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Abstract

Biological evolution depends on the passing down to subsequent generations of genetic informa-
tion encoding beneficial traits, and on the removal of unfit individuals by a selection mechanism.
However, selection acts on phenotypes, and is affected by random contingencies. Thus, a combina-
tion of fitness and luck determines which individuals will successfully reproduce and give rise to the
next generation. To understand how randomness in the selection mechanism affects the long-term
patterns of evolution, we studied an idealized evolution model. We show through simulations and
mathematical analysis, that the speed of adaptation increases with increasing selection pressure
only up to a threshold. Beyond the threshold, any increase of the selection pressure results in more
weight given to random effects rather than on genetic fitness in determining which individuals will
successfully reproduce. This severely reduces the speed of adaptation and the diversity in the gene
pool. Our findings may be considered as a biological instance of Goodhart’s law: ”When a measure
becomes a target, it ceases to be a good measure”. Finally, we show that this intricate response
of evolution to natural selection can be mathematically explained by a novel phase transition for
pulled traveling waves.

1 Introduction

In the classical book “The Genetical Theory of Natural Selection” [20] mathematical population ge-
neticist Fisher begins by stating that “natural selection is not evolution.” Natural selection operates
within a generation and favors certain phenotypes over others. In contrast, evolution by natural selec-
tion involves the transmission of these favored phenotypes to the next generation, which requires that
the advantageous traits are at least partially heritable [37]. Thus, for selection to operate over time,
the fitness advantage provided by a specific trait must have a genetic basis that can be transmitted to
the next generation. Trait transmission and selection are then two distinct mechanisms and both are
necessary in order for Darwinian evolution to exist. Ever since Fisher, much work has been devoted to
understanding the consequences of the aleatory nature of trait transmission, particularly when sexual
reproduction is at play. However, selection operates through specific and contingent interactions of
individual phenotypes with the environment in which they live, and it is completely oblivious of the
underlying genotype. Thus, although selection ultimately determines which genotypes are preserved
and transmitted and which are weeded out, we have to recognize that selection, too, is a noisy, aleatory
process.

In order to fully understand long–term, large–scale patterns of evolution, we believe that it is crucial
to consider the evolutionary effects of noisy selection schemes. Because the selection criterion that
occurs in any given situation is a noisy version of that which would be optimal for improving the genes
that determine the traits subject to selective pressure, we should be careful in assuming that optimal
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improvement of those traits will be the necessary outcome of evolution. The misalignment between the
optimal selection criterion and the actual, noisy one is not free of consequences. Understanding the
side effects of repeatedly using an optimization criterion in place of another (which may be impossible
to implement) while aiming at achieving the same end goal, is emerging as a very important problem
in the fields of evolutionary algorithms and artificial intelligence [28, 32, 39], as well as in the context
of academic selection procedures [35]. In economics, the fact that the use of observed statistics
(phenotype) for regulatory purposes (selection process) eventually fails to achieve the intended goal
is called Goodhart’s law [24, 15]. In this paper, we argue that similar failures must occur in biological
evolutionary processes.

We consider an idealized stochastic population model in which each individual possesses a genotype,
identified as a real number, representing the genotypic fitness of the individual. The genotype consists
in the inherited information transmitted from parent to children. The expression of that genotype
is called phenotype. In Biology, the genotype to phenotype map may be influenced by extrinsic and
intrinsic noises such as developmental noise [23], phenotypic heterogeneity [4], cellular noise [30],
biological noise [18] and intra-genotypic variability [5]. Finally, we will prescribe that selection acts
on phenotypic values but that only the genotypic information propagates from one generation to the
next. Our approach will rely on the observation that the population can be approximated over large
time scale as a discrete fitness wave [27] describing the steady state of the population at a constant
speed. We will leverage this approach to demonstrate how phenotypic noise and selection strength
can drastically influence the response to selection.

Rate of adaptation. We will first demonstrate that there exists a critical threshold for selective
pressure delineating a strong and a weak selection regime. In the weak selection regime, the rate
of adaptation increases with selective pressure until that threshold is reached but slows down if the
selective pressure exceeds the threshold. We will also demonstrate that selection operates differently
in these two regimes. In the strong regime, selection pressure results in more weight given to random
effects rather than on genetic fitness in determining which individuals will successfully reproduce
(selection of the luckiest), at the expense of the fittest individuals. In the weak selection regime,
however, despite the inherent randomness of the selection process, a fraction of the fittest individuals
is consistently preserved (selection of the fittest).

Genetic variation. In the absence of selection, all individuals in a population have the same ex-
pected number of descendants, and fluctuations of neutral alleles in the population are the by-product
of random sampling alone. When selection favors certain individuals, those individuals contribute
more offspring to the next generation, skewing the distribution of reproductive success and reducing
the number of individuals contributing to the next generation. Thus, selection can significantly reduce
genetic variation within a population and impair the adaptive capacity of the population, increasing
the risk of extinction under changing conditions. As a consequence, the rate of adaptation is arguably
a narrow measure of the response to selection and it is also of fundamental importance to understand
the impact of selection and noise on neutral genetic variation, as measured here by the effective popu-
lation size [12]. We will see that beyond its detrimental impact on the rate of adaptation, an excessive
selection pressure also leads to a sharp decline in genetic variation during the transition from the weak
to the strong regime.

2 The model

We first consider an asexual population subject to viability selection, i.e., selection only acts at the
age of reproduction and provides a selective advantage to individuals with the highest phenotypes.
We assume a discrete time dynamic consisting of K ≫ 1 individuals and where the population evolves
according to two sub-steps.

Reproduction. Each individual produces a fixed number of offspring r. These children inherit the
genotype of their parent up to an independent random fluctuation owed to the occurrence of
random mutations. The phenotype is determined by a random fluctuation of the genotypes.
More precisely, the child of an individual with genotype g has genotype g +X and phenotype
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g+X + Y where (X,Y ) is a pair of independent random variables with prescribed densities fX
and fY (see later).

Selection. Following reproduction, the population consists of rK individuals. To regulate the size
of the population, the K individuals with the largest phenotypes survive and give birth to the
next generation, transmitting their genotypes. As a consequence, selection acts according to
phenotypes, but only geentic information is propagated to the next generation.

The variable N = Kr represents the total number of individuals after reproduction and will be
interpreted as the carrying capacity of the population. Another variable of interest is

γ := log(K)/ log(N) = log(K)/ log(rK)

so that the fertility of a single individual during the reproduction phase is approximately N1−γ ,
whereas K = Nγ is the number of individuals passing their genes to the next generation so that γ
encodes the fraction of the population allowed to reproduce in a log scale (reproduction skewness).
For a fixed value of carrying capacity N , a lower γ entails a higher selection pressure since only a
reduced number Nγ of individuals can reproduce; whereas a high γ (close to 1) corresponds to a mild
selection scheme where almost every children survive to the next generation. As a consequence, γ
can be interpreted as capturing the selection pressure in the population. When γ is low, the selection
pressure is strong; when γ is high, the selection pressure is weak. Throughout our numerical and
mathematical analysis, we will assume that N is large but that γ remains fixed. This entails that the
fertility r = N1−γ of individuals before selection is typically large.

We now make some assumptions on the genetic noise distribution fX , and the phenotype noise
distribution fY . For the sake of simplicity, we assume that both phenotypic and genotypic noises have
super-exponential tails. Let α ≥ 1 and µ, λ > 0 such that

fX(x) = Cλ,α exp(−(λ|x|)α), fY (x) = Cµ,α exp(−(µ|x|)α),

with C.,. being positive normalization constants. The case α = 1 corresponds to the Laplace distribu-
tion, α = 2 to the Gaussian distribution. Up to a change of unit of measure, one can assume without
loss of generality that λ = 1 so that µ now represents the ratio of the genotypic standard deviation
(std) vs the phenotypic std.

3 Transition from the weak to the strong selection regimes

We first exposed numerical simulations, taking interest in the rate of adaptation and the effective
population size of this population model for different levels of phenotypic noise µ and selection pressure
γ (see Figure 1).

Rate of adaptation. We observe that the rate of adaptation is not monotone as a function of
the selection pressure, and we define γc(µ) as the value of the selection pressure that maximizes the
rate of adaptation for a given value of the phenotypic noise (black line in Figure 3). The function
µ 7→ γc(µ) segregates the parameters (µ, γ) of our models into two domains, that correspond to two
regimes for the branching-selection process. We will from now on say that a pair of parameters such
that γ < γc(µ) is in the strong selection regime, whereas γ > γc(µ) is the weak selection regime. Indeed,
let us recall that a higher γ entails that more adults are allowed to reproduce in the next generation,
so that a higher selection pressure translates into a lower γ.

In the weak selection regime (γ > γc(µ)), increasing the selection pressure (i.e. decreasing γ) has
the effect of increasing the rate of adaptation, as the set of parents that will be able to reproduce to
the next generation will be fitter on average. In the strong selection regime (γ < γc(µ)), this effect is
counter-intuitively reversed: increasing the selection pressure has the effect of decreasing the rate of
adaptation of the population.

As a result, a selection pressure of γc(µ) entails a maximal rate of adaptation for the population.
The selection pressure is too weak in the weak regime to optimize the speed of adaptation, whereas it is
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Figure 1: Rates adaptations and effective population sizes in a branching-selection particle system
with a population of size 105, plotted as a function of the genotypic to phenotypic standard
deviation ratio µ and the selection pressure γ. The Top Panels where simulated using α = 1

(Laplace distribution for the phenotypic and genotypic distributions), whereas the Bottom Panels
were made using α = 2 (Gaussian distribution for phenotypic and genotypic distributions). The

phenomenological picture appears identical for different values of α ≥ 1. Left Panels: Estimated rate
of adaptation of the genotype profile. The dotted line corresponds to the critical line γc(µ)

segregating the strong and the weak regime (respectively lower and upper part of the figure). For
each µ, γc(µ) is the selection pressure that maximises the rate of adaptation. Right Panels: The
effective population size Ne. The same function µ 7→ γc(µ) computed from the corresponding left

pannel is reproduced.

too strong in the strong selection regime and has a detrimental effect on the evolution of the population.
This latter case corresponds to an instance of Goodhart’s law, i.e., the objective (maximisation of
the genotypic value) is impaired by overfitting the measure (phenotypic values). The mathematical
treatment of this model will allow us to reveal a clear explanation behind this phenomenon.

Effective population size. Our numerical simulations reveal a second evolutionary signature of
the transition from the weak to the strong regime, evident in the neutral genetic variation within the
population.

Neutral genetic variation is assessed through ancestral properties of the population [16]. By sam-
pling two individuals in the present and tracing their ancestral lineages backward in time, we can
determine the most recent common ancestor (MRCA), with its distance to the present denoted as
T2. Under the molecular clock hypothesis [16], the number of observed neutral segregating mutations
is predicted to be proportional to E(T2), linking genetic diversity to the depth of the population’s
genealogical structure. To quantify genetic variation, we then use the effective population size [12],
defined as Ne = E(T2), as shown in the right panels of Fig. 1.

Our first observation is that the effective population size is significantly lower in the strong regime,
indicating a strong loss of genetic diversity in the strong regime. Secondly, a fundamental question
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in population genetics is understanding how natural selection influences neutral genetic diversity [20].
Since the field’s inception [21, 25, 26, 45], it has been widely believed that stronger directional se-
lection leads to a reduction in genetic diversity. However, our simulations reveal a counterintuitive
phenomenon. In our model, reducing noise enhances the one-step effectiveness of selection by aligning
the phenotype and genotype of each individual more closely. Based on traditional intuition, this should
lead to reduced genetic diversity. Yet, our findings suggest that the relationship between phenotypic
noise (µ) and the response to selection is non-monotonic, with genetic diversity reaching its minimum
approximately along the critical line separating the two regimes (see again Figure 3). Notably, in the
weak regime, we observe the surprising effect that reduced noise (decreasing µ) increases the effective
population size. In other words, intensifying selection by lowering noise also increases the effective
population size in the weak regime.

4 Deterministic evolution and ancestral structures

Our numerical simulations suggest the existence of a critical line at which the key evolutionary param-
eters of the model (rate of adaptation and effective population size) exhibit a non-monotone response
to the selection parameters (selection pressure (γ) and phenotypic noise (µ)). To explain the observed
transition, we now turn to the mathematical analysis of the model, in which we focus on the Laplace
case (α = 1) which is particularly amenable to analysis.

4.1 Log-profiles.

Numerical simulations (see top left panel of Fig. 2) reveal that genotypes and phenotypes are typically
highly concentrated around the mean of the population. Moreover, the distribution of genotypes in
the population, on a logarithmic scale, appears to quickly stabilize on a profile, that travels as a wave
over time. We take interest in the dynamic of this logarithmic profile, which describes the extreme
genotypes in the population (carried by Na individuals for some a < γ). The typical highest increment
of the genotype in a generation being O(log(N)), we rescale this profile appropriately.

More precisely, we define the genotypic profile g of a population as a quantity valued in R+∪{−∞}
so that the number of particles around x log(N) is approximately given by Ng(x). In other words, g(x)
can be thought of as the limiting stochastic exponent of the population in N . In PDE, this is often
referred to as the Hopf-Cole transformation of the system (see e.g. [11]). Note that when g(x) = −∞,
this corresponds to having no particle present around x. We also consider the phenotypic profile p(x)
so that Np(x) captures the number of phenotypes to the right of x log(N) after the reproduction step.

Let (X,Y ) be a pair of independent random variables with Laplace distributions of parameter 1
and µ respectively. Direct computations yield that

logP(X + Y > y logN) ≈ −min(µ, 1)y+ logN

and logP(X ≈ x logN,X + Y > y logN) ≈ − (|x|+ µ(y − x)+) logN
(4.1)

where we write x+ = max(x, 0). Writing gn for the genotypic profile of a population at the nth
generation, and pn for the phenotypic profile of its children, we observe that (gn, pn) evolve according
to the following deterministic dynamics

pn(x) = π

[
1− γ + sup

y∈R
(gn−1(y)−min(1, µ)(x− y)+)

]
sn = sup{x ∈ R : pn(x) ≥ γ}

gn(x) = π

[
1− γ + sup

y∈R
(gn−1(y)− |x− y| − µ(sn − x)+)

]
,

(4.2)

with

π(x) =

{
x if x ≥ 0

−∞ if x < 0
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Let us provide a quick justification for those formulas based on the tail estimates (4.1). The Ngn−1(y)

individuals with genotype approximately y logN at generation n− 1 will create on average

Ngn−1(y)+1−γ−min(1,µ)(x−y)+

phenotypes larger than x logN at generation n. As a consequence, the number of phenotypes larger
than x is given by the above formula after integrating over y and using the Laplace method –which
can be detected in the sup of the first equation. The projector π expresses that if the average number
of individuals around y logN goes to 0 as N → ∞ then the probability of observing such an individual
also becomes vanishingly small.

The value sn is then computed such that there are around Nγ individuals with phenotype larger
than sn logN . Finally, we obtain gn(x) by estimating (in the same manner) the number of children
with genotype around x logN and phenotype larger than sn logN . The function π has the effect of
only conserving the positive part of gn as if gn−1(x)− |y−x| −µ(sn− y)++1− γ < 0, then with high
probability none of the individuals at position x logN will have a descendant at position y logN with
a phenotype larger than sn logN .

We show in SM (Proposition S.2.4) that the evolution can be rephrased in terms of a discrete
“free-boundary” problem

gn(x) = π

[
1− γ + sup

y∈R
(gn−1(y)− |x− y| − µ(sn − x)+)

]
,

where sn satisfies sup gn = γ,

(4.3)

where the second condition reflects the fact that the phenotypic threshold sn can solely be determined
by the condition that there are Nγ individuals left after enforcing the selection step.

4.2 Traveling wave solution

We only take interest in the long-term asymptotic behaviour of the profile (gn) defined by (4.2). We
say that a function g is a traveling wave for the dynamic (4.2) with speed v if, assuming that g0 = g,
we have

gn(x) = g(x− nv). (4.4)

In other words, the dynamic has the effect of shifting the genotypic profile by v, where v is interpreted
as the speed of evolution in the natural scale of the system (log(N) for α = 1;

√
log(N) for α = 2 as

in the numerical simulations of Fig. 1). Examples of such traveling wave solutions, and convergence
to those, are depicted in Fig. 2.

In SM, we show the existence and uniqueness of a traveling wave solution under minimal assump-
tions (Theorem S.1.1). The crucial part of this result is the existence of a transition segregating the
parameter space (µ, γ) into two sub-regions delimited by an explicit curve

γc : µ 7→ γc(µ) :=
⌊1/µ⌋

⌊1/µ⌋+ 1

(
1− µ

2− ⌊1/µ⌋µ

)
, (4.5)

drawn in the bottom left panel of Fig. 3 (in solid black), and corresponding to distinct evolutionary
regimes mirroring our numerical simulations. The regime γ < γc(µ) will correspond to the strong
regime, whereas the case γ > γc(µ) corresponds to the weak regime. Our deterministic analysis allows
us to first characterize the phase transition in 2 different ways whcih reflect the numerical observations
of Fig. 1.

Fully and semi pulled waves. First, the critical curve γc(µ) delineates a phase transition between
semi and fully waves which is new to our knowledge. As we shall see, this transition reflects the loss
of genetic diversity in the strong regime.
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To explain the nature of the transition, we first note that the dynamics of the wave contains some
partial information on the ancestral structure of the underlying population. Recall that

gn(x) = π

[
1− γ + sup

y∈R
(gn−1(y)− |x− y| − µ(sn − x)+)

]
.

where the maximization problem arises from integrating the contribution of all the population at time
n− 1 and then applying the Laplace method to extract the main contribution at x from the previous
generation. This overwhelming contribution by a single location is captured by the sup in the previous
formula. This entails that the ancestor of an individual at position x is likely to be found at positive

Argmaxy∈R (gn−1(y)− |x− y| − µ(sn − x)+)

in the previous generation. Let us now consider an individual at distance x from the extremal genotypes
(right tip of the wave). From the previous equation, we deduce that the distance of its ancestor from
the tip (of the wave in the previous generation) is given by

A(x) = Argmaxy∈R{g(y)− |x+ v − y|}, (4.6)

where g is the traveling wave. Let A(n) be the nth iteration of the ancestral map A. In turn, the
genotype of the ancestor n generations backward in time is at distance A(n)(x) from the tip of the
wave n generations backward in time. It turns out that the two evolutionary regimes dictate different
behaviors for the ancestral map A. This is formally proved in Theorem S.1.2 in SM, and graphically
explained in the bottom panels of Fig 2.

In the strong regime, A(n)(x) reaches 0 in finitely many generations so that that the ancestor of
any individual is directly at the tip of the wave. Thus, the wave at a given time is generated (or
pulled) by few extremal individuals close to the tip and is said to be fully-pulled. See bottom right
panel of Fig 2.

For the weak regime, A(n)(x) also reaches an equilibrium in finitely many generations. However,
and in contrast to the strong regime, the maximization problem (4.6) becomes degenerate. More
precisely, iterating the ancestral map A gets the ancestor closer to 0 (i.e. closer to the tip). After a
few iterations, the maximum of the ancestral function A is not attained at a single point but on an
interval that we refer to as the ancestral interval. See bottom left panel of Fig 2. The interpretation
of this phenomenon is that the positions of ancestors of an individual is uniformly distributed on
the ancestral interval after a few generations. A crucial observation is that the ancestral interval (1)
contains the tip, but (2) does not contain the bulk, that is, the point where the wave is maximized.
As a consequence of (2), ancestral individuals deviate substantially from the mean but in contrast to
the strong regime, a typical ancestor is not directly at the tip, but instead it is uniformly distributed
on the ancestral interval. Thus, the wave is still pulled by extremal individuals, but those extremal
individuals are typically located at an intermediary location between the tip and the mean. The wave
is now said to be only semi-pulled.

This shift in the ancestral properties of the traveling wave suggests a loss of genetic diversity in
the strong regime in accordance with the right panels of Fig. 1. In the strong regime, our previous
analysis indicates that the population at time t originates from only the very few individuals at the
tip of the wave as indicated by the fact that A(n) = 0 after a few backward generations. In contrast,
in the weak regime, the population traces back to a broader set of ancestors captured by the ancestral
interval, and whose size scales as log(N) in the original scale. These observations will be further
refined in Section 4.3.

Selection of the fittest or selection of the luckiest. Secondly, our mathematical results (The-
orem S.1.1. in SM) identify the phase transition observed in numerical simulations for the rate of
adaptation in accordance to the left panels of Fig. 1. Below the critical curve (γ < γc(µ) strong
regime/fully pulled), lowering selection by increasing γ has the effect of increasing the rate of adap-
tation. Above the critical curve (weak selection/semi-pulled, γ > γc(µ)) the effect is reversed so that
the optimal level of selection is attained at the intermediary level γc(µ).
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Our analysis reveals a clear explanation behind this phenomenon. Consider the population right
after reproduction (that is before implementing the selection step). There are N = rK genotypes
available among which K < N will be chosen according to their phenotypes in the selection phase.
We now ask the following question: since selection only acts on phenotypes, do we always pick the
very best genotype? The answer depends on the evolutionary regime at hand.

� The strong/fully-pulled regime entails selection of the luckiest: the best genotype is never picked;

� The weak/semi-pulled regime entails selection of the fittest: the best genotype is always selected.

To give an intuition behind this phenomenon, we note that when selection is strong (γ < γc), we only
allow for a few individuals to reproduce. This is obviously a risky strategy since selection only picks
a few individuals whose phenotype can potentially inflate their underlying genotypes. In contrast,
the weak regime enforces a diversification of the risk so that the highest genotype is always picked.
In other words, the extremes of the phenotypic and genotypic spaces are partially decorrelated, and
when selection is too strong, it will miss the children with exceptionally high genotype.

Beyond the intuition, the previous statement is made mathematically precise in Theorem S.1.3 and
the preceding paragraphs in SM. The content of this formal result is related to geometric properties
of the traveling wave solution as illustrated in Figure 2. Essentially, the distinction between the
strong and the weak regime can be seen in the position of the phenotypic threshold s. Recall that
s corresponds to the minimal phenotypic value in order to be selected at the next generation. We
assume that the population has reached the traveling wave state and we start from a population with
a genotypic makeup corresponding to the traveling wave (blue) at time t, and make one step of the
evolution to obtain the profile at time t+1 (4.2) (green). This genotypic profile is constructed in two
successive steps: we first generate the genotypic profile of the children (orange), and then obtain the
genotypic at t + 1 (green) profile by thinning the profile with our selection procedure. In particular,
the difference between the orange and the green curve corresponds to the log-number of genotypes
eliminated during the selection process. We can now distinguish between two geometries of the wave.

In the strong selection regime, the threshold s exceeds the reproduction profile (orange) indicating
that surviving individuals must have an exceptionally high phenotypes to reach the phenotypic thresh-
old s. As it is apparent from the figure, the tip of the reprodution curve (orange) is strictly higher
than the genotypic curve at time t+ 1 (blue) indicating that all the children with the best genotypes
are washed out by selection. (All the children located between the two tips are not selected.) There-
fore, in the strong selection regime, the survival of each individual is partially explained by having
an unusually high phenotype. As the (few) individuals with a very high genotype will tend to have
average phenotype, those are therefore not preserved by the selection step, which explains the drop in
the rate of adaptation of the population.

In contrast, in the weak selection regime, all the children with a genotype above s will be selected.
Geometrically, this corresponds to the alignment of the reproduction curve (orange) and the curve at
time 1 (green) curves.

Low phenotypic noise. If µ > 1, a close inspection of Eq. (4.5) reveals that γc(µ) = 0 so that only
the strong regime persists. In this regime, the large increment of the phenotype of an individual is
primarily explained by a large increment of its genotype (see Eq. 4.1), and no non-trivial optimum
may be found for the selection pressure (γ) when we optimise on the rate of adaptation (v). That
is, in this case, we have γc = 0, meaning that the optimal adaptation rate is to select a constant
(independent of N) number of individuals with the largest phenotypes.

4.3 Effective population size

The right panels of Fig. 1 indicates (i) a loss of genetic diversity in the strong regime, and (ii)
that the genealogical structure of the population exhibits a non-monotone response to a change of
the phenotypic noise (µ). Further, the change of monotonicity occurs exactly at the critical curve
segregating the weak and the strong selection regime. We now provide a mathematical explanation
for this intriguing phenomenon.
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Semi-pulled case
γ = 0.5, µ = 0.4

γ

g g1

r s

•
x

•
A(x) A2(x)

Fully-pulled case
γ = 0.4, µ = 0.4

γ

g g1

r
s

•
x

•
A(x)

•
A2(x)

Figure 2: Top left panel. Distribution of genotypes in a large population, plotted on a logarithmic
scale. We observe for large populations the apparition of a deterministic genotypic profile. The
profile is well approximated by a quadratic profile (in red). Top right panel. Convergence to the
traveling wave solution of the deterministic dynamic, started from an initial Gaussian distribution
(i.e. a parabolic log-profile). Blue curves show the evolution of the first 8 steps of the genotypic
profile, the red curves steps 16 to 24. We observe that by that time, the phenotypic profile has

converged to a traveling wave solution. Bottom panels. Schematic description of the iteration of the
traveling wave over one step. The blue line represents the initial traveling wave profile, the orange
line the genotypic profile of the children (that is after reproduction). The green line correspond to

the genotypic profile of the selected chidlren, and is a translation of the blue profile. The vertical red
dotted line corresponds to the position of the selection threshold –in particular, note that the green
and orange lines are identical to the right of that threshold, indicating that genotypes to the right of

the threshold will be selected. The bottom purple dots correspond to iterations of the ancestral
function in the stationary setting indicating the successive ancestors in the population.
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The effective population size is defined as the expected coalescence time of two distinct ancestral
lineages. While our earlier analysis is based on deterministic approximations, the genealogical structure
of the system retains its stochastic nature in the large population limit and random coalescence times
cannot be inferred solely from the hydrodynamic limit. Consequently, the genealogical structure of
the population (and thus Ne) highly depends on the system fluctuations.

Analyzing system fluctuations is inherently more complex, so we address this challenge using
a proxy model inspired by the exponential branching random walk (BRW) developed by Brunet,
Derrida, and collaborators [6, 9]. In this original model, individuals reproduce an infinite number of
offspring distributed according to an exponential Poisson point process centered on the parental value.
After reproduction, truncation selection is applied, retaining only the K rightmost genotypes. This
framework was originally introduced to provide the first analytical approach to studying fluctuations
in F-KPP fronts, leveraging the particle system’s integrability.

A recent generalization, known as the noisy exponential BRW, modifies this framework by blurring
the effect of selection: offspring are reproduced as before but instead of truncation selection, individuals
are randomly selected according to Gibbs sampling [14, 44]. For more details, see Section S.4.2 of the
SM.

Although the noisy exponential BRW may initially seem distinct from our study, Section S.4.2 of
the SM will demonstrate that the differences are largely superficial. We show that the noisy BRW
retains many key features of the original model, including a similar hydrodynamic limit and the
transition between semi-pulled and fully pulled regimes. This suggests that both models belong to the
same universality class and share similar genealogical structures. By leveraging the integrability of
the noisy BRW and results derived in [44], we compute the effective population size for this integrable
model. Comparing universal quantities between the two models allows us to propose an ansatz for
the effective population size in the original model.

∀γ < γc(µ), Ne(µ, γ) ≈ 1
µ (4.7)

∀γ > γc(µ), Ne(µ, γ) ≈ χ(µ, γ) log(N). (4.8)

where χ(µ, γ) is the size of the ancestral interval and is given by Eq. (S.3.8) in Theorem S.3.1 in SM
and is in good qualitative accordance with our numerical simulations. See Fig 3. We note that the
discontinuity in the theoretical predictions corresponds to a first order phase transition and that this
discontinuity is smoothed out in the finite population regime.x

Our mathematical results provide an explanation for two phenomena observed in numerical simu-
lations. First, the effective population is size is lower in the strong regime (Ne = O(1)) as compared
to the weak regime (Ne = O(log(N))). Secondly, µ → Ne(µ, γ) is non monotone, and as in Fig 1, the
change of monotonicity again occurs at the critical line.

Finally, our comparative approach allows to extract more information on the ancestral structure
of the population. Whereas Ne only depends on the coalescence time of two lineages, our comparative
analysis allows to describe the random genealogy spanned by any number of lineages. In SM, we show
that in the weak regime (resp. strong regime) the genealogy should converge to a Bolthausen-Sznitman
coalescent (resp., Poisson Dirichlet coalescent) [41]. See Section S.4.2 for more details.

4.4 Convergence to the deterministic limit.

Rate of convergence. Figure 3 demonstrates that our deterministic approximations offer a reliable
qualitative prediction of the stochastic model. Notably, the finite-size particle system retains a similar
phenomenological structure to its deterministic counterpart, including the sharp phase transition be-
tween the weak selection and strong selection regimes, as shown in Figure 3. However, the convergence
to the hydrodynamic limit is observed to occur at an exceptionally slow rate.

This slow convergence is a well-documented characteristic of branching-selection particle systems
[10]. To better understand the deviations from the infinite population limit, we utilize the noisy BRW
introduced in Section S.4.2 and compute the convergence rate in SM, Section S.4.2. The speed of
convergence of the adaptation rate occurs at a very slow (logN)−1 rate. More precisely, writing vµ,γ

the rate of adaptation of the deterministic model, and v
(N)
µ,γ the rate of adaptation of the finite size
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model with Nγ individuals selected at each generation, we have

v
(N)
µ,γ

log(N)
− vµ,γ ∼

{
Ξ(µ,γ)
logN if γ < γc
log(Ξ(µ,γ) logN)

logN if γ > γc

See top right panel of Figure 3. Note that the speed of convergence is consistent with the one observed
in the original model. See See top left panel of Figure 3.

Corrections to the limiting profile. The predictions of quantitative genetics models rely on the
simplifying assumptions that the genotypes distributions remain Gaussian along time (see [42] and
the references therein) – or equivalently that log-profiles are quadratic. In contrast, starting from our
individual based model, the traveling wave solution is a piecewise linear profile in the log-scale, as
shown in Theorem S.3.1 in SM and the bottom panels of Fig. 2. This suggests that the cornerstone as-
sumptions of quantitative genetics do not hold under our high fertility scenario. However, as indicated
from the previous discussion, higher order corrections play a significant role in finite populations, and
our numerical simulations suggest that profiles are still well approximated by a quadratic profile. See
top right panel of Fig 2.
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Figure 3: Top panels. Rate of adaptation for the deterministic limiting model and its finite-size
population correction, for the original stochastic model on the left pannel, and the noisy BRW right

pannel (believed to be its scaling limit). In both cases, the rate of convergence is notably slow.
Bottom left panel. Comparison between the critical value γc estimated for each µ as the value of γ

maximizing γ 7→ v
(N)
γ,µ . Bottom right panel. Effective population size for N = 107 (thick brown curve,

average over 100 realizations) and N = 102 (blue curve, average over 1000 realizations). The shaded
areas show the 10th to 90th percentiles of the distribution. The solid black line is the theoretical
approximation (S.4.7) in the strong regime; the thin brown and blue lines are the theoretical

approximation (S.4.8) in the weak selection regime. For large populations (N = 107), a change of
monotonicity occurs close to the closed predicted value which corresponds to the end point of the

curve 1/µ.

4.5 Sexual reproduction.

In SM (Section S.6), we also present a sexual version of our model. In this version, each of the N
children chooses two parents uniformly at random in the population, inherits their average genotype
plus a random fluctuation X of law fX . Once again, the phenotype of a child is obtained by perturbing
its genotype by a random fluctuation Y of law fY .

Therein, we show that the log-profile of the population evolves according to a modified recursive
free boundary problem (4.2) as follows

gn(x) = π

[
1− 2γ + sup

y∈R
(2gn−1(y)− |x− y| − µ(sn − x)+)

]
,

where sn satifies sup gn = γ.

(4.9)

In particular, note the apparition of a 2gn−1(y) corresponding to the selection of two parents. It is
interesting to observe that in this deterministic limit, every individual surviving will have two parents
with a roughly equal genotypic value.
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Even if the recursive equations of the sexual and asexual case look similar at first sight, sexual
populations exhibits a much richer behavior and we postpone its mathematical analysis for future
work.

First, a similar transitions when µ ∈ [1/2, 1], that is when the the phenotypic noise is at interme-
diary value. In this case, Figure 4 shows that the speed of evolution is also maximized at intermediary
values of γc(µ). However, our simulations show a complex critical line with some resonance-like modes.
In addition, we exhibit a regime which was not present in the asexual case. When the phenotypic
noise is too high (µ < 1

2), the speed of evolution stabilizes to 0 indicating that the population remains
static on the natural space scaling of the system (measured in log(N) units). See Figures 4,5. Finally,
our models predicts that the speed of evolution is always higher in the asexual case.

Figure 4: Left panel. Speed for the asexual model as predicted by the explicit solution of (4.3). Right
panel. Speed for the sexual model as predicted by the iterating the modified equation (4.9). For both
models, if µ ∈ (.5, 1), the speed is maximized at intermediary values. However, in the sexual case,
the speed is always 0 when the phenotypic noise is too large µ < 1/2. Bottom panel. Comparison of

the speed of evolution in the sexual and asexual models.

5 Discussion

Understanding the response to selection is at the heart of population genetics. To highlight the novelty
of the present approach, we first would like to highlight how the present paper differs from some
classic approaches. As a concrete example, Lande [36] considered a similar problem in the context of
quantitative gentics, [19]. He considered a population represented as a Gaussian cloud of points, with
selection acting on a correlated phenotypic traits. Assuming that the original genotype distribution and
phenotypic noise are Gaussian, Lande provided a mathematical description of the response to selection
in a single generation. In contrast, the aim of the present article was to understand the interplay
between natural selection and evolution. This requires capturing the effects of selection over a large
number generations as the result of selection and mutation. In Lande’s work, the response to selection
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highly depends on the initial state of the population (standing variation) and the realized heritability
of the trait. In contrast, capturing the rate of evolution and genetic drift over evolutionary time scales
requires to understand how those imposed parameters emerge from the evolutionary dynamics as a
response to natural selection. A key challenge of our work was to derive the genetic composition of a
population at ”stationarity” (traveling front), where stationarity emerges from the action of natural
selection on large evolutionary time scales. In accordance with most of models in quantitative genetics,
our numerical simulations suggest that populations are also well approximated by a Gaussian profile
(quadratic log-profile as can be seen from the top left panel of Figure 2). However, the population
variance is not an imposed parameter, but instead, it emerges as a response to the long-time effect of
a noisy selection inducing a complex interplay between natural selection and evolution.

In accordance with the Fisher’s quote that “natural selection is not evolution”, our model predicts
a non linear response of evolutionary parameters (adaptation rate and effective population size) to
the selection parameters (selection pressure, phenotypic noise). We identify two main evolutionary
regimes –strong and weak – translating into traveling waves of different nature and whose geometry
drastically impacts the effect of selection as summarized in the lower panels of Figure 2. When
selection is amplified by reducing the number of individuals allowed to reproduce, the system exhibits
a Goodhart’s effect. When selection is too strong (strong regime), the rate of selection responds
negatively to stronger selection and the fittest offspring is never selected (selection of the luckiest).
In the weak regime, the effect is reversed so that the optimal rate of selection is found at the critical
selection strength which segregates between the two regimes. In this case, the highest genotype is
always selected (selection of the fittest). As a consequence, with enough phenotypic noise (µ < 1),
selection can neither be too strong nor too weak for an optimal rate of adaptation.

Recent experimental studies suggest that phenotypic noise could be evolvable [31, 47, 33, 17, 29, 40].
Our model predicts that lowering the noise always improves the rate of adaptation. However, it predicts
a non-monotone response to phenotypic noise. In particular, lowering the noise (increasing µ) induces
a lower effective population size in the strong regime. This entails that that the evolutionary dynamics
in this regime is subject to a trade-off between speed and diversity. Increasing the rate of adaptation
comes at a cost of reducing genetic diversity. In contrast, in the weak regime (low noise), genetic
diversity and rate of adaption both react positively to noise reduction and the population should
evolve as to minimize phenotypic noise.

Finally, our findings uncover a new phase transition for pulled waves [7, 2]. This transition resonates
with recent findings in the context of the noisy F-KKP equation with Allee effect [3, 46, 43, 22] where
the density of individuals is described through the equation

∂tu =
1

2
∂xxu+ u(1− u)(1 +Bu) +

1

N

√
uη

where B is the Allee effect and η is a white space-time noise capturing demographic stochasticity. If
the Allee is strong enough (B > 2), the traveling wave are pushed (in contrast to the pulled waves
encountered in our setting), and stochastic effects segregate pushed waves into a semi and a fully
regime. For pulled waves (as in the present work), we uncovered a similar phase transition between
a fully-pulled and semi-pulled regime. As highlighted before, a single lineage always lies away from
the bulk, that is, far from the mean of the fitness wave. In the fully-pulled regime, ancestral lineages
always lie within the very few extreme individuals. In the semi-pulled regime, an ancestral lineage at a
typical time lies at an intermediary location between the tip and the bulk. If we now consider several
ancestral lineages, the ancestral structure should converge to the Bolthausen-Sznitman coalescent
where it is known that coalescences occur at the very extreme individual [7, 2]. Thus, in semi pulled
waves, ancestral lineages only reach the very extremal individuals upon a coalesence event.
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Supplemental Materials for: The interplay between natural selection and
evolution: a fitness wave approach

Outline

We present in this Supplementary material the mathematical analysis of the model described in
Section 2 of the main text. We first describe in more details in Section S.1 the properties of the
sequence (gn, pn) of genotypic and phenotypic profiles that will be proved in this text, both regarding
the traveling wave solutions of the dynamic (4.2) and the genealogical properties of the underlying
model.

These results are then prove in the next three sections of the Supplementary material. We describe
in Section S.2 some a priori results on the profile dynamic, including regularization properties and the
preservation of the concavity. These estimates are used in Section S.3 to identify the traveling wave
solutions to the dynamic, and in Section S.4 to describe the genealogical relationships of individuals
in the model.

In Section S.5, we provide heuristics for the rate of convergence of the stochastic profile of the popu-
lation model towards their hydrodynamic-type limits. This convergence appear to be particularly slow,
however, numerical simulations show that the phase transition observed for the deterministic dynamic
of fronts is also well-marked for finite size populations. Finally, Section S.6 discusses the extensions of
our results to population models with sexual reproduction, highlighting the main differences between
sexual and asexual models.

S.1 Main results

Let us recall that in the main article, we introduced a finite size branching-selection population model,
in which individuals give birth to a large number of children, with a genotype inherited from their
parent with a random increment, and a phenotype given by a random increment of their genotype.
The selection procedure applies on the phenotypes. We observed that in the large population limit, the
evolution of this system is well-described by a family of phenotypic and genotypic profiles pn and gn,
corresponding respectively to the distribution of phenotype among the children of the n−1st generation
and the distribution of genotype among the selected individuals that make the nth generation. We
recall that the profiles (pn, gn) evolve according to the following deterministic recursive dynamic

pn(x) = π

[
1− γ + sup

y∈R
(gn−1(y)−min(1, µ)(x− y)+)

]
sn = sup{x ∈ R : pn(x) ≥ γ}

gn(x) = π

[
1− γ + sup

y∈R
(gn−1(y)− |x− y| − µ(sn − x)+)

]
,

(S.1.1)

with π : x ∈ R 7→ x1{x≥0} −∞1{x<0}.
We discuss in the forthcoming Section S.1.1 the existence and properties of traveling wave solutions

to this dynamic. We observe that the behaviour of these traveling wave sharply depend on the values
of γ and µ, and exhibit a phase transition between two distinct behaviour, that are called semi-pulled
and fully-pulled, corresponding to the strong, respectively weak, selection regime. Section S.1.1 then
describe in more details the differences between these two regimes. Section S.1.3 then compare our
results to the existing state of the art.

S.1.1 The traveling wave

We say that a function g is a traveling wave for the dynamic (S.1.1) with speed v if, starting from
g0 = g, for all n ∈ N we have

gn : x 7→ g(x− nv). (S.1.2)
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In other words, the dynamic has the effect of shifting the genotypic profile by v, without deformation.
Given the definition of profiles, we refer to the support of the traveling wave g as g−1(R+), the set
of points x such that g(x) ≥ 0. That is, x is in the support of g, if there will be individuals in the
neighbourhood of x logN with high probability, when N is large enough.

Our main result is stated in the theorem below, which shows existence and uniqueness of a traveling
wave solution to (S.1.1). The proof of this theorem can be found at the end of Section S.3.

Theorem S.1.1. For all γ ∈ (0, 1) and µ ∈ R+ \ {1}, we set k = ⌊1/µ⌋. For the dynamic described
in (S.1.1), there exists a unique up to translation, concave traveling wave g with compact support. This
traveling wave has speed v(γ, µ) given by

v(γ, µ) =

{
2γ

k(2−(k+1)µ) if γ ≤ γc(µ)

1− γ if γ > γc(µ)
, where γc(µ) =

k

k + 1

(
1− µ

2− kµ

)
.

In particular, the function γ 7→ v(γ, µ) is increasing on the interval (0, γc] and decreasing on [γc, 1),
whereas the function µ 7→ v(γ, µ) is increasing.

It is worth mentioning that in the above theorem, if µ > 1 then k = 0. Therefore, γc(µ) = 0 for all
µ > 1. This indicates that if the tail of the phenotypic contribution is light enough, then the phase
transition between the weak selection and the strong selection regimes does not occur. More precisely,
the population is always in the weak selection regime, and decreasing the value of γ increases the rate
of adaptation of the population. This behaviour is a consequence of the fact that in this regime, the
phenotypic value of an indivudal is very close to its genotypic value, so the phenotypic and genotypic
selection procedures become essentially undistinguishable.

Remark. If µ = 1, then the law of X/(c logN) conditionally on X + Y > c logN converges in
distribution to a uniform random variable on [0, 1], therefore the relationship between phenotype and
genotype of an individual cease to be well-concentrated around a deterministic value. We do not
treat this limiting case in the present paper although the formula we obtained can be prolonged by
continuity at µ = 1.

The proof of Theorem S.1.1 is based on the explicit construction of the traveling waves associated
to the parameters (γ, µ). The traveling wave will typically be formed as a concave, piecewise linear
function whose maximum is γ. The slope near the right edge of the traveling wave is either −1 or
µ − 1 depending on whether γ ≤ γc or γ > γc. This slope relates to the exponential growth of the
size of the population with a genotype at distance smaller than x logN from the largest genotype of
a given generation, for x small enough.

As stated in the theorem, for a fixed value of µ, the speed of the traveling wave (corresponding
to the rate of adaptation of the population) takes its maximum at a critical value of γ = γc(µ)
(corresponding to an optimal choice of the selection pressure). The function µ 7→ γc(µ) is drawn on
the left panel of Fig. 3 in the main text, together with empirical estimates of the optimal choice of γ
for various finite size population models.

In particular, if µ > 1, i.e. if a large increment of phenotype in an individual is primarily explained
by a large increment of its genotype, the optimal selection pressure is obtained as γ = 0, i.e. a maximal
selection pressure. In this situation, the optimal dynamic for the population is to select at every step
a constant (independent of N) number of individuals with the largest phenotype at each generation
to maximize the rate of adaptation of the population. The maximal genotype in the population will
increase by logN in each generation, which is similar to the Brunet-Derrida behaviour obtained for
the exponential model of branching random walk with selection [8, 38] introduced in Section S.1.3.

On the other hand, if µ < 1, i.e. if individuals can have a very high phenotype without having a
large genotype, there exists a non-trivial optimum for the selection pressure at γ = γc. This selection
pressure gives an optimal rate of adaptation of the population, by ensuring that the selection step
keeps individuals with high genotypic value and makes them create a large enough number of children
so that their characteristics are transmitted to their descendants.
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Convergence to the traveling wave

Theorem S.1.1 shows the existence and uniqueness of a traveling wave solution to the dynamic (S.1.1).
Proving that, starting from an arbitrary genotypic profile (satisfying some conditions), the dynamic
converges to the traveling wave solution is out of the scope of this paper. However, simulations in
the top right panel of Fig. 2 in the main text indicate that we should indeed have convergence, and
therefore a detailed analysis of the traveling waves is needed to describe the long term behaviour of
the dynamical system (S.1.1).

S.1.2 Fully-pulled and semi-pulled waves

Assuming that µ < 1, the properties of the traveling wave solution are quite different depending on
whether γ > γc or γ ≤ γc. These differences can be explained through the genealogical relationships
and selection properties appearing at the front of the population. When we refer to the front of the
population, we mean the genotypes within a positive but not too large distance from the rightmost
genotype (on the logarithmic scale). By the tip of the profile we understand particles located at or
very near the rightmost position (on the logarithmic scale). Our terminology for the traveling waves
refers to the fact that the front of the fully-pulled wave is generated by the tip (i.e. genotypes at the
front have parents at the tip), and in the semi-pulled case the front is generated by parents at the
front but not necessarily at the tip.

Ancestry

Our method to find the most likely location of the parent of a genotype at a given location (for example
at the front) is to study A, the ancestral function of the process. Suppose that g is a traveling wave
solution to (S.1.1) with speed v and with g−1(R+

0 ) = [L, 0] for some L < 0. We define

A : x ∈ [L, 0] 7→ argmaxy∈R{g(y)− |x+ v − y|},

where for any concave function u : R → R∪{−∞}, argmaxy∈R{u(y)} returns the smallest real number
y such that u(y) = maxz∈R u(z). Given the heuristics behind the definition of the dynamic (S.1.1),
we see that A(x) corresponds to the distance from the tip of the genotypic value of a typical parent
of an individual at distance x from the tip. Note that Aj(x) then describes the distance from the tip
for a typical ancestor j generations in the past, in a population distributed according to the traveling
wave.

For a better illustration of the difference between fully-pulled and semi-pulled regimes, we also
introduce the function A+, as

A+ : x ∈ [L, 0] 7→ Argmaxy∈R{g(y)− |x+ v − y|},

where for any concave function u : R → R∪{−∞}, Argmaxy∈R{u(y)} returns the largest real number
y such that u(y) = maxz∈R u(z). Now the theorem below says that, when γ ≤ γc (fully-pulled case),
then a typical ancestor of an individual finitely many generations in the past, will be at the very tip of
the population. On the other hand, if γ > γc (semi-pulled case), a typical ancestor will be located in
an interval at the front. In this case Aj(x) and (A+)j(x) will not agree as j gets large, and the length
of the interval will be given by (A+)j(x)−Aj(x) for some large j ∈ N. We will prove this theorem in
Section S.4.

Theorem S.1.2. The functions x 7→ A(x) and x 7→ A+(x) are non-decreasing. Moreover:

� If γ ≤ γc, then Aj(x) = A+j
(x) = 0 for all j large enough;

� If γ > γc, then there exists c1 > 0 such that Aj(x) = −c1 and A+j
(x) = 0 for all j large enough.

Remark. Let γ > γc, we write g the associated traveling wave. We observe that the parameter c1
defined above, corresponding to the lowest fitness ancestor that can give birth to one individual at
the front of the population verifies g(c1) < γ. In other words, ancestors of the fittest individuals never
come from the bulk of the process (which are the majority of individuals, whose fitness is very close
to sup{x ∈ R : g(x) = γ}.
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In other words, in the strong selection regime γ < γc, the whole population is generated by the
tip of the process a finite number of generations backward in time with high probability. In this
regime, the individuals with highest genotype at a given generation will generate the whole rest of
the population within a finite number of generations. On the other hand, in the weak selection
regime γ > γc, the population is generated by a group of ancestors consisting of the N c1 individuals
with highest genotype. Coalescences withing this group of ancestor then occur on a much slower,
logarithmic rate, leading to the age of the most recent common ancestor of the population to be of
order logN , compared to a constant in the other regime.

Selection properties

The next important property, which distinguishes the fully-pulled and semi-pulled traveling waves
is the following. Let us consider the set of genotypes at the moment when reproduction has already
happened, but selection has not. Then in the fully-pulled regime (γ ≤ γc), the best (largest) genotypes
do not survive the selection step, whereas in the semi-pulled case (γ > γc) they do.

In order to state this result precisely, we need to introduce the reproduction profile. Let g be a
traveling wave solution with speed v, and assume g−1(R+

0 ) = [L, 0] for some L < 0. Then, since g is
a traveling wave, if g0 = g then g1(x) = g(x − v), and g−1

1 (R+
0 ) = [L + v, v]. Now similarly to the

heuristics given for the dynamics (S.1.1), we define the reproduction profile

r(x) := π

[
1− γ + sup

y∈R
(g(y)− |x− y|)

]
,

which describes the log-density of genotypes after reproduction and before selection. The result below
says that, if γ < γc, then the right edge of the support of the function r is to the right of v, which is
the right edge of the support of the function g1. That is, the largest genotypes after reproduction (the
ones to the right of v) do not survive selection. On the other hand, when γ > γc then the functions
g1 and r agree on an interval at the front of these profiles (the best genotypes are among the selected
ones). We prove this theorem at the end of Section S.3.

Theorem S.1.3. Recall that r is the log-density profile of phenotypes of children of a population with
genotypic profile g, and the genotypic profile of the surviving children is g1. Then:

� If γ < γc then r(x) > g1(x) for all x in the support of g1.

� If γ > γc then r(x) = g1(x) for all x close enough to v, the right edge of the support of g1.

Summary

We now provide illustrations and a summary of the properties, which are stated in the theorems above,
and which distinguish the fully-pulled and semi-pulled waves. In order to do so, let g be a traveling
wave solution to (S.1.1) with speed v, and let s := s1 be the phenotypic threshold at generation 1. Note
that s is also the distance of the phenotypic threshold from the rightmost genotype in any generation,
because of the stationarity of the profile. Let us first return to the bottom panels of Fig. 2 in the main
text, which we describe in the context of the above described results.

Left Panel. Fully-pulled wave. The fact that the phenotypic threshold (red segment) s is to the
right of the reproduction profile (orange) means, that any genotype that survives selection needs to
perform a large phenotypic jump (of order logN) to get to the right of s. Since the probability of
such jumps is small, and the number of genotypes near the tip of the reproduction profile is not large
enough, the very best genotypes do not survive selection. That is, the genotypic profile in the next
generation (green) is to the left of the reproduction profile (orange). Furthermore, if we sample a
genotype uniformly at random from the interval [0, v] at time n + 1 (i.e. from the front of the green
curve), then the most likely location of its parent will be at 0 (at the tip of the blue curve).

Right Panel. Semi-pulled wave. After reproduction (orange), all the extreme genotypes to the
right of the phenotypic threshold s (red segment) are selected to the next generation: the orange and
the green profiles coincide on the interval [s, v]. If we sample a genotype uniformly at random from
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the interval [0, v] at generation n+1, then the most likely location of its parent will be on the interval
[s − v, 0] (the log-density of this interval is given by the first linear segment of the blue curve, which
has slope 1).

In the table below, we give a summary of the main properties of the investigated traveling waves.
The facts that in the fully-pulled case (γ ≤ γc) we have v ≤ s, and in the semi-pulled case (γ > γc)
we have v > s are stated and proved in Section S.3.

Table 1: Comparison of the phenomenological picture between the full-pulled and semi-pulled
regimes.

Fully-pulled wave Semi-pulled wave

γ < γc, v < s γ > γc, v > s

Stationary profile

Speed increasing function of γ decreasing function of γ

Slope of g at the front µ− 1 −1

Ancestry

Ancestral line located near the tip
located away from both the tip
and the bulk

Number of potential par-
ents of the tip

No(1) Nv−s+o(1)

Selection

Phenotypic threshold
To the right of the rightmost se-
lected genotype (s > v).

To the left of the rightmost se-
lected genotype (s < v).

Probability of selection of
the largest genotype

converges to 0 converges to 1

S.1.3 Related mathematical literature

A large number of population models for natural selection have been introduced over the years. These
population models usually present a fitness, identified as a real value, that measures the ability of an
individual to survive and produce a large offspring. Among these models one can find the class of
branching-selection particle systems. These processes are defined as Markovian particle systems, in
which each individual gives birth, independently to one another, to children with a fitness obtained
as a random modification of their own. An external operation is then undertaken to keep the total
number of individuals at each generation of roughly the same size.

One of the first of these models to be introduced was the branching random walk with absorption.
In this model, individuals reproduce creating children with fitness given by an i.i.d. copy of a point
process shifted by their own. Children are then killed if their fitness falls below a given threshold.
Kesten [34] showed this process to be either subcritical, critical or supercritical, i.e. the population
either grows extinct exponentially fast, polynomially fast, or survives and grows exponentially fast
with positive probability.

To control the size of the population more accurately, Brunet and Derrida [6] introduced the so-
called N -branching random walk. In this model, the reproduction law is identical to the previous
one, each individual reproduce independently by creating an identically distributed cloud of children
around their position, but at each step only the N rightmost children are selected to reproduce in the
next generation. As a result, the total size of the population remains constant. By comparison to the
KPP equation with a cutoff and the study of exactly solvable models by Brunet, Derrida, Mueller and
Munier [8, 9], they conjectured the so-called Brunet-Derrida behaviour of the N -branching random
walk, i.e. that the speed vN of adaptation of the population with N individuals converges as N → ∞
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to the speed of adaptation of the population without selection at the slow rate

vN − v∞ ∼ −K

(logN)2
, where K is an explicit positive constant.

This result was later proved by Bérard and Gouéré [1] for binary branching, then extended by Mallein
[38] to general branching.

The population model we introduced is analogue to an N -branching random walk –and more
specifically to the exponential exactly solvable model introduced in [9]– when γ → 0. In this case,
the population is capped to a value cN for some c < 1/2, and each individual creates ⌊1/c⌋ children
independently of one another. If the selection only keeps the individuals with the largest genotypic
value (i.e. in the limit µ → ∞), we recover an N -branching random walk in which the displacements
are given by i.i.d. Laplace steps. The case µ > 1 corresponds to a situation when individuals are not
necessarily selected if they are among the N rightmost, but their probability of being selected decays
exponentially fast if they are far from the maximal fitness. A solvable model in this universality class
was studied by Cortines and Mallein [13], that showed no noticeable difference in the evolution of the
population due to this randomization.

For γ > 0, using extreme value theory, the evolution of the population we consider becomes closer
to the solvable models studied in [8, 13, 14], corresponding respectively to the cases µ = ∞, µ > 1
and µ < 1. For γ > 0 and µ < 1, Schertzer and Wences [44] studied a model close to the one
we consider. In their model, reproduction happens according to a Poisson point process, and noisy
selection is performed via Gibbs sampling. One of the surprising outcomes of that work is that genetic
diversity (or effective population size) is non-monotonous in the strength of selection: there is a phase
transition between weak and strong selection regimes, and genetic diversity increases with the strength
of selection in the strong selection regime.

We prove for our model a similar behavior for the rate of adaptation of the population in Theo-
rem S.1.1. We observe that γ 7→ v(µ, γ) is non-monotone, as can be seen in the simulations in the left
panels of Fig. 1. We see that for any given value of phenotypic variance (i.e. for any given µ), there
is a critical value of γ for which the speed takes its maximum.

S.2 Some a priori properties of the deterministic dynamics

In this section, we present some properties of the dynamic of (gn, pn) described in (S.1.1). We first
remark that this dynamic preserves concavity, and that sup gn = γ for any n ≥ 1. We then use this
latter observation to give an alternative description of the dynamic of the genotypic profile, defining
sn as the unique real number such that sup gn = γ.

We begin with the following straightforward observation.

Lemma S.2.1. Let f, g be two concave functions R → R ∪ {−∞}. The function

x 7→ sup
z∈R

f(z) + g(x− z)

is concave.

This result can be viewed as a property of a tropicalized version of the convolution. Similarly to
the fact that log-concavity is preserved by the convolution operation, concavity is preserved by the
tropicalized convolution operation.

Proof. Let t ∈ (0, 1). Using the concavity of f and g, for x, x′ ∈ R we have

sup
z∈R

f(z) + g(tx+ (1− t)x′ − z) = sup
(z,z′)∈R2

f(tz + (1− t)z′) + g(t(x− z) + (1− t)(x′ − z′))

≤ t sup
z∈R

f(z) + g(x− z) + (1− t) sup
z′∈R

f(z′) + g(x′ − z′),

which shows the result.
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By Lemma S.2.1, the concavity of gn is preserved by the dynamic.

Proposition S.2.2. Let g0 be a concave function, and (gn, pn) defined recursively by (S.1.1) for all
n ≥ 1. For all n ≥ 1, pn and gn are concave.

Remark. This result justifies the choice of only considering concave traveling waves. If the population
starts from a log-concave initial distribution of genotypes, then the distribution of genotypes remains
log-concave at all steps.

Proof. We first show that gn and pn are concave for any n ≥ 1. Assuming that gn−1 is concave, then
by Lemma S.2.1, the function

p̄n : x 7→ 1− γ + sup
y∈R

gn−1(y)−min(1, µ)|x− y|

is concave, using the concavity of z 7→ −min(1, µ)|z|. Then, using that π is concave and increasing,
we conclude that pn = π ◦ p̄n is concave. Similarly,

ḡn : x 7→ 1− γ + sup
y∈R

gn−1(y)− |x− y| − µ(sn − x)+,

is concave, using Lemma S.2.1 again and the fact that x 7→ −µ(sn − x)+ is concave. As a result,
gn = π ◦ ḡn is concave.

For any g : R → R ∪ {−∞} and ξ ∈ R, we define the functional

Φξ[g] : x 7→ 1− γ + sup
y∈R

g(y)− |x− y| − µ(ξ − x)+. (S.2.1)

We remark that for all n ∈ N, we have π ◦ Φsn [gn−1] = gn. Therefore, defining the value of sn from
gn−1 would allow us to rewrite the dynamic (S.1.1) without reference to the phenotypic profile. This
is the objective of the following lemma.

Lemma S.2.3. Let g be a function R → R ∪ {−∞}. The function

F : ξ 7→ sup
x∈R

Φξ[g](x)

is non-increasing.

Proof. By immediate computations, we have

sup
x∈R

−|x− y| − µ(ξ − x)+ =

{
−µ(ξ − y)+ if µ < 1

−(ξ − y)+ if µ > 1.

Therefore, for ξ ∈ R, we have

F (ξ) = 1− γ + sup
(x,y)∈R2

g(y)− |x− y| − µ(ξ − x)+ = 1− γ + sup
y∈R

g(y)−min(µ, 1)(ξ − y)+.

Using that ξ 7→ −min(µ, 1)(ξ−y)+ is non-increasing for all y ∈ R, we conclude that F is non-increasing
as well.

We are now able to state the alternative construction of the deterministic dynamic of the genotypic
profile.

Proposition S.2.4. Let g0 : R → R ∪ {−∞} be such that sup g0 = γ. Let (sn) and (gn) be the
quantities defined recursively in (S.1.1). For all n ≥ 1, we have

sn = sup{ξ ∈ R : sup
x∈R

Φξ[gn−1](x) ≥ γ},

gn = π ◦ Φsn(gn−1).
(S.2.2)
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Proof. We remark from the proof of Lemma S.2.3 that for any n ≥ 0, we have

sup
x∈R

Φξ[g](x) = pn+1(ξ),

therefore we have sn+1 = sup{ξ ∈ R : supx∈RΦξ[gn](x) ≥ γ} by (S.1.1). The formula for gn+1 follows
immediately by (S.1.1), and we complete the proof.

We complete this section by remarking that for all n ≥ 1, the slope of gn is bounded by −1 on
{x ∈ R : gn(x) ≥ 0}. More precisely, we prove the following result.

Lemma S.2.5. Let g : R → R ∪ {−∞} and ξ ∈ R. Then the function x 7→ Φξ[g](x) + x is non-
decreasing.

Proof. For all x ∈ R, we have

Φξ[g](x) + x = 1− γ + sup
y∈R

(g(y)− |y − x|+ x)− µ(ξ − x)+

= 1− γ + sup
y∈R

(g(y) + y − 2(y − x)+)− µ(ξ − x)+.

As x 7→ −µ(ξ − x)+ − 2(y − x)+ is non-decreasing for all y ∈ R, we conclude that x 7→ Φξ[g] + x is
also non-decreasing.

S.3 Traveling wave genotypic profiles

The main objective of the present section is to describe the concave traveling waves with compact
support for the profile of our population. As we will see, these traveling waves are constructed as
piecewise linear functions. Observing that there is a one-to-one map between (v, s) and (γ, µ) will
then allow us to complete the proof of Theorem S.1.1.

In all the rest of this section, g will denote a concave traveling wave with speed v. Without loss of
generality, up to translation of g we can assume that

sup{x ∈ R : g(x) > 0} = 0. (S.3.1)

We denote by L the left edge of the profile,

L := inf{x ∈ R : g(x) > 0}, (S.3.2)

so that the support of g is [L, 0], and (by concavity) we have g(x) = −∞ if x ̸∈ [L, 0]. In particular,
we refer to |L| as the width of g.

Recalling the definition of the functional Φ from (S.2.1), we also define

s := sup{ξ ∈ R : sup
x∈R

Φξ[g](x) ≥ γ}, (S.3.3)

which plays the role of the phenotypic threshold in a population starting with a genotypic profile g.
In particular, g being a traveling wave, we have

∀x ∈ R, g(x) = π (Φs[g](x+ v)) .

Observe that x 7→ Φs[g](x + v) is a concave function R → R by Lemma S.2.1. It is in particular
continuous, therefore g(0) = g(L) = 0, using that π is upper semi-continuous. Therefore, the above
equation can be rewritten as

∀x ∈ [L, 0], g(x) = Φs[g](x+ v). (S.3.4)

Now we state the main result of this section, which is a more precise version of Theorem S.1.1.
We describe the fully-pulled (γ ≤ γc) and semi-pulled (γ > γc) traveling wave solutions to (S.1.1) as
piecewise linear functions.
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Theorem S.3.1. Let γ ∈ (0, 1) and µ ∈ R+ \ {1}, we set k := ⌊1/µ⌋ and K := ⌊2/µ⌋. Then there
exists a unique up to translation, concave, compactly supported traveling wave g to the dynamic (S.1.1).
Writing [L, 0] for the support of g, the function is differentiable everywhere on [L, 0] except for a finite
number of points, and we have

g : x ∈ R 7→ π

(∫ 0

x
g′(y)dy

)
. (S.3.5)

Moreover, we can identify g′ on the interval [L, 0] as follows. Let v := v(γ, µ) and s as defined
in (S.3.3).

� If γ < γc, then for all x ∈ [L, 0] we have

g′(x) = (jµ− 1), if −jv < x < −(j − 1)v for some j ≥ 1, (S.3.6)

where

v =
2γ

k(2− (k + 1)µ)
≤ s.

� If γ > γc, then for all x ∈ [L, 0], we have

g′(x) =


−1, if x > s− v

(jµ− 1), if s− (j + 1)v < x < s− jv for some 1 ≤ j ≤ K + 1

1 + µ, if x < s− (K + 2)v,

(S.3.7)

where

v = 1− γ and v − s = 1− (1− γ)

(
k

(
1− k + 1

2
µ

)
+ 1

)
=: χ(µ, γ) > 0. (S.3.8)

In particular, γ 7→ v(µ, γ) changes monotonicity at γc(µ) and is maximized at that point.

We first collect specific properties of the traveling wave g, which will be used in the proof of
Theorem S.3.1. We will write

m = argmax(g) ∈ (L, 0)

for the leftmost point at which g attains its maximum. By Lemma S.2.3 and (S.1.2), we remark
that g(m) = sup g = γ, so m corresponds to the genotypic value shared by the largest portion of
the population. Moreover, by concavity of g, we conclude that g is increasing on (−∞,m] and non-
decreasing on [m,∞).

The following notation will also be useful. If there exists x ∈ (L, 0) such that g′(x) > 1, then let d
denote the unique negative real number such that g′ > 1 on the interval (L, d) and g′ ≤ 1 on (d,∞).
Furthermore, if g′ ≤ 1 on the interval (L, 0), then we define d := L. Now d < 0 is well-defined because
of the concavity of g.

Lemma S.3.2. The function y 7→ g(y)+y is non-decreasing on the interval (−∞, 0], and the function
y 7→ g(y)− y is non-increasing on the interval [d,∞) and increasing on [L, d].

Proof. As g(x) = π ◦ Φs[g](x + v), the fact that y 7→ g(y) + y is non-decreasing on (−∞, 0] follows
from Lemma S.2.5 and our convention that g is non-negative on [L, 0] only. The second part follows
from the definition of d.

Using the definition of Φs immediately implies the following corollary.

Corollary S.3.3. For all x ≥ L, we have

Φs[g](x) =


1− γ − x− µ(s− x)+ if x > 0

1− γ + g(x)− µ(s− x)+ if d ≤ x ≤ 0

1− γ + g(d)− (d− x)− µ(s− x)+ if x < d

(S.3.9)
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Proof. We recall that

Φs[g](x) = 1− γ − µ(s− x)+ + sup
y∈R

g(y)− |x− y|.

Let x ≥ d. By Lemma S.3.2, and since g ≡ −∞ on R\[L, 0], we have that the function y 7→ g(y)−(x−y)
is non-decreasing on the interval (−∞, x∧ 0), and y 7→ g(y)+ (x− y) is non-increasing on (x,∞). We
conclude that

sup
y∈R

g(y)− |x− y| =

{
g(0)− |x| if x > 0

g(x) if x ≤ 0,

which completes the proof for x ≥ d.
Now let L ≤ x < d. Using Lemma S.3.2 again, we see that the functions y 7→ g(y) − (x − y) and

y 7→ g(y) + (x − y) are non-decreasing on the intervals (−∞, x] and (x, d) respectively; and we also
have that the function y 7→ g(y)+(x−y) is non-increasing on the interval [d,∞). Therefore, we obtain

sup
y∈R

g(y)− |x− y| = g(d)− (d− x),

and the result follows.

Observe that from (S.3.4), we have

g(x− v) = π ◦ Φs[g](x)

for all x ∈ R. In particular, as the right edge of the support of g is 0, we conclude that

v = sup{x ∈ R : Φs[g](x) ≥ 0}.

We finish by showing that there is no concave compactly supported stationary wave, i.e. all traveling
waves have positive speed. In view of the previous corollary, we obtain a noteworthy relationship
between v and s.

Lemma S.3.4. We have v > 0, moreover

v =

{
1−γ−µs
1−µ if v ≤ s

1− γ if v > s.

Proof. We write
p(x) = 1− γ + sup

y∈R
g(y)−min(µ, 1)(x− y)+

for the phenotypic profile of a population starting with a genotypic profile g. From (S.1.1), we recall
that p(s) = γ. Recall also the definition of the functional Φs from (S.2.1).

We first assume that µ > 1 and s ≥ 0. Then, by the definitions of the functions p and Φs[g], and
since the support of g is the interval [L, 0], we have Φs[g](s) = p(s) = γ ≥ 0. Thus, (4.4) implies that
g(s− v) = γ. Using that g(x) > 0 if and only if x ∈ (L, 0), we conclude that 0 < s < v.

Next, assume that µ > 1 and s < 0. In this case, for all x ∈ (0, |s|), we have

Φs[g](x) = 1− γ + sup
y∈R

g(y)− |x− y| ≥ 1− γ − x.

Therefore Φs[g](x) > 0 for x > 0 small enough, in particular v is positive.
We now assume that µ < 1, and first show that in this case, we have s < 1−γ

µ . Indeed, if this is

not the case then s ≥ 1−γ
µ > 0, and we have

γ = p1(s) = 1− γ + sup
y∈R

g(y)− µ(s− y)+ ≤ 1− γ − µs+ sup
y≤0

g(y) + µy < sup
y≤0

g(y),

which leads to a contradiction as supy≤0 g(y) = γ. However, since s < 1−γ
µ , then by (S.3.9), we have

Φs[g](0) = 1− γ − µ(s)+ > 0,
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therefore Φs[g](x) > 0 for x small enough, proving again that v > 0.
Now, as v > 0, it is defined as the unique positive root of the equation Φs[g](x) = 0. By (S.3.9),

this equation can be rewritten
1− γ − v − µ(s− v)+ = 0.

Therefore, if v > s, we have v = 1− γ, while if v < s then v = 1−γ−µs
1−µ , completing the proof.

In the rest of the section, we identify the function g in terms of v and s. More precisely, we first
assume that v ≤ s, which we call the fully-pulled regime, and we identify the function g in this case,
as well as the associated parameters µ and γ in terms of (v, s). We then work under the assumption
that v > s, that we refer to as the semi-pulled regime. We identify once again g, γ and µ in terms of v
and s. Showing that the correspondence between (v, s) and (γ, µ) is bijective, this is enough to prove
Theorem S.3.1.

Proposition S.3.5 (Characterization of fully-pulled traveling waves). Let g be a traveling wave with
speed v. Suppose that v ≤ s. Then g is given by (S.3.5) and (S.3.6); and we have

µ < 1, v =
2γ

k(2− (k + 1)µ)
and s =

1− γ − (1− µ)v

µ
,

where k = ⌊1/µ⌋.

Proof. The proof mainly relies on successively describing the values of g on each interval [−v, 0],
[−2v,−v], ..., using (S.3.9). First observe that, since v ≤ s, for all x ∈ [0, v] we have

g(x− v) = Φs[g](x) = 1− γ − x− µ(s− x) = 1− γ − µs− (1− µ)x.

In particular, g is linear on [−v, 0] with slope −(1−µ) (recall that by hypothesis, g(0) = 0). Recalling
the notation d from Lemma S.3.2, this also shows that d ≤ −v.

We now assume that g is affine on the interval [−jv,−(j−1)v] with slope −(1−jµ) for some j ≥ 1
with −jv ≥ d. We use again (S.3.9) with x ∈ [−jv,−(j − 1)v] to obtain

g(x− v) = π ◦ Φs[g](x) = π (1− γ + g(x)− µ(s− x)) = π(1− γ − µs+ g(x) + µx).

In other words, g is affine on [−(j+1)v,−jv]∩ [L, 0] with slope −(1−(j+1)µ). Using finite induction,
and the fact that g is continuous on [0, L], we conclude that g is given by (S.3.5) and (S.3.6) on
[L ∨ (d − v), 0]. Recall the notation K = ⌊2/µ⌋. Then the inductive argument and the fact that
−(1−Kµ) ≤ 1 also show that d ≤ L ∨ −Kv.

Furthermore, it can also be checked that the piecewise linear function, which takes 0 at 0 and
has slopes −(1 − jµ) on the intervals [−jv,−(j − 1)v], is positive at −(K − 1)v and non-positive at
−Kv. Together with the fact that d ≤ L∨−Kv, this shows that d = L and that g is given by (S.3.5)
and (S.3.6) on the interval [L, 0].

We recall from Corollary S.3.3 that, since v ≤ s, we have

v =
1− γ − µs

1− µ
, (S.3.10)

furnishing a first equation between the parameters (v, s) and (µ, γ). To find the other one, we recall that
supy∈R g(y) = g(m) = γ, which, given the formulas (S.3.5) and (S.3.6), provides a second relationship
between the parameters.

More precisely, let us recall that k = ⌊1/µ⌋, thus

kµ ≤ 1 ≤ (k + 1)µ.

As a result, the slope of g on [−kv,−(k−1)v] is −(1−kµ) < 0, while the slope of g on [−(k+1)v,−kv] is
−(1−(k+1)µ) ≥ 0. Since g is concave, we conclude that m = argmax(g) = −kv, and that g(−kv) = γ.

28



In particular, this condition implies that k > 0, because otherwise we would have γ = g(0) = 0. Hence,
we conclude µ < 1. Simple computation from (S.3.5) and (S.3.6) then yields

γ = g(−kv) =
k∑

j=1

v(1− jµ) = v

(
k − k(k + 1)

2
µ

)
,

therefore we obtain the second relationship

γ =
kv

2
(2− (k + 1)µ). (S.3.11)

From (S.3.10) and (S.3.11), we deduce the conditions{
v = 2γ

k(2−(k+1)µ)

s = 1−γ−(1−µ)v
µ ,

(S.3.12)

completing the proof.

We now turn to the study of the traveling waves associated to the semi-pushed regime.

Proposition S.3.6 (Characterization of the semi-pushed traveling waves). Let g be a traveling wave
with speed v. Suppose that v > s. Then, g is given by (S.3.5) and (S.3.7), and we have

v = 1− γ and s =
(k + 1)(1− γ)

2
(2− kµ)− γ.

Proof. We use once again (S.3.9), first to give the value of g on the interval [s − v, 0], then on each
interval [s− (j + 1)v, s− jv] by recursion. As a first step, we show that

g(x) = −x for all x ∈ [s− v, 0]. (S.3.13)

Using (S.3.9), we observe that for x ∈ [s+, v], we have

g(x− v) = Φs[g](x) = 1− γ − x.

Thus, as v = 1 − γ by Lemma S.3.4, we have g(x) = −x for all x ∈ [s+ − v, 0]. Therefore, if s ≥ 0,
then the proof of (S.3.13) is now complete.

If s < 0, we prove recursively that for all i ≥ 1 and x ∈ [s+ − iv, s+ − (i− 1)v]∩ [s− v, 0], we have
g(x) = −x. This result being proved for i = 1, we assume it to hold for some i ≥ 1. Then by (S.3.9),
for all x ∈ [s+ − iv, s+ − (i− 1)v], if x > s− v, we have

g(x) = Φs[g](x+ v) = 1− γ + g(x+ v) = 1− γ − (x+ v) = −x,

proving (S.3.13) by induction. The argument also shows that d ≤ s − v (recall the notation d from
Lemma S.3.2).

We now turn to the description of the profile of g on the interval [s−2v, s−v]. For all x ∈ [s−v, s],
we have

g(x− v) = Φs[g](x) =

{
1− γ + g(x)− µ(s− x)+ if x ≤ 0

1− γ − x− µ(s− x)+ if x > 0

= 1− γ − x− µ(s− x),

showing that g has slope −(1− µ) on [s− 2v, s− v].
Using (S.3.9) and the same method as in the proof of Proposition S.3.5, we can again prove by

induction that g has slope −(1− jµ) on [s− (j+1)v, s− jv]∩ [L, 0], for all j ≤ K+1 with K = ⌊2/µ⌋.
If L < s− (K+2)v, then we have d = s− (K+1)v, and by the third line of (S.3.9), the slope of g will
be 1 + µ on the interval [L, s − (K + 2)v]. We therefore conclude that the traveling wave g is given
by (S.3.5) and (S.3.7).
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Finally, we determine the relationship between (v, s) and (µ, γ). From (S.3.5) and (S.3.7) we see
that the slope of g changes sign at s− (k + 1)v, and so we have m = argmax(g) = s− (k + 1)v and

γ = sup g = g(s− (k + 1)v).

Hence, a simple computation leads to

γ = v − s+
k∑

j=1

v(1− jµ) =
(k + 1)v

2
(2− kµ)− s. (S.3.14)

This last equality, together with v = 1− γ allows us to write

s =
(k + 1)(1− γ)

2
(2− kµ)− γ,

completing the proof.

We now have all the preliminary results needed to prove Theorem S.3.1.

Proof of Theorem S.3.1. Let γ ∈ (0, 1) and µ > 0. We set

vf =
2γ

k(2− (k + 1)µ)
and vs = 1− γ,

as well as

sf =
1− γ − (1− µ)vf

µ
and ss =

(k + 1)(1− γ)

2
(2− kµ)− γ,

which are respectively the speed and phenotypic threshold of traveling waves in the fully- and semi-
pulled regimes. We observe that

vf ≤ sf ⇐⇒ µvf ≤ 1− γ − (1− µ)vf ⇐⇒ vf ≤ 1− γ

⇐⇒ 2γ

k(2− (k + 1)µ)
≤ 1− γ ⇐⇒ γ

(
2

k(2− (k + 1)µ)
+ 1

)
≤ 1

⇐⇒ γ

γc(µ)
≤ 1,

and we note that these inequalities hold only if µ < 1, in which case γc(µ) > 0. Similarly, we have

vs > ss ⇐⇒ 1− γ >
(k + 1)(1− γ)

2
(2− kµ)− γ ⇐⇒ γ(k + 1)(2− kµ) > (k + 1)(2− kµ)− 2

⇐⇒ γ >
(k + 1)(2− kµ)− 2

(k + 1)(2− kµ)
=

k(2− kµ)− kµ

(k + 1)(2− kµ)
= γc(µ).

Moreover these inequalities hold for any µ ̸= 1.
If γ ≤ γc(µ) then we have µ < 1 by Proposition S.3.5, and so we also have vf ≤ sf . Therefore,

the traveling wave g described in Proposition S.3.5 is a solution to (S.1.2) with speed v = vf . On the
other hand, γ ≤ γc(µ) also implies vs ≤ ss; therefore there is no solution of the form described by
Proposition S.3.6. We conclude that if γ ≤ γc(µ) then the function given by (S.3.5) and (S.3.6) is the
unique traveling wave solution to the dynamic (S.1.1) with v = vf ≤ s.

Similarly, if γ > γc(µ), we have vs > ss, thus the traveling wave g described in Proposition S.3.6
is a solution to (S.1.2) with speed v = vs. Furthermore, if γ > γc and µ < 1, then vf > sf , and when
µ > 1, then we must have v > s by Proposition S.3.5. Thus, Proposition S.3.5 does not provide any
solution in this case. We conclude that, if γ > γc(µ), then the unique traveling wave solution to (S.1.2)
is given by (S.3.5) and (S.3.7) with speed v = vs > s.

Proof of Theorem S.1.1. This result is an immediate consequence of the more precise Theorem S.3.1.
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Proof of Theorem S.1.3. Recall that

r : x ∈ R 7→ π

[
1− γ + sup

y∈R
(g(y)− |x− y|)

]

denotes the reproduction profile when we start from the genotypic profile g. For any g : R → R∪{−∞},
let us define the functional Ψ by

Ψ[g] : x 7→ 1− γ + sup
y∈R

(g(y)− |x− y|) ,

so that r(x) = π(Ψ[g](x)). Now notice that

Ψ[g](x) = Φs[g](x) + µ(s− x)+ (S.3.15)

for all x ∈ R, and since the function Φs[g] is continuous, so is Ψ[g].
If γ < γc, then we have v < s by Theorem S.3.1. Thus, since Φs[g](v) = 0, (S.3.15) implies

Ψ[g](v) > 0. Then since Ψ[g] is continuous, there exists x ∈ (v, s) such that Ψ[g](x) > 0 and therefore
r(x) > 0, which concludes the first part of the theorem.

If γ > γc, then v > s by Theorem S.3.1. Therefore, using (S.3.15) and the fact that Φs[g](x) ≥ 0
for all x ∈ [s, v], we obtain

0 ≤ g1(x) = Φs[g](x) = Ψ[g](x) = r(x),

for all x ∈ [s, v], which finishes the proof.

S.4 Ancestral structure of the model

We now turn to the study of the ancestral structure of the population, leading to a proof of Theo-
rem S.1.2. The main question of the section if the following: If we sample k individuals at a given time
horizon, what can be inferred about the genealogical tree formed by tracing the k ancestral lineages
of those individuals? As we will see, our hydrodynamic limit already offers insights into the behavior
of a single ancestral lineage (k = 1), which will be discussed in Section S.4.1.

For multiple lineages (k > 1), the coalescence times are primarily influenced by the stochastic
fluctuations in the system. To gain further insight, we examine an alternative individual-based model
with noisy selection. Although the specifics of this model differ, this model is fully integrable and
shares certain universal properties with our original selection model as the population size approaches
infinity. This comparative approach will allow us to derive the ansatz for the effective population size
Ne introduced in Section 4.2, and will be the focus of Section S.4.2.

S.4.1 Parental lineage

Let g be a traveling wave of speed v, and recall that the ancestral map describes the most likely
location (relative to the rightmost genotype) of the parent of a uniformly chosen genotype around
location x (in the log scale) 1 generation in the past:

A(x) := argmaxy∈R{g(y)− |x+ v − y|},

where argmaxy∈R{g(y)− |x+ v − y|} is defined as the smallest y at which the maximum is attained,
and

A+(x) := Argmaxy∈R{g(y)− |x+ v − y|}

is the largest y at which the maximum is attained. As the main step towards the proof of Theo-
rem S.1.2, we show the following result.

Lemma S.4.1. Let g be a traveling wave of speed v with phenotypic threshold s. Then for all x ∈ [L, 0]
the following holds.
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� If γ ≤ γc then
A(x) = A+(x) = min(x+ v, 0).

� If γ > γc, then

A(x) = min(s− v,max(x+ v, d)) and A+(x) = min(0,max(x+ v, d)).

Proof. Let x ∈ [L, 0] be the location of a genotype relative to the rightmost genotype at generation 1,
that is, relative to v. Let c ∈ [L+ v, v] be the actual location of this genotype, so that c = x+ v.

If γ ≤ γc, then Theorem S.3.1 shows that g′ ∈ (−1, 1] (we can only have g′ = 1 on the interval
[L,−(K − 1)v] when 2/µ is an integer). Therefore, it is not hard to see that the maximum of y 7→
g(y) − |c − y| is unique for all c ∈ [L + v, v], and it is attained at c for c ∈ [L + v, 0], and at 0 for
c ∈ [0, v]. With the change of variables x = c− v we see that A(x) = A+(x) = min(x+ v, 0).

We now turn to the case γ > γc. We first take c ∈ [s − v, v]. We use Theorem S.3.1 again to
determine where the maximum of the function y 7→ g(y)− |c− y| is attained. Using the slopes given
by the theorem, in particular noting that g′ = −1 on the interval (s−v, 0), we find that the maximum
is attained everywhere on the interval [s− v, 0 ∧ c].

Similarly, using Theorem S.3.1 one can see that the maximum of the function y 7→ g(y) − |c − y|
is attained at c, if c ∈ [(L+ v) ∨ d, s− v], and it is attained at d, if c ∈ [L+ v, d].

With the change of variables x = c − v and using the definitions of the functions A and A+, we
obtain

A(x) =


s− v, if x ∈ [s− 2v, 0]

x+ v, if x ∈ [L ∨ (d− v), s− 2v]

d, if x ∈ [L, d− v],

and

A+(x) =

{
min(x+ v, 0), if x ∈ [s− 2v, 0]

A(x), if x ∈ [L, s− 2v].

The two relations above imply the second part of the lemma.

Proof of Theorem S.1.2. Lemma S.4.1 implies A(x) = A+(x) = 0 for all x ∈ [−v, 0], if γ ≤ γc; and
also A(x) = s− v and A+(x) = min(x+ v, 0) for all x ∈ [s− 2v], if γ > γc.

Lemma S.4.1 also implies that for any x ∈ [L, 0], both Aj(x) and (A+)j(x) increase by at least
v until they reach 0 or s − v. Since L < ∞ and v > 0 in both regimes (γ ≤ γc and γ > γc), the
statements of the theorem about Aj(x) and (A+)j(x) follow.

Remark that in the semi-pulled case, µ 7→ v − s increases. This hints at the fact that it takes
longer for ancestral lines to meet in the large disorder regime. This is a possible explanation for the
non-monotonicity in Figure 1 in the main text.

S.4.2 Genealogical structure.

We are now interested in the genealogical tree generated by tracing backward in time k distinct
ancestral lineages. Unfortunately, the genealogical structure is inherently stochastic, and random
coalescence times can not be read from the hydrodynamic limit. Thus, we need to go back to the
stochastic model and understand the fluctuations of the system.

Rather than analyzing the original model directly, we consider a fully integrable variation. As
we will demonstrate, this integrable model retains many key properties, suggesting that both the
original and modified versions belong to the same universality class and share an identical genealogical
structure. Given that the ancestral structure of the integrable model is known [44], we can use a
comparative approach to derive the ansatz for Ne presented in the main text (see equations (4.7) and
(4.8). The following paragraphs will elaborate on this.

The exponential model. We consider an extension of the exponential model of Brunet and Derrida
[9]. It was first introduced in [13] by Cortines and Mallein, and further analysed in Schertzer and
Wences [44].
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As in the original model, at every generation, the population is made of Nγ individuals and evolves
in two steps at every generation.

Reproduction. An individual with genetic value x produces an infinite number of offspring whose
genotypes are distributed according to an independent exponential Poisson point process (PPP) with
intensity measure e−(y−x)dy. Note that the exponential PPP is shifted in such a way that the dis-
tribution is centered at x. In particular, there are only finitely many offspring to the right of x, and
infinitely “unfit” children to its left.

Selection. After reproduction, infinitely many children are present. We then select the Nγ indi-
viduals using a sampling scheme interpolating between truncation selection and Gibbs sampling as
follows. Let µ > 0. Because the intensity measure vanishes exponentially fast at ∞, it can be shown
that children after reproduction can be ranked in decreasing order. We first select the N rightmost
genotypes (truncation selection), and then sample Nγ individuals without replacement according to
the sampling weights eµx (Gibbs sampling). When µ = ∞, this amounts to selecting the Nγ right-most
individuals. For µ = 0, Nγ individuals are selected uniformly at random from the the N rightmost
children. Thus, as in the previous model, the µ parameter also captures the level of noise in the
selection scheme.

Universal traveling wave. The exponential model and our original model share the same phe-
nomenology summarized in Table 2. For the sake of presentation, we will restrict ourself to the
“shape” and speed of the traveling wave solution presented in the next table.

Table 2: Table to test captions and labels.

Fully-pulled wave Semi-pulled wave

γ < γc(µ) γ > γc(µ)

Stationary profile

Speed non-decreasing function of γ
non-increasing function of γ (flat in
the exponential model)

Slope of g at the
front

µ− 1 −1 and then µ−1 after some−χ > 0

In order to justify the previous results, let us consider an initial configuration of particles (xi0)
Nγ

i=1

with a limiting log profile g0. Formally, we assume the existence of a function g0 valued in R+∪{−∞}
such that for every a < b

log(#{i : xi0 ∈ (a log(N), b log(N))})
log(N)

→ max
(a,b)

g0 in probability.

The key observation about the exponential model is that the superposition of shifted exponential
PPP is again a shifted exponential PPP. More precisely, if the Pi’s are independent exponential PPP
respective intensity e−(x−xi

0) (describing the position of the offspring after the reproduction step), then∑
i

Pi = P in law

where P is again a shifted exponential PPP with intensity e−(y−XN
eq) with a shift

Xeq ≡ Xeq(x
i
0) := log

(
Nγ∑
i=1

ex
i
0

)

We emphasize that this simple but crucial observation by Brunet and Derrida [9] makes the model
fully integrable. We now make use of this fact to compute the genotypic profile after one generation.
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Reproduction profile. Let us first consider the individuals (ri0)
∞
i=0 after reproduction. By the previous

observation,

log(E(#{i : ri0 ∈ XN
eq + (a log(N), b log(N))}))
log(N)

=

∫ b log(N)
a log(N) e

−xdx

log(N)

= max
(a,b)∈R−

(−x). (S.4.1)

By a second moment argument, on can easily prove that the expectation can be removed inside the
the log and yields

log(#{i : ri0 ∈ Xeq + (a log(N), b log(N))})
log(N)

→ max
(a,b)

R, where R(x) := π(−x) (S.4.2)

where the convergence is meant in probability and the projector π has the effect of setting the popu-
lation to 0 when the “expected stochastic exponent” in (S.4.1) takes negative values (as highlighted
in the main text).

For any a ∈ R, define the shift operator θa

∀x > 0, θaf(x) = f(x− a)

and

X̂eq =
Xeq

log(N)
.

The previous result implies that the set of individuals after reproduction has a limiting log-profile
given by θX̂eq

R(x).

Truncation. We now consider the system of particles after only retaining the N rightmost individuals.
This leads to a truncation profile given by θX̂eq

T (x) where

T (x) =

{
−x if − 1 < x < 0
−∞ otherwise.

(S.4.3)

In words, the log-profile after truncation is obtained by cutting the reproduction profile to the left of
(θX̂eq

R)−1(1) = 1, so that the ≍ N rightmost particles remain.

Gibbs selection. Let T = (z0i )
N
i=1 be the individuals present after the truncation step. We now select

without replacement Nγ particles according to the sampling weights eµz
i
0 . Let z ∈ T an individual

at position u log(N) (u ∈ (−1, 0)). For the sake of simplicity, let us first assume that individuals are
sampled with replacement and let

pN (u) := Nγ × eµu log(N)∑N
i=1 e

µzi0
.

be the expected number of times our focal individual is selected. From (S.4.3), an easy computation
shows that

log(
∑N

i=1 e
µzi0)

log(N)
≈ 1− µ.

so that
log(pN (u))

log(N)
≈ γ − 1 + µ(1 + u)

As a conclusion, if we sample with replacement then

� If γ − 1 + µ(1 + u) > 0, the individual is sampled infinitely many times as N → ∞.

� If γ−1+µ(1+u) < 0, the probability of sampling the individual goes to 0 and is ≍ Nγ−1+µ(1+u).
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With a little bit of extra work, we can then deduce that if we now sample without replacement (as we
should), then the following dichotomy holds

� If γ − 1 + µ(1 + u) > 0 the probability of sampling the individual goes to 1.

� If γ − 1 + µ(1 + u) < 0 the probability of sampling the individual is ≍ Nγ−1+µ(1+u).

We can then deduce that the log-profile of genotypes after one generation is θX̂eq(x0)
G where

G(x) =

{
π(−x+ (γ − 1 + µ(1 + x)))−) if − 1 < x < 0

−∞ otherwise.

To summarize the previous heuristics, one striking feature of the exponential model is that the
wave reaches “stationarity” after only 1 generation and the only effect of the initial configuration is in
the shift θX̂eq(x0)

. It then follows that G is a traveling wave solution with a speed given by the limit

of X̂eq(x0) , where (xi0)
Nγ

i=1 is a configuration with a limiting log profile G.

As in our original model, we can now distinguish between two regimes from the explicit description
of G. Define

χ(µ, γ) ≡ χ := 1− 1− γ

µ

and define
γc(µ) := 1− µ

so that χ > 0 iff γ > γc.

Weak regime. γ > γc. Then G is obtained by concatenating continuously two linear functions with
respective slopes −1 and −(1− µ) at −χ. That is

G(x) =


−x if x ∈ (−χ, 0)

χ− (1− µ)(x− χ) if x ∈ (−1,−χ)
−∞ otherwise.

From the previous computations, we see that the slope at the tip is −1 and then −(1−µ). The change
of slope occurs at −χ.

Let us now consider the speed of the wave and its monotonicaty in γ. Recall that the speed is
given by

X̂eq(x
N
0 ) =

1

log(N)
log(

Nγ∑
i=0

eµx
0
i ) (S.4.4)

where (xi0) has limiting log-profile G. The expression of G and a direct computation yields that the
speed is given by

v ≈ log(χ(µ, γ)

log(N)
→ 0 (S.4.5)

so that in the semi-pulled regime, the wave is static in the natural scaling of the system (that is in
log(N) units).

Strong regime (γ < γc). Define α through the relation

α+ (γ − 1 + µ(1− α)) = 0 ⇐⇒ α = 1− γ

1− µ
∈ (0, 1).

Then

G(x) =

{
−(1− µ)(x+ α) if x ∈ (−1,−α)

−∞ otherwise.

35



and a direct computation from (S.4.4) shows that

v(µ, γ) ≈ −α =
γ

1− µ
− 1 > 0. (S.4.6)

It follows that v is now increasing in γ.

Finally, putting all the previous results together yields Table 2.

Genealogies. The exponential model preserves the properties of the original model summarized in
Table 2. Those properties were derived (analogously to the original model) by looking at the limiting
log-profile after one generation. Since all other properties listed in Table 1 (ancestry, selection etc.)
follow from this analytical approach, it is not hard to extend the previous computations and show
that actually all the properties listed in Table 1 also holds for the exponential model.

This hints at the fact that the two models fall in the same universality class, so that the same
genealogical structure should emerge in the infinite population limit. Let us now recall one of the
main results for the exponential model derived in [44]. See Theorem 2.7 in [44] for a more precise
statement.

For a population of size N , let ΠN
k be the random genealogy obtained by sampling k individuals at

a given time horizon and tracing their ancestral lineages backward in time. (Formally, this is encoded
as an ultra-metric tree rooted at the most recent common ancestor of the sample, or as a coalescent
process [41].) In [44], we proved that for a fixed value of µ ∈ (0, 1), then

1. If γ < γc(µ), Π
N
k converges to the (discrete) Poisson Dirichlet coalescent with parameter (1−µ, 0).

See [44] for a definition. In particular, lineages coalesce in finite time and for k = 2, and the
effective population size is given by

Ne ≡ E
[
TN
2

]
≈ 1

µ
(S.4.7)

2. If γ > γc(µ), then the coalescence time between two lineages go to ∞ and we need to accelerate
time by χ log(N) in order to see an interesting picture emerging. After this proper time rescaling,
the tree ΠN

k converges to the Bolthausen-Sznitman coalescent [41]. In particular, [44] proved
that

Ne = E
[
TN
2

]
≈ χ(µ, γ) log(N) (S.4.8)

This is the ansatz used in Section 4.2 for the model with phenotypic noise which is in good
accordance with our numerical simulations. See Fig 3 in the main text.

S.5 Corrections to the limit theorems

The question of the deviation of finite size models from their deterministic approximations is of
fundamental importance since those limits involve log transforms and change of scales in log(N). As
expected, our numerical simulations show measurable errors from their infinite population prediction.
See again Figure 3 in the main text.

Before explaining the origin of those deviations, we note that despite the fact that our hydrody-
namic results only provide rough approximates on the precise values for the rate of adaptation and the
effective population size (even at large N), our numerical simulations show that our limit theorems
still capture the main qualitative behavior of the system. In particular, we can predict the existence of
a phase transition between a strong and weak regime (change of monotonicity in the evolution speed
γ → v(β, γ) and in the effective population size β → Ne(µ, γ)). Further, the critical value γc(µ) is
well predicted by our limit theorems. See the bottom left pannel of Figure 3 in the main text.

Order of the corrections. Since the exponential model is fully integrable, it can inform us on the
order of the finite-size population deviations from the limit theorems. In [44], we derived precise
asymptotics for the rate of adaptation which extend the heuristics from the previous section (see
(S.4.5,S.4.6)). We proved that

36



1. for γ < γc(µ), then

vN ≈ −(1− γ

1− µ
) +

E [log(Yµ)]

log(N)
+ o(

1

log(N)
) (S.5.1)

where Yµ is a (1− µ) positive stable random variable whose Laplace transform is given by

E
[
e−λYµ

]
) = exp(−Γ(µ)λ1−α) (S.5.2)

2. For γ > γc(µ), then

vN ≈ log(χ(µ, γ) log(N))

log(N)
+ o(

1

log(N)
)

We then have two kinds of correction depending on the regime. Either ≍ 1/ log(N) when γ < γc, or
log(log(χ(µ, γ)/ log(N))) when γ > γc. Note that both corrections explode when γ → γc(µ) which
indicates that the correction o(1) correction should explode at the critical point. A different theory is
then needed to grasp the behavior of the system at criticality (or near criticality).

In addition, we plotted the estimation of the speed for different values of K in the exponential
model. See the top right pannel of Figure 3 in the main text. We see that the higher order correction
terms make the convergence to the theoretical rescaled speed extremely slow. This is particularly true
in the semi-pushed regime (γ > γc(µ)) because of the correction in log(χ log(N))/ log(N). A similar
pattern is observed in our original model. Extending our methods to quantify the error terms (as in
the exponential model) remains an important but presumably difficult challenge.

S.6 Sexual reproduction

We consider a sexual version of the asexual model exposed in the main text. As before, at every
generation n, the population consists of Nγ individuals. The population evolves from n− 1 to n into
two successive steps.

Step 1. Reproduction. We generate N offspring. Each offspring has two parents (x1, x2) chosen
uniformly at random from generation n− 1. The genotype and phenotype of is individual is obtained
by adding noise to the mean parental genotype values, that is

genotype =
1

2
(x1 + x2) +X, phenotype =

1

2
(x1 + x2) +X + Y,

where X and Y have respective distribution fX and fY

fX(x) =
1

2
exp(−|x|), fX(x) =

µ

2
exp(−µ|x|),

for a fixed value of µ > 0 which captures the inverse of the phenotypic noise.
Step 2. Selection. As for the asexual case, the population at generation n is obtained by selecting

the Nγ genotypes with the Nγ rightmost phenotypes.

Figure 5: Fitness wave for the sexual model. In blue : generation 0 to 8. In red: generation 16 to 24.
From left to right: static regime (µ = .48, γ = .43); close to static (µ = .51, γ = .14); moving

(µ = .61, γ = .61)

Log-profiles. As in the asexual case, we can derive a recursive equation for the limiting stochastic
exponents. At generation n− 1, we think of Ngn−1(x)dx as the number of particles in dx log(N). We
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claim that if g0 is concave on its support (that is the set of points where g0(x) ̸= −∞), then for every
n ≥ 0

gn(x) = π

[
sup
y∈R

(1− 2γ + 2gn−1(y)− |x− y| − µ(sn − x)+)

]
,

where sn satifies sup gn = γ,

(S.6.1)

In order to justify the formula, we note that the average number of offspring with parents in
(dx1, dx2) is approximately

Ngn−1(x1)Ngn−1(x21)

N2γ
Ndx1dx2.

Along the lines of the asexual case, this yields

gn(x) = π

[
sup

y1,y2∈R

(
1− 2γ + gn−1(y1) + gn−1(y2)− |x− y1 + y2

2
| − µ(sn − x)+

)]
,

where sn satisfies sup gn = γ,

(S.6.2)

Now, assume that gn−1 is concave on its support. Then

∀y1, y2 ∈ Supp(gn−1), gn−1(y1) + gn−1(y1) ≤ 2gn−1(
y1 + y2

2
).

so that (S.6.1) must hold. Since g0 is assumed to be concave on its support, it remains to show that
concavity is preserved by the dynamics. This easily follows from Lemma S.2.1.
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