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Abstract

We study the convergence of some particle processes to Dawson-Watanabe superprocesses
through their Radon-Nikodym derivatives convergence, as in Lalley and Zheng [5]. The
processes we will look at here are branching random walks with drift, contact processes,
voter models and Lotka-Volterra models.
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Pr. Ed Perkins, who initiated the project, for his patience and the time he has spent helping him,
and Max Fathi, for his careful proofreading. Finally, I would like to thank Pr. Jean-Frangois Le
Gall, who helped me find this opportunity.

1 Introduction

The particle processes we study here are all birth and death particle processes, each particle can
give birth to a child in a neighbouring site, or die. Our processes takes place on a lattice Z<.
The rate at which a particle at site z gives birth or dies only depends on the number of particle
at z and the number of particles in the neighbourhood of z.

Here we introduce some of the notations we use throughout this report. First we put the
heuristic about the particle processes in two definitions, continuous time and discrete time.
We denote by p an irreductible symmetric random walk kernel on Z% such that p(0) = 0 and
>, alaip(x) = §; ;0% < +oo, which denotes the way the particles are walking on the lattice. For
all bounded functions ¢, we will denote Po(x) =, p(e)p(x +e).

Definition 1. A continuous time particle system with kernel p, birth rate b; and death rate k;
is a Markov process & : Z% — N, where & () represent the number of particles at z at time .



This population increases if a neighbour produces a child at x, and decreases if a particle at z
dies. Both rates bs(z) and k() are function of z, ¢, &—(x) and Vi—(z) =Y p(e)&—(z+€). We
rewrite it as the following :

{ &(x) = &(x) + 1 at rate Vi(z)be(x)
&(x) = &(z) — 1 at rate & (z)ki(x).

Definition 2. A discrete time particle system with kernel p and offspring distribution II is a
Markov chain &, : Z¢ — N, where &, () represent the number of particles at = at time n. The
probability on N I, ,, is a function of z, n, £,(x) and V,(x) = >, p(e)én(x + €). We rewrite it
as the following :

&nt1(x) = k with probability 1I,, (k).

Remark 1. There are some differences between the definitions of the continuous time and the
discrete time models. In the first one, we give two different rates which both play on the speed
at which the process evolves (doubling both b; and k; is the same as considering &2;) and the
number of children of one particle before its death (roughly, if b, and k; are constant during all

be(x)
be(x) + ke(x)’
because this is the number of heads we obtain with an unfair coin before the first tail).

In the second model, we just take in account the number of children of a single particle. The
variation of the speed of the process can be introduced after, in a rescaling, considering that a
step of 1 at position x correspond to a jump of time 7y, ~ b, + k.

the life of the particle, the number of children follow a geometric law of parameter

We now have to define the limits we hope to find, the Dawson-Watanabe super-processes :

Definition 3. A Dawson-Watanabe super-process with branching rate v > 0, drift 6;(x) and
diffusion coefficient o2 starting at X is an adapted a.s-continuous M f(Rd)—valued process X;
on a complete filtered probability space (2, F, F;, P) which solve the martingale problem :

0_2

Ap [ .
\ds / X, (0:6)ds, (1)

V6 € (R, M(6) = Xil0) = ¥ol0) - | X7

is a continuous (JF;)-martingale, with My(¢) = 0 and quadratic variation :
t
(M) =7 [ Xl
0

The solution and existence in law of this martingale problem is well known, let P}Y(’g’UQ the
law of the solution on Qx,p = D([0, +-00[, M (R%)).

Remark 2. The Dawson-Watanabe superprocess without drift is also called the super-Brownian
motion.

In this report, we try to prove the convergence of some sequences of these particle systems,
suitably rescaled, to Dawson-Watanabe processes, in the following way. We compute the Radon-
Nikodym derivative of the particle system we are studying against an other one with a known
convergence. The following lemma will complete the proofs.



Lemma 1. Let X,, X be random wvariables valued in a metric space E all defined on the
same probability space (Q,F,P), and let L,, L be non-negative real valued random wvariables
on (2, F,P) with mean 1.

Let Qn, Q be probability measures on (2, F) with Radon-Nikodym derivative L, L against
P, if:

X, L X, L
( n) n)N_>:+>00( ) )7

then the Qn-distribution of X, converge weakly to the Q-distribution of X.
Proof. Let ¢ € Cy(E), by definition, we have :

EQn (¢(Xn)) = EP(Ln¢(Xn))

Since (X, L”)N:+> (X, L), we know too that for all A > 0,
—+00

E((Ln A A)d(Xn)) — BE((L A A)p(X)).

Moreover E(L,) = 1, and L,, > 0, so we know that :
E(|Ln NA = Ln|) = E(Lp1yz,>ay) = 1 = E(Ln1yr,<a})
converge to E(|L A A — L|) when n — +00. We can now compute :

limsup |E(L,¢(X,) — Lo(X))|

n—o0

< limsup [[@l|cc E(|(Ln A A) = Ln| + [(L A A) — L)
n—o0

< 2f¢llE(I(L A A) = LI).
And we just have to take A — 400 to conclude. O

We now need a particle system whose rescaled limit is well known, which we will use as a
reference law with all the other processes. This process will be the branching random walk.
A branching random walk is the simplest process among those we have defined above. In this
process, the birth and the death rate are both equal to a constant ~, in the continuous time
model.

Definition 4. A continuous time branching random walk with rate v and kernel p is a Markov
process & : Z% — N evolving as following :

{ &(z) = &(z) + 1 at rate yVi(x)
&i(z) = &(x) — 1 at rate y&(z).

In order to prove the convergence of the particle processes we are studying to Dawson-
Watanabe super-processes, we rescale them in time, space and mass, and take only care of the

local density of particle near each point. More precisely, if £V is a sequence of branching random
walks with rate vV, we define the following sequence of M f(Rd)—valued processes :

1
XgV:NngV(x)5%~

N

3



Z
The measure X}V is localized on the rescaled lattice Zy = TN We shall study the conver-

gence in law of this measure-valued process. The following theorem holds :

Theorem 1 (Dawson-Watanabe theorem). If X3 = u, where i € M ¢(R?) then we have :
XN o X,

where X s the law of a super-Brownian motion with initial distribution u, rate 27y and diffusion

o

The same result holds for the discrete time branching random walk.

Definition 5. A discrete time branching random walk with kernel p is a Markov chain &, : Z¢ —
N evolving as follows :

(@) (Val@)™

&nt1(x) = k with probability e I

In other words, this is a discrete time particle process, where at each step, each particle dies and
leaves children with the following distribution :

@) Va(@)*

II, . (k) =e i

Remark 3. Here we chose the model with a Poisson offspring distribution to facilitate compu-
tations, but other laws can be used, such as a geometric law, which is closer to the continuous
time model, because there is no difference in the limit when N — 400, but then the calculations
becomes harder.

Let £V be a sequence of discrete time branching random walks with rate 1, as in the previous
part, but we consider it sped up by a factor vV, and we define :

1
XtN - N fo\;mj (93)5ﬁ

The following theorem holds :
Theorem 2 (Dawson-Watanabe theorem). If X&' = u, where i € M ¢(R?) then we have :
XV =X,
2

where X is the law of a super Brownian motion with rate v and diffusion o=.

Remark 4. The disappearence of a factor 2 in the rate is natural if we remember the correspon-
dence rule between the two processes. A rate v in both birthing and killing rate in the continuous
time branching random walk is equal to a rate 27 in the discrete time one.



2 Radon-Nikodym derivative of the particle processes

2.1 About the continuous time particle processes
2.1.1 Notations

For all of these particles systems, we give a few general definitions which will be useful later,
when we will compute the Radon-Nikodym derivative of two of them.

First we will give a characterisation of a particle process through a countable set of particles
with a common law which is easily computable.

Proposition 1. Let Xy be a particle system with birth rate by and death rate ki, we denote :
o Ty =0 and T4 =inf {t > T,| X # X1, } ;
o t,=Th1—1T, ;
o z, € Z% such as X, ,(wn) # Xr, (2,) which is a.s. unique ;
o 0p = X1, (2n) — X1, () € {—1,1}.

Then, knowing Fr, , the joint law of (tn,Tn,0n) is given by :

t

P(t, € [t,t + dt[,x,, = z,0, = 1|Fr,) = exp <— X, (Pbs + ks)ds) P(X1,)(x)br, +¢—(x)dt,

Tn

t

P(t, € [t,t + dt[,z, = x,0, = —1|Fp,) = exp (— X, (Pbs + ks)ds> X1, (2)kp, - (z)dt.

Tn

Moreover there is a continuous bijection between Xynr, and (ti, T, O )k<n-

Proof. We use the Markov property, which say us that :
P(t, € [t,t + dt[,x, = 2,6, = 6| Fp,) = PXTn(tg € [t + Ty, t + Ty + dt[,z0 = x, 50 = 9).

And then, to find when the first jump occurs and what is his location and type, we use the
"clock-alarm lemma'.
The last affirmation is obvious. O

We now know a way to build a birth and death particle system. We just have to construct
this countable set of random variables, one after the other.
2.1.2 Radon-Nikodym derivative of continuous time particle systems

Proposition 2. Let P be the law of a particle system with birthing rate by and killing rate ki,
and Q the law of a modification of this process with rates by(1+ o) and k(14 B¢), where o, B are



continuous bounded functions on RT x Z%. The Radon-Nikodym derivative of the process until
time t can be written :

aQ (X) = exp{—/ot X (P(bsevs) +k558)d5)}

dP
T (O +1p,—nom. (@) + 1, 1381, (2n)) -
n|Th<t

Fi

Proof. We first use Proposition 1, to compute the Radon-Nikodym derivative L, of (Xiar, )¢
under laws P and Q :

T
L, = exp { Xs(P(bsas) + ksﬁs)ds)}
0

n—1
X H (1 + 1{5k:1}06Tk+1—($k) + 1{5k:—1}ﬁTk+1—(xk)) .
k=0

Now we give an extension in the following way :
Let n; = inf{n > 0|T;, > t}, we can compute the Radon-Nikodym derivative of the process

until time ¢, using the following :
an>

aQ e
(], 7) - =,
an>

dQ
(29
Q(Tnt > t)

= Lnlp<ny + Lnt—lml{n>m}a

Lin<nsy

_l’_

using the fact that the information we use between the time 7,1 and ¢ is just 7},, > t. We now
just have to let n — 400 to find the following.

zgﬂ (X) = exp{_/otXS(P(bsas)+/-csﬁs)d8)}

I (+1p,—nam- (@) + 15,213 Br0 - (Tn)) -

n|Tp<t

O

We will now write this derivative in an easier way. To do this we have to recall what is the
exponential of a cadlag martingale.

Definition 6. Let M; be a cadlag martingale (right-continuous with left limits). The exponential
of M is the martingale, denoted £(M), defined by :

ea) = exp (31~ (01,211 ) [T+ A, exp(-



If M is a quadratic pure jump martingale, then we have :

EM); =exp [ M= > AM, | [0+ AM,)
s<t s<t

Let X; be a particle system of law P, then we can define the following pure jump processes :
e The birth process Bi(z) = Y g s AXs(2)"
e The death process Ki(7) = > o «; AXs(z)™.

Of course we have Xi(x) — Xo(z) = Bi(x) — Ki(x). Moreover, the Markov property shows
that the processes :

~

By(2) = Bu(z) — /0 ba(2)P(X.)(x)ds and

Ki(z) = Ky(z) — /O ks (2) X4 (x)ds

are P-martingales.
Then we have :

where we denote :

M, = Y (@) B@))i + (B(z) K (@)

T

2.2 Radon-Nikodym derivative for discrete time particle processes

We denote P the law of a discrete time particle process with offspring distribution II, and Q a
modification of this particle process with birthing rate IT'.

These Radon-Nikodym derivative are easier to compute, using the conditional independence
of the number of offspring at time n 4+ 1 on each site. The Radon-Nikodym derivative can be
expressed as a product over space and time :

N

dQ
@), =111

n=0 =

where we denote :

L — Q({nt1(w) = Xpy1(2))
n,x — .
P(&ny1(z) = Xnia(z))
Using the definition we gave of a discrete time particle system, we can finally write :

o N Hn,x(XrH»l) ’




3 Some computations for the branching random walk

As we said in the introduction, we will use a branching random walk as a reference law for all
our other particle systems. In other words, to study the convergence of the Radon-Nikodym
derivatives, we will study functions of the branching random walk (except for the Lotka-Volterra
model, where we will use the voter model as a reference). So a few results about the computation
of its moments will be useful later on.

3.1 Representation of the continuous time branching random walk

Let A"(z,y) and A™(z) be independent Poisson processes of intensity yp(z,y) and 7 respectively.
A rate v branching random walk &; is the unique strong solution of the following problem :

t t
() = o(x) + Z/O Lie, (y)>nydAS(z,y) — Z/O Lie, (2)>n}dAY (2).
y,n n

If A is a Poisson process with intensity A, we will denote its compensated process by /A\t =
A; — At, and for all functions ¢,

&(9) = o)),
Lyp(x) = v(Po(z) — ¢(2)).

We can rewrite € in the following way :

§i(d) = o(d) + My(0) + Ai(0) (2)

where we denote :

t R t R
Mi(¢) = [Z/O ¢($)1{gs_(y)>n}df\?(%y)—Z/D (@) ie,_(y)>nydAS (2, y) |

x7y7n

A(g) = /0 €4(L,0)ds.

M, () is a martingale with quadratic variation :
t
(M@))e = [ €(6+ P(e?)as.

3.2 Computation of the moments

We want to extend (2) to functions ¢(t,z) = ¢¢(z) € C3([0,+00[xR%). Then we have, by
Riemann-Stieltjes equality :

&mmmz@w%m+45@m@+ﬁ@w%m»



We can sum over x, and we obtain :

&t (¢t) = Eo(do) + Mi(d) + Ar(9),

where we denote :

t R t R
Mi(¢) = [Z/O ¢s($)1{gs_(y)>n}d/\?(x7y)—Z/O ¢s(2)Lie,_(y)>nydAS (2, y)

x’y7n
and

At(¢)—/0 D ELbs + bs)ds.

M, (¢) is a martingale with quadratic variation :

t
(M(6))r = /0 €.(62 + P(62))ds.

We call this martingale the orthogonal martingale of the branching random walk.

Definition 7. Let & be a rate v branching random walk. The orthogonal martingale measure
of ¢ is the M ;(R%)-valued process M; such as for all ¢ € C13([0, +0o[xR?), we have :

t
M) = 6(0) = (0) — [ S &lLydi+ dds

We let P; denote the semi-group of the random walk BY on Z? which jumps at rate v in its
neighbours with distribution p. In other words,

Pi(¢)(x) = B(é(z + BY)).

If we use the previous equation with the function ¢4(z) = Pi_s¢(x), we have A (¢p) =0, so :
E(&(¢)) = &o(F:(9)),

And moreover we can compute the other moments by recursion using the Ito formula. For
the second moment :

E(&(0)()) = Eo(Po(6))Eo(Pi()) + /0 B4 (P Prsth))ds.

3.3 Computation for the discrete time branching random walk

The same kind of computations for the moments for the discrete time branching random walk
holds. Indeed we can easily prove by recurrence that :

E(fn(d))) - gO(Pn(¢))7

n—1
E(6n(9)60(¥) = &0(Pu(#)€0(Pa(¥)) + > E(&k(Pak(0) Pak (1)),
k=0

where we denote P,(¢)(x) = E(¢(x + By)), with B,, a random walk on Z¢ with kernel p.



4 Convergence for the branching radom walk with drift

In this section we will highlight one of the difficulties we have to deal with in the continuous time
branching random walk, which doesn’t exist in discrete time. To do this, we will study one of
the simplest modifications of the branching random walk, where we just add a drift, a difference
between the expectation of birth and death for each particle.

4.1 Continuous time branching random walk with symmetric drift 6

First we will study a model where the drift is symmetrically distributed on the birthing and the
killing rate. For this model, the convergence of the Radon-Nikodym derivative can be proved,
without too many problems.

Definition 8. A branching random walk with symmetric drift 8 € Cy([0, +00[xR?) is a particle
system where each particle has a birth rate sped up and a death rate sped down by the same
factor. The particle system evolves as the following :

{ &(x) = &(z) + 1 at rate Vi(z)(1 4 6(x,t))
&(x) = & (z) — 1 at rate &(x)(1 — 0(x,t))

A sequence of these processes, suitably rescaled will converge to a Dawson-Watanabe super-

process in the following way. We denote by 8V a sequence of continuous bounded functions on
d

Z
Rt x Nk that we extend by interpolation to Cy (RT x R?) functions. We suppose that 67

uniformly converges to 6.

N
Theorem 3. Let & be a sequence of rate N branching random walks with symmetric drift N

on the rescaled lattice, we define :
1
X' = N Z 55(33)5%-
x€Z?

If XéVNiio,u where p € My(R?), then we have :

XN — X,
N—+4o00

where X is a Dawson- Watanabe super-process with branching rate 2, dispersion o and drift 0.

Proof. Let P6,N be the law of the process XV, and PV the law of the branching random walk with
rate N, rescaled in the same way, which we will also call £¥. The Radon-Nikodym derivative of
these processes is equal to the derivative of particle systems they are extracted from :

dpyN

1
aPv |, = E(=MN (M),

N

where M¥ is the orthogonal martingale of the branching random walk ¢V,

10



We use Cg’g’ (RT x RY) approximations ¢2 of 0V such as ||¢Y — 0V || < €. In the same way
we denote ¢, an approximation of 6

Moreover we know that the sequence of branching random walks with rate IV, rescaled in
space by V/N and in mass by N converge weakly to the super-Brownian motion. So we just

have to prove the weak joint convergence for the Radon-Nikodym derivative. We have, for any
function ¢ € C;’g (Rt x RY) :

MY (6) = £(9) /55 (Lno) ds—/ €N (d)d

In the same way, we have :

MY ()] = Z/ Os (@) Ly (o dAT (0 9) + D 00 (@) Ly (050 AT (@),

z,y,n z,n

so we see that [NMN(QS)]t - fg XN(#? + PN(¢2))ds is a martingale with quadratic variation

converging to 0, so

1 N
[NM tN%Jroo /X ¢S

Furthermore the application :
t
X € D([0, +o00[, M ;(R%)) H/ X(p)ds
0
is continuous, so let ¢™ be a countable set of C; 3 (R“‘ X Rd) :

(7 (3126 (e Y60, ) ) = (e 0m. [ xatortias)

Then we use this result with the countable set (gb )
gence :

NeENceQ’ which prove the joint conver-

(XN,]lthN(eN) N [MN(HN)L) e (X M;(), /0 t Xs(ag)ds).

This convergence gives us in particular the convergence for the Radon-Nikodym derivative.
O

We now consider the same kind of processes in the discrete time model.

4.2 Branching random walk with drift, discrete time model

Definition 9. A discrete time branching random walk with drift € Cy(R* x R?) is a particle
system where each particle has a number of children increased by a factor 8. The particle system

evolves as the following :
)\k
éni1(x) = k with probability e—*ﬁ

where we denote A = A\, (z) = (1 + 0, (x))Vy ()

11



As in the previous parts, we considere a sequence 6V of continuous bounded functions on
N VAl
N /N’

converges uniformly to . The same theorem holds :

that we extend by an interpolation to Cp (R+ X ]Rd) functions. We suppose that 8%

Theorem 4. Let £V be a sequence of discrete time branching random walks on the rescaled lattice
0%
with drift WN We define :

1
N N
Xy = N Z g\_NtJ(:E)éﬁ-
xcZd
If XéVNilou where p € My (R%), then we have :

XN —= X,
N—~+o0

where X is a Dawson- Watanabe super-process with branching rate 1, dispersion o and drift 0.

Proof. We first suppose that the drift 6V and 6 are in Cg’?’ (R* x R), and that the convergence
is uniform in this space.

As in the previous part, we have a look on the Radon-Nikodym derivative of our process. We
denote by P2’ the law of (X}V)¢>0 and P the law of the branching random walk without drift,

rescaled in the same way. For the discrete time model, we have

Py Lvt]
TAN = Ln T
apv |, ~ L1112

where we denote :

& (z
f%V,{V(a:)G%(z) < (9%[ (x)) +1(@)

We can now rewrite

LNt

= (14 0p(1)) exp % > (0F) - €Y (poi) + % PEHRICE)
k=0 k=0

dpPyN
dPN

Fi

We study the convergence of each part of the Radon-Nikodym derivative. We begin with

1 v N (g _ tXN N2 '
mkzzoﬁnH(;;)—/o s<s>8+0()7

and in the same way as before we obtain the joint convergence for this part.

12



Now we have a look on :

[Nt
NZ@% 0%) = &' (PO%)
L v
- Z@Mm — € (0Y)] — &N (0%n) — X0 (0%)] - [eN (PNOY) — €N (0]
L ‘
= Xy (0lv) = X5 (00) = 3 D_ &aa(03) + & (L (03) +o(1)
k=0

t
— Xy @) - X6 - / XN@N + LyoN)ds + o(1).
0

So the joint convergence of the process and the derivative is easy to find.
We just have to use approximate 6 by regular functions and to finish the proof. Ul

Remark 5. This discrete time process is very similar to the branching random walk with sym-

1+0
metrical drift. Here the expected number of children of each particle is equal to M, this

0
leads us to a drift 3 in the discrete time process. Moreover, the speeding rate in the branching
random walk with symmetrical drift is equal to 2, instead of 1 in the discrete time process.
But writing X}V = N Y rezd ff\ng” (:c)(sﬁ would have led us to a super-Brownian motion
with rate 2 and drift 8, in the way that we expected.

We will now look at another branching random walk, where the drift isn’t equally distributed
on the birthing and the dying rate. Proving the convergence is more difficult.

4.3 Branching random walk with asymmetric drifts 6,6’

2
Definition 10. A branching random walk with asymmetric drifts (0,6’) € C;’B(R+ x RY) is a
particle system where each particle has a birthing rate speeded up by some factor, and the killing
rate by another one. The particle system evolves as the following :

{ &(x) = &(x) + 1 at rate Vi(x)(1 4 ()
&(z) — &(x) — 1 at rate &(z)(1 + 0(x))

The theorem we would like to prove is the following. Let (6, 0V) be sequences of continuous
d

Z
bounded functions on R* x Nk which we extend by an interpolation to C, (RT x R?) functions.

We suppose that % and @’V uniformly converges to 6 and ¢'.

Theorem 5. Let &Y a sequence of rate N branching random walks with asymmetric drifts
QAT QUV
<N’ N)’ we define :

AL

xEZd

13



If XéVNﬁoou where p € Mf(]Rd), then we have :

xN = X,
N——+o0

where X is a Dawson-Watanabe super-process with branching rate 2, dispersion o® and drift
0—0
5
We would like to prove the theorem in the same way as before.
As in the previous part, we let Pé]\é, denote the law of the process £V, and recall that PV
denotes the law of the branching random walk with rate N. The Radon-Nikodym derivative of
these processes is

Py

dPN s = S(BN(GN) - KN(G,N))M

where BN (0V), = D 0<s<t Dz O (2)AEN (x) ", is defined as the birthing jumping process,
which jump of 64(z) if there is a birth at site = at time s, and, in the same notations, K~ (6'V), =

N N(\~
ZO<s§t Zx 93 (w)Ags ($) .
We want to prove, in the same way as before the weak convergence of this derivative.
We begin by reminding that

t
YY) = 3 [ o @y e di )

x?y7n

Moreover we have :

t
2 n
B0 = 2 [ 0@ e )

x’y?”

= SN+ M OY)

So we see that the convergence for the quadratic variation is quite easy, using the previous
arguments. What we now have to do is prove the weak convergence of NBI{V (9) to §Mt(9). But
this part seems problematic because of the difference between BY and K.

Remark 6. To give the equivalent of the asymmetrical drift case, we have to consider the modified

Oi(x)
N
which is similar to the previous one. We see that the difficulties of computation comes from a

problem of time. Instead of keeping the same scale of time, an asymmetrical drift speeds it up
a little, which leads to hard to control effects.

sequence of processes Y,V = XV , since we have a rate 2 + in this process, and a drift

t+ Ot]EIZ)

14



5 Convergence of the contact process

A contact process is a birth and death particle system, which represent the evolution of an
epidemics in a population. The "particles" represent the infected individuals. At each site, there
is only a finite number of persons which are susceptible to become infected. Fach infected person
can infect another one with a certain rate, and recover with another one. These dynamics have
already been much studied, and the convergence has been proved in [3], but here we want to see
where the use of the Radon-Nikodym derivative leads us.

5.1 Continuous time contact process

The continuous time contact process can be defined as follows. We suppose that in each site,
there is a village of size M. Each infected individual tries to infect each of its neighbours at rate

Mp(:l:,y). The target become infected if this was not already the case. If we compute this to

the branching random walk, we see that the number of births is lower, so we also need to modify
the death rate. Each particle will recover at rate 1 — 6. More formally we can write the following

Definition 11. A contact process with drift § and village size M is a continuous time particle
system with birth rate (1 — V;_(x)) and death rate (1 — 0), i.e. a Markov process & evolving as

follows :
&(x) = &(x) + 1 at rate Vi(z)(1 — M

&(x) = & (x) — 1 at rate &(z)(1 —0).

)

We now want to study the convergence of a sequence of these processes. The following
theorem holds :

0
Theorem 6. Let £ a sequence of contact processes with rate N, drift N and wvillage size N,

we define :

1
X' = N Z 55(33)5%-
x€Z4

If X(])VN:> u, where pu is an atomless finite measure on R?, then we have :
——+00

XN — X,
N—+4o00

where X is a Dawson- Watanabe super-process with branching rate 2, dispersion o and drift 6 —b,
where we denote :

+o0o +oo
b= E(p(Bn)=> P(B,=0),
n=0 n=1

with By, a random walk on Z% with kernel p.
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This theorem has already be proved in [3], but in a different way. The existence of accumu-
lation values is proved by using the tightness of the sequence, and then it is shown that all the
limits satisfy the martingale problem (1). We would like to give another proof of this fact, using
the Radon-Nikodym derivative.

If we denote the law of the process XV by Qfgv, we have again, through Proposition 2 :

oy | (1 -n
e, =€ (77),
where :
MY = / &8 (@)L () >my dAT (2,y) / OLie ()>ny dA% ().
xy?

We begin by treating the special case § = b, then we want to prove that the Radon-Nikodym
derivative converge in law to 1.

But if we have this convergence, can compute the expectation of the logarithm of this deriva-
tive :

1 -
WE([MN]??) - N2 Z/ gs 1{§N(y >n}dA T y 22/ b? 1{§N(x)>n}dA ( ))

- / B @) - PIE W)pry)ds > 0.
z,y

N—+400

But we can prove (it will be done in the annex) :

t
1 N N
B[ ¥ @) - Ve i) 0. Q
This calculation leads us to the following statement. If the Radon-Nikodym derivative con-
verge to 1, then we have :

ds) — 0.

B/ & >N @)~ e (o)) 2 O

But in the same time, since b is not an integer, if we take ¢ > 0 such that [b — €,b + ¢["\N = &,
then we also have :

t
B[ & > @) - e e )) > B |3 S winte.as) = x5,

So we see that the proof of the convergence using the Radon-Nikodym derivative is impossible
for this particle system.
Remark 7. Even if we had "symmetrized" our contact process by speeding up the recovery if the
particle has a lot of infected neighbours, the proof of the convergence seems difficult because the
"function" X}¥(x) we integrate against the orthogonal martingale measure does not have a limit
in dimensions d > 2. In particular this limit certainly cannot be b.

We can’t take the limit in the two different times (the martingale measure for one part and
the function integrated for other part like in [5]). We cannot use the mean-field simplification of
our process because we look at the microscopic square variation in the drift.
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5.2 Discrete time contact processes

We now want to see what the discrete time difficulties with the contact process are. We want
to give the distribution of particles offspring. First we notice that there are two possible ways
to count a birth in the branching random walk which does not exist in the contact process. The

one is to infect several times the same particle. For now, we will forget this second term.
A simple calculation shows that the offspring distribution is :

first one is to infect a particle already infected, which arrives with probability , the second

1—
My (k) = -0 5EVe(e) (

We can now give the following definition :

Definition 12. A discrete time modified contact process with drift # and village size M is a
discrete time particle system with offspring distribution :

Ak
=2
I, . (k) =e R

where A = A, (z) = (1 — =EV, (2)(1 + 9).

Remark 8. This modified contact process is a good approximation. The number of particles at
one site for the contact process is handled by the number of particle for a branching random
walk with drift 6. Moreover, the conditional expectation of the number of particle infected by
two or more other ones at time n + 1 at site x is obviously bounded by a constant times the
square number of neighbours of this particle. And it is an easy calculation to show that this
number of errors until time ¢ is a op(N) when N grows to the infinity.

We study the possible convergence of a sequence ¢V of modified contact processes with drift
N and village size N. We denote again, in the same way than for the branching random walk
with drift : 1
N N
Xy = N Z €N (35)5ﬁ

x€Z4
We can compute the Radon-Nikodym derivative of these processes against branching random
walks. We begin by computing

N €T N T
L =esp [V (1 = 20+ ) - 1] (- St ge.

We now easily compute the logarithm of the Radon-Nikodym derivative until time ¢ of this
modified contact process against the branching random walk :

Nt
() = >SN @) - Va@)(O - € ()

n=0 =«

Nt
— oz 2 N @)EN (@) +6%) — Wi ()N ()0 + op(1).

n=0 x

17



The convergence of the part of this derivative that involves 8 is already well known. So we
just have to take interest to the part of the drift related to &Y (x). What we can easily show, in
the same way than is the continuous time branching random walk, is that :

INt] N b
(& (2) — §)Va(@)
Bly 2 N Notos

But the convergence of the Radon-Nikodym derivative leads to

Eth N NQbQ—EthV N2 b 0
(37 2 L @E! @ - ) = Bl 1 X Vo€ @) - 7, 52,0

and in the same way as before, we see that the two simultaneous convergences are impossible.

Remark 9. Once again we see that the main problem is to find a limit for the integral against
the orthogonal martingale measure of a drift &,(x) for which we can’t even give a cadlag limit.

In dimension 1, in [4], as the super-Brownian motion has a continuous density, this limit exists
and the limit of the Radon-Nikodym derivative of the particle process can be found, jointly with
the process itself. In |5, these methods can be used because of the existence of a limit of the
occupation measure of the branching random walk in dimension 2 and 3.

So we see that this new difficulty in the proof of the convergence of the Radon-Nikodym
derivative is of a different kind that is for the branching random walks with drift. It is not only
the local differences of speed of the particle processes which make the proof difficult, there is also
the fact that the drift &,(z) does not have a cadlag limit.

We will now give a few more exemples of the fact that the drift needs to have a limit and
that the mean-term simplification isn’t seen in the Radon-Nikodym derivative.

6 Convergence for the voter model

In this section we will introduce two kinds of voter models, with short and long range interactions.
These processes have already been studied many times and the convergence to super-Brownian
motions is proved in [1].

A voter model is a particle system where at each site, there is a certain number of individuals.
Each of those individuals can have the opinion 0 or 1. At each time, they chose one of their
neighbours at random and adopt its opinion. We have the following definitions :

Definition 13. A continuous time voter model with village size M is a particle systems & :
Z? — {0,--- M} with birth rate (1 — %) and death rate (1 — %) As a consequence, it
evolves as the following :

&(x) = &(x) +1 at rate Vi(z) (1 — X;\Ef)
&(x) — &(x) — 1 at rate &(w) <1 _ th\i?) .
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Definition 14. A discrete time voter model with village size M is a particle system &, : Z¢ —

{0,--- M} with binomial (M , V"]\Sf)) offspring distribution. As a consequence, it evolves as the
following :

&n+1(x) = k with probability (j\]j) (V?\(;))k(l B VT;\E;L’))M_@

6.1 Long range voter model

The study for the long range contact process consider a sequence of voter models with village
size M growing to infinity. In other words, each particle has a large number of neighbours. Let
&Y a sequence of rate N, village size My continuous time voter model. Let :

XV =+ Y s

N
z€Z?
The following theorem is proved in [1] :

Theorem 7. If XéVN:_i 1 € M (RY), then we have :
—+o0
XV = X
N—+o00

where X is a super-Brownian motion with branching rate 2 and diffusion o2.

Once again we compute the Radon-Nikodym derivative of these processes, of law R :

dRN’ ( 1 N)
— =&V,
dpPN 7 My
where :

t t
V= 3 [ @ i) + 3 [ PYXY @)1 (xyamdB )

I7y)n

The difficulties we already found in the continuous time process arise very quickly in the
same way than in the contact process.

6.2 Around the short range voter model

The short range voter model is defined as a voter model with village size 1. In this case, we
have also convergence to super-Brownian motion, but this time with a different rate multiplied
by v =P(¥n > 0,B,, # 0) (see [1]). We can compute again the Radon-Nikodym derivatives, in
the same way as in the long range voter model, but against branching random walks with rate
vN.

In the continuous time model we have :

dRN

::g(ﬁdV%
dPN |5 !
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where we denote :

~ t ~

z,y,n
t
+ Z/O (PYX N () — b)l{ggv(xpn}d/\?(%y)) :

-1
using the relation b = 7" This is similar to the contact process results, and the same
7
difficulties arise. We notice that solving this problem would also finish the proof for the long

range voter model.

7 The Lotka-Volterra model, a modification of the voter model

Here we study the Lotka-Volterra model, which is a modification of the voter model. As for
our previous system, the Radon-Nikodym derivative will be computed with respect to the voter
model, not the branching random walk. And for the computations, we will use the duality with
the coalescing random walk (Bf). A Lotka-Volterra model is a model of competition between
two species 0 and 1. When one of those individuals dies, it is immediately replaced at a rate
depending on the both concentration of 0 and 1 near this individual. In this part it will be
convenient to use this notation for the densities :

f?ll(x) - Zp(e)l{fn(x-i-e):i}v L€ {07 1}

The convergence of this process to a Dawson-Watanabe superprocess has already been proved
in [2], using the characterisation by the martingale problem (1) and the tightness of the sequence
of processes. Let’s now have a look on the Radon-Nikodym derivative in the continuous time
model.

7.1 Continuous time Lotka-Volterra model

Definition 15. A continuous time Lotka-Volterra model with interaction parameters ag and oy
is a particle system & : Z¢ — {0, 1} with birth rate (1 — & (z))(f)(z) + o f} (z)) and death rate
@) (fH(x) + a1 fP(z)). Tt evolves as follows :

{ (@) = &(@) + 1 atrate (1—&(2))(ff (@) + (a0 — 1) fi (2)?)
€(r) = &(2) — 1 atrate &(2)(fP (@) + (o1 — 1) fP(2)?)

Let f,fv be a sequence Lotka-Volterra models with rate N and interaction parameters 1 +

0 .
NO’ 1+ Nl We denote as usual the rescaled process with law R :

XV = Y @i

N
z€Z
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We begin with a few notations. For all z € Z¢, B* is a coalescent random walk starting at x.
If B® and BY collide, then they coalesce, i.e. if Bf = B}, then Vs > tB% = BY. We define also :

7(z,y) = inf{t > 0|Bf = BY}

B = Zp 7(0,€) = 7(0,€') = 4+00,7(e, €’) < +00)

5-2]) (1(0,e) = 7(0,¢") = +00)

Now we would like to prove this theorem :
Th 8. If X} = R%), then :
eorem T X, N € M;(R?), then
XN = X,
N—+o0
where X is a Dawson-Watanabe super-process with branching rate 27y and drift f6y — 601.

To compute its Radon-Nikodym derivative against the rescaled voter model, we have to give
a representation of the voter model : in the same way that we did for the branching random
walk, we see that a short range voter model & is the unique strong solution of the following

problem :
t
) = o)+ 3 [ (60-) = 6o (@) Al
x7y
This notation enables us to write the Radon-Nikodym derivative :

dRN

1,N 0,N
W :g(Mt — M, )7

Fi

where we denote :

MW=Z/$@ufwmmmmmm
:r,y 0

MWzZAﬁﬂM%&MﬂMMM)

The convergence of the compensator divided by N is established in the same way as in the
contact process case, but we can show that it is impossible to have the convergence for the
Radon-Nikodym derivative using the same kind of arguments.
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7.2 Discrete time Lotka-Volterra model

Definition 16. A discrete time Lotka-Volterra model with interaction parameters oo and oy is
a particle system &, : Z% — {0,1} with offspring distribution evolving as follows :

&nty () = 0 with probability f9(z) — €,(z)
&n(@) = { gnil(az) =1 with probability fl(x) + e, ()
where we denote €, () = (ap — 1)£0(2)(1 = &u(@)) — (a1 — 1) fL(2) & ().

0
Let &Y be a sequence Lotka-Volterra models with interaction parameters 1 + — N 1+ —1 We

denote as usual the rescaled process with law RN .
1 N
N Z g\_NtJ (55)5%
ISVA
Th 9. If XY R%), then :
eorem f X Nf:m,u € My (R?), then
XV —= X,
N—+o0

where X is a Dawson-Watanabe super-process with branching rate v and drift 569 — 661, where :

B = Zp 7(0,¢e) = 7(0,€') = +o0,7(e,€') < 4+00)

§= Zp 7(0,e) = 7(0,€") = +00)

e,e’

We now compute the Radon-Nikodym derivative of this process against the rescaled voter
model, and we see that :

[N1)
en(az) B . €n(T)
=TT (4 e 50 + 0 - Fi5).

which can immediately be rewritten, using the fact that the orthogonal martingale measure of
the discrete time voter model is a pure atomic measure M, i.e. Yk € N,Vz € Z¢, M(k,xz) =
&e(z) — fi_|(x) = My, as the product over space and time of :

b= (1Y

Once again, we would like the convergence of the martingale and its quadratic variation,
which seems difficult to get always because of the same problem : ¢, does not converge to this
constant.
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8 Conclusion

We saw in all those examples that two mains problems arise while trying to prove the convergence
of the Radon-Nikodym derivative of our processes to the limits we expect. The first one arises
only in the continuous time processes, where we see that the derivative takes into account the
time shifting if the two rates are not symmetric. This does not converge as N grows to the
infinity, so the derivative doesn’t either.

The second and more general problem is that in our processes, when there is no cadlag limit
of the drift, proving the convergence becomes harder, and in some cases we saw, impossible.

As a consequence, we see that to prove the convergence of most of the processes we studied,
it seems easier to prove the tightness of the sequence, then characterize the limit using the
martingale problem (1).

A Appendix

In this section we will prove the previous equation (3). Here, we will denote &V a sequence of
d

. . . . Z .
branching random walks with rate N and symmetric kernel py = p(ﬁ) on Vi such as :

1 N
— — U.
N §0 N—H—oo’u

We denote X}V = N&N, which is understood as a measure on R

For further calculations, we will write 1 a branching random walk with rate N and kernel p
on Z? starting with a unique particle at ¢ = 0 in position 0. Let (77“)“ denote a sequence of
independent rate N branching random walks starting with one particle at « at time ¢t = 0.

We denote too :

o (Bp)nen a simple random walk on Z¢ with kernel p,
e II(t) a Poisson process with intensity 1,
e V; = By a simple (continuous time) random walk on Z% with kernel p,

e V/ . V/ --- independent copies of V;

A.1 About the random walk

Here we will take interest of V; the trajectory of each particle of a branching random walk. The
upper bounds we give here will be very useful later.

Lemma 2. There exists C > 0 such as for any s > 0 and x € Z% :

E(p(z +V;)) < C(1+s)"%2
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Then let’s apply a large deviations result for the Poisson process, we have :
P <H(s) < %) <e
for some ¢ > 0. Then we have :
8)—dﬂ

E(p(x + V4)) < P(IL, < 5) + (1+ 5

A.2 Average number of neighbours of a particle

We now have a look on the comportment of the average number of neighbours of a particle. As
at the limit, only the local densities has a mean, we will study the following quantity :

2V(0) = 1 3 6@& @ Wpw (e, ).

To do this, we will first take interest of this value when the branching random walk starts
with a single particle at ¢ = 0, we denote :

ZN(@) = dl@)m()m(y)p(@, y).
z,y

Lemma 3. There exists b > 0 such as for all sequence Ty — 0 such as N1y — 400, we have :
E(ZN(1)) — b

Moreover we have :

+oo +o00
b = /0 E(p(Vs))ds = /0 P(Vs+ W =0)ds

“+o0o “+00
= ZE(P(Bn)) = Z E(1(p,-0))-
n=0 n=1
Proof. We know that for all ¢ > 0,

EQ m@m)pe,y) = > mo(Pix))m(Pi(y)p(x,y)

+N%‘ /O B (Pru(2) Pru(v))
(P (Pr) Preu(0)))) (s ),
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which can be rewritten, exchanging the sum and the expectation, and using the initial con-
dition :
t
E(Z (1)) = Ep(Vane) + 2N | E(p(Van.))ds.
0
We use Lemma 2. to see that :

E(p(Vanry)) < C(1+2N7y)"%2 — 0.

N—+o00

Moreover we can compute the other term :

TN 2Nt
2N /0 E(p(Vaxs))ds = /0 E(p(V2))ds

+0o0

E(p(Vs))ds,
e A

which is finite using again the bound given by Lemma 2.
Then we have :

+oo
b = / E(p(Va))ds
+o00 +00
= LB /0 P(I(s) = n)ds

+o0
= Z E(p(Bn))
n=0

“+o0o
= 3 peP(B. =)

n=0 e

+o0
= > P(B,=0)

+o0 +o0
= Y P(Bun=0) | PIs) =n)ds
n=0

+oo
= / P(Vs+ W =0)ds
0

O

We see that starting with a single particle, the total number of neighbours become fast equal
to b. We will now have interest to the variance of this quantity, and try to find an upper bound.

Lemma 4. There exists a positive constant C > 0 such as for allt >0 and N € N :

E(ZN(1)%) < CNt.
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Proof. In this proof, we will denote C a finite number, which can be different during the cal-
culations, but is independent of N and t. We have to compute the second moment of Z/™ (1),

E(ZN(1)) = Y Em(a)m®d)m(c)n(d))pla, b)p(c, d).

a,b,c,d

We have to compute and upper bound for some forth moments of the branching random
walk. We will use symmetries to reduce as far as possible the further calculations. We will often
use the bound of Lemma 2. First let’s reduce this computation to a computation of third order
moment :

E(ZN(1)%)

E(p(b_a+‘/2N(t s))) ( (%N(tfs)))ds
+ SNZ/ (ns(a)ns(b)ns(c))

E(P(b —a+ Von—s))Ep(c—a+ Voy—s))ds.

So we can give the following inequality :
1

) < ”CN/O 1+ N(t—5)

> E(s(@)ns(0)ns(1)E(p(b — a + Van(i—s)))ds.

2

E(Z" (1)

Then we just need to give a good upper bound for mean under the integral :

Z E(15(a)ns(b)ns(1))E(p(b — a + Van(—s))

= p(Vant))

+2N/ (nu(1)")E(p(Van (t—uy))du

HNY /0 Ba(a)a (0) (b — a + Vi)
Now we can use the fact that E(1,(1)?) = 1 4+ 2Nu, to bound this term by :

Nt
14+ Nt
Cl+/ ————du) < C(1+ Nt).
( Nit—s) (1 +u)d/2 u) < C( )
Using this, we have finally :

1
1+ N(t—s))d2

B(ZN1)?) < C(1+Nt)(1+/t ) < C(1+ Nt).
o (
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This end the proof of our lemma Ul

Remark 10. Have the same kind of bounds for the case d = 2 is not so complicate, we just have
to take care of some logarithmic modifications.

We have now enough tools to prove the main result of this section : that the quantities X/
and Z} are closely related, which gives us a convergence, at least for ¢ > € of the average number
of neighbours of a particle to b. Let put this in words :

Theorem 10. For all ¢ continuous Lipschitz, for all t > 0 we have :

E(sup | [ Z)(¢) - bX, (d)dul) — 0.
sefo,y] Jo N—+o0

Proof. The proof of the following will be done in a few step. First we will replace the quantities
XN (¢) and Z(N¢) by approximations : instead of counting the particles where they are, we will
count them where were their ancestor a few time ago, and multiply by the number of descendants
or the average neighbours of a descendant in the descendants. We have already seen that those
quantities are not far for each other.
We will also replace b by an approximation, and prove the theorem for the modified quantities.
Finally we will prove that the approximation we took are good enough for this problem.

Let begin by fixing a sequence 7y — 0 such as N7y — +00. 7 is the time we will go
N—+o00 N—+oco

back to find the ancestors of &Y (z), it is fixed such as there is a lot of jumps in the time 7y, but
this interval becomes short.

By having a look at the definition, we see that a branching random walk starting with k
particle is nothing else than k independent branching random walks starting with one particle.

For t > 0, we can use the Markov property to find a family (n* Z)ZG 29 ;N of independent
ﬁ’

branching random walks starting with one particle in v Nz, such as :

ét TN

Z Z 777—N/\t Nz),

where we take the convention that for s < 0, &N (2) = & (z).
Then the approximation we described before are clearly the following :

gt TN

1
:NZQb Z nTN/\t

for XV, and :
&,y (2)

- %Z(ﬁ Z anm 2z (y)p(,y)

We denote last by = E( (1)), let’s now prove the theorem for those quantities.
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Lemma 5. For all ¢ continuous Lipschitz, for all t > 0 we have :

E(sup | [ ZY(0) — by XY (6)dul) — 0.
sefo,] Jo N—+o0

Proof. We begin with a notation :

X3 = (1) and
77 = me )i ()P, ).

Then we can rewrite the formula for the difference we are computing in this way :
2" (9) = b X[ (¢)
&Y, (2)

%Z $z) Y ZH —bnXE.

=0

So ZN(¢) — by XN (¢) is the sum of independent variable of mean 0. So it’s mean is 0, and
its variance is easily computed as :

B((Z (9) — by X (6))%)
= e SO BEY (B2~ B XE))

X (Pt]_VTN(QSQ))E((Z%M( 1) = by ae(1))?)

Cllg]1%. X5 (1)

In the last inequality we used Lemma 3., which says that I;NN—J: b, Lemma 4., the fact that
—+400

N TNN—> + oo and the Cauchy-Schwarz inequality to give the following upper bound :
—+00

IN

E((Z3 (1) = by ae(1))?)
= E((Z ne(1))?) = 20N E(Z3 (D e (1)) + E((nry0e(1))?)
< C(l—l-(TN/\t) )SCNTN

We can now handle the integral for ¢ > 7 with this bound :

/ (|2 () — by XY (6)])ds
< | CE(ZN(0) — by XY (6))2)2ds
1/2

IA

XN 1/2 .
I¢lloo X (1)2¢ — 0
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To handle the integral from 0 to 7, we just have to use trivial inequalities :
™ 5N 7 wN
| B0 @)~ X @)as
™S >N 5N
Joll [ BNBR (1) + B(ZY (1)ds

< oo X ()7t + XY (OR(Z (1))
< Clglla X (W — 0.

IA

These two bounds end the proof since we have :

~ ~ t ~ ~ ~
E(sup |ZN(¢) — by XN (p)du| < E( / 1ZN(¢) — b X2 (¢)|du)
s€0,t] 0

IN

/0 E(1ZY(6) — b XN (9)])du
Cllolloe XY (1) (i) 2t — 0.

N—+o00

IN

O

We now have to prove that the approximations of the quantities we took are really close to
what they approximate.

Lemma 6. For all ¢ continuous Lipschitz, for all t > 0, we have :

t
B[ 1K (0) = X2 (@))ds) > 0.

Proof. Let begin by giving an estimate of the difference between the two terms :

N
XM () - XN (0) = \fZ Z Z 2@V N)|
&N, (2)
< *Z Z ZW TNAt('x\/»)

&N
<

oy z Zuz L=y}

But we see that this last bound is a sum of iid variables, so its mean is at most :

¢ [l
NE gt TN Z VN Ty ne (@
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and moreover we have :

EQ)_ [[llnmyn(x)) = E([Viry]) < O/ N7y

These bound allow us to end the proof since :

B /0 X2 (0) ~ XN (6)lds) < CoX (V)y/rw, — 0.

N—+o0

O

Last but not least, we have to prove that ZN isa good approximation of ZV. But if we write
ZN in terms of 7', we can break this proof in two parts :

ZN(¢) = Zcb(l‘)&tN (@)& (y)p(z,y)

Et ™~ )ft TN(z)

- Z Z Z Z¢ 777-1\,/\75 UTNAt(y)p($7?/)

2,2’ =1 T,y

gtT

= Z Z Z¢ 20 p (@ n (y)p(2, y)

NG &L (@)

+ > D ST S b @)z W), y).

z,z =1 j=1,(2,4)#(2',j) TY
We will begin by evaluate the first of these two terms which is close to ZN (¢) on its own.

Lemma 7. We denote in the following :

gtT )

=2 Z > d@mi @z W)p(z, y)
z z,y

For all ¢ continuous Lipschitz, for all t > 0, we have :
t ~
B([ 1220 - ZX(@)ds) o 0.
0 N—+oo

Proof. In the same way than the previous one, we begin to handle the difference between the
two evaluated quantities :

1z ) — ZN(9)]

& () |
< NZ Z Z\fb (2) Mg ne (@) e (W), )
&N - |
< Oy Z an— @ )t )
z T,y
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Once again, this last bound is a sum of iid variables, so its mean is at most :

C
+E (&Y, ( Z ’\’/;UJUTN/\t Inenat(Y)p(2, ),

and moreover we have :

E(Z |75 (x)ns (y)p(, y))

= |VNS||p V2NS))
LN / (IVirtemysvy, |+ 1Vavemy + Vi + WIDP(Vans(suy))

Ndu
< CVNs(1 —_
< CVN( +/0 ST
< C(CVNs,
where in the first upper bound, we used the following inequality :

E([Vies + Vilp(Vau-s))) = E([Vis + VIIB(P(Va@—s))|Vi-s))

WCLSWE(”%”)‘

So we now see that :

N—+o0

B( /0 12X (6) ~ Z(9)lds) < CLX (1) /v — 0.

Which end this proof, very similar to the previous one. O

We now need one last theorem to handle the term due to the interferences between particle
which are not close relative (i.e. if they have a common ancestor, this one died more than 7y

ago).

Lemma 8. We denote in the following :

Et TN(Z) Et TN( ,)

Z > > Z¢ D)0 @2 (y)p(, ).

27 A=l =l (zi)A( ) @

For all ¢ continuous Lipschitz, for all t > 0, we have :

E( sup | ZiV’Q(qﬁ)duD — 0.
sefo,] Jo N—+o0
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Proof. We begin

to handle E(|ZY2(¢)]) for t > 7 :

, 9l :
B2 0)) < TN Y REY, ()& ()

So we have :

We now take

IN

IA

IN

z,2!

> By (2)E(ry (v))p(x + 2,y + 2)

IA

e S B, ()&, (DB =+ Vi)

z,2!

IN

T TR R ~ =+ Vo)

+ C | & (DE@P(Vans))ds

2 1 2Nt ds

—_+0ox{a / —_— .
(1+Nt)d/2 + 0 ( ) ONTy (1_|_5)d/2

A
Q
=
<

o=

t Nt s
[ muzenes < oxyay ﬂf)d/

N’TN
2Nt
du
- Cxy /
0 2NTN QNTN 1+ud/2)
< c<X<>+X<>/ b
o 0 0 NtN (1+5)d/2
— 0
N—+o00o

care to the other integral, using the fact that p is atomless to give the conclusion
| / E(ZN2(¢))ds|
N N 2NTN
TGO [ B Vs
2,2’

c N Nt = ! 2NTN
N2 Zfo (2)&0 (2 );:()E(p(z —z+ Bn))/o P(Il(s) = n)ds

z,z'

N ) 1 2NN
N
+CX0 x X5 ({lly — zll < e}) + CX37(1)* Y (1+n)"¥ds
n=ev'N
— 0.
N—4o00
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This last lemma end the proof of the Theorem 10, and in particular the proof of (3) O
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