Nn(j)
n

= cλ1v1(j) a.s.

Moreover, as Nn(⋆) = n + 1 a.s., we have Nn(⋆)/n → 1 a.s. As v1(⋆) = 1, we
conclude that c = 1/λ1, which completes the proof.

Corollary 5.7. Assume that qk∗ < 1.

(i) The principal eigenvalue λ1 > 1 if and only if (1.7) holds. In that case,
the series

∑∞
k=0 Φ(ς(n)) converges a.s.

(ii) The principal eigenvalue λ1 < 1 if and only if (5.4) holds. In that case,
we have limn→∞ Φ(ς(n)) = ∞ a.s.

Proof. The equivalences

λ1 > 1 ⇐⇒
k∗∑

j=1

(1 − q)jν(j)
1 − qj

> 1,

and

λ1 < 1 ⇐⇒
k∗∑

j=1

(1 − q)jν(j)
1 − qj

< 1,

should be plain from Lemma 5.5. Indeed, the only eigenvalue greater than
qk∗ < 1 is the Perron-Frobenius principal eigenvalue λ1, and we have seen that
the function

x 7→
k∗∑

j=1

(1 − q)jν(j)
1 − qj

decreases on [1, ∞).
Next, recall that the type τ n of the individual ς(n) is τ n = (ξn, . . . , ξ0),

where ξk stands the number of children of ς(k − 1). We know moreover from
Lemma 5.4 that the sequence (ξk)k≥0 has the same distribution under P̂d as
the sequence in Sν of the colors of the balls added to the urn at each step. We
deduce from Lemma 5.6 that P̂d-a.s., there is the convergence

lim
n→∞

#{k ≤ n : ξk = j}
|τ n|

= v1(j), for all j ∈ Sν .

19



We then get from (5.1) that

lim
n→∞

mτ n
= (1 − q)

k∗∑
j=1

jν(j) + q

k∗∑
j=1

(1 − q)j2ν(j)
λ1 − qj

= (1 − q)
k∗∑

j=1

λ1jν(j)
λ1 − qj

= λ1,

where the last equality is due to the fact that λ1 solves (5.6). Last, we deduce
from the very definition (5.2) of Φ that as n → ∞,

log Φ(ς(n)) ∼ −n log λ1.

As a consequence, the series
∑∞

k=0 Φ(ς(n)) converges a.s. whenever λ1 > 1,
whereas limn→∞ Φ(ς(n)) = ∞ a.s. whenever λ1 < 1.

We have now all the ingredients needed to establish Proposition 5.1.

5.4 Proof of Proposition 5.1
The starting point of the proof is the following well-known observation due to
Durrett [6, Theorem 4.3.5] (see also [5, Theorem 12.1]). As M0 = 1, and writing
M∞ = limn→∞ Mn, we have

Ed(M∞) = Pd(M∞ < ∞). (5.7)

Recall that the tilted law Pd has been introduce in Section 5.2, and that the
spine decomposition of the reinforced Galton-Watson process has been described
in Proposition 5.2

It is worth noting that M is a non-negative martingale under Pd, and 1/M a
non-negative super-martingale under Pd, hence the convergence of M is imme-
diate under the original and tilted laws. As a result, to prove Proposition 5.1(i),
it is enough to study the convergence of M under the richer law P̂d by Propo-
sition 5.2. Specifically, almost sure finiteness of M∞ under P̂d implies uniform
integrability under Pd, while if M∞ = ∞ P̂d-a.s., then M∞ = 0 Pd-a.s.

(i) We denote by Y = σ(ξk, k ≥ 0) the sigma-field of the information on the
number of children of all spine particles. The spinal decomposition yields

Êd(Mn|Y) = Φ(ς(n)) +
n−1∑
k=0

(ξk − 1)Φ(ς(k + 1)), P̂d-a.s.,

using that the individual ς(k) at generation k < n on the spine has ξk children,
one of those chosen as the individual on the spine at generation k and the
ξk − 1 other –that have the same type t(ς(k)) as the spine individual– evolve
independently according to the law Pt(ς(k+1)). Since ξk − 1 ≤ k∗, we have a
fortiori that

Êd(Mn|Y) ≤ k∗

∞∑
k=0

Φ(ς(k)), P̂d-a.s.
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We can now conclude from Corollary 5.7 and the conditional version of the
Fatou lemma that if

k∗∑
j=1

(1 − q)jν(j)
1 − qj

> 1,

then lim infn→∞ Mn < ∞, P̂d-a.s. As a result, by Proposition 5.2 and (5.7) we
have Ed(M∞) = 1, and by the Scheffé lemma, M is uniformly integrable under
Pd.

(ii) The simple observation that Mn ≥ Φ(ς(n)) combined with Corollary 5.7(ii)
enables us to conclude that P̂d(M∞ = ∞) = 1 whenever (5.4) holds. Using again
Proposition 5.2 and (5.7), the proof is now complete.

5.5 Short discussion of the critical case
The proof of Proposition 5.1 in the preceding section relies on the study of the
quantity

∑∞
k=0 Φ(ς(n)), which can be thought of as a particular case of reinforced

perpetuity. We have seen above that this series converges when λ1 > 1 whereas
limn→∞ Φ(ς(n)) = ∞ when λ1 < 1. We now conclude this work by discussing
briefly and a bit informally the critical case when the principal eigenvalue is
λ1 = 1, which presents interesting complexities. Recall from Corollary 5.7 that
this is equivalent to

k∗∑
j=1

(1 − q)jν(j)
1 − qj

= 1.

We shall need the following result (that however does not requires λ1 = 1)
about the fluctuations of the convergence in Lemma 5.6.

Lemma 5.8. (i) (Heavy urn) If λ2 > λ1/2, then there exists a square inte-
grable non-degenerate random variable W2 such that for all j ∈ Sν ,

lim
n→∞

n−λ2/λ1(Nn(j) − nλ1v1(j)) = W2v2(j), P̂d-a.s.

(ii) (Light urn) If λ2 < λ1/2, then there is the joint convergence in distribution
for all j ∈ Sν

lim
n→∞

n−1/2 (
N[nt](j) − ntλ1v1(j))

)
t≥0 = (Gt(j))t≥0, in law,

where G = (G(j))j∈Sν is some continuous centered #Sν-dimensional
Gaussian process .

Proof. This is a direct application of [8, Theorem 3.24 and Theorem 3.31], using
that λ2 is a simple eigenvalue with left-eigenvector v2, and that A has no non-
real eigenvalues.

In our setting, we now see that if λ1 = 1 and λ2 > 1/2, then as n → ∞,

mτ n = 1 + qnλ2−1W2

k∗∑
j=1

(1 − q)j2ν(j)
λ2 − qj

+ o(nλ2−1), P̂d-a.s.
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Moreover, we remark that

k∗∑
j=1

(1 − q)j2ν(j)
λ2 − qj

= 1
q

 k∗∑
j=1

(1 − q)j(qj − λ2)ν(j)
λ2 − qj

+ λ2

k∗∑
j=1

(1 − q)jν(j)
λ2 − qj


= λ2 − (1 − q)mGW

q
,

using that λ2 solves (5.6). As a consequence, on the event

{W2(λ2 − (1 − q)mGW) > 0} ,

the series
∑∞

k=0 Φ(ς(n)) converges and the terminal value M∞ < ∞. At the
opposite, on the event

{W2(λ2 − (1 − q)mGW) < 0} ,

the series
∑∞

k=0 Φ(ς(n)) diverges.
We remark that W2 is a random variable that is positive, respectively neg-

ative, with positive probability. Indeed, we observe from [8] that W2 is con-
structed as the almost sure limit of an uniformly integrable martingale (W2(n))
with W2(0) = 0. Since W2(n) can be positive or negative with positive probabil-
ity, depending on the values of X1, . . . , Xn, we conclude that P(W2 > 0)P(W2 <
0) > 0. Therefore, assuming that λ2 − (1 − q)mGW ̸= 0, the reinforced perpe-
tuity converges, respectively diverges, with positive probability. In particular
the martingale M converges to a non-degenerate random variable, with positive
probability under law Pd, while being non-uniformly integrable.

In the light case when λ1 = 1 and λ2 < 1/2, n1/2(mτ n
− 1) rather converges

in distribution to some centered Gaussian variable. This suggests that in most
(if not all) cases, one should have lim supn→∞ Φ(ς(n)) = ∞. This would imply
that the terminal value M∞ = ∞, P̂d-a.s., and therefore also M∞ = 0, Pd-a.s.

The possible behaviors of critical reinforced perpetuity hence appear richer
than for regular perpetuities. This also suggests that there exist reinforced
branching processes such that (5.4) holds but the process survives with positive
probability.
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and generalized Pólya urns. Stochastic Processes Appl., 110(2):171–245,
2004.

[9] Michael Murphy. Cross-national patterns of intergenerational continuities
in childbearing in developed countries. Biodemography and social biology,
59(2):101–126, 2013.

[10] Burrhus Frederic Skinner. Science and human behavior. Number 92904.
Simon and Schuster, 1965.

23


	Introduction and main results
	Reinforced Galton-Watson processes as multitype branching processes
	Some useful bounds
	Proof of Theorem 1.1
	Proof of Theorem 1.4
	A natural martingale
	Spinal decomposition
	Dynamics of the spine as a generalized Pólya urn
	Proof of Proposition 5.1
	Short discussion of the critical case


