
Total number of births on the negative half-line of
the binary branching Brownian motion in the

boundary case

Xinxin Chen∗ Bastien Mallein†

October 5, 2021

Abstract

The binary branching Brownian motion in the boundary case is a par-
ticle system on the real line behaving as follows. It starts with a unique
particle positioned at the origin at time 0. The particle moves according to
a Brownian motion with drift µ = 2 and diffusion coefficient σ2 = 2, until
an independent exponential time of parameter 1. At that time, the particle
dies giving birth to two children who then start independent copies of the
same process from their birth place. It is well-known that in this system, the
cloud of particles eventually drifts to ∞. The aim of this note is to provide
a precise estimate for the total number of particles that were born on the
negative half-line, investigating in particular the tail decay of this random
variable.

1 Introduction
A branching Brownian motion is a continuous-time particle system on the real line
in which particles move according to independent Brownian motions and split at in-
dependent exponential times into children. These children then start independent
copies of the branching Brownian motion from their birth place. In this article,
we take interest in a binary branching Brownian motion, meaning that at each
branching event, every particle splits into two daughter particles independently.
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We also assume the branching Brownian motion to be in the so-called boundary
case (following [BK04]), i.e. that the Brownian motions driving the motion of the
particles have drift µ = 2 and diffusion coefficient σ2 = 2.

The branching Brownian motion can be constructed as a process decorating the
infinite binary tree U := ∪n∈Z+{1, 2}n following the classical Ulam-Harris notation,
with the convention {1, 2}0 = {∅}. For each u ∈ U , we write bu and du the birth-
and death- times of the particle u, and for all s ≤ du we denote by Xs(u) the
position at time s of the particle u or the position of its ancestor alive at that
time.

For all t ≥ 0, let Nt = {u ∈ U : bu ≤ t < du} be the set of particles alive at
time t. It is well-known that a branching Brownian motion in the boundary case
satisfies local extinction and global survival properties. In other words, while Nt is
almost surely non-empty for all t ≥ 0, we have limt→∞#{u ∈ Nt : Xt(u) ∈ K} = 0
a.s. for all compact set K. More precisely, Bramson [Bra78] obtained the precise
asymptotic behaviour of the minimal position Mt = minu∈Nt Xt(u) occupied by a
particle at time t, showing that

Mt = 3
2 log t+OP(1), (1.1)

with OP(1) representing a tight family of random variables. Hence, for all x ∈ R,
after some finite time, there will be no particle in the interval (−∞, x).

The aim of this article is to study the law of the number N of birth (or death)
events occurring on the negative half-line, defined as

N :=
∑
u∈U

1{Xu(du)≤0}. (1.2)

Precisely, we take interest in the right tail of the distribution of N , and we show
that P(N ≥ n) ∼ 1

n
as n→∞.

More generally, for all x ∈ R, we denote by Nx the total number of birth event
occurring below the level x (with N = N0), that can be written as

Nx :=
∑
u∈U

1{Xdu (u)≤x}. (1.3)

Remark that the random variable Nx is related to, but different of, the number
Nx of births that occurred in the branching Brownian motion with absorption at
level x, defined as

Nx =
∑
u∈U

1{Xd(u)(u)≤x,∀s≤du,Xs(u)≤x}. (1.4)

The quantity Nx was introduced and studied by Kesten [Kes78], who proved it
to be a.s. finite if and only if the drift µ of the underlying Brownian motion is
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larger or equal to 2. Increasingly tight estimates were obtained on N both in the
boundary and the non-boundary cases [AB11, Aı̈d10, Mai13, AHZ13, BBHM17].

The process (Nx, x ≥ 0) is a Markovian branching process, at least as long as
the number of children created in a branching event is non-random. In that case
Nx is in one-to-one correspondence with the number Zx of individuals that hit
level x for the first time1. Conversely, the process (Nx, x ≥ 0) does not satisfy the
Markov property, as particles that went above level x for some time, then back
below that level and gave birth are taken into account. However, it is possible to
link the values of N with N in such a way that the known tail of Nx helps us
compute the tail of N , see Lemma 3.1 below. The main result of the article is the
following.
Theorem 1.1. Let X be a branching Brownian motion in the boundary case.
Writing c = log 2 + γ ≈ 1.27036, where γ is the Euler-Mascheroni constant, we
have

E(N1{N≤n}) = log n+ c+ o(1) as n→∞.
It entails in particular P(N ≥ n) ∼ 1/n as n→∞.

As a comparison, the estimate of Maillard [Mai13, Theorem 1.1] on N can be
written in this context: for all x > 0,

P(Nx > n) ∼n→∞
xex

n(log n)2 .

Therefore, the tail of N is slightly heavier than the tail of N , which indicates that
a non-trivial contribution to the tail of N comes from particles that cross 0 at least
one time before giving birth to descendants on the negative half-line.
Remark 1.2. This theorem is equivalent to

E
(
e−λN

)
= 1 + λ log λ+ (1 + c− γ)λ+ o(λ), as λ ↓ 0.

In other words, the asymptotic behavior of the Laplace transform of N as λ → 0
is linked to the asymptotic behavior of P(N ≥ n) as n→∞. We refer to [BIM20,
Lemma 8.3] for a proof of that equivalence.
Remark 1.3. One could obtain an estimate similar to Theorem 1.1 for a branching
Brownian motion with drift µ > 2. In this situation, N becomes integrable,
but using the decomposition in Lemma 3.1 and straightforward adaptation of our
arguments, one can obtain

P(N > n) ∼n→∞ cn−κ,

where c > 0 and κ = µ+
√
µ2−2

µ−
√
µ2−2

> 1.

1And (Zx, x ≥ 0) is Markovian, as it can be seen by applying the branching property along a
stopping line, see next section.
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In the next section, we recall some useful estimates related to the branching
Brownian motion. We then prove Theorem 1.1 in Section 3, by comparing the
asymptotic behaviours as x→∞ of Nx and Nx.

2 Stopping lines, branching random walk and
the many-to-one lemma

We begin by introducing the derivative martingale of the branching Brownian
motion, defined as Dt :=

∑
u∈Nt

Xt(u)e−Xt(u). Lalley and Sellke [LS87] proved that

the derivative martingale converges a.s. towards a non-degenerate limit

D∞ := lim
t→∞

Dt, (2.1)

which is a.s. positive.
We then introduce optional stopping lines. Stopping line techniques were pi-

oneered in [Cha86, Jag89]. Informally speaking, a stopping line is generalization
of stopping time in the context of branching processes, such that different parti-
cles are stopped at different times. We take in particular interest in the following
family of very simple cutting stopping lines

Lx :=

{(u, t) ∈ U × R+ : bu ≤ t < du, Xt(u) = x,∀s < t,Xs(u) < x} , x ≥ 0,
{(u, t) ∈ U × R+ : bu ≤ t < du, Xt(u) = x,∀s < t,Xs(u) > x} , x < 0.

(2.2)
Jagers [Jag89] proved that branching processes stopped at Lx satisfies the branch-
ing property, i.e. that each particle in Lx starts from its time and position an
independent copy of the branching Brownian motion, which is independent of
σ ((Xs(u), s ≤ t), (u, t) ∈ Lx).

We now associate to the branching Brownian motion the branching random
walk of the birth places of particles, defined for all u ∈ U by V (u) = Xu(du).
Recall from (1.2) that our main quantity of interest can be written

N =
∑
u∈U

1{Xu(du)≤0} =
∑
n≥0

∑
|u|=n

1{V (u)≤0},

where the sum over |u| = n is the sum over u ∈ {1, 2}n the set of particles in the nth
generation. From the construction of the branching random walk, it is apparent
that (V (∅), V (u)− V (πu), u ∈ U\{∅}) is a family of i.i.d. random variables with
same law as

√
2BT + 2T , where πu is the parent of u, B is a standard Brownian

motion and T an independent exponential random variable with parameter 1.
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As a result, we deduce that (V (u), u ∈ U) is a branching random walk, a
discrete-time particle system on the real line starting from V (∅), such that each
parent particle gives birth to two daughter particles that are positioned around
their parent according to i.i.d. copies of V (∅). Observe that for all λ close enough
to 0, we have

E(eλX∅(d∅)) =
∫ ∞

0
dse−s E

(
eλ(
√

2Bs+2s)
)

=
∫ ∞

0
dse−s(1−λ2−2λ)

= 1
1− 2λ− λ2 = 1

2
√

2(
√

2 + 1 + λ)
+ 1

2
√

2(
√

2− 1− λ)
.

Therefore the law of the displacement of the branching random walk V has the
density (1− p)1{x<0}(

√
2 + 1)e(

√
2+1)x + p1{x>0}(

√
2− 1)e−(

√
2−1)x with respect to

the Lebesgue measure on R, where p := 2+
√

2
4 ≈ 0.85355.

For all a ∈ R, we write Pa the law of V conditionally on V (∅) = a and Ea
the corresponding expectation. We next introduce the many-to-one lemma. This
result has a long history going back to the work of Peyrière [Pey74] and Kahane
and Peyrière [KP76]. We refer to [Shi15, Theorem 1.1] for a proof of this result.

Lemma 2.1 (Many-to-one lemma). For any a ∈ R, n ≥ 1 and measurable function
f : Rn → R+, we have

Ea

 ∑
|u|=n

f(V (u1), . . . V (un))
 = Ea

(
eSn−af(S1, . . . , Sn)

)
,

where (u1, . . . , un) is the ancestral line of u and (Sn)n≥0 is a random walk such
that Pa(S0 = a) = 1, whose step distribution has density

√
2

2 e
−
√

2|x| with respect to
the Lebesgue measure on R.

As an immediate consequence of the above lemma, we obtain that

E0

∑
|u|=1

e−V (u)

 = 1 and E0

∑
|u|=1

V (u)e−V (u)

 = 0. (2.3)

Therefore, V is a branching random walk in the boundary case, according to the
terminology of [BK05]. We also note that

E0

∑
|u|=1

V (u)2e−V (u)

 = 1, (2.4)

i.e. the step distribution of the random walk (Sn) has unit variance.
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We conclude this section with some random walk estimates. Stone’s local limit
theorem [Sto67] implies the existence of C0 > 0 such that for all n ∈ N∗,

sup
z∈R

P0 (Sn ∈ [z, z + 1]) ≤ C0n
−1/2. (2.5)

For all n ∈ R, we set Sn = mink≤n Sk. Estimates on the joint law of Sn and Sn
are often called ballot theorems in the literature, and often appear in the study of
branching random walks. In this article, we need the three following ballot-type
estimates: there exists C1 > 0 such that for all α > 0 and n ∈ N∗,

P0 (Sn ≥ −α) ≤ C1(1 + α)n−1/2, (2.6)

there exists C2 > 0 such that for any h, α > 0,

P0 (Sn ≥ −α, Sn ∈ [h− α, h− α + 1]) ≤ C2(1 + h)n−1, (2.7)

and there exists C3 > 0 such that for any a > −α and h > 0

P0 (Sn ≥ −α, Sn ∈ [a, a+ h]) ≤ C3(1 + α)(1 + a+ h+ α)(1 + h)n−3/2. (2.8)

These estimates can be obtained as immediate consequences of [AS10, Lemma
A.1].

3 Proof of Theorem 1.1
The proof of Theorem 1.1 is based on the following decomposition of the number
Nx of birth events below level x along the stopping line Lx.

Lemma 3.1. Let x ∈ R, we write Zx = #Lx for the total number of particles that
hit level x for the first time in their history. We have

Nx
(d)= (Zx − 1)1{x>0} +

Zx∑
j=1

N (j),

where (N (j), j ≥ 1) are i.i.d. copies of N which are further independent of Zx.

This equality in distribution allows us to link together the law of N with the
laws of Nx and Zx. We then determine the asymptotic behaviour as x→∞ of Nx

and Zx, and use those to obtain estimates on the law of N .
Remark 3.2. As the branching Brownian motion splits at each time in exactly 2
children at every branching event, and no particles stay forever below the level
x > 0, the total number of particles hitting level x for the first time in their
history satisfies Zx = Nx + 1 <∞ a.s., with Nx the total number of births given
by particles before their absorption at level x, defined in (1.4).
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Proof. The above equality is an immediate consequence of the branching property
applied at the stopping line Lx. Each of the Zx particles of the stopping line starts
an independent branching Brownian motion from level x, independently from the
branching Brownian motion absorbed at level x.

As a consequence, the total number of births below level x is equal to the
number of births below level x occurring before hitting x for the first time (which
is equal to 0 if x < 0 or to Nx = Zx − 1 if x > 0), summed with the total number
of births below level x of all the branching Brownian motions started from Lx,
which are equal in distribution to sum of Zx independent copies of N0.

As mentioned in Remark 1.2, the proof of Theorem 1.1 relies on a tight compu-
tation of the asymptotic behaviour of the Laplace transform of N . For all x ∈ R
and λ > 0, we set

φ(λ, x) = logE
(
e−λNx

)
.

By Lemma 3.1, we have

φ(λ, x) =

λ+ logE (exp ((φ(λ, 0)− λ)Zx)) if x > 0
E (exp (φ(λ, 0)Zx)) if x < 0.

(3.1)

In other words, the Laplace transform of N can be related to the Laplace transform
of Zx the number of particles first hitting level x, or equivalently by Remark 3.2
to the Laplace transform of Nx when x > 0.

To study the asymptotic behaviour of φ(λ, 0) as λ→ 0, we show that normal-
ized versions of Zx and Nx both converge, as x → ∞, to multiples of the limit of
the derivative martingale of the branching Brownian motion, defined in (2.1).

First, using stopping line techniques, we obtain an almost sure estimate for the
growth rate of Zx as x→∞.

Lemma 3.3. We have lim
x→∞

xe−xZx = D∞ a.s.

Proof. This result is a direct consequence of [BK04, Theorem 6.1], stating that
the derivative martingale stopped at line Lx converges, as x → ∞ to D∞ a.s. In
other words limx→∞

∑
(u,t)∈Lx

Xt(u)e−Xt(u) = limx→∞ xe
−xZx = D∞ a.s.

We now turn to the asymptotic behaviour, as x→∞, of

Nx =
∑
u∈U

1{Xu(du)≤x} =
∑
n≥0

∑
|u|=n

1{V (u)≤x}.

Using estimates developed in Chen [Che20], we are able to obtain the following
asymptotic behaviour for Nx as x→∞.

Proposition 3.4. We have lim
x→∞

e−xNx = 2D∞ in probability.
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This convergence can be thought of as a Seneta-Heyde type result for the
additive martingale of the branching random walk V . A similar convergence was
obtained in [Che20, Eq. (5.5)], using similar methods as the one pioneered by
Boutaud and Maillard [BM19]. Precisely, for all 0 < a < b and Λ > 1, we have

lim
x→∞

e−x
∑

ax2≤n≤bx2

∑
|u|=n

1{V (u)≤x,maxk≤n V (uk)≤Λx}

=
√

2
π
D∞

∫ b

a
φ(u−1/2)g(Λu−1/2, u−1/2)du

u
in probability, (3.2)

where φ(z) = ze−z
2/2 and g(a, b) = P(sups∈[0,1]Rs ≤ a|R1 = b), with R a Bessel

process of dimension 3. Here we used [AS14, Lemma 2.1] to identify the constant√
2
π
. To complete the proof of Proposition 3.4, we use the following lemma, whose

proof is postponed to the end of the article.

Lemma 3.5. For u ∈ U , we set V (u) = mink≤|u| V (uk), V (u) = maxk≤|u| V (uk).
For all α > 0 and 0 < a < b, we have

lim
Λ→∞

lim sup
x→∞

e−x E0

 ∑
ax2≤n≤bx2

∑
|u|=n

1{V (u)≥−α,V (u)≥Λx,V (u)≤x}

 = 0. (3.3)

Additionally, for all α > 0,

lim
δ→0

lim sup
x→∞

e−x E0

 ∑
n≤δx2

∑
|u|=n

1{V (u)≤x,V (u)≥−α}

 =0, (3.4)

and lim
δ→0

lim sup
x→∞

e−x E0

 ∑
n≥x2/δ

∑
|u|=n

1{V (u)≤x,V (u)≥−α}

 =0, (3.5)

Proof of Proposition 3.4. For all 0 ≤ a < b ≤ ∞, we set

Nx(a, b) =
∑

ax2≤n≤bx2

∑
|u|=n

1{V (u)≤x} and ca,b =
√

2
π

∫ b

a
φ(u−1/2)du

u
.

Let ε > 0, by (1.1), there exists α > 0 such that P0(infu∈U V (u) ≤ −α) < ε.
Additionally, using (3.4), (3.5) and the Markov inequality, we can fix A1, δ > 0
such that for all x ≥ A1,

P0
(
Nx(0, δ) +Nx(δ−1,∞) ≥ εex

)
≤ ε+ P( inf

u∈U
V (u) ≥ −α) ≤ 2ε.

Up to decreasing δ, we assume as well that 0 ≤ c0,∞ − cδ,δ−1 ≤ ε. Similarly, using
(3.3), we may fix A2 ≥ A1 and Λ > 1 such that for all x ≥ A2, we have

P0
(
Nx(δ, δ−1)−Nx(δ, δ−1,Λ) ≥ εex

)
≤ 2ε,
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where Nx(a, b,Λ) =
∑
|u|=n

1{V (u)≤x,V (u)≤Λx}. Up to enlarging again Λ, we also as-

sume that 0 ≤ cδ,δ−1 −
√

2
π

∫ δ−1

δ
φ(u−1/2)g(Λu−1/2, u−1/2)du

u
≤ ε. Finally, using the

convergence (3.2), we can choose A3 ≥ A2 such that for all x ≥ A3,

P0
(∣∣∣e−xNx(δ, δ−1,Λ)− c0,∞D∞

∣∣∣ ≥ (2D∞ + 1)ε
)
≤ ε.

As a result, for all x ≥ A3, chaining these equations we obtain

P0
(∣∣∣e−xNx − c0,∞D∞

∣∣∣ ≥ (3 + 2D∞)ε
)
≤ 5ε,

proving that limx→∞ e
−xNx = c0,∞D∞ in P0-probability, as D∞ is a.s. finite.

Next, using that V (∅) is independent of (V (u) − V (∅), u ∈ U), which has law
P0, and that for all a ∈ R, the law of D∞ under Pa is the same as the law of eaD∞
under law P0, we also obtain that

lim
x→∞

e−xNx = c0,∞D∞ in P-probability.

By computing that c0,∞ =
√

2
π

∫∞
0 φ(u−1/2)du

u
= 2, the proof is now compete.

Next, using Lemma 3.3 and Proposition 3.4, we are now able to prove Theo-
rem 1.1.

Proof of Theorem 1.1. By Lemma 3.3, for all λ > 0 we have

lim
x→∞

E
(
e−λxe

−xZx

)
= E(e−λD∞).

Recall that φ(λ, x) = logE(e−λNx), and as N + 1 is a.s. positive, the continuous
function λ 7→ λ − φ(λ, 0) is increasing. Hence for all x > 0 large enough, there
exists a unique λx > 0 so that

λx − φ(λx, 0) = xe−x,

with λx → 0 as x→∞. Then, equation (3.1) implies that

lim
x→∞

E(e−λx(Nx−1)) = E(e−D∞).

On the other hand, it is known from Proposition 3.4 that for all µ > 0,

lim
x→∞

E(e−µe−x(Nx−1)) = E(e−2µD∞).
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As a result, we conclude that e−x ∼ 2λx as x→∞. It yields in particular that
2φ(λx, 0) = 2(λx − xe−x) = (−2x + 1 + o(1))e−x as x → ∞, i.e. as λx → 0. As a
result, we obtain that as λ→ 0, we have

φ(λ, 0) = λ(log(2λ) + 1 + o(1))
= λ log λ+ (1 + log 2)λ+ o(λ) as λ→ 0.

By Remark 1.2, we deduce

E
(
N1{N≤n}

)
= log n+ (log 2 + γ) + o(1),

as n→∞, which completes the proof of the main theorem.

We end this article with a proof of Lemma 3.5, which is based on the many-
to-one lemma and random walk estimates.

Proof of Lemma 3.5. We prove each of the three limits in turn, using the ballot-
type random walk estimates introduced in Section 3.

Proof of (3.3). For all n ∈ N, we set Sn = maxk≤n Sk. Let 0 < a < b, using
the many-to-one lemma, we compute for all α, x > 0 and Λ > 1,

E0

 ∑
ax2≤n≤bx2

∑
|u|=n

1{V (u)≥−α,V (u)≥Λx,V (u)≤x}


=

∑
ax2≤n≤bx2

E0

(
eSn1{Sn≥−α,Sn≥Λx,Sn≤x}

)

≤
∑

ax2≤n≤bx2

∞∑
j=0

ex−jP0
(
Sn ≥ −α, Sn ≥ Λx, Sn ∈ [x− j − 1, x− j]

)

≤ ex

1− e−1 (bx2 − ax2 + 1) sup
n≥ax2,

h≤(n/a)1/2

P0
(
Sn ≥ −α, Sn ≥ Λ(n/b)1/2, Sn ∈ [h− 1, h]

)
.

(3.6)

We then bound P0
(
Sn ≥ −α, Sn ≥ Λ(n/b)1/2, Sn ∈ [h− 1, h]

)
for large values of

Λ, uniformly in h ≤ (n/a)1/2.
Write T (n) = inf{k ∈ N : Sk ≥ Λ(n/b)1/2}, we observe that, setting p = bn/2c,

P0
(
Sn ≥ −α, Sn ≥ Λ(n/b)1/2, Sn ∈ [h− 1, h]

)
≤ P0

(
Sn ≥ −α, T (n) ≤ p, Sn ∈ [h− 1, h]

)
+ P0

(
Sn ≥ −α, T (n) ∈]p, n], Sn ∈ [h− 1, h]

)
, (3.7)
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and we bound these two probabilities in turn. Applying the Markov property at
time p, we have

P0
(
Sn ≥ −α, T (n) ≤ p, Sn ∈ [h− 1, h]

)
≤ P0

(
Sp ≥ −α, Sp ≥ Λ(n/b)1/2

)
sup
z∈R

P(Sn−p ∈ [z − 1, z])

≤ C0C1(1 + α)
p1/2(n− p)1/2P0

(
Sp ≥ Λ(n/b)1/2

∣∣∣Sp ≥ −α) ,
using (2.5) and (2.6). Therefore, there exists C ′ > 0 such that for all n ∈ N, we
have

P0
(
Sn ≥ −α, Sp ≥ Λ(n/b)1/2, Sn ∈ [h− 1, h]

)
≤ C ′

n
P0
(
Sp ≥ Λ(n/b)1/2

∣∣∣Sp ≥ −α) .
Given R a Bessel process of dimension 3, by Caravenna-Chaumont’s invariance
principle [CC08, Theorem 1.1], we have

lim
n→∞

P0
(
Sp ≥ Λ(n/b)1/2

∣∣∣Sp ≥ −α) = P(max
s∈[0,1]

Rs ≥ Λ(2/b)1/2),

which converges to 0 as Λ→∞. Hence, we conclude that

lim
Λ→∞

lim sup
n→∞

n sup
h≤(n/a)1/2

P0
(
Sn ≥ −α, T (n) ≤ p, Sn ∈ [h− 1, h]

) = 0. (3.8)

Next, observing that (Sn − Sn−k, k ≤ n) (d)= (Sk, k ≤ n) by reversing time, for
all 0 ≤ h ≤ (n/a)1/2, we have

P0
(
Sn ≥ −α, ∃k ∈]p, n] : Sk ≥ Λ(n/b)1/2, Sn ∈ [h− 1, h]

)
≤P0

(
max

n−p≤j≤n
Sj ≤ α + h, Sn−p ≤ −Λ(n/b)1/2 + h, Sn ∈ [h− 1, h]

)
≤P0

(
Sn−p ≤ −Λ(n/b)1/2 + (n/a)1/2

)
sup
z∈R

P
(
Sp ≤ α + z, Sp ∈ [z − 1, z]

)
,

applying the Markov property at time n− p. Then applying (2.7) to the random
walk −S, there exists C ′′ > 0 such that

sup
z∈R

P
(
Sp ≤ α + z, Sp ∈ [z − 1, z]

)
= sup

z∈R
P
(
−Sp ≥ −α− z,−Sp ∈ [−z,−z + 1]

)
≤ C ′′(1 + α)

n
,
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and by Donsker’s invariance principle,

lim
n→∞

P0
(
Sn−p ≤ −Λ(n/b)1/2 + (n/a)1/2

)
= P( inf

s∈[0,1]
Bs ≤ −Λ(2/b)1/2 + (2/a)1/2),

where B is a Brownian motion. As a result, we deduce that

lim
Λ→∞

lim sup
n→∞

n sup
h≤(n/a)1/2

P0
(
Sn ≥ −α, T (n) ∈]p, n], Sn ∈ [h− 1, h]

) = 0. (3.9)

Then, plugging (3.8) and (3.9) into (3.7), we deduce that

lim
Λ→∞

lim sup
x→∞

x2 sup
n≥ax2,

h≤(n/a)1/2

P0
(
Sn ≥ −α, Sn ≥ Λ(n/b)1/2, Sn ∈ [h− 1, h]

) = 0,

which, going back to (3.6) is enough to prove (3.3).
Proof of (3.5). Using the many-to-one lemma, we have

E0

 ∑
n≥x2/δ

∑
|u|=n

1{V (u)≤x,V (u)≥−α}

 =
∑

n≥x2/δ

E0[eSn ;Sn ≤ x, Sn ≥ −α]

≤
∑

n≥x2/δ

bxc∑
k=b−αc

ek+1P0(Sn ≥ −α, Sn ∈ [k, k + 1])

≤
∑

n≥x2/δ

C(1 + α)
n3/2

x+α∑
k=0

ek−α(1 + k)

by (2.8). As a result, we obtain that

e−x E0

 ∑
n≥x2/δ

∑
|u|=n

1{V (u)≤x,V (u)≥−α}

 ≤ C(1 + α)(1 + x+ α)
√
δ

x

which is oδ(1)(1 + α) as δ ↓ 0, uniformly in x ≥ 1.
Proof of (3.4). This proof is similar to the proof of (3.5), using the same lines

as in the proof of [Che20, Equation (A.19)]. We first use the many-to-one lemma
to write

E0

 ∑
n≤δx2

∑
|u|=n

1{V (u)≤x,V (u)≥−α}

 =
∑
n≤δx2

E0[eSn ;Sn ≤ x, Sn ≥ −α]

≤
δx2∑
n=1

bxc∑
r=b−αc

er+1P0(Sn ∈ [r, r + 1], Sn ≥ −α),

(3.10)
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and we bound P0(Sn ∈ [r, r + 1], Sn ≥ −α) uniformly in n ≤ δx2 and r ≤ x.
To do so, we recall the following inequality, first proved in [AD08] for random
walks with bounded increments: as E[eη|S1|] < ∞ for some η > 0, there exist
0 < a < 1 < b <∞ such that for r ≥ 1 and br ≤ n ≤ ar2,

P0(Sn ≥ −α, Sn ∈ [r, r + 1]) ≤ C
1 + α

n
e−c

′ r2
n

It comes from the fact that P0(Sk ∈ [r, r + 1]) ≤ 1√
k
e−cr

2/k for all br ≤ k ≤ ar2.
On the other hand, if 1 ≤ n ≤ br and 0 < t < η, one has

br∑
n=1

P0(Sn ≥ −α, Sn ∈ [r, r + 1]) ≤
br∑
n=1

P(Sn ≥ r) ≤ e−tr
br∑
n=1

E[etS1 ]n ≤ e−cr.

Consequently,
δr2∑
n=1

P0(Sn ≥ −α, Sn ∈ [r, r + 1]) ≤ c(1 + α)δ,

which by (3.10) yields e−x E0

 ∑
n≤δx2

∑
|u|=n

1{V (u)≤x,V (u)≥−α}

 ≤ Cδ(1 + α), complet-

ing the proof of (3.4).
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[Aı̈d10] E. Aı̈dékon, Tail asymptotics for the total progeny of the critical killed
branching random walk., Electron. Commun. Probab. 15 (2010), 522–
533.
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