
Reinforced Galton-Watson processes I:
Malthusian exponents

Jean Bertoin∗ Bastien Mallein†

Abstract

In a reinforced Galton-Watson process with reproduction law ν and
memory parameter q ∈ (0, 1), the number of children of a typical individ-
ual either, with probability q, repeats that of one of its forebears picked
uniformly at random, or, with complementary probability 1 − q, is given
by an independent sample from ν. We estimate the average size of the
population at a large generation, and in particular, we determine explic-
itly the Malthusian growth rate in terms of ν and q. Our approach via
the analysis of transport equations owns much to works by Flajolet and
co-authors.
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1 Introduction and main result
We present first some motivations for this work, then our main result, and
finally, we discuss techniques and sketch the plan of the rest of the article.

1.1 Motivations
Roughly speaking, stochastic reinforcement refers to step-by-step modifications
of the dynamics of a random process such that transitions that already occurred
often in the past are more likely to be repeated in the future. The evolution
thus depends on the past of the process and not just on its current state, and is
typically non-Markovian1. We refer to [12] for a survey of various probabilistic
models in this area, and merely recall that the concept of reinforcement notably
lies at the heart of machine learning. The general question of describing how
reinforcement impacts the long time behavior of processes has been intensively
investigated for many years. In particular, there is a rich literature on so-
called linear edge/vertex reinforced random walks, which culminates with the
remarkable achievement [13] in which many important earlier references can
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1Nonetheless, it is a remarkable fact observed first by Coppersmith and Diaconis that

linearly edge-reinforced random walks on a finite graph are actually mixtures of reversible
Markov chains, with the mixing measure given by the so-called “magic formula”.
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also be found. In short, the purpose of the present work is to investigate the
effects of reinforcement on branching processes.

More precisely, fix a reproduction law ν, that is ν = (ν(k)) is a probability
measure on Z+ = {0, 1, . . .}. In a classical (Bienaymé-)Galton-Watson process,
every individual reproduces independently of the others, and ν(k) is the prob-
ability that a typical individual has k children at the next generation. The
reinforced version that we took interest in involves random repetitions of repro-
duction events, much in the same way as words are repeated in a well-known
algorithm of Herbert Simon [14], or steps in a family of discrete time processes
with memory known as step-reinforced random walks (see [2, 3, 4, 11] and ref-
erences therein). Specifically, the reinforced evolution depends on a memory
parameter q ∈ (0, 1). For every individual, say i, at a given generation n ≥ 1,
we pick a forebear, say f(i), uniformly at random on its ancestral lineage. That
is, f(i) is the ancestor of i at generation u(n), where u(n) is a uniform random
sample from {0, . . . , n − 1}. Then, either with probability q, i begets the same
number of children as f(i), or with complementary probability 1−q, the number
of children of i is given by an independent sample from the reproduction law ν.
Implicitly, for different individuals i, we use independent uniform variables for
selecting forebears f(i) on their respective ancestral lineages, and the repetition
events where given individuals i reproduce as their respective selected forebears
f(i) are also assumed to be independent.

The reproduction of an individual in a reinforced Galton-Watson process
depends on that along its entire ancestral lineage. It should be clear that, with
the exception of the case of a few elementary reproduction laws, this invalidates
fundamental features of Galton-Watson processes. Notably, different individ-
uals partly share the same ancestral lineage, and thus their descent are not
independent. The Markov and the branching properties are lost, and even the
simplest questions about Galton-Watson processes become challenging in the
reinforced setting.

One naturally expects that reinforcement should enhance of the growth of
branching processes. Let us briefly analyze the elementary case of a binary
branching when ν(2) = p and ν(0) = 1−p for some p ∈ (0, 1). Plainly, for every
non-empty generation, all the forebears on any ancestral lineage had 2 children,
and therefore the reinforced Galton-Watson process is in turn a binary Galton-
Watson process, such that every individual aside the ancestor has probability
q + (1 − q)p > p of having two children. In particular, the reinforced process
survives forever with positive probability if and only if q +(1−q)p > 1/2, which
includes some subcritical reproduction laws with p < 1/2 (for example it can
survive for all p > 0 whevener q > 1/2).

In the next section, we describe our main result on how reinforcement affects
the Malthusian exponent, that is the growth rate of the averaged size of the
population. In another forthcoming work, we shall investigate in turn the impact
of reinforcement on survival probabilities.

1.2 Main result
We first introduce some notation; the memory parameter q ∈ (0, 1) and the
reproduction law ν have been fixed and thus most often are omitted from the
notation. The degenerate case when ν(k) = 1 for some k ∈ Z+ will be implicitly
excluded. We write Z = (Z(n))n≥0 for the reinforced Galton-Watson process,
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where Z(n) is the size of population at the n-th generation. We agree for
simplicity that there is a single ancestor at generation 0 (i.e. Z(0) = 1) which
has Z(1) children, and denote the conditional distribution of the reinforced
Galton-Watson process given Z(1) = ℓ by Pℓ. We are mainly interested in the
situation where Z(1) is random and distributed according to the reproduction
law ν, and we shall then simply write P = Pν .

Perhaps the most basic question about Z is to estimate the average size of
the population for large times; let us start with a few elementary observations.
Reinforcement entails that the conditional probability for an individual to have
k children, given that each of its ancestors also had k children, equals q +
(1 − q)ν(k). By focussing on such individuals, we see that there is a sub-
population excerpted from the reinforced Galton-Watson process that evolves
as an ordinary Galton-Watson process with averaged reproduction size equal
to k(q + (1 − q)ν(k)) > kq. This points at the roles of the support of the
reproduction law ν,

Supp(ν) := {k ≥ 0 : ν(k) > 0},

and of the maximal possible number of children which we denote by

k∗ := sup{k ≥ 0 : ν(k) > 0}.

Namely, if qk∗ ≥ 1, then not only does the reinforced Galton-Watson process
survive with positive probability, but the averaged population size grows at least
exponentially fast with E(Z(n)) ≥ c(qk∗)n for some c > 0. We stress that a
high averaged growth rate is achieved as soon as the reproduction law has an
atom at some large k, no matter how small the mass ν(k) of this atom is.

We assume henceforth that the support of the reproduction law is bounded,
viz.

k∗ < ∞,

and stress that otherwise, the averaged size of the population would grow super-
exponentially fast. To state our main result, we introduce the function

Π(t) :=
∏

(1 − tk)ν(k)(1−q)/q, t ≤ 1/k∗, (1.1)

where the product in the right-hand side is taken over all integers k’s (actually,
only the positive k’s in Supp(ν) contribute to this product). Observe that
Π(0) = 1, 1/k∗ is the sole zero of Π, and Π is strictly decreasing on [0, 1

k∗ ]. We
can then define

mν,q := q∫ 1/k∗

0 Π(t)dt
. (1.2)

In particular, as Π(t) < 1 for all 0 < t ≤ 1/k∗, we remark that mν,q > qk∗.

Theorem 1.1. The Malthusian exponent of the reinforced Galton-Watson pro-
cess Z equals log mν,q, in the sense that

lim
n→∞

1
n

logE(Z(n)) = log mν,q.

Much more precisely, we have

m−n
ν,q E(Z(n)) = ν(k∗)

q + ν(k∗)(1 − q) + O(n−q/(q+(1−q)ν(k∗))).
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Plainly, if Z(n) = 0 for some n ≥ 1, then also Z(n′) = 0 for all n′ ≥ n and
one says that the population becomes extinct eventually. Applying the Markov
inequality to Z(n), we remark that mν,q < 1 implies that almost surely, the
reinforced Galton-Watson process becomes extinct eventually. Therefore the
condition mν,q ≥ 1 is necessary for the survival of the reinforced Galton-Watson
process with strictly positive probability. We conjecture however that this con-
dition should not be sufficient; we believe that there should exist reproduc-
tion laws ν and memory parameters q such that, almost surely, the reinforced
Galton-Watson process becomes extinct eventually, even though E(Z(n)) → ∞
as n → ∞.

1.3 Techniques and plan
Although reinforcement invalidates fundamental properties of Galton-Watson
processes, our strategy for establishing Theorem 1.1 nonetheless uses some clas-
sical tools from the theory of branching processes, and notably analytic methods.
These techniques can be pushed further and yield an asymptotic expansion of
E(Z(n)) with an arbitrary order. It is for the sake of readability only that we
just consider the first order in this work.

In Section 2, we start by relating the expected population size for the rein-
forced Galton-Watson process to the factorial moment generating functions of a
multitype Yule process; see Lemma 2.1. In short, this combines the basic many-
to-one formula with the classical embedding of urn schemes into continuous time
multitype branching processes (see, for instance, [1, Section V.9]).

In Section 3, we observe that those factorial moment generating functions
verify a multidimensional ODE; see Lemma 3.3 there. This is similar to the use
of analytic methods that were introduced in the pioneering works of Flajolet et
al. [5, 6] for determining distributions in certain Pólya type urn processes.

In Section 4, we shall perform several transformations to reduce the multidi-
mensional ODE obtained above to a one-dimensional inhomogeneous transport
equation with growth. We then analyze characteristics curves and in partic-
ular, we determine the parameters for which the factorial moment generating
functions explode; see Proposition 4.3. This points at a critical case, which
corresponds to the situation when the quantity mν,q in (1.2) equals 1.

Section 5 is then devoted to the study of the asymptotic behavior of the
factorial moment generating functions in critical case. Our main result there,
Proposition 5.1, shows that this problem fits the framework of singular analysis
of generating functions; see [7, 8].

Theorem 1.1 is established in Section 6; it suffices to combine the elements
developed in the preceding sections. Last, some comments and further results
are presented in Section 7. Notably, we discuss a sharper version of Theorem 1.1
under the law Pℓ, that is given that the ancestor has ℓ children.

2 A multitype Yule process
We introduce a standard Yule process Y = (Y (t))t≥0, that is Y is a pure birth
process started from Y (0) = 1 and such that the rate of jump from k to k + 1
equals k for all k ≥ 1. We think of Y as the process recording the size of a
population evolving in continuous time, such that individuals are immortal and
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each individual gives birth to a child at unit rate and independently of the other
individuals. The interpretation in terms of population models, is that at any
birth event, the parent that begets is chosen uniformly at random in the popu-
lation immediately before the birth event. We enumerate individuals according
to the increasing order of their birth times and then record the genealogy as
a combinatorial tree T on N = {1, . . .}. The distribution of T is that of an
infinite random recursive tree, that is such that for every fixed n ∈ N, its re-
striction to {1, . . . , n} has a the uniform distribution on the set of trees rooted
at 1 and such that the sequence of vertices along any branch from the root is
increasing. Clearly enough, the tree T and the Yule process Y are independent
(the latter only records the size of the population as time passes and ignores
the genealogy).

Next, we randomly and recursively assign types to the individuals in the
population, that is to the vertices of T, where the space of types is Supp(ν),
the support of the reproduction law ν. For every n ≥ 2, conditionally on the
genealogical tree T and the types already assigned to the n−1 first individuals,
if the type of the parent of n is j, then the probability that the type of n is k
equals

q1{k=j} + (1 − q)ν(k).
We should think of the assignation of types as a random process on T, such that
for each individual i ≥ 2 (the ancestor 1 is excluded), with probability q the
type of i merely repeats that of its parent, and with complementary probability
1 − q, it is chosen at random according to the reproduction law ν. We stress
that the assignation of types is performed independently of the Yule process Y .
If originally, the type ℓ is assigned to the ancestor 1, then we write Pℓ for the
distribution of the population process with types, and Pν , or simply P, when
the type of 1 is random with law ν.

For every t ≥ 0, let us write Yj(t) for the number of individuals of type j
in the population at time t, and Y(t) = (Yj(t)) for the sequence indexed by
j ∈ Supp(ν). Then the process Y = (Y(t))t≥0 is a multitype Yule process such
that every individual begets a child bearing the same type with rate q, and a
child with type chosen independently according to ν with rate 1 − q.

We point at the similarity, but also the difference, with the reinforcement
dynamic that motivates this work. In both cases, the new born individual
repeats with probability q the type, or the offspring number, of a forebear,
and is otherwise assigned an independent type, or offspring number, distributed
according to the fixed law ν. However, the forebear is merely the parent of the
new individual in the multitype Yule setting, whereas it is picked uniformly at
random on the ancestral lineage in the reinforced Galton-Watson setting.

We can now state the connexion between the reinforced Galton-Watson pro-
cess and the multitype Yule process which is the first step of our analysis. In this
direction, recall that Pℓ stands for the conditional distribution of the reinforced
Galton-Watson process given Z(1) = ℓ.
Lemma 2.1. For every t ≥ 0, c > 0, and ℓ ∈ Supp(ν), there is the identity

Eℓ

(∏
(cj)Yj(t)

)
= e−t

∞∑
n=1

(1 − e−t)n−1cn Eℓ(Z(n)),

where in the left-hand side, the product implicitly runs over j ∈ Supp(ν) and
we use the convention 00 = 1.
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Proof. Consider any deterministic genealogical tree T and construct iteratively
a sequence of random variables (ζn) recording the sibling sizes along a randomly
chosen descent lineage. Specifically, we first set ζ1 as the number of children
of the root of T . If ζ1 = 0, then we also set ζn = 0 for all n ≥ 2. Otherwise,
we select an individual chosen uniformly at random in the first generation, and
write ζ2 for the number of its children at the second generation, and iterate in
an obvious way. That is, if ζ2 = 0, then ζn = 0 for all n ≥ 3, and else, we select
a child uniformly at random in the sibling of size ζ2, ... We then observe that
for any n ∈ N, writing Z(n) for the number of individuals at the nth generation
of T , we have

Z(n) = E(ζ1 × · · · × ζn).

Indeed, observe that the probability for a given individual in the nth generation
to be chosen is equal to the inverse of the product of the sibling sizes along its
ancestral path.

In particular, in the case of the reinforced Galton-Watson process, we get

Eℓ(Z(n)) = Eℓ(ζ1 × · · · × ζn). (2.1)

The reinforcement dynamics entail that, provided that ζn ≥ 1, the conditional
probability that ζn+1 = k given the first n values (ζi)1≤i≤n is given by

qn−1
n∑

i=1
1{ζi=k} + (1 − q)ν(k).

Comparing with the evolution of the multitype Yule process Y, we realize that
for any n ≥ 1, the conditional distribution of (ζi)1≤i≤n+1 given ζ1 = ℓ and
ζn ̸= 0 is the same as the conditional distribution under Pℓ of the sequence of
the types of the first n + 1 individuals of the multitype Yule process given that
no individuals amongst the first n have type 0. Moreover, we have also

Pℓ(ζn = 0) = Pℓ(Y0(βn) ≥ 1),

where βn = inf{t ≥ 0 : Y (t) = n} stands for the birth time of the n-th individual
in the multitype Yule process. As a consequence, we have

Eℓ(ζ1 × · · · × ζn) = Eℓ

(∏
jYj(βn)

)
,

where, as usual, the product in the right-hand side runs over j ∈ Supp(ν).
On the other hand, recalling that the monotype Yule process Y =

∑
Yj is

independent of the assignation of types, we get that for any c and t > 0, there
is the identity

cnEℓ

(∏
jYj(βn)

)
= Eℓ

(∏
(cj)Yj(t) | Y (t) = n

)
,

Putting the pieces together, we arrive at

Eℓ

(∏
(cj)Yj(t) | Y (t) = n

)
= cn Eℓ(Z(n)).

We can now conclude the proof by recalling the basic fact that Y (t) has the
geometric distribution with parameter e−t.
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We conclude this section by pointing at monotonicity property in the mem-
ory parameter q, which may be rather intuitive even though its proof is not
completely obvious. We also stress that this property is valid under P = Pν ,
but might fail under some Pℓ.
Lemma 2.2. For every fixed n ≥ 1, the average population size E(Z(n)) is a
monotone increasing function of the memory parameter q.
Proof. We will use a coupling argument for a simple variation of Pólya urn
model with random replacement and balls labelled 1 , 2 , . . .. Imagine an urn
which contains initially just one ball 1 , and let (εn)n≥1 a sequence of i.i.d.
Bernoulli variables with parameter q. At each step n = 1, . . ., we draw a ball
uniformly at random from the urn and return it together with, either a copy
of the sampled ball if εn = 1, or a new ball bearing the first label which was
not already present in the urn if εn = 0. For any k ≥ 1, denote by Nk(n) the
number of balls k in the urn after n − 1 steps, i.e. when the urn contains in
total n balls.

Then consider also a sequence (ξk)k≥1 of i.i.d. samples from ν, independent
of the urn process. We get from the many-to-one formula (2.1) (recall the
convention 00 = 1) that

E(Z(n)) = E

∏
k≥1

ξ
Nk(n)
k

 = E

∏
k≥1

mν(Nk(n))

 ,

where in the right-hand side, we wrote

mν(ℓ) := E(ξℓ) =
∑

j

jℓν(j), ℓ ≥ 0

for the ℓ-th moment of the reproduction law.
Now let q′ > q. By an elementary coupling, we get a sequence (ε′

n)n≥1 of
i.i.d. Bernoulli variables with parameter q′ such that ε′

n ≥ εn for all n ≥ 1. We
can use these to couple the urn processes with respective memory parameters
q and q′, so that the second one is obtained from the first by some (random)
non-injective relabelling of the balls. Since we know from Jensen’s inequality
that

mν(ℓ) × mν(ℓ′) ≤ mν(ℓ + ℓ′),
we deduce that ∏

k≥1
mν(Nk(n)) ≤

∏
k≥1

mν(N ′
k(n)),

where in the right-hand side, N ′
k(n) stands for the number of balls k in the

urn with memory parameter q′ after n−1 steps. Taking expectations completes
the proof.

3 Factorial moment generating functions of the
multitype Yule process

Lemma 2.1 incites us to investigate the factorial moment generating functions
M = (Mℓ) of the multitype Yule process Y, where

Mℓ(a, t) := Eℓ

(∏
a

Yj(t)
j

)
, t ≥ 0 and a = (aj) ∈ RSupp(ν)

+ .
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Clearly, Mℓ(a, t) ≡ 0 if aℓ = 0, and otherwise is a strictly positive quantity which
may be infinite when ∥a∥∞ > 1 and t is sufficiently large, with the notation
∥ · ∥∞ for the maximum norm on RSupp(ν). We first make the following simple
observation in this direction. From now on, the trivial case when a = 0 will be
systematically ruled out.

Lemma 3.1. For every a ∈ RSupp(ν)
+ , there exists ϱ(a) ∈ (0, ∞] such that for

every ℓ ∈ Supp(ν) with aℓ > 0,

Mℓ(a, t)
{

< ∞ for all 0 ≤ t < ϱ(a),
= ∞ for all t > ϱ(a).

Moreover, t 7→ Mℓ(a, − log(1 − t)) is an entire function with radius of conver-
gence no less than 1 − e−ϱ(a).

Remark 3.2. For instance, if aj = c > 1 for all j, then the factorial moment
generating functions of the multitype Yule process Y reduce to that of the
monotype Yule process Y , and we immediately get

Mℓ(a, t) = ce−t

1 − c(1 − e−t) for t < ϱℓ(a) = log(1 − 1/c).

Proof. Using the independence of the Yule process and the assignation of types
as at the end of the proof of Lemma 2.1, we see that

Mℓ(a, t) = e−tf(1 − e−t),

where f(x) =
∑∞

n=0 anxn is some entire series with positive coefficients (for
notational simplicity, we do not indicate the dependency in ℓ). Writing r > 0
for the radius of convergence of f and then setting

ϱℓ(a) :=
{

− log(1 − r) if r < 1,
∞ if r ≥ 1,

yields our claims provided that ϱℓ(a) does not depend on the index ℓ.
It thus only remains to check that ϱℓ(a) ≥ ϱj(a) for any j ∈ Supp(ν) with

aj > 0. We may assume that ϱℓ(a) < ∞ since otherwise there is nothing to
prove. Take any t′ > t > ϱℓ(a), and work under the law Pj when the type of
ancestor is j. The probability p(t′ − t) that at time t′ − t the population has
exactly two individuals, one with type j and the other with type ℓ, is strictly
positive. The branching property then shows that

Mj(a, t′) ≥ p(t′ − t)Mℓ(a, t)Mj(a, t) = ∞.

Hence ϱj(a) ≤ t′, and the proof is now complete.

We shall henceforth refer to ϱ(a) as the explosion time. The problem of
determining its value is at the heart of the proof of Theorem 1.1. For instance,
recall from the Cauchy–Hadamard theorem and Lemma 2.1 that, taking aj = cj
for all j ∈ Supp(ν) and any c sufficiently large so that ϱ(a) < ∞, we obtain the
identity

lim sup
n→∞

n−1 logE(Z(n)) = − log(1 − e−ϱ(a)) − log c.
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The first step for its resolution is closely related to the analytic approach2 of
two-color Pólya urn models by Flajolet et al. [5, 6], see also [9] for a version
with random replacement schemes. It relies on the observation that the factorial
moment generating functions solves a multidimensional ODE.

We use the notation ⟨·; ·⟩ for the scalar product on RSupp(ν) and set
φ(t) := (1 − q) ⟨ν; M(a, t)⟩ − 1. (3.1)

For every ℓ ∈ Supp(ν) and t < ϱ(a), we also write

M ′
ℓ(a, t) := ∂Mℓ

∂t
(a, t).

Lemma 3.3. For every a, the function M(a, ·) is the unique solution on
[0, ϱ(a)) to,

M ′
ℓ(a, t) = Mℓ(a, t) (qMℓ(a, t) + φ(t)) , ℓ ∈ Supp(ν),

with initial condition M(a, 0) = a.
Remark that the differential equation satisfied by log M is analogue to the

one solved by the Laplace exponent associated to continuous state branching
processes; see e.g. [10, Theorem 12.1].

Proof. We denote by T the first branching time of the multitype Yule process
and by L the random label of the newly added vertex. Applying the branching
property at time T , we have

Mℓ(a, t) = aℓP(T > t) + E (Mℓ(a, t − T )ML(a, t − T ))

= aℓe
−t +

∫ t

0
e−sMℓ(a, t − s) (qMℓ(a, t − s) + φ(t − s) + 1) ds.

Hence, by change of variable u = t − s, we obtain

etMℓ(a, t) = aℓ +
∫ t

0
euMℓ(a, u) (qMℓ(a, u) + φ(u) + 1) .

Taking the derivative of this expression in t completes the proof.

We finish this section by pointing at simple monotonicity properties of the
factorial moment generating functions and their explosion times.
Corollary 3.4. (i) For every j, ℓ ∈ Supp(ν) with aj ≤ aℓ, the ratio function

t 7→ Mℓ(a, t)
Mj(a, t)

is monotone non-decreasing on [0, ϱ(a)). In particular, if aj = aℓ, then for all
t ≥ 0 we have Mj(a, t) = Mℓ(a, t).

(ii) Suppose that
sup
t≥0

Mℓ(a, t) < ∞.

Then for all j ∈ Supp(ν) with aj < aℓ, we have
lim

t→∞
Mj(a, t) = 0.

Proof. The claims readily derive from the observation from Lemma 3.3 that the
logarithmic derivative of the ratio function equals q(Mℓ(a, t) − Mj(a, t)).

2Note however that these works deal with moment generating functions, whereas we rather
consider here their factorial version.
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4 Determining the factorial moment generating
function

The purpose of this section is to show that the factorial moment generating
functions M(a, t) can be determined rather explicitly, and this will be sufficient
for our purposes. To do so, it is convenient to introduce a bivariate moment-
generating function G defined by

G(t, s) :=
∑

j

Mj(a, t)
1 − sMj(a, t)ν(j) (4.1)

for any 0 ≤ t < ϱ(a) and 0 ≤ s < 1/∥M(a, t)∥∞. Note that

G(t, 0) = ⟨ν; M(a, t)⟩ = Eν

(∏
a

Yj(t)
j

)
is the function with explosion time ϱ(a) that we would like to determine, and
that

G(0, s) =
∑

j

aj

1 − saj
ν(j) (4.2)

is a known function of the variable s.
The motivation for introducing G is that it satisfies an inhomogeneous trans-

port equation with growth in dimension 1.

Lemma 4.1. For all 0 ≤ t < ϱ(a) and 0 ≤ s < 1/∥M(a, t)∥∞, the function G
satisfies

∂tG(t, s) = (q + sφ(t))∂sG(t, s) + φ(t)G(t, s),

where φ(t) has been defined in (3.1).

Proof. For all k ≥ 1, we introduce the function Rk : [0, ϱ(a)) → R+ by

Rk(t) :=
∑

j

ν(j)Mj(a, t)k.

The function G(t, ·) arises in this setting as the moment-generating function of
the sequence (Rk(t))k≥1. Namely, we have for every 0 ≤ s < 1/∥M(a, t)∥∞
that

∞∑
k=1

sk−1Rk(t) =
∑

j

ν(j)
∞∑

k=1
sk−1Mj(a, t)k = G(t, s).

Note also that for k = 1, we have

R1(t) = ⟨ν; M(a, t)⟩ = G(t, 0).

We compute the derivative of Rk using Lemma 3.3 at the second identity
below, and get

R′
k(t) = k

∑
j

ν(j)Mj(a, t)k
M ′

j(a, t)
Mj(a, t)

= k (qRk+1(t) + φ(t)Rk(t)) .
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This yields

∂tG(t, s) =
∞∑

k=1
ksk−1 (qRk+1(t) + φ(t)Rk(t))

= ∂s

( ∞∑
k=1

sk (qRk+1(t) + φ(t)Rk(t))
)

= ∂s (qG(t, s) + φ(t)sG(t, s)) .

We complete the proof from the chain rule.

Lemma 4.1 may not look quite satisfactory, because the coefficients of the
PDE there involve the unknown function φ defined in (3.1), which precisely the
one which we would like to determine. However, its main input is that this
PDE can be analyzed in terms of a trajectory on the real line, as opposed to
the multidimensional ODE of Lemma 3.3. Lemma 4.1 shows indeed that the
function G defined in (4.1) satisfies an inhomogeneous transport equation, and
as a consequence,

φ(t) = (1 − q)G(t, 0) − 1
can be obtained as the solution of an integral equation as we shall now see.

Lemma 4.2. Introduce the functions

A : [0, ϱ(a)) → R+, A(t) =
∫ t

0
exp

(∫ s

0
φ(u)du

)
ds,

and

F : [0, 1/(q∥a∥∞)) → R+, F (s) = (1 − q)
∑

j

aj

1 − qsaj
ν(j). (4.3)

Then for t0 > 0 sufficiently small, A is the unique solution on [0, t0] of the
Cauchy problem

A′′(t) = A′(t) (A′(t)F (A(t)) − 1) with A(0) = 0 and A′(0) = 1. (4.4)

Proof. The method of characteristics applied to the PDE of Lemma 4.1 incites
us to construct a pair of functions

γ : [0, t0] → R+ and σ : [0, t0] → R+,

such that σ(t) < 1/∥M(a, t)∥∞ and

γ(t)G(t, σ(t)) = γ(0)G(0, σ(0)) for all 0 ≤ t ≤ t0, (4.5)

where 0 < t0 < ϱ(a) will be chosen later on. That is, we request the function
t 7→ γ(t)G(t, σ(t)) to have derivative identical to 0. Thanks to Lemma 4.1, this
translates into

γ′(t)G(t, σ(t)) + γ(t)∂tG(t, σ(t)) + γ(t)σ′(t)∂sG(t, σ(t))
= G(t, σ(t)) (γ′(t) + φ(t)γ(t)) + γ(t)∂sG(t, σ(t)) (σ′(t) + q + φ(t)σ(t))
= 0.
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We deduce that (4.5) is satisfied provided that γ and σ solve the differential
equations

γ′ + φγ = 0 and σ′ + φσ + q = 0.

In the notation of the statement, we may thus take

γ(t) = 1/A′(t) and σ(t) = q

∫ t0

t

exp
(∫ s

t

φ(u)du

)
ds.

We now choose t0 > 0 sufficiently small so that σ(t) < 1/∥M(a, t)∥∞ for all
t ≤ t0. Observe that σ(0) = qA(t0) and σ(t0) = 0, and we then get from (4.5)

G(t0, 0) = A′(t0)G(0, qA(t0)).

This allows us to rewrite the identity

φ(t0) = (1 − q)G(t0, 0) − 1 = (1 − q)A′(t0)G(0, qA(t0)) − 1.

Since φ = A′′/A′, we conclude from (4.2) that A satisfies (4.4).

We can now solve the Cauchy problem (4.4). Introduce first

Πa(x) :=
∏

(1 − xaj)ν(j)(1−q)/q, 0 ≤ x ≤ 1/∥a∥∞, (4.6)

and its integral

Ia(x) :=
∫ x

0
Πa(y)dy, 0 ≤ x ≤ 1/∥a∥∞. (4.7)

If we set
ia := Ia(1/∥a∥∞),

then Ia defines a bijection from [0, 1/∥a∥∞] to [0, ia], and we write

I−1
a : [0, ia] → [0, 1/∥a∥∞]

for the reciprocal bijection.

Proposition 4.3. The explosion time can be identified as

ϱ(a) =
{

− log(1 − ia/q) if ia < q,
∞ if ia ≥ q,

and for x ∈ [0, ϱ(a)), we have

qA(x) = I−1
a (q(1 − e−x)). (4.8)

Proof. Write A−1 for the reciprocal of the bijection A : [0, ϱ(a)) → [0, A(ϱ(a))),
and set H := A′ ◦ A−1, so H is the inverse of the derivative of A−1. Using (4.4),
we compute the derivate of H on some small neighborhood of the origin as

H ′ = A′′ ◦ A−1

H
= HF − 1. (4.9)

Plainly, we have also the initial value H(0) = 1.
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It is now straightforward to solve this first order linear ODE for H. The
function F defined in (4.3) bears a close connexion to the logarithmic derivative
of the function Πa in (4.6), namely

F (x) = −qΠ′
a(qx)

Πa(qx) .

Using the notation (4.7), this yields

H(x) = q − Ia(qx)
qΠa(qx) ; (4.10)

more precisely, this identity is valid for all x > 0 sufficiently small.
Now observe from (4.10) that 1/H(x) = (A−1)′(x) is the derivative of

B(x) := − log (1 − Ia(qx)/q) , 0 ≤ x < 1/(q∥a∥∞).

The functions A−1 and B both vanish at x = 0 and have the same derivative on
some right neighborhood of 0, on which they therefore coincide. Computing the
reciprocal function B−1, we arrive at (4.8), provided that x > 0 is sufficiently
small. Tracing the definition, we infer from Lemma 3.1 that A is analytic on
[0, ϱ(a)), and I−1

a is also an analytic function on [0, ia]. The radii of convergence
of A and B−1 are the same, which yields the formula for the explosion time.
We complete the proof by uniqueness of analytic continuation.

It is now an easy matter to express the factorial moment generating function
M(a, ·) in terms of the function A that has just been determined.

Corollary 4.4. For every a and ℓ ∈ Supp(ν) with aℓ > 0, we have

Mℓ(a, t) = aℓA
′(t)

1 − qaℓA(t) , t ∈ [0, ϱ(a)).

Proof. We re-visit the equation in Lemma 3.3 and now view it as a Bernoulli
differential equation involving the known function φ. The latter can be solved
explicitly using the transformation y(t) = 1/Mℓ(a, t); this yields the linear ODE

−y′ = q + φy.

The solution for the initial condition y(0) = 1/aℓ is given by

y(t) =
aℓ exp

(∫ t

0 φ(s)ds
)

1 − qaℓ

∫ t

0
(
exp

(∫ r

0 φ(s)ds
))

dr
, t ∈ [0, ϱ(a)).

Recalling the notation in Lemma 4.2, we arrive at the stated formula.

5 Singularity analysis of the critical case
This section focuses on the critical case where

ia = q, (5.1)
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so by Proposition 4.3, the explosion time ϱ(a) is infinite. For the sake of
simplicity, we also request that there exists a unique j1 ∈ Supp(ν) such that
aj1 = ∥a∥∞, i.e.

aj1 > aj for all j ̸= j1. (5.2)

Although the situation where the maximum is attained for two or more indices
can be treated similarly, only (5.2) will be relevant for the proof of Theorem 1.1.

Using the notation log : C\R− → C for the principal determination of the
complex logarithm and

D := {z ∈ C : |z| < 1}

for the open unit disk in C, we know from (3.1) and the proof of Lemma 3.1 that
φ(− log(1 − z)) defines an analytic function on D. In short, our main purpose
is show that Φ can be extended analytically to a domain

∆(R, θ) := {z ∈ C : |z| < R, z ̸= 1 and | arg(z − 1)| > θ}

for some R > 1 and acute angle θ ∈ (0, π/2), and to analyze the asymptotic
behavior as z approaches 1 in ∆.

Proposition 5.1. The following holds under the assumptions (5.1) and (5.2).
For any acute angle θ ∈ (0, π/2), there exists some R = R(θ) > 1 such that the
function z 7→ φ(− log(1−z)) can be extended analytically to ∆(R, θ). Moreover,
as z approaches 1 in ∆(R, θ), one has

φ(− log(1 − z)) + 1/β = O
(

|1 − z|1/β
)

,

where
β := 1 + (1 − q)ν(j1)/q > 1. (5.3)

The most of rest of this section is devoted to the proof of Proposition 5.1; we
will also present some direct consequences at the end. The assumptions (5.1)
and (5.2) being implicitly enforced. We further write

aj2 := max{aj : j ∈ Supp(ν), j ̸= j1} < aj1 .

Introduce the complex planes slitted along the real half-line [1/aji , ∞),

Ci := {z ∈ C : ℑz ̸= 0 or ℜz < 1/aji
}, i = 1, 2.

We now view Πa defined in (4.6) as a holomorphic function on C1 that has no
zeros on this domain. Recalling (4.7), we also write Ia for its primitive on C1
with Ia(0) = 0. The following elementary facts are the keys of our analysis.

Lemma 5.2. (i) The function

q − Ia(z)
qΠa(z) , z ∈ C1

can be extended analytically to C2. Moreover one has

q − Ia(z)
qΠa(z) ∼ 1 − zaj1

aj1(q + (1 − q)ν(j1)) as z → 1/aj1 .
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(ii) For some ε > 0 sufficiently small and any acute angle θ ∈ (0, π/2),
there is an open set Θ ⊂ C1 that contains a small open real segment with right
extremity 1/aj1 , such that the restriction

1
q

Ia : Θ → {z ∈ C : 0 < |z − 1| < ε and |Arg(z − 1)| > θ}

is bijective.

0

i

1

Θ
×

1
aj1 ×

1
aj2

1
q Ia

0

i

1
θ

Figure 1: Representation of the domain Θ and its image via the function 1
q Ia.

Proof. We first make some observations which will be used for establishing each
statement. Denote the open disk in C centered at 1/aj1 with radius r1 :=
1/aj2 − 1/aj1 by D(1/aj1 , r1), so that C2 = C1 ∪ D(1/aj1 , r1).

Using the notation (5.3), we express the function Πa as the product

Πa(z) = (1 − zaj1)β−1 × Π∗
a(z),

where
Π∗

a(z) :=
∏

j ̸=j1

(1 − zaj)ν(j)(1−q)/q

is a holomorphic function on C2 which has no zeros there. Thus Π∗
a is given in

the neighborhood of 1/aj1 by

Π∗
a(z) =

∞∑
n=0

bn(1 − zaj1)n, z ∈ D(1/aj1 , r1),

for some sequence (bn)n≥0 of real numbers with

b0 = Π∗
a(1/aj1) > 0 and lim sup

n→∞
|bn|1/n ≤ 1/r1.

On the other hand, we have from the criticality assumption (5.1) that

q − Ia(z) =
∫

[z,1/aj1 ]
Πa(z′)dz′, z ∈ C1,

where we wrote [z, 1/aj1 ] for the segment from z to 1/aj1 , which stays in C1
except for its right-extremity.

(i) It follows from the observations above that for any z ∈ D(1/aj1 , r1),

q − Ia(z) =
∞∑

n=0
bn

∫
[z,1/aj1 ]

(1 − z′aj1)n+(1−q)ν(j1)/qdz′

= h(z)(1 − zaj1)β , (5.4)
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where
h(z) := 1

aj1

∞∑
n=0

bn

1 + n + (1 − q)ν(j1)/q
(1 − zaj1)n

is a holomorphic function on D(1/aj1 , r1).
We can now write

q − Ia(z)
qΠa(z) = (1 − zaj1) h(z)

qΠ∗
a(z) , z ∈ C1 ∩ D(1/aj1 , r1),

which immediately entails the two claims in (i).
(ii) Recall (5.4). Since h(1/aj1) is a strictly positive real number, we can

pick r2 > 0 sufficiently small such that g : z 7→ (1−zaj1)h(z)1/β is a well-defined
holomorphic function on the disk D(aj1 , r2). Furthermore, since g(1/aj1) = 0
and g′(1/aj1) ̸= 0, g is injective provided that r2 has been chosen sufficiently
small, and its image contains a small disk around the origin and radius, say
r3 > 0. Take an arbitrary angle α ∈ (0, π), and let

Θ := {g−1(z′) : 0 < |z′| < r3 and |Arg(z′)| < α/β}.

Since the real function q − Ia : [0, 1/aj1 ] → [0, q] is decreasing bijection, Θ
contains a real open segment with right-extremity 1/aj1 . The claim (ii) is seen
from the identity q − Ia(z) = g(z)β for all z ∈ Θ, taking θ = π − α.

We will also need the following.

Lemma 5.3. There is a domain Θ′ with

(−∞, 1/aj1) ⊂ Θ′ ⊂ {z : ℜ(z) < 1/aj1},

such that the function

Ia : Θ′ → {w ∈ C : ℜ(w) < q}

is bijective.

Proof. We consider the differential equation

z′(t) = i/Πa(z(t)), (5.5)

our main goal is to check that for any initial condition z(0) = x in (−∞, 1/aj1),
(5.5) has a well-defined solution for all times t ∈ R. In this direction, note first
that the function i/Πa is globally Lipschitz-continuous on any domain in C1
whose distance to the half-line [1/aj1 , ∞) is strictly positive. Thanks to the
Cauchy-Lipschitz theorem, the existence of a global solution to (5.5) defined for
all ∈ R will be granted if we can check that for any local solution, ℜ(z′(t)) has
the opposite sign of t. Indeed, the function t 7→ ℜ(z(t)) is then non-decreasing
on (−∞, 0] and non-increasing on [0, ∞), and hence the distance of z(t) to the
half-line [1/aj1 , ∞) is never less than 1/aj1 − x > 0. For the sake of simplicity
we focus on the case when t > 0 in the sequel, as the case when t < 0 follows
from a similar argument.
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In this direction, we consider the continuous determination of the argument
of Πa on C1, which we denote by argΠ. Explicitly, writing arg(z) = ℑ(log(z)) ∈
(−π, π) for the argument of z ∈ C\R−, we have

argΠ(z) = 1 − q

q

∑
j

ν(aj) arg(1/aj − z).

Note that argΠ vanishes on (−∞, 1/aj1) and that argΠ(z) < 0 for all z ∈ C1
with ℑ(z) > 0. By (5.5), the function t 7→ π/2 − argΠ(z(t)) is the continuous
determination of the argument of z′(t), so in order to check that ℜ(z′(t)) < 0,
it suffices to prove that argΠ(z(t)) remains bounded from above by 0 and from
below by −π/2 for any t > 0.

That argΠ(z(t)) is never 0 for any t > 0 is clear, since the zero set of argΠ is
the real half-line (−∞, 1/aj1). Assume that argΠ(z(t)) = −π/2 for some t > 0,
and let t0 > 0 be the smallest of such times. Then arg(z′(t0)) = −π, that is the
derivative z′(t0) is a strictly negative real number. Since ℜ(z(t0)) < 1/aj for all
j ∈ Supp(ν), it follows that arg(1/aj − z(t)) > arg(1/aj − z(t0)) for all t < t0
sufficiently close to t0, and a fortiori argΠ(z(t)) > argΠ(z(t0)) = −π/2 for such
t’s. This contradicts our assumption, since then there woud exist t < t0 with
argΠ(z(t)) = −π/2 . Thus arg(z′(t)) ∈ [π/2, π] for all t ≥ 0, and we conclude
that (5.5) with arbitrary initial condition z(0) = x ∈ (−∞, 1/aj1) has indeed a
solution for all times t ∈ R.

Our motivation for introducing (5.5) is that its integrated version can be
expressed as

Ia(z(t)) = Ia(x) + it. (5.6)

Since plainly, the function Ia is bijective from (−∞, 1/aj1) to (−∞, q), we now
see that the function from (−∞, 1/aj1)×R to C1 which maps a pair (x, t) to the
value z(t) of solution to (5.5) at time t for the initial condition x, is injective.
Moreover, again by an argument of Lipschitz-continuity, this function is also
continuous, and we denote its range by

Θ′ := {z(t) : t ∈ R and z(0) = x ∈ (−∞, 1/aj1)}.

The differential flow (5.5) thus induces a bijection between (−∞, 1/aj1)×R and
Θ′. For any w ∈ C with ℜ(w) < q, we can choose x ∈ (−∞, 1/aj1) such that
Ia(x) = ℜ(w) and t = ℑ(w), and then Ia(z(t)) = w. We conclude from (5.6)
that the map Ia : Θ′ → {w ∈ C : ℜ(w) < q} is bijective.

It is now an easy matter to establish Proposition 5.1 by combining Lem-
mas 5.2 and 5.3 with the expressions obtained in the preceding section.

Proof of Proposition 5.1. To start with, we use (4.9) to write

φ(t) = A′′(t)
A′(t) = H ′(A(t)) = H(A(t))F (A(t))−1, 0 ≤ t ≤ A(∞) = 1/(qaj1).

Applying Proposition 4.3 at the second line below yields for x ∈ [0, 1)

φ(− log(1 − x)) = H(A(− log(1 − x)))F (A(− log(1 − x))) − 1
= H(I−1

a (qx)/q))F (I−1
a (qx)/q)) − 1.
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On the one hand, recall that the left-hand side above defines a holomorphic
function on the open unit disk D. On the other hand, we know from Lemma
5.3 that I−1

a can be extended analytically to the half-plane {w ∈ C : ℜ(w) < q}
and then takes values in {z ∈ C : ℜ(z) < 1/aj1} ⊂ C1. Moreover, we see from
(4.3) and (4.10) that HF is holomorphic on {z ∈ C : qaj1ℜ(z) < 1}, and we
conclude that the function z 7→ φ(− log(1 − z)) can be extended analytically to
{z ∈ C : ℜ(z) < 1}.

Similarly, we know from Lemma 5.2(ii) that, given an acute angle θ ∈
(0, π/2), any z with |Arg(z − 1)| > θ and |z − 1| sufficiently small, can be given
in the form z = 1 − Ia(z′)/q for a unique z′ ∈ Θ. On the other hand, we infer
from (4.3), (4.10) and Lemma 5.2(ii) that the function z′ 7→ H(z′/q)F (z′/q)
is holomorphic on Θ, and since Θ contains an open real segment at the right
of 1/aj1 , we deduce by uniqueness of holomorphic extensions that there is the
identity

φ(− log(1 − Ia(z′)/q)) = H(z′/q)F (z′/q) − 1, z′ ∈ Θ.

This establishes the first claim, since we can choose R > 1 sufficiently close to
1 such that the domain ∆(R, θ) is contained into the union

{z ∈ C : ℜ(z) < 1} ∪ {z ∈ C : 0 < |z − 1| < ε and |Arg(z − 1)| > θ}.

Finally, we express the right-hand side above using (4.3) and (4.10) as

(1 − q)q − Ia(z′)
qΠa(z′)

∑
j

ajν(j)
1 − z′aj

− 1 = − q

q + (1 − q)ν(j1) + O(|1 − z′aj1 |),

where the identity stems from Lemma 5.2(i). Since, thanks to (5.4),

|1 − Ia(z′)/q| ≍ |z′aj1 − 1|β as z′ → 1/aj1 and z′ ∈ Θ,

where the notation f ≍ g means that both f = O(g) and g = O(f), the proof
is complete.

6 Proof of Theorem 1.1
We now take

aj := cj, j ∈ Supp(ν),

where c > 0 will be chosen later on. Plainly, (5.2) holds with j1 = k∗ and
aj1 = ck∗. Furthermore, comparing (1.1) and (4.6), we see that

Πa(t) = Π(ct), 0 ≤ t ≤ 1/aj1 ,

and then (4.7) reads

Ia(1/aj1) = 1
c

∫ 1/k∗

0
Π(t)dt.

We now choose, in the notation (1.2),

c = 1/mν,q = 1
q

∫ 1/k∗

0
Π(t)dt,
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so that (5.1) holds.
It is convenient to introduce here the notation Φ = (Φℓ), where for ℓ ∈

Supp(ν),
Φℓ(z) := Mℓ(a, − log(1 − z)). (6.1)

We set further
Φν := ⟨ν; Φ⟩ ,

so that, by (3.1),

Φν(z) = φ(− log(1 − z)) + 1
1 − q

. (6.2)

Next, recall from Lemma 2.1 that for any x ∈ [0, 1),

Φν(x) = E
(∏

(cj)Yj(− log(1−x))
)

= (1 − x)
∞∑

n=1
xn−1cn E(Z(n)).

We have seen that this power series has radius of convergence equal to 1 and
know from Proposition 5.1 that it defines a holomorphic function on some do-
main ∆(R, θ).

We next re-express the above in the form

Φν(z) − ν(j1)/(q + (1 − q)ν(j1))
1 − z

=
∞∑

n=1
zn−1

(
m−n

ν,q E(Z(n)) − ν(j1)
q + (1 − q)ν(j1)

)
.

The assumptions of Proposition 5.1 have been checked, and combining its
conclusion with (6.2) and the observation from (5.3) that

ν(j1)
q + (1 − q)ν(j1) = 1 − 1/β

1 − q
,

enables us to apply to this generating function a basic transfer theorem of the
singularity analysis; see [7, Theorem 1], or [8, Theorem VI.3]. We get

m−n
ν,q E(Z(n)) − ν(j1)

q + (1 − q)ν(j1) = O(n−1/β).

Recalling that j1 = k∗, this is the claim of Theorem 1.1.

7 Three further results
7.1 On the dependence on the parameters
In random population models, the ratio E(Z(n + 1))/E(Z(n)) is sometimes
called the effective reproduction number at generation n, and Theorem 1.1 thus
identifies its limit when n → ∞ for the reinforced Galton-Watson process as
mν,q in (1.2). It is natural to study how this quantity depends on the memory
parameter q and on the reproduction law ν.
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Proposition 7.1. (i) The function q 7→ mν,q is monotone increasing on (0, q),
with

lim
q→0+

mν,q =
∑

jν(j) and lim
q→1−

mν,q = k∗.

(ii) Let q ∈ (0, 1) be a fixed memory parameter and k∗ ≥ 1 a fixed integer.
The function ν 7→ mν,q is log-concave on the subset of reproduction laws ν with
sup{k ≥ 0 : ν(k) > 0} = k∗.

Proof. (i) The monotonicity assertion derives from Lemma 2.2 and Theorem 1.1.
Next, we write

1/mν,q =
∫ 1/(qk∗)

0
Π(qt)dt, (7.1)

and note that for every t ≥ 0,

lim
q→0+

Π(qt) = exp
(

−t
∑

jν(j)
)

.

Integrating over t ≥ 0 yields

lim
q→0+

1/mν,q = 1
/∑

jν(j) .

On the other hand, the function

q 7→ (1 − tk)ν(k)(1−q)/q

increases on (0, 1). Its limit as q → 1− equals 1 for all t < 1/k∗, which yields
mν,1− = k∗.

(ii) Let ν1 and ν2 be two reproduction laws with sup{k ≥ 0 : νi(k) > 0} = k∗

for i = 1, 2. Write

Πi(t) :=
∏

(1 − tk)νi(k)(1−q)/q, t ≤ 1/k∗ and i = 1, 2.

Let c ∈ (0, 1), consider ν = cν1 + (1 − c)ν2. As Π = Πc
1 × Π1−c

2 in the obvious
notation, we deduce from (7.1) and the Hölder inequality that

m−1
ν,q ≤ m−c

ν1,qmc−1
ν2,q.

This shows the log-concavity statement.

7.2 Explicit upper and lower bounds
The purpose of this section is to discuss the following simple bounds for the
asymptotic effective reproduction number mν,q.

Proposition 7.2. We have

k∗(q + (1 − q)ν(k∗)) ≤ mν,q ≤ k∗q + (1 − q)ν,

where in the right-hand side,

ν :=
∑

jν(j)

denotes the mean of ν.
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We shall now give two different proofs of this claim, the first is purely prob-
abilist whereas the second is purely analytic and based on the formula (1.2).

A probabilistic proof. Consider first the sub-process of the reinforced Galton-
Watson process which results by suppressing every sibling (together with its
possible descent) which has size strictly less than k∗. This sub-process is then
a true Galton-Watson process in which individuals have either k∗ children with
probability q+(1−q)ν(k∗) or 0 child with complementary probability. Therefore
Z(n) dominates the size of the n-th generation of a Galton-Watson process with
averaged reproduction k∗(q+(1−q)ν(k∗)), and the lower-bound in the statement
follows.

For the upper-bound consider another Galton-Walton process with the fol-
lowing reproduction law. With probability q, the number of children of a typ-
ical individual is k∗, and with complementary probability 1 − q, it is given by
a random variable with law ν. In words, at each repetition event, we sys-
tematically increase the number of children to k∗. Obviously, this second true
Galton-Watson process dominates the reinforced Galton-Watson process, and
this entails the upper-bound.

An analytic proof. For the lower-bound, we simply write for every 0 ≤ t ≤ 1
the inequality ∏

(1 − tj/k∗)(1−q)ν(j)/q ≤ (1 − t)(1−q)ν(k∗)/q
.

By integration, we conclude that∫ 1

0

∏
(1 − tj/k∗)(1−q)ν(j)/q dt ≤ q

q + (1 − q)ν(k∗) ,

and now the first inequality of the statement can be seen from (1.2).
For the upper-bound, we first write

(1 − tj/k∗)(1−q)ν(j)/q =
(

(1 − tj/k∗)k∗/j
) (1−q)jν(j)

qk∗
,

and then use the convexity inequality

(1 − at)1/a ≥ 1 − t for a ≤ 1.

We get ∏
(1 − tj/k∗)(1−q)ν(j)/q ≥ (1 − t)

(1−q)ν
qk∗ .

By integration, we get∫ 1

0

∏
(1 − tj/k∗)(1−q)ν(j)/q dt ≥ q

q + (1 − q)ν/k∗ ,

and the second inequality of the statement can again be seen from (1.2).
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7.3 On the dependence on the first offspring number
We now conclude this work presenting a stronger version of Theorem 1.1. More
precisely, the latter is given for the probability measure P under which the
number of children Z(1) of the ancestor is a random sample of ν. Here is the
version under the conditional probabilities Pℓ = P(· | Z(1) = ℓ), which again
underlines the key role of the maximal possible number of children k∗.

Theorem 7.3. There exists some constant γ ∈ (0, ∞) such that for every ℓ ∈
Supp(ν) with ℓ ̸= k∗, we have

lim
n→∞

n1/βm−n
ν,q Eℓ(Z(k)) = γ

Γ(1/β)(1/ℓ − 1/k∗) .

We have also

lim
n→∞

m−n
ν,q Ek∗(Z(k)) = 1/(q + ν(k∗)(1 − q)).

Remark 7.4. One can compute the value of γ explicitly in terms of the parame-
ters. However, since its expression is not quite simple and chasing the constants
in the calculation below would have been a bit boring, we favored simplicity of
the argument over a more precise statement.

Proof. The guiding line of the argument is similar to that for the proof of The-
orem 1.1 and will not be repeated. We shall just indicate the main steps of the
calculation. Recall that we focus on the critical case when assumptions (5.1)
and (5.2) hold.

Our starting point is now the formula for the factorial moment generating
function that been obtained in Corollary 4.4. Using the notation (6.1), this
reads

Φℓ(z) = aℓA
′(− log(1 − z))

1 − qaℓA(− log(1 − z)) .

Essentially, we have to check that this defines an analytic function on ∆(R, θ)
and then to determine its asymptotic behavior as z → 1 in ∆(R, θ).

Let us first discuss analyticity; recall that A′(t) = exp
(∫ t

0 φ(s)ds
)

. Thanks
to Proposition 5.1, both the numerator and the denominator of Φℓ(z) are an-
alytic functions on ∆(R, θ), so all that is needed is to check that the denomi-
nator does not vanish there. Assume that there is some zℓ ∈ ∆(R, θ) such that
qaℓA(− log(1 − zℓ)) = 1. Obviously, then qajA(− log(1 − zℓ)) ̸= 1 for any j
with aj ̸= aℓ, and we deduce that zℓ would also be a singularity of the linear
combination Φν . This contradicts Proposition 5.1(ii) and we conclude that Φℓ

is indeed analytic on ∆(R, θ) for all ℓ.
Next, we know from Proposition 5.1 that

φ(w) = −1/β + O(e−w/β) as ℜ(w) → ∞ with 1 − e−w ∈ ∆(R, θ).

We deduce by integration that in the same regime

A′(w) = exp
(∫

[0,w]
φ(s)ds

)
∼ γe−w/β(1 + O(e−w/β),
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where
γ := exp

(∫ ∞

0
(φ(t) + 1/β)dt

)
∈ (0, ∞).

We now see that for any ℓ ̸= j1, we have

Φℓ(z) ∼ γ(1 − z)1/β

1/aℓ − 1/aj1

as z → 1, z ∈ ∆(R, θ).

The rest of the proof of the statement for ℓ ̸= k∗ uses the same path as in
Section 6, except that for the transfer, we use [8, Corollary VI.1] in place of [8,
Theorem VI.3]. The second claim then follows by linearity from the first and
Theorem 1.1.
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