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Abstract

Consider a continuous-state branching population constructed as a �ow of nested sub-

ordinators. Inverting the subordinators and reversing time give rise to a �ow of coalescing

Markov processes with negative jumps, which correspond to the ancestral lineages of indi-

viduals in the current generation. The process of the ancestral lineage of a �xed individual

is the Siegmund dual process of the continuous-state branching process. We study its semi-

group, its long-term behaviour and its generator. In order to follow the coalescences in the

ancestral lineages and to describe the backward genealogy of the population, we de�ne non-

exchangeable Markovian coalescent processes obtained by sampling individuals according to

an independent Poisson point process over the �ow. These coalescent processes are called

consecutive coalescents, as only consecutive blocks can merge. They are characterized in

law by �nite measures on N which can be thought as the o�spring distributions of some

inhomogeneous immortal Galton-Watson processes forward in time.

Keywords: Branching processes, coalescent processes, continuous-state branching processes,
�ow of subordinators, genealogy, duality.

Introduction

Random population models can be divided in two classes, those with constant �nite size and
those whose size is varying randomly. It is known since the 2000s that populations with con-
stant �nite size, evolving by resampling, have genealogies given by exchangeable coalescents.
These processes, de�ned by Möhle and Sagitov [MS01], Pitman [Pit99], Sagitov [Sag99] and
Schweinsberg [Sch00], are generalisations of Kingman's coalescent for which multiple coales-
cences of ancestral lineages are allowed. They correspond to the genealogy backward in time
of so-called generalized Fleming-Viot processes. Those processes, which can be seen as scaling
limits of Moran models [Mor58], were de�ned and studied by Donnelly and Kurtz [DK99] (via
a particle system called lookdown construction) and by Bertoin and Le Gall [BLG03] (via �ows
of exchangeable bridges). Both constructions are similar in many aspects and are summarized
via the notion of �ow of partitions, see Labbé [Lab14a, Lab14b] and Foucart [Fou12]. We refer
to Bertoin's book [Ber06] for a comprehensive account on exchangeable coalescents.
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The main objective of this work is to study coalescent processes induced by branching pro-
cesses. We brie�y explain how branching concepts have been developed from the sixties to the
beginning of the twenty-�rst century. Continuous-state branching processes (CSBPs for short)
are positive Markov processes representing the size of a continuous population. They have been
de�ned by Ji°ina [Ji°58] and Lamperti [Lam67a] and are known to be scaling limits of Galton-
Watson Markov chains, see Grimvall [Gri74] and Lamperti [Lam67b]. The most famous CSBP
is certainly Feller's branching di�usion

dXt = σ
√
XtdBt + βXtdt

which is the rescaled limit of binary branching processes, see Feller [Fel51] and Ji°ina [Ji°69].
Feller's CSBP is the only CSBP with continuous paths, other ones have positive jumps which
represent macroscopic reproduction events in the population.

At about the same time as the rise of exchangeable coalescents, considerable research was
devoted to the study of the genealogy of branching processes forward in time. Galton-Watson
processes have a natural lexicographical tree's genealogy. This representation led Aldous [Ald93]
and Duquesne and Le Gall [DLG02] to study scaling limits of discrete trees and establish re-
markable convergences towards the Brownian continuum tree in the Feller di�usion case and
Lévy continuum trees in the case of general CSBPs. Another natural genealogy for a branching
population is provided by Bertoin and Le Gall in their precursor article [BLG00] in terms of �ows
of subordinators. At any �xed times s < t, the population between time s and t is represented
by a subordinator (a Lévy process with non-decreasing paths) (Xs,t(x), x ≥ 0). Individuals are
ordered in such a way that ancestors from time s are the jumps locations of the subordinator
and each ancestor from time s has a family at time t whose size is the size of the jump.

Both representations with trees and subordinators are future-oriented and less attention has
been paid to the description of coalescences in ancestral lineages of continuous-state branching
processes. We brie�y review some methods that have been developed recently in order to study
the genealogy backwards in time of branching processes.

When reproduction laws are stable, branching and resampling population models can be
related through renormalisation by the total size and random time-change. We refer to Berestycki
et al. [BBS07], Birkner et al. [BBC+05], Foucart and Hénard [FH13] and Schweinsberg [Sch03].
The connection between exchangeable coalescents and CSBPs is particular to stable laws and
the study of the genealogy of a general branching process requires a di�erent method.

One approach consists in conditioning the process to be non-extinct at a given time, sampling
two or more individuals uniformly in the population and study the time of coalescence of their
ancestral lineages. This program is at the heart of the works of Athreya [Ath12], Duquesne and
Labbé [DL14], Harris et al. [HJR17], Johnston [Joh17], Lambert [Lam03] and Le [Le14].

Starting from a di�erent point of view, Bi and Delmas [BD16] and Chen and Delmas [CD12]
have considered stationary subcritical branching populations obtained as processes conditioned
on the non-extinction. The genealogy is then studied via a Poisson representation of the popu-
lation. We refer also to Evans and Ralph [ER10] for a study in the same spirit.

A third approach is to represent the backwards genealogy through point processes. Aldous
and Popovic [AP05] and Popovic [Pop04] have shown how to encode the genealogy of a criti-
cal Feller di�usion with a Poisson point process on R+ × R+ called Coalescent Point Process.
Atoms of the coalescent point process represent times of coalescences between two �consecutive�
individuals in the boundary of the Brownian tree. Such a description was further developed
by Lambert and Popovic [LP13] for a Lévy continuum tree. In this general setting, multiple
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coalescences are possible and the authors build a point process with multiplicities, which records
both the coalescence times and the number of involved mergers in the families of the current
population. Their method requires in particular to work with the height process introduced by
Le Gall and Le Jan in [LGLJ98].

In the present article, we choose a di�erent route and seek a dynamical description of the
genealogy. We �rst observe that �ows of subordinators provide a continuous branching popula-
tion whose size is in�nite at any time and whose ancestors are arbitrarily old. We then de�ne
and study the inverse �ow, denoted by (X̂s,t(x), s ≤ t, x ≥ 0), which tracks backward in time
the ancestral lineage of an individual considered at any given time. In particular, the process
(X̂t(x), t ≥ 0) := (X̂0,t(x), t ≥ 0) is the ancestral lineage of the individual x in the population
taken at time 0. This is a Markov process and we characterize its semi-group, its long-term
behaviour (recurrent or transient) as well as its generator.

In a second time, we introduce new elementary non-exchangeable Markovian coalescents as
simple dual objects of immortal continuous-time Galton-Watson processes. These processes are
taking values in the set of partitions of N whose blocks are formed with consecutive integers. We
call them consecutive coalescents as only consecutive blocks will be allowed to merge. These coa-
lescent processes represent the genealogy of immortal continuous-time Galton-Watson processes
when time's arrow points to the past.

We will use these coalescent processes to describe the genealogy of general CSBPs. They will
simplify the description given by the Coalescent Point Process as introduced in [LP13, Section 4].
Our method follows closely that of Bertoin and Le Gall for exchangeable coalescents [BLG03],
[BLG05], [BLG06]. Heuristically, exchangeable bridges are replaced by subordinators and uni-
form random variables by atoms of a Poisson process. We shall construct random partitions by
sampling individuals according to an independent Poisson process. Namely, let (Jλi , i ≥ 0) be
the sequence of atoms (i.e jumping times) of an independent Poisson process with intensity λ and
consider the random partition Cλ(t) de�ned by letting integers i and j in the same equivalence
class if and only if X̂t(J

λ
i ) = X̂t(J

λ
j ). We will show that the process (Cλ(t), t ≥ 0) is a (possibly

time-inhomogeneous) consecutive coalescent. We characterize its jump rates and its long-term
behaviour.

We shall also show how to de�ne the complete genealogy of individuals standing in the
current generation when the so-called Grey's condition is satis�ed. Loosely speaking, we will let
the intensity parameter λ to in�nity and describe the genealogy through coalescing consecutive
intervals of [0,∞]. This answers an open question in [LP13, Remark 6].

We apply then our results to the speci�c cases of Neveu and stable CSBPs. In the case of
Neveu's CSBP (which does not ful�ll Grey's condition), Bertoin and Le Gall in [BLG00] have
shown that the genealogy of the CSBP, started from a �xed size (without renormalization nor
time-change) is given by a Bolthausen-Sznitman coalescent. We will see that for this CSBP, the
consecutive coalescents have simple explicit laws. This will enable us to recover results of Möhle
[Möh15] and Möhle and Kukla [KM18] about the number of blocks in a Bolthausen-Sznitman
coalescent. In the Neveu case, the process (X̂t(x), t ≥ 0) is related to a generalized Ornstein-
Uhlenbeck process with negative jumps. We compute explicitely its Laplace exponent and
recover a result due to Bertoin and Baur [BB15]. In the stable case, the consecutive coalescent
is a simple deterministic time-change of a time-homogeneous consecutive coalescent whose jump
rates take a simple explicit form. Last, in the critical stable case, the process (X̂t(x), t ≥ 0) is a
positive self-similar process and we compute the Laplace exponent of its Lévy parent process.
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We wish to mention that Grosjean and Huillet in [GH16] have studied a recursive balls�in�
boxes model which can be seen as a consecutive coalescent in discrete time. Moreover, Johnston
and Lambert [JL19+] have independently considered Poissonization techniques for studying the
coalescent structure in branching processes.

The paper is organized as follows. In Section 1, we recall the de�nition of a continuous-state
branching process and how Bochner's subordination can be used to provide a representation of
the genealogical structure associated with CSBPs. In Section 2, we investigate the inverse �ow
by characterizing its semi-group and studying its long-term behavior. In Section 3, we provide
a complete study of the inverse �ow in the case of the Feller di�usion. We recover with an
elementary approach the Coalescent Point Process of Popovic [Pop04]. In Section 4, we study
the coalescences in the inverse �ow of a general CSBP by de�ning the consecutive coalescents.
We describe the genealogy of the whole population standing at the current generation under
Grey's condition (recalled in Section 1). In Section 5, we investigate the in�nitesimal dynamics
of the inverse �ow. The process of the ancestral lineage of a �xed individual is characterized by
its generator. In Section 6, we focus on the stable and Neveu CSBPs for which calculations can
be made explicitly. In the Appendix, we gather some elementary properties on right continuous
inverse of càdlàg non-decreasing functions. We also establish some key results, which are needed
in Section 4, on the discretization of subordinators through Poisson sampling.
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Notation. In the rest of the article, L= denotes equality in law between random variables.
Condition

´
0 f(x)dx < ∞ means there exists ε > 0 such that

´ ε
0 f(x)dx < ∞, and similarly´∞

f(x)dx < ∞ means there exists A > 0 such that
´∞
A f(x)dx < ∞. For any n,m ∈ N such

that n ≤ m, the integer interval between n and m is denoted by [|n,m|]. The set C([0,∞]) is
the space of continuous functions f on [0,∞), with �nite limit at ∞ written f(∞). We write
f(t) = O(g(t)) as t goes to ∞ if for a large enough t0, g is non-negative and supt≥t0

|f(t)|
g(t) <∞.

1 Generalities on continuous-state branching processes

This section is divided in two parts. In the �rst one, we introduce the continuous-state branching
processes as well as their fundamental properties. In the second one, we show how continuous-
state branching processes can be constructed as �ows of subordinators. Their main properties
are also stated.

1.1 Continuous-state branching processes

We give here an overview of continuous-state branching processes and their fundamental prop-
erties. Most statements in this section can be found for instance in [Li11, Chapter 3] or [Kyp14,
Chapter 12].

De�nition 1.1. A continuous-state branching process is a Feller process (Xt, t ≥ 0), taking
values in [0,∞], with 0 and ∞ being absorbing states, whose semi-group satis�es the so-called
branching property:

∀x, y ≥ 0, ∀t ≥ 0, Xt(x+ y)
L
= Xt(x) + X̃t(y), (1.1)

where (Xt(x), t ≥ 0) and (X̃t(y), t ≥ 0) are two independent processes with the same law as
(Xt, t ≥ 0), started respectively from x and y.

The branching and the Markov properties ensure the existence of a map λ ∈ (0,∞) 7→ vt(λ)
for all t ≥ 0, which satis�es for all λ > 0, x ≥ 0 and t, s ≥ 0

E[e−λXt(x)] = exp(−xvt(λ)) and vs+t(λ) = vs ◦ vt(λ). (1.2)

Silverstein [Sil68] shows that t 7→ vt(λ) is the unique solution to the integral equation

∀t ∈ [0,∞),∀λ ∈ (0,∞)/{ρ},
ˆ λ

vt(λ)

dz

Ψ(z)
= t (1.3)

where ρ := inf{z > 0; Ψ(z) ≥ 0} is the largest positive root of Ψ, a Lévy-Khintchine function of
the form

Ψ(q) =
σ2

2
q2 − βq +

ˆ ∞
0

(
e−qx − 1 + qx1x≤1

)
π(dx), (1.4)

with σ2 ≥ 0, β ∈ R and π a measure on (0,∞) satisfying
´

(1 ∧ x2)π(dx) < ∞. The function
Ψ is called branching mechanism and characterizes the law of the CSBP. We shall write later
CSBP(Ψ) for a CSBP with branching mechanism Ψ. The generator of the CSBP(Ψ) acts as
follows

Lf(z) = z
σ2

2
f ′′(z) + βzf ′(z) + z

ˆ ∞
0

(
f(z + h)− f(z)− hf ′(z)1h≤1

)
π(dh) (1.5)
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on the space of twice continuously di�erentiable functions f with compact support. The CSBP
has in�nite variations if ˆ 1

0
xπ(dx) =∞ or σ2 > 0. (1.6)

An important family of branching mechanisms are those of the form

Ψ(q) =
σ2

2
q2 − βq + cαq

α

with σ2 ≥ 0, cα ≥ 0 and α ∈ (0, 2)\{1}. The Lévy measure π associated with such a mechanism
Ψ is

π(dh) = c′αh
−1−αdh, with c′α =

α(α− 1)

Γ(2− α)
cα.

The CSBP(Ψ) is said to be supercritical, critical or subcritical if respectively Ψ′(0+) < 0,
Ψ′(0+) = 0 or Ψ′(0+) > 0. In the subcritical and critical cases, the largest root ρ is 0. In
the supercritical case ρ ∈ (0,∞]. The following theorem due to Grey [Gre74] summarizes the
possible behaviors at the boundaries of a CSBP(Ψ).

Theorem 1.A (Grey, [Gre74]). Consider (Xt(x), t ≥ 0) a CSBP(Ψ) started from x.

(i) For any x ≥ 0,

P( lim
t→∞

Xt(x) = 0) = 1− P( lim
t→∞

Xt(x) =∞) = e−xρ.

(ii) For any t > 0, the limit vt(∞) := lim
λ→∞

vt(λ) exists in (0,∞) if and only if Ψ(u) ≥ 0

for some u ≥ 0 and

ˆ ∞ du

Ψ(u)
<∞ (condition for extinction). (1.7)

If (1.7) holds, then for any t ≥ 0, P(Xt(x) = 0) = e−xvt(∞) > 0.

(iii) Under condition (1.7), the following events coincide almost-surely{
lim
t→∞

Xt(x) = 0
}

= {∃t ≥ 0 : Xt(x) = 0}.

(iv) For any t > 0, the limit vt(0) := lim
λ→0

vt(λ) exists in (0,∞) if and only if Ψ(u) < 0 for

some u ≥ 0 and ˆ
0

du

|Ψ(u)|
<∞ (condition for explosion). (1.8)

If (1.8) holds, then for any t ≥ 0, P(Xt(x) =∞) = 1− e−xvt(0).

(v) Under condition (1.8), the following events coincide{
lim
t→∞

Xt(x) =∞
}

= {∃t ≥ 0 : Xt(x) =∞}.
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The event {Xt(x) = 0 for some t ≥ 0} is called extinction, and {Xt(x) =∞ for some t ≥ 0}
is called explosion. We refer to the integral conditions (1.7) and (1.8) as Grey's condition for
extinction and explosion respectively. Lambert [Lam07] and Li [Li00] have studied the quasi-
stationary distribution of subcritical CSBPs conditioned on the non-extinction.

Theorem 1.B (Lambert [Lam07], Li [Li00]). In the subcritical case, under Grey's condition

for extinction
´∞ du

Ψ(u) < ∞, there exists a probability measure ν over (0,∞) such that for any

Borelian set A ⊂ (0,∞)
ν(A) := lim

t→∞
P(Xt(x) ∈ A|Xt(x) > 0).

The Laplace transform of ν is given by

ˆ ∞
0

e−uzν(dz) = 1− e−Ψ′(0+)
´∞
u

dx
Ψ(x) for any u ≥ 0. (1.9)

1.2 Flows of subordinators

Observe that on the one hand, by the branching property of CSBP, the random variable Xt(x)
is a positive in�nitely divisible random variable, parametrized by x. Therefore, for all t ≥ 0,
the process x 7→ Xt(x) is a positive Lévy process, hence a subordinator. In particular, the map
λ 7→ vt(λ) is the Laplace exponent of this (possibly killed) subordinator, and can be written as

vt(λ) = κt + dtλ+

ˆ
[0,∞)

(1− e−λu)`t(du) (1.10)

with κt ≥ 0, dt ≥ 0 and `t a Lévy measure on R+ such that
´∞

0 (1∧ u)`t(du) <∞. As usual, κt
can be thought of as a mass at ∞ of `t, i.e. κt = `t({∞}).
Remark 1.2. Note that the quantities vt(∞) and vt(0) de�ned in Theorem 1.A can be rewritten,
with the formula in (1.10)

vt(∞) = κt + dt · ∞+ `t((0,∞)) = dt · ∞+ `t((0,∞]) and vt(0) = κt.

Therefore (1.7) holds if and only if for all t > 0, the measure `t is �nite and dt = 0. Condition
(1.8) is equivalent to the positivity of κt for all t > 0.

On the other hand, the semigroup property entails that for any s, t ≥ 0,

vt+s = vt ◦ vs. (1.11)

Bochner's subordination implies that if Y (t) is a subordinator with Laplace exponent vt and
Y (s) is a subordinator with Laplace exponent vs, then Y (t) ◦Y (s) is a subordinator with Laplace
exponent vt ◦ vs = vt+s. Therefore, writing X̃ an independent copy of the CSBP X, we have

∀x ≥ 0, Xt+s(x)
L
= X̃t(Xs(x)).

This last observation led Bertoin and Le Gall [BLG00] to consider representing a CSBP as a
�ow of subordinators, which we now de�ne.

De�nition 1.3. A �ow of subordinators is a family (Xs,t(x), s ≤ t, x ≥ 0) satisfying the following
properties:
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(i) For every s ≤ t, x 7→ Xs,t(x) is a càdlàg subordinator, with same law as x 7→ X0,t−s(x).

(ii) For every t ∈ R, (Xr,s, r ≤ s ≤ t) and (Xr,s, t ≤ r ≤ s) are independent.

(iii) For every r ≤ s ≤ t, Xr,t = Xs,t ◦Xr,s.

(iv) For every s ∈ R and x ≥ 0, we have Xs,s(x) = x = limt→sXs,t(x) in probability.

Remark 1.4. The convergence in (iv) also holds uniformly on compact sets by Dini's second
theorem.

It was proved by Bertoin and Le Gall [BLG00] that any CSBP can be constructed as a �ow of
subordinators. For the sake of completeness, we prove here that CSBP and �ow of subordinators
are in one-to-one map.

Lemma 1.5. Let (Xs,t(x), s ≤ t, x ≥ 0) be a �ow of subordinators as in De�nition 1.3. There

exists a branching mechanism Ψ such that for all s ∈ R and x ≥ 0, (Xs,s+t(x), t ≥ 0) is a

CSBP(Ψ) starting from x. Reciprocally, for each branching mechanism Ψ, there exists a �ow of

subordinators such that for all s ∈ R and x ≥ 0, (Xs,s+t(x), t ≥ 0) is a CSBP(Ψ) starting from

x.

Proof. Let (Xs,t(x), s ≤ t, x ≥ 0) be a �ow of subordinators. By De�nition 1.3(ii) and (iii),
we have that t 7→ Xs,s+t(x) is a Markov process for all x ≥ 0 and s ∈ R. Moreover, Def-
inition 1.3(iv) implies this Markov process to be continuous in probability. Since by De�ni-
tion 1.3(i), x 7→ Xs,s+t(x) is càdlàg, the semigroup of (Xs,s+t(x), t ≥ 0) maps C([0,∞]) to
C([0,∞]), it is therefore Feller. Finally, by De�nition 1.3(i), we conclude that this Markov
process is homogeneous in time, and satis�es the branching property (1.1), as

Xs,s+t(x+ y) = Xs,s+t(x) + (Xs,s+t(x+ y)−Xs,s+t(x)) ,

and Xs,s+t(x + y) −Xs,s+t(x) is independent of Xs,s+t(x) and has same law as Xs,s+t(y). Re-
ciprocally, by [BLG00, Proposition 1], given a branching mechanism Ψ, there exists a process
(S(s,t)(a), s ≤ t, a ≥ 0) such that almost surely

(i) for all s ≤ t, a 7→ S(s,t)(a) is a càdlàg subordinator with Laplace exponent λ 7→ vt−s(λ),
de�ned in (1.3),

(ii) for all t ∈ R, (S(r,s), r ≤ s ≤ t) and (S(r,s), t ≤ r ≤ s) are independent,

(iii) for all r ≤ s ≤ t, S(s,t) ◦ S(r,s) = S(r,t),

(iv) the �nite dimensional distributions of t 7→ S(s,s+t)(a) are the ones of a CSBP(Ψ).

One readily observes that points (i)�(iii) imply De�nition 1.3(i)�(iii). Moreover, by the fourth
point, (S(s,s+t)(a), t ≥ 0) has the law of a CSBP(Ψ) (Xt, t ≥ 0) starting from X0 = a. As X is
a Feller process, we have limt→0Xt = a in probability, thus (iv) yields limt→0 S

(s,s+t)(a) = a in
probability, completing the proof.

A noteworthy consequence of the above lemma is that if (Xs,t(x), s ≤ t, x ≥ 0) is a �ow of
subordinators associated with the branching mechanism Ψ, we have that for all s ≤ t and x ≥ 0,

∀λ ∈ (0,∞), E (exp (−λXs,t(x))) = exp(−xvt−s(λ)), (1.12)
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where vt−s(λ) is the function de�ned in (1.3). One can think of this �ow of subordinators as
a way to couple on the same probability space every Markov property and every branching
property (1.1), for all values of t, x, y simultaneously in one process.

The �ow of subordinators provides a genuine continuous-space branching population model.
More precisely, the interval [0, Xs,t(x)] can be interpreted as the set of descendants at time t of
the population that was represented at time s as the interval [0, x]. With this interpretation,
the genealogy forward in time of the population is de�ned as follows. If Xs,t(y−) < Xs,t(y),
we say that for all z ∈ (Xs,t(y−), Xs,t(y)], the individual z at time t is a descendant of the
individual y living at time s. If Xs,t(y−) = Xs,t(y) (i.e. Xs,t is continuous at y) and y =
inf{x > 0 : Xs,t(x) = z}, we then say that individual z = Xs,t(y) at time t is the descendant of
the individual y living at time s. One can observe that the cocycle property ensures that this
construction indeed de�nes a genealogy. If z at time t is a descendant of y at time s, which is a
descendant of x at time r, we have

Xs,t(y−) < z ≤ Xs,t(y) and Xr,s(x−) < y ≤ Xr,s(x).

By the cocycle property (Xr,t = Xs,t ◦Xr,s) and as Xs,t is non-decreasing then

Xr,t(x−) = Xs,t(Xr,s(x−)) ≤ Xs,t(y−) < z and Xr,t(x) = Xs,t(Xr,s(x)) ≥ Xs,t(y) ≥ z,

thus z at time t is a descendant of x at time r. Similar computations can be written if Xs,t is
continuous at point y and/or Xr,s is continuous at point x.

Recall Condition (1.6) for the sample paths of the CSBP(Ψ) to have in�nite variations. This
condition ensures the subordinator Xs,t to be driftless, i.e. dr = 0 for all r ≥ 0 in (1.10). As
a result, under (1.6), the range Xs,t([0,∞)) of the subordinator has zero Lebesgue measure,
ensuring that almost every individual x at time t belongs to one of the in�nite families of
ancestors at time s. This assumption (1.6) often simpli�es the interpretation of results obtained
in this article. Under this assumption, we denote by Js,t := {x ≥ 0 : Xs,t(x) 6= Xs,t(x−)} the set
of jumps of Xs,t. By de�nition of the genealogy, almost surely the population at time t, indexed
by R+, can be partitioned according to their ancestor at time s by {(Xs,t(y−), Xs,t(y)], y ∈ Js,t}.

Recall that according to Theorem 1.A-(ii), Grey's condition
´∞ du

Ψ(u) < ∞ entails that for
any t > 0, `t((0,∞]) <∞. Under this condition, the subordinators Xs,t are therefore compound
Poisson processes. In particular, the set Js,t is the set of atoms of a Poisson process with intensity
vt(∞). Note that the partition {(Xs,t(y−), Xs,t(y)], y ∈ Js,t} consists in a family of consecutive
intervals. This justi�es the introduction of consecutive coalescents on N in Section 4

2 The inverse �ow

We start this section by a preliminary observation on the genealogy backward in time of a CSBP.
Consider the Poisson point process on R+ × (0,∞)

Et(dx,dz) =
∑
u≥0

δ(atu,∆X−t,0(u))) (2.1)

with some renormalisation constant at > 0 for all t > 0. Recall that ρ is the largest positive
root of Ψ and ν the quasi-stationary distribution (1.9) of a subcritical CSBP conditioned on the
non-extinction.
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Proposition 2.1. Assume
´∞ du

Ψ(u) <∞ and set at = 1 if Ψ′(0+) < 0, at = vt(∞) if Ψ′(0+) ≥ 0.
Then

lim
t→∞
Et = E∞ in law, for the topology of weak convergence (2.2)

where E∞ is a Poisson point process with intensity respectively ρdx⊗ δ∞(dz) when Ψ′(0+) < 0,
dx⊗ δ∞(dz) when Ψ′(0+) = 0, and dx⊗ ν(dz) when Ψ′(0+) > 0.

Remark 2.2. In the supercritical case, �ows of CSBPs can be renormalized to converge almost-
surely. We refer to Duquesne and Labbé [DL14], Grey [Gre74], and Foucart and Ma [FM16].
Since for any time t, X−t,0 and X0,t have the same law, we could therefore renormalize in law
the size of the descendants at time 0 of x from time −t. Typically, ∆X−t,0(x) is of order
exponential in the �nite mean case (|Ψ′(0+)| <∞), and double exponential in the in�nite mean
case (|Ψ′(0+)| =∞).

Proof. Under Grey's condition, vt(∞) = `t((0,∞]) < ∞, and x 7→ X−t,0(x) is a compound
Poisson process with no drift, namely dt = 0. Therefore, the point process Et is a Poisson point
process with intensity `t(dx)

at
. From (1.10) observe additionally that for any q ≥ 0,

ˆ
[0,∞]

(1− e−qx)
`t(dx)

at
=
vt(q)

at
. (2.3)

In the supercritical case (Ψ′(0+) < 0), we have limt→∞ vt(q) = ρ for all q > 0 (while vt(0) = 0),
at = 1 for all t > 0 and limt→∞ `t((0,∞]) = ρ. Therefore (2.3) shows that `t(dx) converges
weakly towards ρδ∞(dx). As a result, we conclude that Et converges in law towards a Poisson
point process on (0,∞)× (0,∞] with intensity ρdx⊗ δ∞(dz).

In the subcritical and critical cases, we have limt→∞ vt(∞) = 0, and we set at = vt(∞). By
(1.3) and (1.2), we have d

duvt(u) = Ψ(vt(u))
Ψ(u) . Therefore

vt(q)

vt(∞)
= exp

(
−
ˆ ∞
q

d

du
log(vt(u))du

)
= exp

(
−
ˆ ∞
q

Ψ(vt(u))

vt(u)

du

Ψ(u)

)
.

Since limt→∞
Ψ(vt(u))
vt(u) = Ψ′(0+), by monotone convergence we obtain that limt→∞

vt(q)
vt(∞) =

e
−Ψ′(0+)

´∞
q

du
Ψ(u) . In the critical case (Ψ′(0+) = 0), the latter limit equals 1 and we thus from

(2.3) that `t(dx)
at

converges weakly towards δ∞. In the subcritical case (Ψ′(0+) > 0), we see that
`t(dx)
at

converges weakly towards the probability measure ν with Laplace transform (1.9). We
conclude the convergence of Et to the stated limits.

Let us describe in details the meaning of the above convergence, for supercritical, critical and
subcritical CSBPs. Observe that Et encodes information on the individuals at time −t having a
large family of descendants at time 0. Thus, (2.2) gives information on the origin of the earliest
ancestors of the population at time 0. Depending on the sign of Ψ′(0+), we have three di�erent
behaviours:

(i) If Ψ′(0+) < 0, a unique ancestor from time −∞, located at an exponential random variable
with parameter ρ, which generates all individuals at time 0. This individual is the ancestor
of the process.
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(ii) If Ψ′(0+) = 0, then at := vt(∞) −→
t→∞

0 and the whole population at time 0 has a common

ancestor, but the backward lineage of this ancestor converges in law as t→∞ towards∞.

(iii) If Ψ′(0+) > 0, then the population at time 0 is split into distinct families, each of which
coming down from a di�erent ancestor at time −∞.

In the (sub)critical case, individuals from generation −t with descendance at time 0 are located
at distance O(1/vt(∞)) from 0. Proposition 2.1 motivates a more complete study of the ancestral
lineages of individuals alive in the population at time 0. Our main aim is to provide an almost-
sure description of how (Et, t ≥ 0) evolves and to get precise information on the sizes of the
families.

We now introduce the inverse �ow of the �ow of subordinators (Xs,t, s ≤ t) and study some
of its properties. We �rst de�ne, for s ≤ t and y ≥ 0

X−1
s,t (y) := inf{x : Xs,t(x) > y}.

The process X−1
s,t is the right-continuous inverse of the càdlàg process Xs,t. Note that the

individual X−1
s,t (y) is the ancestor alive at time s of the individual y considered at time t ≥ s. It

is therefore a natural process to introduce in order to study the genealogy of a CSBP backwards
in time. We call inverse �ow the process (X̂s,t(y), s ≤ t, y ≥ 0) de�ned for all s ≤ t, y ≥ 0 as
follows

X̂s,t(y) = X−1
−t,−s(y). (2.4)

We �rst list some straightforward properties of inverse �ows.

Lemma 2.3. The following properties hold:

(i) Almost surely, for every s ≤ t and x, y > 0, we have {Xs,t(x) > y} = {X̂−t,−s(y) < x}.

(ii) For every t ≥ 0, (X̂r,s, r ≤ s ≤ t) and (X̂r,s, t ≤ r ≤ s) are independent.

(iii) Almost surely, for every s ≤ t ≤ u, X̂s,u = X̂t,u ◦ X̂s,t.

(iv) For all x ≥ 0, X̂0,0(x) = x = limt→0 X̂0,t(x) in probability.

Remark 2.4. The convergence in (iv) also holds uniformly on compact sets.

Proof. These results are an immediate consequence of Lemma A.1, which describes well-known
properties of right-continuous inverses, and the de�nition of �ow of subordinators. More pre-
cisely, the �rst point is a consequence of Lemma A.1(ii), the third one of Lemma A.1(iii) and
the fourth one follows from Lemma A.1(iv) and De�nition 1.3(iv).

Finally, the second point follows simply from the fact that for all a ≤ b ≤ t, X̂a,b is measurable
with respect to (Xr,s,−t ≤ r ≤ s). Hence, by De�nition 1.3(ii), we conclude that (ii) holds.

We shall denote (X̂t(y), y ≥ 0, t ≥ 0) the �ow of inverse subordinators (X̂0,t(y), y ≥ 0, t ≥
0). As noted above, it tracks backwards in time the ancestral lineages of the population at
time 0. Since individuals are ordered, X̂t(y) can also be interpreted as the random size of the
population at time −t whose descendance at time 0 has size y. Observe that by Lemma 2.3(i)
and De�nition 1.3(i), we have

∀s ≤ t, ∀x, y ≥ 0, P(Xs,t(x) > y) = P(X̂s,t(y) < x). (2.5)
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The relation (2.5) is known as Siegmund duality. We refer the reader to Siegmund [Sie76] and
Cli�ord and Sudbury [CS85].

Theorem 2.5. Fix y > 0. The process (X̂t(y), t ≥ 0) is a Markov process in (0,∞). Its

semigroup (Qt, t ≥ 0) satis�es for any bounded measurable function f and any t ≥ 0

E[Qtf(eq)] = E[f(evt(q))] for all q > 0 (2.6)

where eq and evt(q) are exponential random variable with parameter q and vt(q).

Observe that (2.6) characterizes the semigroup Qt, by identi�cation of the Laplace trans-
forms, as it can be rewritten as: for all q ≥ 0,ˆ ∞

0
qe−qyQtf(y)dy =

ˆ ∞
0

vt(q)e
−vt(q)yf(y)dy,

therefore Qtf is the inverse Laplace transform of q 7→ vt(q)
q

´∞
0 e−vt(q)yf(y)dy.

Proof. The cocycle property and the independence, obtained in Proposition 2.3(ii)�(iii) readily
entail that t 7→ X̂t(y) has the Markov property. Moreover, if X̂0,t(y) = 0 then X−t,0(0) = y > 0,
which is impossible, as X−t,0(0) is the value at time t of a CSBP starting from mass 0, and 0 is
an absorbing point for a CSBP. Similarly, X̂0,t(y) =∞ yields that limz→∞X−t,0(z) ≤ y, which
is impossible as soon as X−t,0(z) is a non-null subordinator.

Finally, we now turn to the computation of the semigroup of X̂(y), which is obtained through
the Siegmund duality. Let eq be an independent exponential random variable with parameter
q, we have

P(X̂t(eq) > x) = P(X−t,0(x) < eq) = E[e−qX−t,0(x)] = e−xvt(q),

which implies that (2.6) holds.

The above theorem shows that the semigroup of (X̂t) can be expressed in simple terms when
applied to exponential distributions. This will motivate later on the study of the action of the
�ow X̂ on Poisson point processes.

We now observe that the Markov process t 7→ X̂0,t(y) can be straightforwardly extended as
a Markov process on [0,∞].

Proposition 2.6 (Boundaries and Feller property). Let y > 0 �xed, we denote by (X̂t, t ≥ 0)
the Markov process (X̂t(y), t ≥ 0).

(i) The boundary 0 is an entrance boundary of (X̂t, t ≥ 0) if and only if
´∞ du

Ψ(u) <∞. In

that case, (Qt, t ≥ 0) is extended to [0,∞) by

Qtf(0) =

ˆ ∞
0

f(u)vt(∞)e−uvt(∞)du.

Otherwise, we set Qtf(0) = f(0).

(ii) The boundary ∞ is an entrance boundary of (X̂t, t ≥ 0) if and only if
´

0
du
|Ψ(u)| < ∞.

In that case, (Qt, t ≥ 0) is de�ned over (0,∞] with

Qtf(∞) =

ˆ ∞
0

f(u)vt(0)e−uvt(0)du.

Otherwise, we set Qtf(∞) = f(∞).

12



(iii) The semigroup (Qt, t ≥ 0) de�ned over [0,∞] is Feller.

Remark 2.7. The Markov processes (X̂0,t(0), t ≥ 0) and (X̂0,t(∞), t ≥ 0) have the following
interpretations, in terms of the CSBP

(i) The process (X̂0,t(0), t ≥ 0), starting from 0 at time 0, represents the smallest individual
at generation −t to have descendants at time 0. If

´∞ du
|Ψ(u)| < ∞, there is extinction in

�nite time for the CSBP X (i.e. with positive probability, X−t,0(x) = 0). In that case
(X̂0,t(0), t ≥ 0) is a non-trivial Markov process. If

´∞ du
|Ψ(u)| = ∞, there is no extinction

in �nite time for the CSBP, thus all individuals at time t have descendants at time 0,
(X̂t(0), t ≥ 0) ≡ 0.

(ii) The process (X̂t(∞), t ≥ 0), starting from ∞, represents the smallest individual at
generation t with an in�nite progeny at time 0. If

´
0

du
|Ψ(u)| < ∞, there is explosion in

�nite time for the CSBP X (i.e. with positive probability, X−t,0(x) = ∞). In that case,
(X̂0,t(∞), t ≥ 0) is a non-trivial Markov process. If

´
0

du
|Ψ(u)| =∞, there is no explosion in

�nite time and all individuals at time t have �nitely many descendants at time 0. Thus
(X̂t(∞), t ≥ 0) ≡ ∞ and Qtf(∞) := f(∞).

Proof. For any �xed time t, (X̂t(x), x ∈ (0,∞)) is non-decreasing in x. Therefore lim
x→∞

X̂t(x) =

X̂t(∞) and lim
x→0

X̂t(x) = X̂t(0) exist almost-surely in [0,∞]. Recall the duality relation (2.5)

P(X̂t(y) < x) = P(y < Xt(x)).

The �rst point for the boundary 0 is obtained as follows. By the duality relation, we see that

P(X̂t(y) ≥ x) = P(y ≥ Xt(x)).

By letting y to 0, we have

P(X̂t(0) ≥ x) = P(Xt(x) = 0) = e−xvt(∞).

According to Theorem 1.A-(ii),
´∞ du

Ψ(u) <∞ is a necessary and su�cient condition for vt(∞) <

∞. It remains to justify the formula for Qtf(0). By using Theorem 2.5 and the facts that in
probability, limq→∞ eq = 0 and limq→∞ vt(q) = vt(∞) ∈ (0,∞], we have for any continuous
bounded function f on [0,∞),

Qtf(0) = lim
q→∞

E(Qtf(eq)) = lim
q→∞

E(f(evt(q))) = E
(
f(evt(∞))

)
by dominated convergence. We deduce the formula for Qtf(0). We now prove that the semigroup
property holds at 0. By de�nition of Qtf(0), we have that

Qt+sf(0) = E
(
f(evt+s(∞))

)
and Qt(Qsf)(0) = E

(
Qsf(evt(∞))

)
= E

(
f(evs◦vt(∞))

)
.

Therefore, as vt+s = vt ◦ vs, we complete the proof of (i).
The proof of (ii) follows very similar lines to the proof of (i), and is based on the fact that´

0
du
|Ψ(u)| < ∞ is a necessary and su�cient condition for vt(0) > 0. The expression of Qtf(∞)

is found using that limq→0 eq = ∞ in probability. Finally, to prove that the semigroup Qt
extended to [0,∞] is Feller, we observe that the random map y 7→ X̂t(y) jumps only on constant
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stretch of X−t,0 (being its right-continuous inverse). There is no �xed value in (0,∞) at which
X−t,0 is constant and therefore y ∈ (0,∞) 7→ X̂t(y) has no �xed discontinuities. This entails
that for any continuous function f over [0,∞], Qtf is continuous at any point y ∈ (0,∞). By
de�nition Qtf(x) −→

x→∞
Qtf(∞) and Qtf(x) −→

x→0
Qtf(0). The semigroup maps C([0,∞]) in

C([0,∞]) and one only needs to show the pointwise continuity at 0 of Qtf , which follows from
Proposition 2.3(iv).

We study now the long term behaviour of (X̂t, t ≥ 0) in the critical and subcritical cases.
By transience, we mean that X̂t(x) −→

t→∞
∞ a.s. for any x ∈ (0,∞).

Proposition 2.8. Let Ψ be a branching mechanism. We observe that

(i) if Ψ is supercritical, then X̂ is positive recurrent with stationary law eρ;

(ii) if Ψ is subcritical, then X̂ is transient;

(iii) if Ψ is critical, then X̂ is transient if and only if
´

0
u

Ψ(u)du < ∞, otherwise it is null

recurrent.

Remark 2.9. Intuitively, in the subcritical case, for any �xed a > 0, individuals below level a
living at arbitrarily large time in the past will have no progeny at time 0. Therefore the ancestral
lineage of an individual x living at time 0, goes above any �xed level a as time goes to ∞. This
explains the transience. In the critical case, large oscillations can occur when

´
0

x
Ψ(x)dx = ∞.

This latter condition is known see Duhalde et al. [DFM14] to entail that �rst entrance times of
the CSBP have in�nite mean, in such case the process (X̂t, t ≥ 0) is null recurrent. Note that if
Ψ(q) = cqα with 1 ≤ α ≤ 2 and c > 0 then (X̂t, t ≥ 0) is null recurrent if α = 2 and transient if
α < 2.

Proof. We �rst prove (i). Let y ∈ (0,∞). By duality (2.5) and Theorem 1.A-(i)

P(X̂t(y) < x) = P(Xt(x) > y) −→
t→∞

P(non-extinction) = 1− e−ρx.

Assume now Ψ subcritical or critical. For any Borelian set B and any p > 0, set

Up(y,B) :=

ˆ ∞
0

e−ptP(X̂t(y) ∈ B)dt.

Fix q > 0, recall
´ q
vt(q)

dx
Ψ(x) = t and v∞(q) = 0. By applying Theorem 2.5, one has

E[Up(eq, B)] =

ˆ ∞
0

Up(y,B)qe−qydy =

ˆ ∞
0

ˆ ∞
0

vt(q)e
−pte−uvt(q)1B(u)dudt

=

ˆ ∞
0

1B(u)du

ˆ q

0
e
−p
´ q
x

dv
Ψ(v) e−ux

x

Ψ(x)
dx.

By monotone convergence

lim
p→0
↑
ˆ ∞

0
Up(y,B)qe−qydy =

ˆ ∞
0

U0(x,B)qe−qxdx =

ˆ ∞
0

1B(u)du

ˆ q

0
e−ux

x

Ψ(x)
dx. (2.7)
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Set B = (0, a) for a > 0, thenˆ ∞
0

U0(x,B)qe−qxdx =

ˆ a

0
du

ˆ q

0
e−ux

x

Ψ(x)
dx =

ˆ q

0

1− e−ax

Ψ(x)
dx.

In the subcritical case Ψ′(0+) > 0, therefore
´ q

0
x

Ψ(x)dx < ∞ and for almost every x ∈ (0,∞),

one has 0 < U0(x,B) <∞. Since for any x ≤ y, X̂t(x) ≤ X̂t(y) then

P(X̂t(x) < a) ≥ P(X̂t(y) < a)

therefore U0(x,B) ≥ U0(y,B) and then 0 < U0(x,B) < ∞ for all x. We may now invoke
Proposition 2.2-(iv') in Getoor [Get80], by taking the increasing sequence Bn := (0, n). This
entails that the process (X̂t, t ≥ 0) is transient. In the critical case, if

´ q
0

x
Ψ(x)dx < ∞ then the

process is transient. If now
´ q

0
x

Ψ(x)dx = ∞ then by (2.7) for any set B with positive Lebesgue

measure, U0(x,B) =∞ for all x. By Proposition 2.4-(i) in [Get80], we conclude that (X̂t, t ≥ 0)
is recurrent.

3 The Feller �ow

In this section, we investigate the genealogy backwards in time of Feller CSBPs. These are
continuous CSBPs with quadratic branching mechanisms of the form Ψ : q 7→ σ2

2 q
2 − βq, with

β ∈ R and σ2 ≥ 0. For any �xed x, the Feller CSBP (Xt(x), t ≥ 0) with mechanism Ψ can be
constructed as the solution of the stochastic di�erential equation

dXt(x) = σ
√
Xt(x)dBt + βXt(x)dt, X0(x) = x

where (Bt, t ≥ 0) is a Brownian motion. We study here in detail the �ow (Xs,t(x), t ≥ s, x ≥ 0)
of CSBPs with branching mechanism Ψ and the inverse �ow (X̂s,t(x), t ≥ s, x ≥ 0). Many
calculations can be made explicit in this setting, see for instance Pardoux [Par08] for a study of
the �ow (Xs,t(x), t ≥ s, x ≥ 0).

Note that Ψ is subcritical if β < 0, critical if β = 0 and supercritical if β > 0. Moreover, in
the latter case we have ρ = 2β

σ2 . Observe also that the di�erential equation (1.3) can be rewritten

dvt(λ)

dt
= −vt(λ)

(
σ2

2
vt(λ)− β

)
, with v0(λ) = λ,

and it is a simple exercise to solve it into

vt(λ) =


λβeβt

β+λσ2

2 (eβt−1)
if β 6= 0

λ

1+σ2λt
2

if β = 0.
(3.1)

Moreover, one can write vt(λ) =
´∞

0 (1− e−λr)`t(dr), by setting

`t(dr) = vt(∞)2e−βte−vt(∞)e−βtrdr

where by de�nition, vt(∞) = 2β
σ2(1−e−βt) > 0 for β 6= 0 and vt(∞) = 2

tσ2 if β = 0. Observe

that in both cases, `t
`t((0,∞]) is an exponential law with parameter β̂t = vt(∞)e−βt, which can be

rewritten as

β̂t =

{
2β

σ2(eβt−1)
if β 6= 0

2
tσ2 if β = 0.
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Remark 3.1. We often make a distinction between β 6= 0 and β = 0, but it is worth noticing
that the functions vt and β̂t that we de�ned are continuous at β = 0.

We now study the law of the inverse Feller �ow (X̂s,t(y), s ≤ t, y ≥ 0), in particular charac-
terizing its marginal distributions as a process in the variable t or y.

Theorem 3.2. The inverse �ow (X̂t(x), x ≥ 0, t ≥ 0) is characterized as follows. Setting

∀t ≥ 0, λ ≥ 0, v̂t(λ) =
λβ̂t

λ+ β̂teβt
,

we have

(i) for any �xed y ≥ 0, (X̂t(y), t ≥ 0) is a Markov process with semigroup given by

E[e−λX̂t(y)] = e−yv̂t(λ)−σ
2

2

´ t
0 v̂s(λ)ds.

(ii) For any �xed t, (X̂t(y), y ≥ 0) is a subordinator with Laplace exponent v̂t started from

the positive random variable X̂t(0) whose Laplace transform is E[e−λX̂t(0)] = e−
σ2

2

´ t
0 v̂s(λ)ds.

Remark 3.3. The two-parameter process (X̂t(x), t ≥ 0, x ≥ 0) is a �ow of continuous-state
branching processes with immigration with mechanisms Ψ̂(q) = σ2

2 q
2+βq and linear immigration

Φ̂(q) := σ2

2 q. In particular, (X̂t(x)− X̂t(0), t ≥ 0) is a Feller CSBP with branching mechanism
Ψ̂.

Proof. As x 7→ X−t,0(x) is a subordinator with Laplace exponent

vt(λ) = β̂te
βt

ˆ ∞
0

(
1− e−λr

)
β̂te
−β̂trdr,

we obtain that this is in fact a compound Poisson process, with jump rate β̂teβt and exponential
jump distribution with parameter β̂t. Therefore, writing (N

(t)
x , x ≥ 0) an homogeneous Poisson

process with intensity β̂teβt and (x
(t)
i , i ≥ 1) i.i.d. exponential random variables with parameter

β̂t, one can rewrite X−t,0 as

∀x ≥ 0, X−t,0(x) =

N
(t)
x∑

j=1

x
(t)
j . (3.2)

We set (τ
(t)
j , j ≥ 1) the sequence of inter-arrival times of (N

(t)
x , x ≥ 0) which are i.i.d. expo-

nential random variables with parameter β̂teβt, and we writeM (t)
y = sup{n ≥ 0 :

∑n
i=1 x

(t)
i ≤ y}

for all y ≥ 0. Since the inter-arrival times (x
(t)
j , j ≥ 1) are exponentially distributed, (M

(t)
y , y ≥

0) is a Poisson process. By (3.2), X̂0,t being the right-continuous inverse of X−t,0, we get

X̂0,t(y) =

M
(t)
y +1∑
j=1

τ
(t)
j . (3.3)

Note that we have X̂0,t(0) > 0, contrarily to X0,t(0) = 0, but that X̂0,t is also a compound
Poisson process with exponential jump rate. The construction of X−t,0 and X̂0,t are represented
on Figure 1.
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Figure 1: Inverse of compound Poisson process

Since τ (t)
1 is exponentially distributed with parameter β̂teβt, we have by (3.3)

E
(
e−λX̂t(0)

)
= E

(
e−λτ

(t)
1

)
=

β̂t

β̂t + λe−βt
,

and moreover, by straightforward Poisson computations, for all y ≥ 0

E[e−λ(X̂t(y)−X̂t(0))] = exp

(
−y λβ̂t

β̂teβt + λ

)
= e−yv̂t(λ).

It remains to verify that

E[e−λX̂t(0)] = e−
σ2

2

´ t
0 v̂s(λ)ds.

One easily checks that

v̂t(λ) =
λβe−βt

β + λ
σ2 (1− e−βt)

for all t ≥ 0

and in view of (3.1), the map t 7→ v̂t(λ) is solution to the di�erential equation dvt(λ)
dt = −Ψ̂(vt(λ))

with v̂0(λ) = λ and where Ψ̂(q) = σ2

2 q
2 + βq. By change of variable, one has

ˆ t

0
v̂s(λ)ds =

ˆ λ

v̂t(λ)

u

Ψ̂(u)
du =

2

σ2
log

(
σ2

2 λ+ β
σ2

2 v̂t(λ) + β

)

and thus e−
σ2

2

´ t
0 v̂s(λ)ds =

σ2

2
v̂t(λ)+β

σ2

2
λ+β

. Simple calculations yield that both quantities
σ2

2
v̂t(λ)+β

σ2

2
λ+β

and β̂t
β̂t+eβtλ

are equal to β

β+λσ
2

2
(1−e−βt)

. We deduce that

E[e−λX̂t(0)] =
β̂t

β̂t + eβtλ
=

σ2

2 v̂t(λ) + β
σ2

2 λ+ β
= e−

σ2

2

´ t
0 v̂s(λ)ds,

which concludes the proof.
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The inverse Feller �ow being itself a �ow of subordinators with explicit law, many quantities
can be computed explicitly, such as the most recent common ancestor of a population. Picking
two individuals x ≤ y at time 0, the age Tx,y of the most recent common ancestor of x and y is
the �rst time t such that there exists an individual z at generation −t that gave birth to both
x and y, or more precisely

Tx,y = inf{t ≥ 0 : X̂0,t(x) = X̂0,t(y)}. (3.4)

This de�nition of most recent common ancestor can naturally be generalized as follows: given
A a subset of R+, we set

TA = inf{t ≥ 0 : #{X̂0,t(A)} = 1}.

However, as the partition of R+, ∪z≥0

(
X̂0,t

)−1
({z}) is a partition in intervals, we have

TA = Tinf A,supA a.s.

Therefore, obtaining the law of Tx,y will be enough to study the genealogy of the Feller �ow.

Proposition 3.4. For any 0 ≤ x ≤ y ≤ z, we have

∀t ≥ 0,P (Tx,y ≤ t) = e−β̂t(y−x),

and Tx,y and Ty,z are independent. In particular, we have

P (Tx,y =∞) =

{
1− e

2β

σ2 (y−x) if β < 0

0 if β ≥ 0.

Among other things, this proposition proves that the population comes down from a single
ancestor in critical or supercritical cases (β ≥ 0), while in the subcritical case, for β < 0, the
population at time 0 can be separated into families with di�erent ancestors at time −∞.

Proof. This result is a consequence of the inverse �ow representation of Theorem 3.2. Indeed,
for all x ≤ y and λ ≥ 0, we have

E[e−λ(X̂t(y)−X̂t(x))] = e−(y−x)v̂t(λ),

thus, letting λ→∞ we obtain P(Tx,y ≤ t) = e−(y−x)v̂t(∞). Moreover, we observe that v̂t(∞) =

β̂t, proving the �rst equation.
By (3.4), and given that (X̂0,t(y)− X̂0,t(x), t ≥ 0) and (X̂0,t(z)− X̂0,t(y), t ≥ 0) are indepen-

dent Feller CSBP with mechanism Ψ̂, starting from y − x and z − y respectively, we conclude
that Tx,y and Ty,z are independent.

To obtain P(Tx,y =∞) we compute

lim
t→∞

P(Tx,y ≤ t) = exp
(
−(y − x) lim

t→∞
β̂t

)
=

{
1 if β ≥ 0

e−(y−x)−2β

σ2 if β < 0,

concluding the proof.

18



Remark 3.5. A straightforward consequence of the above coalescent is that for any choice
{x1, . . . xn} of individuals at generation 0, the coalescent tree of this family of individuals will
only consist in binary merging. Indeed, for every pair (xi, xi+1) of consecutive individuals, their
time of coalescence is independent from the time of coalescence of any other pair of consecutive
individuals in the population, and has density with respect to the Lebesgue measure. Therefore,
almost surely the �rst coalescing time will consist in the merging of only two neighbours.

Proposition 3.4 readily entails the representation of the genealogical tree of the population
at time 0 as a functional of a Poisson point process. The following construction is reminiscent
of the comb representation by Lambert and Uribe Bravo [LUB17].

Proposition 3.6. There exists a Poisson point process N with intensity dx ⊗ µ(dt) on R+ ×
(R+ ∪ {∞}) where

µ(dt) =


2β2

σ2
eβt

(eβt−1)2 dt if β > 0
2

σ2t2
dt if β = 0,

2β2

σ2
eβt

(1−eβt)2 dt+ 2|β|
σ2 δ∞ if β < 0

such that almost surely, for any 0 ≤ x ≤ y and t ≥ 0, we have

Tx,y < t ⇐⇒ N([x, y]× [t,∞]) = 0.

In other words, the coalescent time of x and y is given by the position of the largest atom
in the point process N([x, y]× ·). In particular, in the critical case (β = 0), this result recovers
the Brownian coalescent point process of Popovic [Pop04, Lemma 4 and Theorem 5]. In the
subcritical case (β < 0) when two individuals have no common ancestor, there are separated by
an in�nite atom of the point process N([x, y]× ·).

Proof. We observe from Proposition 3.4 that for all x ≤ y ≤ z, Tx,y and Ty,z are independent

and Tx,z
L
= max(Tx,y, Ty,z). Moreover, note by de�nition that Tx,z ≥ max(Tx,y, Ty,z) a.s. This

yields that for all x ≤ y ≤ z,
Tx,z = max(Tx,y, Ty,z) a.s. (3.5)

We consider the event of probability one for which the above equation is true simultaneously
for all x, y, z ∈ Q+. As a result, the �eld Tx,y is decreasing in x and increasing in y. Therefore,
there exists a càdlàg modi�cation of the �eld satisfying (3.5) simultaneously for all x, y, z ∈ R+.

As a result, we can construct a simple point process G on R+ × (R+ ∪ {∞}) satisfying

Tx,y < t ⇐⇒ G([x, y]× [t,∞]) = 0,

via the construction G =
∑

z≥0 1{∃ε>0:Tz−ε,z−<Tz−ε,z}δz,Tz−ε,z . The point process G is simple (i.e.
each atom in the point process has mass one). Moreover, setting γt the derivative of t 7→ β̂t, we
have

P(G([x, y]× [t,∞] = 0) = P(Tx,y < t) = exp

(
−
ˆ ∞
t

ˆ y

x
γsdzds−

ˆ y

x
β̂∞ds

)
= P(N([x, y]× [t,∞]) = 0),

where N is a Poisson point process with intensity dx⊗ (γtdt+ β̂∞δ∞(dt)). Hence, by monotone
classes theorem, for all measurable relatively compact set B ⊂ R+ × (R+ ∪ {∞}), we have

P(G(B) = 0) = P(N(B) = 0).

19



As a result, by [Kal02, Theorem 10.9(i)], we have N L
= G, which concludes the proof.

Pitman and Yor [PY82, Sections 3 and 4], see also [DL14] for a more general setting, have
shown that any �ow of Feller's branching di�usions can be represented through a Poisson point
process on (0,∞) × C, where C denotes the space of continuous paths on R+. In our setting,
this entails that the �ow (X̂t(x)− X̂t(0), t ≥ 0) can be represented as follows: for all t > 0,

X̂t(x) = X̂t(0) +
∑
xi≤x
i∈I

X̂i
t

where N =
∑

i∈I δ(xi,X̂i) is a PPP with intensity dx⊗n(dX) and n is the so-called cluster mea-

sure (see for instance [DL14]). The atoms (X̂i, i ∈ I) can be interpreted as the ancestral lineages
of the initial individuals (xi, i ∈ I). They are independent Feller di�usions with mechanism Ψ̂
starting from in�nitesimal masses. For any i ∈ I, denote by ζi := inf{t ≥ 0; X̂i

t = 0}. The time
ζi represents a binary coalescence time between two �consecutive� individuals. By de�nition of
n, for any t > 0, n(ζ > t) = v̂t(∞) and therefore

∑
i∈I δ(xi,ζi) has the same law as N . We

represent the ancestral lineages and their coalescences in Figure 2. Recall also from Remark 2.7
that X̂t(0) is the �rst individual from generation −t to have descendants at time 0.

X̂t(0)

past 0

X̂t(x
?
1)

x?
1

x?
2

X̂t(x
?
2)

subcritical case

X̂t(0)

past 0(super)critical case

Figure 2: Symbolic representation of ancestral lineages and their binary coalescences

In the subcritical case, (β < 0), (X̂t(x) − X̂t(0), x ≥ 0, t ≥ 0) is a �ow of supercritical
CSBPs. Following Bertoin et al. [BFM08] (see also Pardoux [Par08, Section 7]), one can de�ne
the random sequence (x?n, n ≥ 1) recursively as follows:

x?1 := inf{x ≥ 0; X̂t(x)− X̂t(0) −→
t→∞

∞} and x?n+1 := inf{x ≥ x?n; X̂t(x)− X̂t(0) −→
t→∞

∞}.

The random sequence (x?n, n ≥ 1) is known as the initial proli�c individuals of the �ow of
supercritical CSBPs (X̂t(x) − X̂t(0), x ≥ 0, t ≥ 0) and corresponds to the jumps times of a
Poisson process with intensity −2β

σ2 . Within the framework of inverse �ow, the random partition
of R+: ([0, x?1), [x?1, x

?
2), ...) corresponds to current families with distinct common ancestors. Note

that the sequence (x?n, n ≥ 1) is also the sequence of atoms of the point process N(· × {∞}),
de�ned in Lemma 3.6.

We observed in this section that the law of the �ow X̂ is explicit when X is a Feller �ow.
When the branching mechanism Ψ is not of the quadratic form, multiple births occur in the
population. Thus, when time runs backward, coalescences of multiple lineages should arise. The
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law of the inverse �ow X̂ becomes then more involved. In the next section, we construct a
simple class of Markovian coalescents which will allow us to encode easily multiple coalescences
in lineages backwards in time. The law of the lineage's location (X̂t(x), t ≥ 0) for a �xed
individual x ≥ 0 is studied further in Section 5.

4 Consecutive coalescents

In this section we study the genealogy of branching processes both forward and backward in
time, using random partitions of consecutive integers. We shall see how to de�ne a coalescent
process in this framework and that the associated coalescent theory is elementary. In a second
time, we apply these results to the genealogy of a population in a continuous-state branching
process sampled according to a Poisson point process with intensity λ. In a third time, by
making the parameter λ increase to ∞, we obtain a full description of the genealogical tree of
individuals in a CSBP under Grey's condition.

4.1 Consecutive coalescents in continuous-time Galton-Watson processes

In this section, we construct a class of simple Markovian coalescents arising when studying
the genealogy backward in time of continuous-time Galton-Watson processes. We begin by
introducing the classical notation for coalescent processes on the space of partitions. For a more
precise description of that framework, in the context of exchangeable coalescents, we refer to
Bertoin's book [Ber06, Chapter 4], from which we borrow our de�nitions and notation.

Let n ∈ N ∪ {∞}, we denote by [n] = {j ∈ N : j ≤ n} the set of integers smaller or equal
to n. We call consecutive partition of [n] a collection C of disjoint subsets {C1, C2, . . .} with
consecutive integers (i.e. intervals of [n]), such that ∪i≥1Ci = [n]. Without loss of generality,
we will always assume that the subsets of the collection C are ranked in the increasing order of
their elements. We denote by Cn the set of consecutive partitions of [n]. Note that any C ∈ Cn
is characterized by the ranked sequence of its blocks sizes (#C1,#C2, . . .), as

∀j ∈ N, Cj = {k ∈ N : #C1 + · · ·+ #Cj−1 < k ≤ #C1 + · · ·+ #Cj} .

For any i, j ∈ [n], we write i C∼ j if and only if i and j belong to the same block of C. For any
n ∈ N ∪ {∞}, we set 0[n] = {{1}, {2}, ..., {n}} and 1[n] = {[n]}. We introduce some classical
operations on Cn. For each k ≤ n and C ∈ Cn, we denote by

C|[k] = {Cj ∩ [k], j ∈ N} ,

the restriction of C to [k] and

#C|[k] := #{j ∈ N : Cj ∩ [k] 6= ∅},

the number of blocks of C|[k]. Note that for any m ≤ k, (C|[k])|[m] = C|[m] ∈ Cm.
We denote by C∞ or CN the set of consecutive partitions of N. A consecutive partition C

of N has at most one block with in�nite size. In such a case, C has �nitely many blocks, i.e.
#C < ∞, and the block with in�nite size is indexed by #C. We de�ne a distance on C∞ by
setting

d(C,C ′) = sup{n ∈ N : C|[n] = C ′|[n]}
−1.
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Note that the metric space (C∞, d) is compact. We next introduce the coagulation operation.
For any C ∈ Cn and C ′ ∈ Cn′ such that #C ≤ n′, we de�ne the partition Coag(C,C ′) by

Coag(C,C ′)j =
⋃
i∈C′j

Ci for any j ∈ N.

As each block of Coag(C,C ′) is the union of a consecutive sequence of consecutive blocks, one
has that Coag(C,C ′) ∈ Cn. Thus, Coag de�nes an internal composition law on C∞. Observe
that the blocks of Coag(C,C ′) are coarser than those of C. Moreover for any C, C ′ ∈ C∞ and
n ≥ 1

Coag(C,C ′)|[n] = Coag(C|[n], C
′
|[n]) = Coag(C|[n], C

′).

The operator Coag is therefore Lipschitz continuous with respect to d from C∞×C∞ to C∞ and we
see that it is associative. For any partition C ∈ Cn, Coag(C, 0[n]) = C and Coag(C, 1[n]) = 1[n].

We are interested in random consecutive partitions of the following form. Let ν be a prob-
ability distribution over N ∪ {∞} and (Z(i), i ≥ 1) be a random walk with step distribution ν.
Set N := inf{i ≥ 1;Z(i) =∞} and

C = ([|1, Z(1)|], [|Z(1) + 1, Z(2)|], · · · , [|Z(N − 1),∞[|) .

We call C a ν-random consecutive partition. One has N = #C, and conditionally on #C = n,
for some n ∈ N ∪ {∞}, the blocks sizes (#Cj , 1 ≤ j ≤ n − 1) are i.i.d. random variables in
N. Let C and C ′ be respectively a ν-random consecutive partition and a ν ′-random consecutive
partition. If C and C ′ are independent, then

#Coag(C,C ′)j =
∑
i∈C′j

#Ci
L
=
∑
i∈C′1

#Ci,

hence Coag(C,C ′) is a ν ′′-random consecutive partition where ν ′′ is the law of the random
variable

∑
i∈C′1

#Ci. In view of the very particular form of a consecutive partition, it is legitimate
to question whether the framework of partitions is needed. However, the use of the operator Coag
enables us to encode easily multiple coalescences and to follow closely the theory of exchangeable
coalescents and its terminology. This encoding simpli�es the main formulas we obtain when
studying the genealogy of a continuous-state branching population.

De�nition 4.1. AMarkov process (C(t), t ≥ 0) with values in CN is called consecutive coalescent
if its semigroup is given as follows: the conditional law of C(t + s) given C(t) = C is the law
of Coag(C,C ′) where C ′ is a νs,t-random consecutive where νs,t is some probability distribution
over N∪{∞} which may depend on t and s. A consecutive coalescent is said to be homogeneous
if the law of C ′ depends only on s and standard if C(0) = 0[∞].

We now recall further well-known material on continuous-time Galton-Watson processes.
We refer to Athreya and Ney [AN04, Chapter III] for more details on these processes. Con-
sider a �nite measure µ on Z+ such that µ(1) = 0. A continuous-time Galton-Watson process
(Zt(n), t ≥ 0) with reproduction measure µ, is a Markov process counting the number of indi-
viduals in a random population with n ancestors where all individuals behave independently,
and each individual has an exponential lifetime ζ with parameter µ(Z+) and begets at its death
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a random number of children with probability distribution µ/µ(Z+). The process (Zt(n), t ≥ 0)
is characterized in law by µ and thus by the function

ψ(x) = −
∞∑
k=0

(xk − x)µ(k), x ∈ [0, 1].

The process (Zt(n), t ≥ 0) satis�es the branching property

∀n,m ≥ 0, ∀t ≥ 0, Zt(n+m)
L
= Zt(n) + Z̃t(m) for any n,m ∈ Z+ (4.1)

where (Z̃t(m), t ≥ 0) is a continuous-time Galton-Watson process independent of (Zt(n), t ≥ 0),
and with the same law as (Zt(m), t ≥ 0). This entails that the generating function of Zt(n) for
any t ≥ 0 has the form

E[xZt(n)] = ut(x)n, x ∈ [0, 1], n ∈ Z+

where for all t ≥ 0, ut(s) is the solution of
´ s
ut(s)

dz
ψ(z) = t for any t ≥ 0. When µ has no mass at

0, the process is called immortal. Each individual has at least two children and (Zt(n), t ≥ 0) is
non-decreasing in time.

Following the same procedure as in De�nition 1.3 but in discrete-state space, we construct a
family of continuous-time branching processes by considering a �ow of random walks (Zs,t(n), t ≥
s, n ≥ 1) satisfying the following properties:

(i) for any s ≤ t, (Zs,t(n), n ≥ 0) is a continuous-time random walk whose jump law has
support included in N and generating function ut−s.

(ii) For every t1 < t2 < ... < tp, the random walks (Zti,ti+1 , i < p) are independent and satisfy

∀n ≥ 0, Zt1,tp(n) = Ztp−1,tp ◦ ... ◦ Zt1,t2(n).

(iii) For any n ≥ 1 and s ∈ R, (Zs,t+s(n), t ≥ 0) is an immortal homogeneous continuous-time
Galton-Watson process started from n individuals.

We now construct a �ow of partitions describing the genealogy of an immortal continuous-
time Galton-Watson process constructed via this �ow of random walks. For any s ≤ t, set

→
C(s, t) := ([|Zs,t(i− 1) + 1, Zs,t(i)|], i ≥ 1) ,

with Zs,t(0) = 0. Then by (ii), for any r < s < t,

→
C(r, t) = Coag(

→
C(s, t),

→
C(r, s))

i.e.
→
Cj(r, t) =

⋃
i∈
→
Cj(r,s)

→
Ci(s, t) and by de�nition #

→
Ci(s, t) = Zs,t(i)− Zs,t(i− 1) for any s ≤ t

and any i ≥ 1. We introduce the time-reversed �ow of partition by de�ning for all s ≤ t,

C(s, t) =
→
C(−t,−s).

We sum up the main properties of C in the following proposition.
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Proposition 4.2. The stochastic �ow of consecutive partitions (C(s, t),−∞ ≤ s ≤ t ≤ ∞)
satis�es:

(i) For any s ≤ u ≤ t
C(s, t) = Coag(C(s, u), C(u, t)) a.s

(ii) If s1 < s2 < ... < sn, the partitions C(s1, s2),..., C(sn−1, sn) are independent.

(iii) The random variables (#Ci(s, t), i ≥ 1) are valued in N and i.i.d.

(iv) C(0, 0) = 0[∞] and C(s, t)→ 0[∞] when t− s→ 0 and

(v) the random variable C(s, t) has the same law as C(0, t− s).

The Markov process (C(t), t ≥ 0) de�ned by C(t) := C(0, t) for any t ≥ 0 is an homogeneous
standard consecutive coalescent in the sense of De�nition 4.1. Note that by (i), for any s, t ≥ 0,

C(t+ s) = Coag(C(t), C(t, t+ s))

namely for any j ≥ 1,
Cj(t+ s) =

⋃
i∈Cj(t,t+s)

Ci(t), (4.2)

so that consecutive blocks are merging as time runs.

Remark 4.3. One can readily check from (4.2) that for any i ≥ 1, s ≥ 0 and t ≥ 0

#Ci(t+ s) =

#Ci(t,t+s)∑
m=1

#Cm+
∑i−1
k=1 #Ck(t,t+s)(t). (4.3)

Processes satisfying (4.3) have been studied in discrete time by Grosjean and Huillet [GH16].
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Figure 3: Monotone labelling of an immortal Galton-Watson forest and its consecutive coalescent
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By Proposition 4.2-(v), for any �xed t ≥ 0, C(t)
L
=
→
C(t). Therefore the coalescent process

(C(t), t ≥ 0) is characterized by the reproduction measure µ of the associated continuous-time

Galton-Watson process (#
→
C1(t), t ≥ 0). Moreover, note that by construction, for any m ≤ n

(C|[m](t), t ≥ 0) = ((C|[n](t))|[m], t ≥ 0).

This consistency property ensures that the family of jump rates of (C|[n](t), t ≥ 0) characterizes
the law of (C(t), t ≥ 0). In the next lemma, the coagulation rate of a consecutive coalescent
restricted to [n] is provided.

Lemma 4.4 (Law of the n-coalescent). Let n ∈ N and C ∈ Cn. Set #C = m and assume

C|[n](0) = C. For any j ∈ [m− 1], consider the consecutive partitions of [m]

- Cj,kin := ({1}, ..., {j, ..., j + k − 1}, ..., {m}) for any 2 ≤ k ≤ m− j, and attach to each Cj,kin

an independent exponential clock with parameter µ(k),

- Cjout := ({1}, ..., {j, ...,m}), and attach to each Cjout an independent exponential clock with

parameter µ(m− j + 1)

where µ(k) :=
∑∞

j=k µ(j) for any k ∈ N. Then the process jumps from the partition C|[n](t−)

to Coag(C|[n](t−), D) with D the partition in {Cj,kin , C
j
out} associated with the �rst random clock

that rings.

Proof. For any n ≥ 1, any t ≥ 0,

Coag(C(t), C(t, t+ s))|[n] = Coag(C|[n](t), C(t, t+ s)).

Moreover, by associativity of the operator Coag, the restricted process (C|[n](t), t ≥ 0) starting
from C, whose number of blocks is m, has the same law as the process (Coag(C,C|[m](t)), t ≥
0) where (C|[m](t), t ≥ 0) is the restriction at [m] of the standard process started from 0[∞].
Therefore, we only need to focus on the jump rates of the standard coalescent.

For any j, the rate at which the process jumps from 0[m] to C
j
out := ({1}, ..., {j, ...,m}) is

therefore given by

lim
s→0+

1

s
P(#Cj(t, t+ s) ≥ m− j + 1).

Since #Cj(t, t + s) has the same law as the random variable Zs(1) where (Zt(1), t ≥ 0) is a
continuous-time Galton-Watson process with reproduction measure µ, then the latter limit is
µ(m− j + 1).

Similarly, for any k ≤ m− j − 1, the rate at which the process jumps from 0[m] to C
j,k
in is

lim
s→0+

1

s
P(#Cj(t, t+ s) = k) = µ(k).

There are no simultaneous births forward in time and therefore no simultaneous coalescences.

By letting n and m to ∞ in Lemma 4.4, we see that the coalescences in the consecutive
coalescent process C valued in C∞ can be described in the following way: to each block j of C
is associated a family (ej,k, k ≥ 2) of exponential clocks, that ring at rate (µ(k), k ≥ 2). Each
time a clock ej,k rings, the consecutive blocks j, j + 1, ... , j + k − 1 coalesce into one. Note

25



that these clocks could also be used to construct the immortal Galton�Watson process forward
in time: each time the clock ej,k rings, the jth individual produces k children.

We now take interest in the number of blocks of a consecutive coalescent. Similarly to the
continuous-state space, the dual process Ẑ is de�ned for any n ∈ N and any t ≥ 0 by

Ẑt(n) := min{k ∈ N : Z−t,0(k) ≥ n}.

The process Ẑ is a Markov process, and for all n ∈ N, Ẑt(n) is the ancestor at time −t of the
individual n considered at time 0.

Proposition 4.5. For any t ≥ 0, and any n,m ∈ N, #C|[n](t) = Ẑt(n) and

n
C(t)∼ m⇐⇒ Ẑt(n) = Ẑt(m). (4.4)

Proof. By de�nition

C|[n](t) = ([|1, Z−t(1)|], [|Z−t(1) + 1, Z−t(2)|], ..., [|Z−t(a− 1) + 1, n|])

with a = #C|[n](t) = min{k ∈ N : Z−t(k) ≥ n} =: Ẑt(n). Consider now an integer m ≤ n. If

Ẑt(m) = a then m ∈ [|Z−t(a − 1) + 1, n|] = Ca(t) ∩ [n] and m
C(t)∼ n. The rates of jumps in

(#C|[n](t), t ≥ 0) are readily obtained by Lemma 4.4.

Remark 4.6. Consecutive coalescents can be de�ned for a measure µ with a mass at 0 from the
relation (4.4). However the process (C(t), t ≥ 0) in this case is inhomogeneous in time. We
mention that the process (Ẑt(n), t ≥ 0) is studied by Li et al. in [LPLG08].

4.2 Consecutive coalescents in CSBPs through Poisson sampling

We now explain how consecutive coalescents arise in the study of the backward genealogy of CS-
BPs. Loosely speaking, exchangeable bridges in the theory of exchangeable coalescents, [BLG03],
are replaced by subordinators and the sequence of uniform random variables by the atoms of a
Poisson process with intensity λ. The following typical random consecutive partitions form a
particular class of ν-random consecutive partitions and will play a similar role as paintboxes for
exchangeable coalescents.

De�nition 4.7. We call (λ, φ)-Poisson box a random consecutive partition C obtained by setting

i
C∼ j ⇐⇒ X−1(Ji) = X−1(Jj),

where X is a subordinator with Laplace exponent φ and (Jj , j ≥ 1) are the ranked atoms of an
independent Poisson process with intensity λ.

The (λ, φ)-Poisson boxes will occur as typical random partitions in genealogical trees of
CSBPs. More precisely, in the coalescent process describing the genealogy of individuals sampled
according to a Poisson point process, the partitions will be distributed as (λ, φ)-Poisson boxes.
The following Lemma is proved in Appendix A.2, and can be thought of as a revisiting of
Pitman's discretization of subordinators [Pit97].
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J ′1

J2

J ′2
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J4

J5

J ′3

J6

J ′4

J7

J ′5

Figure 4: Construction of a random Poisson-box partition C, with subordinator X and selected
individuals (Jj , j ≥ 1), satisfying C|[7] = {{1}, {2}, {3, 4, 5}, {6}, {7}}

Lemma 4.8. Consider a subordinator X with Laplace exponent

φ : µ 7→ dµ+

ˆ ∞
0

(
1− e−µx

)
`(dx)

and (Jk, k ≥ 1) the atoms of an independent Poisson process with intensity λ. Let C be the

(λ, φ)-Poisson box constructed with X and (Jk, k ≥ 1) and set for any i ≥ 1, J ′i := X−1(Jk) for

k ∈ Ci. Then

(i) C is a ν-random consecutive partition with for any k ≥ 1

ν(k) :=
1

φ(λ)

ˆ ∞
0

(λx)k

k!
e−λx`(dx) + d1{k=1} = (−1)k−1λ

k

k!

φ(k)(λ)

φ(λ)
,

i.e. E(s#C1) = 1− φ(λ(1−s))
φ(λ) for all s ∈ [0, 1].

(ii) The sequence (J ′i , i ≥ 1) is the atoms of a Poisson process with intensity φ(λ).

(iii) (J ′i , i ≥ 1) and C are independent.

Remark 4.9. We shall also consider killed subordinators such that φ(0) = `({∞}) = κ > 0. The
above Lemma can be extended to this case (see Corollary A.4). The associated (λ, φ)-Poisson
box has �nitely many blocks and the sequence (J ′i , 1 ≤ i ≤ #C) forms the �rst atoms of a
Poisson process with intensity φ(λ). Formulas in (i) still hold true for any �nite k and ν has
positive mass at ∞, namely ν(∞) = P(#C1 =∞) = 1− φ(0)

φ(λ) .

We now construct consecutive coalescent processes related to the genealogy of the �ow of
subordinators (Xs,t(x), s ≤ t, x ≥ 0). Denote by (Jλi , i ≥ 1) the sequence of atoms of an
independent Poisson process with intensity λ. For any t ≥ 0, we de�ne Cλ(t) as

i
Cλ(t)∼ j if and only if X̂t(J

λ
i ) = X̂t(J

λ
j ). (4.5)

The next theorem describes the law of the process (Cλ(t), t ≥ 0).
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Theorem 4.10. For any λ > 0, the partition-valued process (Cλ(t), t ≥ 0) is a consecutive

coalescent. Its semigroup is Feller and its one-dimensional marginal law is characterized by

E[z#Cλ1 (t)] = 1− vt(λ(1− z))
vt(λ)

for any z ∈ [0, 1]. (4.6)

There are no simultaneous coalescences and for any k ≥ 2, the rate at time t at which k given

consecutive blocks coalesce is

µλt (k) :=
σ2

2
vt(λ)1{k=2} + vt(λ)k−1

ˆ
(0,∞)

xk

k!
e−vt(λ)xπ(dx). (4.7)

In the supercritical case, by choosing for intensity λ = ρ, the process (Cρ(t), t ≥ 0) becomes
time-homogeneous. Corollary 4.11 is obtained by a direct application of Theorem 4.10 since
vt(ρ) = ρ for any t ≥ 0.

Corollary 4.11. Assume Ψ supercritical and take λ = ρ. The coalescent process (Cρ(t), t ≥ 0)
is homogeneous in time and the coagulation rate of k given consecutive blocks is

µρ(k) :=
σ2

2
ρ1{k=2} + ρk−1

ˆ
(0,∞)

xk

k!
e−ρxπ(dx).

Remark 4.12. Bertoin et al. [BFM08] have shown that in any �ow of supercritical CSBPs one
can embed an immortal continuous-time Galton-Watson process counting the so-called proli�c
individuals, whose lines of descent are in�nite. The proli�c individuals are located in R+ as
the atoms of a Poisson process with intensity ρ at any time. Moreover, this continuous-time
Galton-Watson process has reproduction measure µρ. The consecutive coalescent (Cρ(t), t ≥ 0)
represents its genealogy backward in time.

We prove Theorem 4.10. We stress that by de�nition, from (4.5), Cλ(t) is a (λ, vt)-Poisson
box and Cλ(0) = 0[∞] since X̂0 = Id. Our �rst lemma proves that the partition-valued pro-
cess (Cλ(t), t ≥ 0) is Markovian in its own �ltration and is a consecutive coalescent (possibly
inhomogeneous in time) in the sense of De�nition 4.1.

Lemma 4.13. For any s, t ≥ 0

Cλ(t+ s) = Coag(Cλ(t), Cλ(t, t+ s)) (4.8)

where Cλ(t, t+ s) is a (vt(λ), vs)-Poisson box which is independent of Cλ(t).

Proof. For any s, t ≥ 0 and all l ≥ 1, set Jλl (t) := X̂t(J
λ
i ) for all i ∈ Cλl (t). Let Cλ(t, t+ s) the

random consecutive partition de�ned by

l
Cλ(t,t+s)∼ k if and only if X̂t,t+s(J

λ
l (t)) = X̂t,t+s(J

λ
k (t)).

Then by the key lemma 4.8-(ii), Cλ(t, t + s) is a (vt(λ), vs)-Poisson box which is independent
of Cλ(t). Recall the cocycle property X̂t+s = X̂t,t+s ◦ X̂t (Theorem 2.5-i)). Let i, j ∈ N. Set k
and l such that i ∈ Cλk (t) and j ∈ Cλl (t). By the cocycle property, X̂t,t+s(J

λ
k (t)) = X̂t,t+s(J

λ
l (t))

holds if and only if i
Cλ(t+s)∼ j and (4.8) holds by de�nition of the operator Coag, see (4.2).
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The generating function of the block's size at time t, given in (4.6), is obtained by a direct
application of the key lemma 4.8 since Cλ(t) is a (λ, vt)-Poisson box. We now show that the
semigroup satis�es the Feller property.

Lemma 4.14. The process (Cλ(t), t ≥ 0) is Feller and for any t ≥ 0, Cλ(t, t + s) −→
s→0

0[∞] in

probability.

Proof. The Feller property corresponds to the continuity of the map

C ∈ C∞ 7→ P λt ϕ(C) := E[ϕ(Coag(C,Cλ(t)))]

for any continuous function ϕ from C∞ to R+. This is clear since Coag is Lipschitz continuous.
We now show the weak continuity of the semigroup. By de�nition Jλi (t) = X̂t(Jk) for any
k ∈ Cλ(t) and for any i 6= j, Jλi (t) 6= Jλj (t). By Lemma 2.3-(ii) and independence between
(Ji, i ≥ 1) and X̂, we see that (Jλi (t), i ≥ 1) is independent of X̂t,t+s. By Lemma 2.3-(iv), since
X̂t,t+s(x) −→

s→0
x uniformly on compact sets, in probability, then for any n,

P(∀i 6= j ∈ [n], X̂t,t+s(J
λ
i (t)) 6= X̂t,t+s(J

λ
j (t))) −→

s→0
1.

Therefore P(d(Cλ(t, t+ s), 0[∞]) ≤ 1/n) −→
s→0

1.

We now seek for the coagulation rate (4.7).

Lemma 4.15. For any z ∈ (0, 1),

1

s
E[z#Cλ1 (t,t+s) − z] −→

s→0
ϕλt (z) :=

Ψ(vt(λ)(1− z))− (1− z)Ψ(vt(λ))

vt(λ)
.

Proof. Let z ∈ (0, 1), since by Lemma 4.8, the random variables (Jλl (t), l ≥ 1) are the atoms of
an independent Poisson process with intensity vt(λ), then

E(z#Cλ1 (t,t+s)) = 1− vs(vt(λ)(1− z))
vs(vt(λ))

. (4.9)

Thus

1

s
E[z#Cλ1 (t,t+s) − z] =

1

s

[
(1− z)vt+s(λ)− vs(vt(λ)(1− z))

vt+s(λ)

]
=

1

s

(1− z)(vt+s(λ)− vt(λ)) + vt(λ)(1− z)− vs(vt(λ)(1− z))
vt+s(λ)

−→
s→0

Ψ(vt(λ)(1− z))− (1− z)Ψ(vt(λ))

vt(λ)
=: ϕλ(t).

The latter convergence holds since (vt(λ), t ≥ 0) solves (1.3) and vt+s = vs ◦ vt.

By letting θ = vt(λ) in the next technical lemma, we see that for any t ≥ 0, the measures µλt
on N de�ned in (4.7) have generating function ϕλt .
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Lemma 4.16. Recall Ψ in (1.4). For any z ∈ (0, 1) and any θ ≥ 0,

Ψ(θ(1− z))− (1− z)Ψ(θ)

θ
=
∞∑
k=2

(zk − z)pθ(k)

with pθ(k) = σ2

2 θ1{k=2} +
´∞

0
θk−1xk

k! e−θxπ(dx).

Proof. It is easy to see that Ψ(θ(1− z)) = Ψθ(−θz) + Ψ(θ), where

Ψθ(u) := Ψ(u+ θ)−Ψ(θ) = Ψ′(θ)u+
σ2

2
u2 +

ˆ ∞
0

(e−ux − 1 + ux)e−θxπ(dx).

Then we have that

Ψθ(−θz) = −Ψ′(θ)θz +
σ2

2
(θz)2 +

ˆ ∞
0

(eθzx − 1− θzx)e−θxπ(dx)

= −Ψ′(θ)θz +
σ2

2
(θz)2 + z

ˆ ∞
0

∞∑
k=2

θkxk

k!
e−θxπ(dx)

+ θ

ˆ ∞
0

∞∑
k=2

θk−1xk

k!
(zk − z)e−θxπ(dx)

= −Ψ′(θ)θz +
σ2

2
θ2z + z

ˆ ∞
0

(eθx − 1− θx)e−θxπ(dx)

+ θ
∞∑
k=2

(zk − z)pθ(k)

= −zΨ(θ) + θ
∞∑
k=2

(zk − z)pθ(k).

The last equality follows from the fact that

Ψ′(θ) = −β + σ2θ +

ˆ 1

0
x(1− e−θx)π(dx)−

ˆ ∞
1

xe−θxπ(dx).

Thus we have Ψ(θ(1− z)) = (1− z)Ψ(θ) + θ
∑∞

k=2(zk − z)pθ(k) for any z ∈ (0, 1).

We now explain how coalescences take place in the process (Cλ(t), t ≥ 0). By construction,
the laws of (Cλ|[n](t), t ≥ 0) for n ≥ 1 are consistent and as in Lemma 4.4 the family of jump

rates of (Cλ|[n](t), t ≥ 0) characterizes the law of (Cλ(t), t ≥ 0). The following lemma is obtained
along the same lines as Lemma 4.4 but in an inhomogeneous time setting.

Lemma 4.17. Let n ≥ 1. The n-coalescent process (Cλ|[n](t), t ≥ 0) has jump rates characterized

by µλt and the coalescence events are as follows. Fix a time t. Conditionally given #C|[n](t−) =
m, for any j ≤ m− 1, consider the consecutive partitions of [m]

- Cj,kin := ({1}, ..., {j, ..., j + k− 1}, ..., {m}) for any 2 ≤ k ≤ m− j and attach to each Cjin a

random clock ζj,kin with law

P(ζj,kin > s) = exp

(
−
ˆ s

0
µλr (k)dr

)
.
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- Cjout := ({1}, ..., {j, ...,m}) and attach to each Cjout a random clock ζj,kout with law

P(ζj,kout > s) = exp

(
−
ˆ s

0
µλr (m− j + 1)dr

)
.

Then the process jumps from the partition C|[n](t−) to Coag(C|[n](t−), D) with D the partition

in {Cj,kin , C
j
out} associated with the �rst random clock that rings.

Proof of Theorem 4.10. It follows directly by combination of Lemmas 4.13�4.17.

We provide now some basic properties of the consecutive coalescent (Cλ(t), t ≥ 0).

Proposition 4.18. Fix λ > 0. If Ψ is critical or supercritical then (Cλ(t), t ≥ 0) converges

almost-surely towards the partition 1N. If Ψ is subcritical, then the process (Cλ(t), t ≥ 0) con-

verges almost-surely towards a partition Cλ(∞), whose law is characterized by

E[z#Cλ1 (∞)] = 1− e−Ψ′(0+)
´ λ
λ(1−z)

du
Ψ(u) for any z ∈ (0, 1).

In this case, the individuals (Jλ1 , J
λ
2 , ...) belong to di�erent families with i.i.d sizes distributed as

#Cλ1 (∞).

Proof. Recall that for any t ≥ 0, d
duvt(u) = Ψ(vt(u))

Ψ(u) . Therefore

vt(λ(1− z))
vt(λ)

= exp

(ˆ λ(1−z)

λ

d

du
log(vt(u))du

)
= exp

(ˆ λ(1−z)

λ

Ψ(vt(u))

vt(u)

du

Ψ(u)

)
.

If Ψ′(0+) < 0, then Ψ(vt(u))
vt(u) −→

t→∞
Ψ(ρ)/ρ = 0 and by monotone convergence vt(λ(1−z))

vt(λ) −→
t→∞

1. By

Theorem 4.10, we have

E[z#Cλ1 (t)] = 1− vt(λ(1− z))
vt(λ)

−→
t→∞

0.

The process (#Cλ1 (t), t ≥ 0) is non-decreasing and thus converges almost-surely in N. Therefore
#Cλ1 (t) −→

t→∞
∞ a.s. Recall that (Cλ(t), t ≥ 0) converges almost surely towards 1N if and only

if Cλ|[n](t) = 1[n] for large enough t. Since #C1(t) −→
t→∞

∞, then P(#C1(t) ≥ n) = P(T1,n ≤
t) −→ 1 with T1,n the coalescence time of the ancestral lineages of Jλ1 and Jλn . If Ψ′(0+) ≥ 0,

then Ψ(vt(u))
vt(u) −→

t→∞
Ψ′(0+) and by monotone convergence vt(λ(1−z)

vt(λ) −→
t→∞

e
−Ψ′(0+)

´ λ
λ(1−z)

du
Ψ(u) . By

Theorem 4.10, we have for any i ≥ 1,

E[z#Cλi (t)] = 1− vt(λ(1− z))
vt(λ)

−→
t→∞

1− e−Ψ′(0+)
´ λ
λ(1−z)

du
Ψ(u) .

By monotonicity, #Cλ1 (t) −→
t→∞

#Cλ1 (∞) a.s. Therefore for large enough time t1, for t ≥ t1,

Cλ1 (t) = Cλ1 (∞). Since there is no coalescence between blocks Cλ1 and Cλ2 after time t1, the
process (#Cλ2 (t), t ≥ t1) is non-decreasing and converges almost-surely towards #Cλ2 (∞). By
induction, for any n0, there exists tn0 such that for any t ≥ tn0 , #Cλi (t) = #Cλi (∞) for all
i ≤ n0. Thus, for any t ≥ tn0 , C

λ
i (t)∩ [n0] = Cλi (∞)∩ [n0], and then d(Cλ(t), Cλ(∞)) ≤ 1

n0
.
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The following proposition is a direct consequence of the strong law of large numbers.

Proposition 4.19 (Singletons). For any t ≥ 0, and any λ > 0 there are in�nitely many singleton

blocks at time t and
#{i ∈ [n]; #Cλi (t) = 1}

n
−→
n→∞

Dλ
t a.s.

with Dλ
t = λ

Ψ(λ)
Ψ(vt(λ))
vt(λ) . This represents the proportion of ancestors that have not been involved

in coalescences by time t.

We have seen in Theorem 1.A-(iv) and Proposition 2.6 that when
´

0
dx
|Ψ(x)| < ∞, the CSBP

explodes and ∞ is an entrance boundary of (X̂t, t ≥ 0). Recall that for any t > 0, X̂t(∞) is the
�rst individual from generation t to have an in�nite progeny at time 0.

Proposition 4.20 (Coming down from in�nity). For any t > 0, #Cλ(t) <∞ a.s if and only if´
0

dx
|Ψ(x)| <∞. Moreover

vt(0)#Cλ(t) −→
t→0

e1/λ in law

where e1/λ is an exponential random variable with parameter 1/λ.

Proof. Recall that vt(0) > 0 if and only if
´

0
dx
|Ψ(x)| < ∞. By Theorem 4.10, for any i ≥ 1,

P(#Cλi (t) = ∞) = vt(0)
vt(λ) and therefore the number of blocks #Cλ(t) is a geometric random

variable with parameter vt(0)
vt(λ) . For any �xed x > 0, one has

P(vt(0)#Cλ(t) > x) =

(
1− vt(0)

vt(λ)

)⌊
x

vt(0)

⌋
−→
t→0

e−
x
λ .

4.3 Backward genealogy of the whole population

In the previous section, we have de�ned some coalescent processes arising from sampling initial
individuals along a Poisson process with an arbitrary intensity λ. The consecutive coalescents
obtained by this procedure are only approximating the backward genealogy. They give the
genealogy of a random sample of the population. The objective of this subsection is to observe
that when the Grey's condition holds, one can de�ne a consecutive coalescent matching with
the complete genealogy of the population from any positive time. In all this section, assume the
Grey's condition ˆ ∞ dx

Ψ(x)
<∞.

Heuristically, we make λ → ∞ in Theorem 4.10, to study the genealogy of the whole pop-
ulation. The limiting process would indeed characterize the genealogy of the CSBP as in this
case, an everywhere dense sub-population would be sampled and its genealogy given, which is
enough to deduce the genealogical relationship between any pair of individuals. However, this
method cannot work directly as one would have jump rates that may explode.

Fix a time s > 0. The subordinator (X−s,0(x), x ≥ 0) is a compound Poisson process
with Lévy measure `s(dx) independent of (X−t,−s(x), x ≥ 0, t ≥ s). Let (J

vs(∞)
i , i ≥ 1) be

the jump times of (X−s,0(x), x ≥ 0). They are atoms of a Poisson process with intensity
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vs(∞) = `s([0,∞]), independent of (X̂s,t, t ≥ s). Consider (C(s, t), t ≥ s) the partition-valued
process de�ned by

i
C(s,t)∼ j i� X̂s,t(J

vs(∞)
i ) = X̂s,t(J

vs(∞)
j ).

The process (C(s, t), t > s) provides a dynamical description of the genealogy of initial individ-
uals whose most recent common ancestors are found at time s > 0. The following theorem is a
direct application of Theorem 4.10.

Theorem 4.21. For any s > 0, the �ow of random consecutive partitions (C(u, t), t ≥ u ≥ s)
satis�es for any t ≥ u ≥ s,

C(s, t) = Coag(C(s, u), C(u, t)) a.s (4.10)

where C(u, t) is a Poisson box with parameters (vu(∞), vt−u) independent of C(s, u). Moreover

for any i ≥ 1, t ≥ s and z ∈ (0, 1),

E[z#Ci(s,t)] = 1− vt−s(vs(∞)(1− z))
vt(∞)

and the consecutive coalescent (C(s, t), t > s) has coagulation rates (µ∞t , t > s) with

µ∞t (k) :=
σ2

2
vt(∞)1{k=2} + vt(∞)k−1

ˆ
(0,∞)

xk

k!
e−vt(∞)xπ(dx) for any k ≥ 2. (4.11)

We see in the next corollary that by reversing time in any block of the consecutive coalescent
(C(s, t), 0 < s ≤ t), one obtains an inhomogeneous continuous-time Galton-Watson process. Fix
an horizon time T > 0 and consider the consecutive partitions C(T − t, T ) for any t ∈ [0, T [.

Corollary 4.22. The processes (ZTi (t), 0 ≤ t < T ) := (#Ci(T − t, T ), 0 ≤ t < T ) are i.i.d

inhomogeneous continuous-time Galton-Watson processes. For any z ∈ [0, 1], and any t ∈ [0, T [

E[zZ
T
i (t)] = 1− vt(vT−t(∞)(1− z))

vT (∞)
. (4.12)

Moreover, denoting by γTi , the time of its �rst jump, one has for any t ∈ [0, T [

P(γTi > t) =
Ψ(vT (∞))

vT (∞)

vT−t(∞)

Ψ(VT−t(∞))
.

Proof. The law of ZTi (t) for �xed t is obtained by a direct application of Theorem 4.21. Only
remains to show the branching property. By (4.10) for any s and t such that 0 ≤ t+ s < T

C(T − (t+ s), T ) = Coag(C(T − (t+ s), T − t), C(T − t, T ))

which provides Ci(T − (t + s), T ) =
⋃
j∈Ci(T−t,T )Cj(T − (t + s), T − t) and the branching

property.

Remark 4.23. The process (ZT1 (t), 0 ≤ t < T ) corresponds to the reduced Galton-Watson process
obtained by Duquesne and Le Gall [DLG02, Theorem 2.7.1] in the (sub)critical case. We refer
also to Fekete et al. [FFK17] for an approach with stochastic di�erential equations. In the
supercritical case, since for any t ≥ 0, vT−t(∞) −→

T→∞
ρ, we see in (4.12) that (ZT1 (t), t ≥
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0) converges, as T goes to in�nity, in the �nite-dimensional sense, towards a Markov process
(Z∞(t), t ≥ 0) whose semigroup satis�es for any z ∈ (0, 1)

E[zZ
∞(t)] = 1− vt(ρ(1− z))

ρ
.

Namely, (Z∞(t), t ≥ 0) is a continuous-time Galton-Watson process, homogeneous in time, with
reproduction measure µρ. Heuristically, individuals from time −t with descendants at time T
will correspond at the limit with proli�c individuals.

The coalescent process (C(s, t), t ≥ s) only describes coalescence in families from time s > 0.
We de�ne now a coalescent process from time 0 by using the �ow of subordinators. Denote
by CR+ the space of partitions of (0,∞) into consecutive half-closed intervals. That is to say,
partitions of the form C = ((0, x1], (x1, x2], ...) for some non-decreasing sequence of positive real
numbers (xi, i ≥ 1). The space of consecutive partitions of N, (C∞,Coag), acts as follows on
CR+ : for any C ∈ CR+ and C ∈ C∞, for any i ≥ 1

Coag(C , C)i =
⋃
j∈Ci

Cj

where Cj = (xj−1, xj ] and x0 = 0. The following theorem achieves one of our goals and has to
be compared with our preliminary observation in Proposition 2.1. It describes completely the
genealogy backwards in time as well as the sizes of asymptotic families. For any t > 0, denote
by J−t the set of jumps of the subordinator (X−t,0(x), x ≥ 0).

Theorem 4.24. De�ne the process (C (t), t > 0) valued in CR+ as follows:

C (t) = {(X−t,0(x−), X−t,0(x)], x ∈ J−t} .

The process (C (t), t > 0) is a time-inhomogeneous Markov process such that for any t ≥ s > 0,

C (t) = Coag(C (s), C(s, t)) a.s.

In the critical or supercritical case, C (t) −→
t→∞

1(0,∞) a.s. In the subcritical case, C (t) −→
t→∞

C (∞)

a.s and the length of a typical interval at the limit has for law the quasi-stationary distribution

of the CSBP conditioned on the non-extinction:

E[e−u|C1(∞)|] = 1− exp

(
−Ψ′(0+)

ˆ ∞
u

dv

Ψ(v)

)
.

Proof. Recall that X−t,0 = X−s,0 ◦ X−t,−s and X̂t = X̂s,t ◦ X̂s. This entails that for any
x ∈ J−t = {Jvt(∞)

j , j ≥ 1},

(X−t,0(x−), X−t,0(x)] =
⋃

y∈(0,∞)

X̂s,t(y)=x

(X−s(y−), X−s(y)]. (4.13)

For any t > 0 and any j ≥ 1, set Cj(t) = (xj−1(t), xj(t)] = (Xt(J
vt(∞)
j −), Xt(J

vt(∞)
j )] with

x0(t) = 0. By de�nition of C(s, t) and (4.13), we have

Ci(t) =
⋃

j∈Ci(s,t)

Cj(s).
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Proposition 4.18 ensures that (C(s, t), t ≥ s) converges almost-surely as t goes to∞. This entails
the almost-sure convergence of (C (t), t > 0). In the supercritical or critical case, C(s, t) −→

t→∞
1N

and then C (t) −→
t→∞

1(0,∞), where 1(0,∞) denotes the partition of (0,∞) with only one block. In

the subcritical case, Proposition 2.1 entails that for all i ≥ 1 and u ≥ 0,

E[e−u|Ci(∞)|] = 1− exp

(
−Ψ′(0+)

ˆ ∞
u

dv

Ψ(v)

)
.

Note moreover that C (∞) = Coag(C (s), C(s,∞)) for any s > 0.

st

C(u, t)|[5] = ({1, 2, 3}, {4, 5})

u

C(s, u)|[6] = ({1}, {2}, {3}, {4, 5}, {6})

C(s, t)|[6] = Coag(C(s, u), C(u, t))|[6]

= ({1, 2, 3}, {4, 5, 6})

0

Intervals at time s are given by (Ci(s), i ∈ [6])

C1(s)

C2(s)

Figure 5: Symbolic representation of the genealogy

Remark 4.25. Bertoin and Le Gall in [BLG06, Proposition 3] have shown that in the critical
case the Lévy measures (`t, t > 0) solve the following Smoluchowski equation

∂

∂t
〈f, `t〉 = vt(∞)

∞∑
k=2

µ∞t (k)

ˆ
(0,∞)k

(
f(x1+...+xk)−(f(x1)+...+f(xk))

)
`t(dx1)...`t(dxk) (4.14)

where f is a continuous function on (0,∞) with compact support and 〈f, `t〉 =
´

(0,∞) f(x)`t(dx).
The process (C (t), t > 0) sheds some light on this deterministic equation since µ∞t (k) is the rate
in (C (t), t > 0) at which k given consecutive intervals coagulate and by the strong law of large
numbers,

1

n

n∑
i=1

δ|Ci(t)| −→n→∞
`t(dx)

vt(∞)
a.s for any t > 0,

where |Ci(t)| denotes the length of the ith interval in C (t). We refer the reader to Iyer et al.
[ILP15], [ILP18] for recent works on Equation 4.14.

When the CSBP explodes, the individuals in the current generation have �nitely many
ancestors. The following proposition is the analogue of Proposition 4.20.

Proposition 4.26. Assume
´

0
du
|Ψ(u)| < ∞, then the consecutive coalescent (C (t), t > 0) comes

down from in�nity and
vt(0)

vt(∞)
#C (t) −→

t→0
e in law

where e is a standard exponential random variable.
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Proof. For any t > 0, the lengths of the intervals in C (t) are i.i.d random variables with law
`t(dx)
vt(∞) . Under the assumption,

´
0

du
|Ψ(u)| < ∞, `t({∞}) = vt(0) > 0 and therefore the number of

intervals in C (t) has a geometric law with parameter vt(0)
vt(∞) . The convergence in law is proved

by a similar calculation as in Proposition 4.20.

We saw in Proposition 4.5 that the number of blocks in (C|[n](t), t ≥ 0), the coalescent
process associated with a continuous-time Galton-Watson process, corresponds to the inverse
�ow of random walks (Ẑt(n), t ≥ 0) at a �xed level n. Recall that in continuous-state space
the process (X̂t(x), t ≥ 0) can then be interpreted as the size of the ancestral population whose
descendants at time 0 form a family of size x. The study of its in�nitesimal dynamics is more
involved than in the discrete setting and is the aim of the next section.

5 A martingale problem for the inverse �ow

We investigate the extended generator L̂ of (X̂t, t ≥ 0). Recall that we write L the generator of
the CSBP with mechanism Ψ. As we consider the �ow of subordinators over [0,∞], it is natural
to express L, given in (1.5), as follows. For all function G in C2

b the space of twice di�erentiable
bounded functions with bounded derivatives, we have:

LG(x) =
σ2

2
xG′′(x) + βxG′(x) +

ˆ ∞
0
π(dh)

ˆ ∞
0

du
(
G(∆h,u(x))−G(x)− h1{u≤x}G′(x)1{h≤1}

)
(5.1)

with ∆h,u(x) := x + h1{x≥u}. We denote by C2
0 the space of twice continuously di�erentiable

functions over [0,∞) which tend to 0 at in�nity and whose �rst derivative tends to 0 at in�nity.

Theorem 5.1. For any function F in C2
0 , set

L̂F (z) =
σ2

2
zF ′′(z) +

(
σ2

2
− βz

)
F ′(z)

+

ˆ ∞
0
π(dh)

ˆ ∞
0

du
[
F (ψh,u(z))− F (z) + h1{h≤1}F

′(z)1{z>u}
]

with

ψh,u(z) := z1[0,u](z) + u1[u,u+h](z) + (z − h)1[u+h,∞)(z).

Then for any y > 0, (X̂t(y), t ≥ 0) solves the following well-posed martingale problem

(MP)

(
F (X̂t(y))−

ˆ t

0
L̂F (X̂s(y))ds, t ≥ 0

)
is a martingale for any function F in D := {F ∈ C2

0 ;F ′ ∈ L1 and βxF ′(x), σ
2

2 xF
′′(x) −→

x→∞
0}.

Remark 5.2. Note that ψh,u = ∆−1
h,u is the right-continuous inverse function of ∆h,u, see Figure 6.

For any y ≥ 0, if individual u has at time t a progeny of size h, then ψh,u(y) at time t− is the
in�nitesimal parent of individual y at time t: if y < u, then y has no parent but himself, if
y ∈ [u, u+ h], the parent of y is ψh,u(y) = u, if y > u+ h then its parent is ψh,u(y) = y − h. If
y1 6= y2 then ψh,u(y1) = ψh,u(y2) if and only if y1, y2 ∈ [u, u+ h].
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u

u+ h

∆h,u ψh,u

u u+ hx z

uu

Figure 6: Graphs of the functions ∆h,u and ψh,u

The proof of Theorem 5.1 is divided in four lemmas.

Lemma 5.3. The operator L̂ is well-de�ned on C2
b .

Proof. Let F ∈ C2
b . We �rst study the integral in L̂ with respect to π(dh) on the interval [1,∞).

For any y > 0,∣∣∣∣ˆ ∞
1

π(dh)

ˆ ∞
0

du(F (ψh,u(y))− F (y))

∣∣∣∣
=

∣∣∣∣ˆ ∞
1

π(dh)

ˆ y

0
du(F (ψh,u(y))− F (y))

∣∣∣∣ ≤ yπ(1)2||F ||∞

where π(x) :=
´∞
x π(du) for any x > 0. In order to study the integral on [0, 1), note that for

any y > 0, u > 0 and h > 0, we have

ψh,u(y)− y = (u− y)1[u,u+h](y)− h1[u+h,∞)(y) = (u− y)1[y−h,y](u)− h1[0,y−h](u).

Assume h < 1. We have that∣∣F (ψh,u(y))− F (y) + hF ′(y)1{y>u}
∣∣

≤
∣∣F (ψh,u(y))− F (y)− (ψh,u(y)− y)F ′(y)

∣∣+
∣∣(ψh,u(y)− y + h1{y>u})F

′(y)
∣∣

≤
(ψh,u(y)− y)2

2
||F ′′||∞ +

∣∣ψh,u(y)− y + h1{y>u}
∣∣ ||F ′||∞.

On the one hand,

ψh,u(y)− y + h1{y>u} = (u− y)1[y−h,y](u)− h1[0,y−h](u) + h1[0,y](u)

= (u+ h− y)1[y−h,y](u) ≥ 0

and ˆ ∞
0

(u+ h− y)1[y−h,y](u)du =

[
u2

2

]y
y−h

+ (h− y)h =
h2

2
.

On the other hand

(ψh,u(y)− y)2

2
=

1

2
((u− y)2

1[y−h,y](u) + h2
1[0,y−h](u))

37



and
ˆ ∞

0

(ψh,u(y)− y)2

2
du =

ˆ ∞
0

1

2
((u− y)2

1[y−h,y](u) + h2
1[0,y−h](u))du ≤ h3

6
+
h2

2
y ≤ h2

2
(y + 1).

Thus, for any 0 ≤ h < 1

ˆ ∞
0
|F (ψh,u(y))− F (y) + hF ′(y)1{h<1}1{y>u}|du ≤

h2

2
(y + 1)||F ′′||∞ +

h2

2
||F ′||∞. (5.2)

The integral with respect to π(dh) on (0, 1) in L̂F is therefore convergent and L̂ well-de�ned.

We now follow the same method as Bertoin and Le Gall in [BLG05, Theorem 5] to show

that L̂ is an extended generator, i.e. that
(
F (X̂t(u))−

´ t
0 L̂F (X̂s(u))ds, t ≥ 0

)
is a martingale

for all F in D . Let g be an integrable continuous function over [0,∞) and set G(t) =
´ t

0 g(u)du.
Let F ∈ D and write F (t) =

´∞
t f(x)dx where f(x) := −F ′(x). By Fubini's theorem, note that

ˆ ∞
0

ˆ ∞
0

g(u)f(x)1{x≥u}dudx =

ˆ ∞
0

g(u)F (u)du =

ˆ ∞
0

f(x)G(x)dx.

Moreover, one classically has that
ˆ ∞

0
f(x)P(X̂s(u) < x)dx = E[F (X̂s(u))] and

ˆ ∞
0

g(u)P(Xs(x) > u)du = E[G(Xs(x))].

Recall that by (2.5), we have P(X̂s(u) < x) = P(Xs(x) > u) for all x, u ≥ 0. Then, integrating
this equality with respect to f(x)g(u)dxdu provides

ˆ ∞
0

dug(u)E[F (X̂s(u))− F (u)] =

ˆ ∞
0

dxf(x)E[G(Xs(x))−G(x)]. (5.3)

Therefore, a �rst step in the search for L̂ is computing the right-hand side of (5.3). Let L̂d and
L̂c be, respectively, the discontinuous part and the continuous one of the generator L̂.

Lemma 5.4. Let λ > 0 and g(x) = e−λx for any x ∈ R+ then for any F ∈ D
ˆ ∞

0
dxf(x)E[G(Xs(x))−G(x)] =

ˆ ∞
0

g(u)du

ˆ s

0
dtE

[
L̂dF (X̂t(u)) + L̂cF (X̂t(u))

]
, (5.4)

where f(x) = −F ′(x) and G(x) =
´ x

0 g(u)du.

Proof. The function x 7→ G(x) = 1−e−λx
λ is in C2

b and by applying Dynkin's formula we get

E[G(Xs(x))−G(x)] =

ˆ s

0
dtLPtG(x) =

ˆ s

0
dtLcPtG(x) +

ˆ s

0
dtLdPtG(x)

where we write for all twice derivable function H,

LcH(x) =
σ2

2
xH ′′(x) + βxH ′(x)

LdH(x) =

ˆ ∞
0

π(dh)

ˆ ∞
0

du
(
H(∆h,u(x))−H(x)− h1{u≤x}H ′(x)1{h≤1}

)
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which denote respectively the continuous and discontinuous parts of the generator L. We start
by studying the discontinuous part. For any s ≥ 0, we can rewrite
ˆ s

0
dtLdPtG(x)

=

ˆ s

0
dt

ˆ ∞
0

π(dh)

ˆ ∞
0

du
[
PtG(x+ h1{u<x})− PtG(x)− h(PtG)′(x)1{h<1}1{u≤x}

]
. (5.5)

We �rst compute

PtG(x+ h1{u<x})− PtG(x) = E[G(Xt(x+ h1{u<x})−G(Xt(x))]

=

ˆ ∞
0

g(v)dv
(
P(v ≤ Xt(x+ h1{u<x}))− P(v ≤ Xt(x))

)
=

ˆ ∞
0

g(v)dv
(
P(x+ h1{u≤x} ≥ X̂t(v))− P(x ≥ X̂t(v))

)
.

By Lemma A.1(ii) and Remark 5.2, one has ∆h,u(x) > y if and only if x > ψh,u(y), therefore

PtG(x+ h1{u<x})− PtG(x) =

ˆ ∞
0

g(v)dv
(
P(ψh,u(X̂t(v)) ≤ x)− P(X̂t(v) ≤ x)

)
.

Integrating with respect to f(x)dx we obtainˆ ∞
0

dxf(x)
(
PtG(x+ h1{u<x})− PtG(x)

)
=

ˆ ∞
0

g(v)dv
(
E[F (ψh,u(X̂t(v)))]− F (X̂t(v))]

)
.

(5.6)
We now compute the compensated part of the discontinuous generator L̂d. By integration

by parts we haveˆ ∞
0

f(x)(PtG)′(x)1{u≤x}dx = −f(u)PtG(u)−
ˆ ∞
u

f ′(x)PtG(x)dx, (5.7)

since f(∞) := lim
x→∞

f(x) = 0 and lim
x→∞

PtG(x) = G(∞) <∞. Moreover, we observe that

ˆ ∞
u

f ′(x)PtG(x)dx

=

ˆ ∞
u

f ′(x)E
[ˆ ∞

0
1{Xt(x)>v}g(v)dv

]
dx =

ˆ ∞
u

f ′(x)E
[ˆ ∞

0
1{x>X̂t(v)}g(v)dv

]
dx

=E
[ˆ ∞

0
g(v)dv

ˆ ∞
u

f ′(x)1{x>X̂t(v)}dx

]
=

ˆ ∞
0

g(v)dv
(
f(∞)− E[f(X̂t(v) ∨ u)]

)
=−
ˆ ∞

0
E[f(X̂t(v) ∨ u)]g(v)dv.

Therefore (5.7) becomesˆ ∞
0

f(x)(PtG)′(x)1{u≤x}dx = −f(u)PtG(u) +

ˆ ∞
0

E[f(X̂t(v) ∨ u)]g(v)dv

=

ˆ ∞
0

(
E[f(X̂t(v) ∨ u)− f(u)P(X̂t(v) ≤ u)

)
g(v)dv

=

ˆ ∞
0

E[f(X̂t(v))1{X̂t(v)>u}]g(v)dv.
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Using the above result and (5.6), (5.5) yields
ˆ ∞

0
dxf(x)

ˆ s

0
dtLdPtG(x)

=

ˆ ∞
0

dxf(x)

ˆ s

0
dt

ˆ ∞
0
π(dh)

ˆ ∞
0

du
[
PtG(x+ h1{u<x})− PtG(x)− h(PtG)′(x)1{h<1}1{u≤x}

]
=

ˆ s

0
dt

ˆ ∞
0
π(dh)

ˆ ∞
0

du

ˆ ∞
0

dxf(x)
[
PtG(x+ h1{u<x})− PtG(x)− h(PtG)′(x)1{h<1}1{u≤x}

]
(5.8)

=

ˆ s

0
dt

ˆ ∞
0
π(dh)

ˆ ∞
0

du

ˆ ∞
0

g(v)dvΥ(t, h, u, v)

=

ˆ ∞
0
g(v)dv

ˆ s

0
dt

ˆ ∞
0
π(dh)

ˆ ∞
0

duΥ(t, h, u, v), (5.9)

where

Υ : (t, h, u, v) 7→
(
E[F (ψh,u(X̂t(v)))− F (X̂t(v))− hF ′(X̂t(v))1{X̂t(v)>u}1{h≤1}]

)
.

Above, (5.8) and (5.9) follow from applying Fubini's theorem, which we now justify. For any t
and x,

PtG(x) =
1− e−xvt(λ)

λ
and (PtG)′′(x) = −vt(λ)2

λ
e−xvt(λ).

Since vt(λ)e−xvt(λ) ≤ 1
x then sup[x,x+h] |(PtG)′′(z)| ≤ vt(λ)

λx , and by Taylor's inequality

|PtG(x+ h1{u<x})− PtG(x)− h(PtG)′(x)1{h<1}1{u≤x}| ≤
vt(λ)

λx

(h ∧ 1)2

2
1{u≤x}.

Since f is integrable then the upper bound is integrable with respect to f(x)dx1[0,s](t)dtπ(dh)du,
which justi�es the application of Fubini's theorem in (5.8).

We now explain why (5.9) holds. Recall �rst that f(z) = −F ′(z). By Theorem 2.5,
for any q > 0 we have E[X̂t(eq)] = 1

vt(q)
< ∞ therefore E[X̂t(x)] < ∞ for a.e. x. This,

with the bound (5.2) allows us to conclude that Υ(t, h, u, v) is integrable with respect to
g(v)dv1[0,s](t)dtπ(dh)du.

In a second time, we deal with the continuous part of the generator Lc. Applying Fubini's
theorem, one has

ˆ ∞
0

dxf(x)

ˆ s

0
LcPtG(x)dt =

ˆ s

0
dt

ˆ ∞
0

dxf(x)LcPtG(x).

Set h(x) = PtG(x) and φ(x) = f ′(x)σ
2

2 x + f(x)
(
σ2

2 − βx
)
. Since by assumption F ∈ D , then
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lim
x→∞

φ(x) = φ(∞) = 0. We now compute
´∞

0 dxf(x)LcPtG(x). By two integrations by parts

ˆ ∞
0

dxf(x)Lch(x) =

ˆ ∞
0

dxf(x)

[
σ2

2
xh′′(x) + βxh′(x)

]
=

[
f(x)

σ2

2
xh′(x)

]∞
0

−
ˆ ∞

0
dx

[
f ′(x)

σ2

2
x+ f(x)

σ2

2

]
h′(x) +

ˆ ∞
0

dxf(x)βxh′(x)

=

[
f(x)

σ2

2
xh′(x)

]∞
0

−
ˆ ∞

0
φ(x)h′(x)dx

=

[
f(x)

σ2

2
xh′(x)

]∞
0

− φ(∞)h(∞) +

ˆ ∞
0

φ′(x)h(x)dx

= −φ(∞)h(∞) +

ˆ ∞
0

φ′(x)E
[ˆ ∞

0
g(u)1{u≤Xt(x)}du

]
dx

=

ˆ ∞
0

dug(u)

ˆ ∞
0

dxφ′(x)P(X̂t(u) < x)

= −
ˆ ∞

0
dug(u)E[φ(X̂t(u))] =

ˆ ∞
0

dug(u)E[L̂cF (X̂t(u))].

We can now conclude as follows. One has
ˆ ∞

0
dug(u)E[F (X̂s(u))− F (u)] =

ˆ ∞
0

dxf(x)E[G(Xs(x))−G(x)] (5.10)

=

ˆ ∞
0

g(v)dv

ˆ s

0
dtE

[
L̂dF (X̂t(v)) + L̂cF (X̂t(v))

]
.

Lemma 5.5. For any F ∈ D and any y ≥ 0,

(
F (X̂t(y))−

ˆ t

0
L̂F (X̂s(y))ds, t ≥ 0

)
is a mar-

tingale.

Proof. Recall that g(v) = e−λv. We will show that (5.10) entails that for any v and any s:

E[F (X̂s(v))− F (v)] =

ˆ s

0
dtE

[
L̂dF (X̂t(v)) + L̂cF (X̂t(v))

]
. (5.11)

From the Feller property of (X̂t, t ≥ 0) and the continuity of L̂F for any function F in D ,
the map v 7→ E[L̂F (X̂t(v))] is continuous. For any a > 0, and any v ≤ a, X̂t(v) ≤ X̂t(a) a.s.
therefore using the bound (5.2), we see that the function de�ned on [0, a] by

Ξ(v) =

ˆ s

0
dt

ˆ ∞
0

π(dh)

ˆ ∞
0

du
(
E[F (ψh,u(X̂t(v)))− F (X̂t(v)) + hF ′(X̂t(v))1{X̂t(v)>u}1{h≤1}]

)
is continuous, and since a is arbitrary, the mapping is continuous on [0,∞). This corresponds

to the continuity of v 7→
´ s

0 dtE
[
L̂dF (X̂t(v))

]
. On the other hand, one can check the continuity

of v 7→
´ s

0 dtE
[
L̂cF (X̂t(v))

]
and by injectivity of the Laplace transform, (5.10) entails (5.11).

This provides the martingale problem, as the following routine calculation shows. Let t ≥ 0 and

41



s ≥ 0. Denote by (Fs, s ≥ 0) the natural �ltration associated with (X̂s(x), s ≥ 0, x ≥ 0),

E
[
F (X̂t+s(x))−

ˆ t+s

0
L̂F (X̂u(x))du |Fs

]
= E

[
F (X̂t+s(x))−

ˆ t+s

s
L̂F (X̂u(x))du |Fs

]
−
ˆ s

0
L̂F (X̂u(x))du

= EX̂s(x)

[
F (X̂t)−

ˆ t

0
L̂F (X̂u)du

]
−
ˆ s

0
L̂F (X̂u(x))du

= F (X̂s(x))−
ˆ s

0
L̂F (X̂u(x))du,

where we have used (5.11) in the last equality.

In the following Lemma, we rewrite the generator L̂ of the one-point motion in its Courrège
form. We refer to Kolokoltsov [Kol11] for a general study of generators of stochastically monotone
Markov processes.

Lemma 5.6. For any f ∈ C2
b ,

L̂f(z) =
σ2

2
zf ′′(x) +

ˆ z

0

[
f(z − h)− f(z) + hf ′(z)

]
ν(z,dh) + b(z)f ′(z)

with

ν(z,dh) := 1{h≤z} ((z − h)π(dh) + π(h)dh)

and

b(z) :=

ˆ ∞
0

h(z1{h≤1}π(dh)− ν(z,dh))− βz +
σ2

2
.

Moreover, the martingale problem (MP) is well-posed.

Remark 5.7. The jump measure ν(z, dh) can be compared to the jumps rate of (Ẑt(n), t ≥ 0)
obtained in Proposition 4.5. Moreover, in the �nite mean case,

´∞
1 hπ(dh) <∞, the drift b can

be rewritten as follows

b(z) =

ˆ ∞
0

h(zπ(dh)− ν(z, dh)) + Ψ′(0+)z +
σ2

2

= z

ˆ ∞
z

π(h)dh+

ˆ z

0
hπ(h)dh+ Ψ′(0+)z +

σ2

2
.

In particular, for any z > 0, b′(z) =
´∞
z π(dh) + Ψ′(0+), b′′(z) = −π(z) and b is concave.

Proof. The continuous part L̂c has already the wished form, we thus focus on L̂d. Recall
ψh,u(z) := z1{z≤u} + (z − h)1[u+h,∞)(z) + u1[u,u+h](z). Note that

ˆ ∞
0

π(dh)

ˆ ∞
0

du
[
f(ψh,u(z))− f(z) + h1{h≤1}f

′(z)1{z>u}
]

=

ˆ ∞
0

π(dh)

ˆ z

0
du
[
(f(z − h)− f(z))1[u+h,∞)(z) + (f(u)− f(z))1[u,u+h](z) + h1{h≤1}f

′(z)
]
.
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Therefore, one has

L̂df(z) =

ˆ z

0
π(dh)

[
(z − h)[f(z − h)− f(z)] +

ˆ z

0
du[f(u)− f(z)]1[u,u+h](z) + zhf ′(z)1h<1

]
+

ˆ ∞
z

π(dh)

[ˆ z

0
du [f(u)− f(z)]1[u,u+h](z) + hzf ′(z)1h<1

]
= I + II.

For the �rst integral I:

I =

ˆ z

0
π(dh)

[
(z − h)[f(z − h)− f(z) + hf ′(z)1h<1] + h2f ′(z)1h<1

]
+

ˆ z

0
π(dh)

ˆ z

0
du (f(u)− f(z))1{u>z−h},

by Tonelli's theorem and a change of variables, one has
ˆ z

0
π(dh)

ˆ z

0
du (f(u)− f(z))1{u>z−h} =

ˆ z

0
(f(u)− f(z))(π(z − u)− π(z))du

=

ˆ z

0
(f(z − h)− f(z))(π(h)− π(z))dh.

Thus

I =

ˆ z

0
[f(z − h)− f(z) + hf ′(z)1{h≤1}](z − h)π(dh) +

ˆ z

0
(f(z − h)− f(z))(π(h)− π(z))dh

+

ˆ z

0
h2
1{h≤1}f

′(z)π(dh)

=

ˆ z

0

[
f(z − h)− f(z) + hf ′(z)1{h≤1}

]
((z − h)π(dh) + (π(h)− π(z))dh)

+

ˆ z

0
h2
1{h≤1}π(dh)f ′(z)−

ˆ z

0
h1h<1(π(h)− π(z))dhf ′(z).

For the second integral II, the change of variables u = z − v in the �rst integral provides

II =

ˆ ∞
z

π(dh)

ˆ z

0
du(f(u)− f(z))1[u,u+h](z) +

ˆ ∞
z

π(dh)zhf ′(z)1h<1

= π(z)

ˆ z

0
dv[f(z − v)− f(z)] + zf ′(z)

ˆ ∞
z

π(dh)h1h<1.

Summing both expressions, I + II equals to:
ˆ z

0

[
f(z − h)− f(z) + hf ′(z)1{h≤1}

]
((z − h)π(dh) + (π(h)− π(z) + π(z))dh)

+

( ˆ z

0
h2
1{h≤1}π(dh)−

ˆ z

0
h1h<1(π(h)− π(z))dh

+z

ˆ ∞
z

h1h≤1π(dh)− π(z)

ˆ ∞
0

h1{h<1}dh

)
f ′(z).
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Therefore

I + II =

ˆ z

0

[
f(z − h)− f(z) + hf ′(z)1{h≤1}

]
ν(z, dh) + b1(z)f ′(z)

with

b1(z) :=

ˆ z

0

(
h2
1h≤1π(dh)− hπ(h)1h≤1dh

)
+ z

ˆ ∞
z

π(dh)h1h<1

=

ˆ ∞
0

h1{h≤1}(zπ(dh)− ν(z, dh)),

and we obtain

I + II =

ˆ z

0

[
f(z − h)− f(z) + hf ′(z)

]
ν(z, dh)−

ˆ z

0
1{1<h≤z}ν(z, dh)f ′(z) + b1(z)f ′(z)

=

ˆ z

0

[
f(z − h)− f(z) + hf ′(z)

]
ν(z, dh) + b(z)f ′(z).

We now verify uniqueness of the solution to (MP) by applying Theorem 5.1 of Kolokoltsov
[Kol11]. Assumptions (i) and (ii) of the theorem can be readily checked. The third assumption
(iii) is that for any z > 1, b(z) ≤ c(1 + z) for some c > 0. Let z > 1, one has

b(z) =

ˆ 1

0
h(zπ(dh)− ν(z, dh))−

ˆ z

1
hν(z, dh)− βz +

σ2

2

=

ˆ 1

0
(h2π(dh) + hπ(h)dh)− z

ˆ z

1
hπ(dh) +

ˆ z

1
h2π(dh)−

ˆ z

1
hπ(h)dh− βz +

σ2

2

≤
ˆ 1

0
(h2π(dh) + hπ(h)dh) +

σ2

2
− βz ≤ c(1 + z)

where for the �rst inequality we use the fact that −z
´ z

1 hπ(dh) +
´ z

1 h
2π(dh) ≤ 0 and we choose

a large enough c for the second inequality. Finally, since D contains C2
c , the space of twice

continuously di�erentiable functions with compact support, [Kol11, Theorem 5.1] applies.

Proof of Theorem 5.1. It follows directly by combination of Lemmas 5.5 and 5.6.

Remark 5.8. Similar computations to the ones made in the proof of Lemma 5.4 can be done for
the p-point motion (X̂t(y1), ..., X̂t(yp)) from the duality relation

P(X̂t(y1) < x1, ..., X̂t(yp) < xp) = P(Xt(x1) > y1, ..., Xt(xp) > yp).

Consider for example the case σ = β = 0. For any function F in C2(Dp), where we denote by
Dp := {y := (y1, ..., yp) ∈ (0,∞)p, y1 ≤ y2... ≤ yp}, we set

L̂F (y) =

ˆ ∞
0

π(dh)

ˆ ∞
0

du

[
F (ψh,u(y))− F (y) + h1{h≤1}

p∑
i=1

∂

∂yi
F (y)1{yi>u}

]
with ψh,u(y) = (ψh,u(y1), ..., ψh,u(yp)). Then

F (X̂t(y))−
ˆ t

0
L̂F (X̂s(y))ds

is a local martingale, where X̂t(y) = (X̂t(y1), ..., X̂t(yp)).
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6 Examples

In this section, we apply the results obtained in the previous ones to the two following important
examples: the stable CSBP and the Neveu CSBP. These CSBPs arise in many di�erent frame-
works and are known for instance to be closely related to the class of exchangeable coalescents
called Beta-coalescents.

6.1 Feller and stable CSBPs

A stable CSBP is a continuous-state branching process with branching mechanism given by
Ψ(u) = cαu

α − βu, for some α ∈ (1, 2], cα > 0 and β ∈ R. Note in particular that Feller's �ow,
whose inverse �ow was studied in details in Section 3 is a stable CSBP with α = 2 and c2 = σ2

2 .
As a direct application of Theorem 4.24, we obtain that the Markovian coalescent (C (t), t > 0)
associated with the Feller �ow has coagulation rates

µ∞t (k) =
2β

σ2(1− e−βt)
δ2(k).

In particular, in the subcritical case (β < 0), C (t) converges almost-surely as t→∞ towards in-
tervals with i.i.d. exponentially distributed lengths with parameter ρ̂ = 2β/c2. This corresponds
to the partition of R+ into random intervals ((0, x?1], (x?1, x

?
2], ...) corresponding to di�erent an-

cestors at time −∞ found in Section 3.
We now assume that Ψ(u) = cαu

α − βu for some α ∈ (1, 2), with cα := Γ(2−α)
α(α−1) (which

corresponds to a simple time dilatation). By assumption α > 1, Grey's condition
´∞ du

Ψ(u) <∞
holds. Solving the di�erential equation (1.3) satis�ed by vt(λ), we have in particular that

vt(∞) =

c
− 1
α−1

α

(
1−e−(α−1)βt

β

)− 1
α−1 if β 6= 0

(Γ(2− α)/α)−
1

α−1 t−
1

α−1 if β = 0.

For the stable CSBP, the coagulation rates of its associated Markovian coalescent (C (t), t > 0)
are given by

µ∞t (k) := vt(∞)µα(k),

with µα(k) := Γ(k−α)
k! . The normalized associated probability measure is

µ∞t (k)

µ∞t (N)
=
α(2− α)...(k − 1− α)

k!
(6.1)

which is time-independent. This probability distribution corresponds to the reproduction mea-
sure of proli�c individuals in supercritical stable CSBP, see Example 3 in [BFM08]. It also
appears in the study of reduced α-stable trees and Beta(2− α, α)-exchangeable coalescents, see
respectively Duquesne and Le Gall [DLG02, page 74] and Berestycki et al. [BBS07, Section 5].

The inhomogeneous consecutive coalescent (C(s, t), t > s) representing the genealogy of any
stable CSBP from time s > 0 is obtained by a deterministic time-change of the homogeneous
consecutive coalescent (Č(t), t ≥ 0) with coagulation rates µα via the transformation: for any
t ≥ s,

C(s, t) = Č

(ˆ t

s
vu(∞)du

)
.
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Note that
´∞
s vu(∞)du =

´ vs(∞)
0

z
Ψ(z)dz which is �nite if and only if Ψ is subcritical (β < 0).

According to Theorem 4.24, in the subcritical case (C (t), t > 0) converges almost-surely as
t→∞ towards a partition of intervals with i.i.d. lengths with law να such that

ˆ ∞
0

e−uzνα(dz) = 1− eβ
´∞
u

dx
cαxα−βx for any u ≥ 0. (6.2)

We now turn to the martingale problem satis�ed by the inverse �ow of the stable CSBP.
One easily computes the drift and the jump measure from Remark 5.7. By de�nition of D, since
β = σ = 0, we have D = {F ∈ C2

0 : F ′ ∈ L1}.

Proposition 6.1. The process (X̂t, t ≥ 0) is characterized by the martingale problem associated

with L̂, acting on D, given in Lemma 5.6 with

ν(z, dh) =

(
(z − h)h−1−α +

h−α

α

)
1[0,z](h)dh and b(z) =

1

α(α− 1)(2− α)
z2−α − βz.

In the critical case, one can identify the law of X̂ through some random-time change.

Proposition 6.2. If β = 0, the process (X̂t, t ≥ 0) is a positive self-similar Markov process with

index a := α− 1. Namely for any k > 0 and any y > 0,

(kX̂k−at(y), t ≥ 0)
L
= (X̂t(ky), t ≥ 0).

Moreover,

log X̂t(x) = Lϕx(t)

where ϕx(t) := inf{s > 0;
´ s

0 e
(α−1)Ludu > t} and L is a spectrally negative Lévy process started

from log x with Laplace exponent

κ(q) = −dαq +

ˆ 0

−∞
(eqz − 1 + q(1− ez)) να(dz)

with να(dz) =
(
ez(1− ez)−1−α + 1

α(1− ez)−α
)
ezdz and dα = 1

α(α−1)(2−α) .

Proof. Recall that the critical CSBP (Xt, t ≥ 0) is itself selfsimilar with index a := α − 1. See

for instance Kyprianou and Pardo [KP08]. For any k > 0 and any x > 0, kXk−at(x)
L
= Xt(kx).

Thus for any y > 0

P(kX̂k−at(y) ≤ x) = P(Xk−at(x/k) ≥ y) = P(k−1Xt(x) > y) = P(X̂t(ky) ≤ x).

By Lamperti's representation of positive self-similar Markov process, see e.g. [Kyp14, Chapter
13], X̂t(x) is of the form exp(Lϕx(t)) for some Lévy process L where t 7→ ϕx(t) the time-change
given in the statement. To identify the Laplace exponent κ of L, note that by (α − 1)-self-
similarity, one has κ(q) = x−q+α−1L̂pq(x) with pq(x) = xq. The result follows from simple
computations.
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6.2 Neveu CSBP

We now turn in this section to the Neveu CSBP, with branching mechanism Ψ(q) = q log(q).
Recall its Lévy-Khintchine form

Ψ(q) = (γ − 1)q +

ˆ ∞
0

(
e−qh − 1 + qh1{h≤1}

) dh

h2
, for any q ≥ 0

where γ =
´∞

1 e−yy−2dy is the Euler-Mascheroni constant. Note that Grey's condition is not
satis�ed by this process. Solving the di�erential equation (1.3) yields vt(λ) = λe

−t
for any t ≥ 0

and λ ∈ (0,∞). For any �xed t, the subordinator (Xt(x), x ≥ 0) is stable with parameter e−t.
For Neveu CSBP, the consecutive coalescent process Cλ de�ned in Section 4 happens to be
homogeneous in time, and not to depend on λ.

Proposition 6.3. For any λ > 0, the consecutive process (Cλ(t), t ≥ 0) is an homogeneous

consecutive coalescent whose coagulation rate µ is µ(k) = 1
k(k−1) for any k ≥ 2. The block sizes

at time t ≥ 0 have generating function E[z#C1(t)] = 1− (1− z)e−t and for any k ≥ 1

P(#C1(t) = k) =
e−t(2− e−t)...(k − 1− e−t)

k!
.

Proof. By Theorem 4.10, and applying the change of variable u = vt(λ)x, we see that for any
k ≥ 2,

µλt (k) = vt(λ)k−1

ˆ ∞
0

xk

k!
e−vt(λ)xdx

x2
=

1

k(k − 1)

which does not depend on λ nor on t. Since C(t) is a (λ, vt)-Poisson box with vt(q) = qe
−t
,

the other statements can be obtained by a direct application of Theorem 4.10. See also the
calculations around Lemma 7 in Pitman [Pit97].

Lemma 6.4. Consider a consecutive coalescent (C(t), t ≥ 0) with coagulation rate µ(k) = 1
k(k−1)

for any k ≥ 2 then, as n goes to ∞(
#C|[nx](t)

ne−t
, t ≥ 0, x ≥ 0

)
=⇒ (X̂t(x), t ≥ 0, x ≥ 0)

in �nite-dimensional sense in time and in the Skorokhod topology in x.

Proof. We simply prove the convergence in law of
(

#C|[nx](t)

ne−t
, x ≥ 0

)
toward X̂t for a �xed

value of t, with the Skorokhod topology. Then, the �nite-dimensional convergence is deduce
from the cocycle property of X̂ (Proposition 2.3) and C (Proposition 4.2). For any t > 0 and
n ∈ N, set Z−t,0(n) =

∑n
j=1 #Cj(t). The process (Z−t,0(n), n ≥ 0) is a random walk and from

Proposition 6.3 we see that

P(#C1(t) = k) =
e−t(2− e−t)...(k − 1− e−t)

k!

= e−t
Γ(k − e−t)

Γ(2− e−t)Γ(k + 1)
∼k→∞

e−t

Γ(2− e−t)
k−1−e−t
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Therefore, the law of #C1 is in the domain of attraction of a stable random variable with pa-
rameter e−t. Using an extension of Donsker's theorem to stable distributions, due to Prokhorov
[Pro56], we obtain thatZ−t,0

(⌊
ne
−t
x
⌋)

n
, x ≥ 0

 =⇒
n→∞

(X̃t(x), x ≥ 0),

where X̃t is a stable subordinator with Laplace exponent λ 7→ λe
−t
.

To conclude, we observe that (X̂t(x), x ≥ 0) has the same law as X̃−1
t the right-continuous in-

verse ofXt and that (#C|[n](t), n ≥ 0) is the right continuous inverse of (Z−t,0(n), n ≥ 0). Hence,
as the map f 7→ f−1 is continuous for the Skorokhod topology at any non-decreasing càdlàg
function f , see e.g. [Whit80, Theorem 7.2], we have convergence in law of

(
#C|[nx](t)

ne−t
, x ≥ 0

)
toward (X̂t(x), x ≥ 0).

Lemma 6.5 (Möhle [Möh15], Mittag-Le�er process). The process (X̂t, t ≥ 0) has for generator

L̂f(z) = z

ˆ z

0

(
f(z − h)− f(z) + hf ′(z)

) dh

h2
+ ((1− γ)z − z log(z))f ′(z).

Proof. By applying Lemma 5.6, we see that ν(z, dh) = 1{h≤z} ((z − h)π(dh) + π(h)dh) =
1{h≤z}

z
h2 . For any z ≥ 0,

b(z) = (1− γ)z +

ˆ ∞
0

z

h

(
1{h≤1} − 1{h≤z}

)
dh

= z

ˆ
1

h

(
1{h≤1} − 1{h≤z}

)
1{z≤1}dh− z

ˆ
1

h

(
1{h≤z} − 1{h≤1}

)
1{z>1}dh

= (1− γ)z + z

ˆ 1

z

dh

h
1{z≤1} − z

ˆ z

1

dh

h
1{z>1} = (1− γ)z − z log(z).

Proposition 6.6 (Bertoin and Baur [BB15]). The process (log X̂t, t ≥ 0) is a generalized

Ornstein-Uhlenbeck process:

log X̂t = log(x) + Lt −
ˆ t

0
log X̂sds (6.3)

where (Lt, t ≥ 0) is a spectrally negative Lévy process with Laplace exponent

κ(q) = −γq +

ˆ 0

−∞
(equ − 1− qu)

eu

(1− eu)2
du.

Proof. By injectivity of g : x 7→ log(x), the generator of (Yt, t ≥ 0) := (log X̂t, t ≥ 0) is given by
Af(y) = L̂(f ◦ g)(g−1(y)) and a computation provides

Af(y) =

ˆ 0

−∞

(
f(y + u)− f(y)− uf ′(y)

)
ν(du)− γf ′(y),

with ν(du) = eu

(1−eu)2 du. It is well-known that the process with generator A is a weak solution
to the equation (6.3). See for instance, Sato and Yamazato [SY84, Theorem 3.1].
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The two last statements already appear in the study of the Bolthausen-Sznitman coales-
cent. We explain now some connections between the Neveu consecutive coalescent and the
Bolthausen-Sznitman exchangeable coalescent. The following is a rephrasing of an observation
made by Hénard [Hén15] and Möhle [Möh15]. Denote by (N

(n)
t , t ≥ 0) the number of blocks

in a Bolthausen-Sznitman coalescent started from n blocks. Recall that (N
(n)
t , t ≥ 0) jumps

from n to n − k + 1 at rate n
k(k+1) for any k ∈ [|2, n|]. By Proposition 4.5, one can check that

(#C|[n](t), t ≥ 0) loses k blocks at the same rate as (N
(n)
t , t ≥ 0). Therefore (N

(n)
t , t ≥ 0) and

(#C|[n](t), t ≥ 0) have the same law and by Lemma 6.4, as n goes to ∞(
N

(n)
t

ne−t
, t ≥ 0

)
=⇒ (X̂t(1), t ≥ 0)

in the �nite-dimensional sense. Such a convergence was shown, in the Skorohod topology, by
Möhle in [Möh15, Theorem 1.1], Kukla and Möhle in [KM18, Theorem 2.1-(a)] with di�erent
techniques. We refer also to Bertoin and Baur [BB15, Theorem 3.1-(i)] for an almost-sure
convergence. The connections between Neveu's consecutive coalescent and Bolthausen-Sznitman
exchangeable one are not surprising since it is known that for any initial size x, the genealogy
of i.i.d random variables sampled in [0, x] is described by a Bolthausen-Sznitman coalescent, see
Bertoin and Le Gall [BLG00, Theorem 4].

Several natural questions on the inverse �ow and its consecutive coalescent have not been
addressed here and are left for possible future works. It might be interesting for instance to
look for a complete description of the two-parameter �ow (X̂t(x), t ≥ 0, x ≥ 0) in the general
case, as given for the Feller �ow in Section 3. Moreover, the genealogy of the total population
has only been characterized under the Grey's condition. When this condition is not ful�lled
the process (C (t), t ≥ 0) cannot be described by a single consecutive coalescent on N. We
recall that Duquesne and Winkel [DW07] have described the genealogy forward in time of a
CSBP (including those without Grey's condition) through a collection of continuous-time Galton-
Watson processes. A natural question is thus to see if in a dual way, one can represent the
backward genealogy of the total population with a collection of consecutive coalescents on N.
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A Intermediary results

A.1 Right-continuous inverse

In this section, we recall and compile some elementary properties on right continuous inverse
of càdlàg non-decreasing functions. As multiple competing de�nitions of generalized inverse
coexist, it can be challenging to �nd a single reference for the results we need. Therefore we
give a short proof of these well-known facts, in order to be self-contained. Let f be a càdlàg
non-decreasing function on R+, we denote by

f−1 : y ∈ [0,∞) 7→ inf{x ≥ 0 : f(x) > y} (A.1)
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its right continuous inverse.

Lemma A.1. Let f, (fn, n ≥ 1), g be càdlàg non-decreasing functions on R+.

(i) The function f−1 is non-decreasing and càdlàg.

(ii) For every x, y ≥ 0, we have f(x) > y ⇐⇒ f−1(y) < x.

(iii) We have (f ◦ g)−1 = g−1 ◦ f−1.

(iv) If limn→∞ fn = Id pointwise, then limn→∞ f
−1
n = Id pointwise, with Id being the

identity function on [0,∞).

Remark A.2. Dini's theorems imply that both convergences in (iv) hold uniformly on compact
sets.

Proof. Let f be a càdlàg non-decreasing function, note that for all y < z, we have

{x ≥ 0 : f(x) > z} ⊂ {x ≥ 0 : f(x) > y}.

Therefore f−1(y) ≤ f−1(z), which proves that f−1 is increasing. In particular, it has left limits
at each point. We now observe that for all y ≥ 0, as f is non-decreasing,

inf
z>y

f−1(z) = inf{inf{x ≥ 0 : f(x) > z}, z > y} = inf{x ≥ 0 : f(x) > y} = f−1(y),

proving that f−1 is right continuous at point y, which proves (i).
Let x, y ≥ 0, we �rst assume that f−1(y) < x. Then by de�nition of f−1, there exists

u ∈ [f−1(y), x) such that f(u) > y. As f is non-decreasing, we deduce that f(x) ≥ f(u) > y.
We now assume that f−1(y) ≤ x. As f is non-decreasing, we observe that f(x) ≥ f(f−1(y)).

Therefore, the only thing left to prove is that

∀y ≥ 0, f(f−1(y)) ≥ y (A.2)

We write z = f−1(y). By de�nition of f−1(y), for all ε > 0, there exists u < z + ε such that
f(u) > y. Then, as f is right-continuous, we have f(z) = infu>z f(u), thus for all η > 0, there
exists ε > 0 such that if u < z + ε, then f(u) < f(z) + η. As a result, for all η > 0, there exists
u < z + ε such that y < f(u) < f(z) + η. This inequality being true for all η > 0, we therefore
conclude that f(z) ≥ y, completing the proof (A.2). We thus deduce that f(x) ≥ y, completing
the proof of (ii).

In a third time, we note that given f and g two càdlàg non-decreasing functions on R+, we
have for all y ≥ 0,

(f ◦ g)−1(y) = inf{z ≥ 0 : (f ◦ g)(z) > y} = inf{z ≥ 0 : f(g(z)) > y}.

By point (ii), this can therefore be rewritten as

(f ◦ g)−1(y) = inf{z ≥ 0 : g(z) > f−1(y)} = g−1 ◦ f−1(y),

proving point (iii).
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We �nally prove the last point. Let (fn) be a sequence of non-decreasing càdlàg functions
such that limn→∞ fn = Id pointwise. We prove that for all y ≥ 0, limn→∞ f

−1
n (y) = y. Let

ε > 0, by point (ii), we have that

f−1
n (y) < y + ε ⇐⇒ fn(y + ε) > y.

As limn→∞ fn(y+ ε) = y+ ε, we conclude that for all n large enough, f−1
n (y) < y+ ε. Similarly,

we also have
f−1
n (y) ≥ y − ε ⇐⇒ fn(y − ε) ≤ y

therefore f−1
n (y) ≥ y − ε for all n large enough by pointwise convergence of fn at point y − ε.

This concludes the proof of (iv).

A.2 Discretization of subordinators

In this section, we introduce the key lemma allowing us to study the genealogical structure of
CSBPs. Namely, we prove that the pullback measure of a Poisson process by a subordinator is
a Poisson process decorated by i.i.d. integer-valued random variables.

Lemma A.3. Let λ ≥ 0 and (X(x), x ≥ 0) be a subordinator with Laplace exponent

φ : µ 7→ dµ+

ˆ (
1− e−µx

)
`(dx).

We denote by N an independent Poisson point process with intensity λ, and we write (Jj , j ≥ 1)
the positions of the atoms of N , ranked in the decreasing order. Then, settingM =

∑∞
j=1 δX−1(Jj)

the image measure of N by X−1, we have

M =

∞∑
j=1

ZjδJ ′j ,

where (J ′j , j ≥ 1) are the atoms of a Poisson point process with intensity φ(λ) and (Zj , j ≥ 1)
are i.i.d. random variables, independent of (J ′j , j ≥ 1), such that

P(Z1 = k) =
1

φ(λ)

ˆ ∞
0

(λx)k

k!
e−λx`(dx) + d1{k=1} = (−1)k−1λ

k

k!

φ(k)(λ)

φ(λ)
,

i.e. E(zZ1) = 1− φ(λ(1−z))
φ(λ) for all z ∈ [0, 1].

Proof. The proof is based on a joint construction by the same �master� Poisson point process of
the subordinator X and the Poisson point process N , in such a way that M becomes a simple
functional of that master point process. To see why such a construction is possible, we write

φ(λ) = dλ+

ˆ
(1− e−λx)`(dx),

with d ≥ 0 the drift and ` the Lévy measure of X on R+. By the Lévy-Itô décomposition, one
can write

∀t ≥ 0, Xt = dt+
∑

0≤s≤t
xt,

51



with (t, xt)t≥0 being the atoms of a Poisson point process with intensity dt⊗ `(dx). The proof
being slightly simpler for d = 0, we focus here on the case d > 0.

Recalling that D denotes the set of càdlàg non-decreasing functions on R+, we introduce the
point process R =

∑
i∈I δ(ti,xi,N(i)) on R+ ×R+ ×D with intensity dt⊗ dx⊗Pλ(dN), with Pλ

being the law of a Poisson point process with intensity λ on R+. We also set N (0) an independent
Poisson point process with intensity λ. We then de�ne

Xt = dt+
∑
i∈I

xi1{ti≤t},

which is a subordinator with Laplace exponent φ. Then, denoting (J
(i)
j , j ≥ 1) the atoms of the

Poisson point process N (i), we set

N =
∞∑
j=1

δX
J

(0)
j

/d

+
∑
i∈I

∞∑
j=1

δ
Xti−+J

(i)
j

1{
J

(i)
j <xi

}.
Heuristically, the point process N can be thought of as follows: R+ is divided in intervals
∪i∈I [Xti−, Xti ] corresponding to jumps in the subordinator X and the remaining space B cor-
responding to points with an antecedent by X. Atoms are added to the interval [Xti−, Xti ]
according to the point process N (i), and to the set B with the point process N (0). It should
then be heuristically clear that N is a Poisson point process with intensity λ independent of X.
To verify it, we compute its conditional Laplace transform against a smooth locally compact test
function f . By construction, (N (i), i ∈ I ∪ {0}) are i.i.d. Poisson point process with intensity λ,
which are further independent from X, thus

E
(
exp

(
−
〈
N, f

〉)∣∣X)
=E

exp

−∑
j≥0

f(X
J

(0)
j

/d)

∣∣∣∣∣∣X
∏

i∈I
E

exp

−∑
j≥0

f(J
(i)
j +Xti−)1{

J
(i)
j <xi

}
∣∣∣∣∣∣X


= exp

(
−λ
ˆ ∞

0

(
1− e−f(Xs/d)

)
ds− λ

∑
i∈I

ˆ Xti

Xti−

(
1− e−f(Xs)

)
ds

)
a.s.

= exp

(
λ

ˆ (
1− e−f(x)

)
dx

)
,

by change of variable, using that X
′
t = d at all continuity points t of X.

As a result, the couple (X,N) has same law as (X,N) given in the lemma. Moreover, we
have immediately by construction that

M := X
−1 ∗N =

∞∑
j=1

δ
J

(0)
j /d

+
∑
i∈I

N (i)([0, xi])δti .

and computing the law of that point process is straightforward by the de�nition of R. Indeed,
by independence, for any continuous function f with compact support, we have

E
(
exp

(
−
〈
M,f

〉))
= E

exp

−∑
j≥1

f(J
(0)
j /d)

E

(
exp

(
−
∑
i∈I

N (i)([0, xi])f(ti)

))
.
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Then, using Campbell's formula, we have both

E

exp

−∑
j≥1

f(J
(0)
j /d)

 = exp

(
λd

ˆ (
1− e−f(x)

)
dx

)

E

(
exp

(
−
∑
i∈I

N (i)([0, xi])f(ti)

))
= exp

(ˆ (
1− e−N([0,x])f(t)

)
dt`(dx)Pλ(dN)

)
.

But as under law Pλ, N([0, x]) is a Poisson random variable with parameter λx, the last in-
equality can be written, by Fubini theorem

E

(
exp

(
−
∑
i∈I

N (i)([0, xi])f(ti)

))
= exp

(ˆ
1− exp

(
λx(e−f(t) − 1)

)
dt`(dx)

)

= exp

(
−
ˆ
φ
(
λ(1− e−f(t))

)
φ(λ)

dt

)
.

We deduce that the Laplace transform of M is the same as the one of M given in the lemma,
which concludes the proof.

This result can be straightforwardly extended to killed subordinators, by constructing it as a
limit of non-killed subordinators. For the sake of completeness, we add a proof of the following
result.

Corollary A.4. Let λ ≥ 0 and (X(x), x ≥ 0) be a subordinator with Laplace exponent

φ : µ 7→ κ+ dµ+

ˆ (
1− e−µx

)
`(dx).

With the same notation as in the previous lemma, we have M =
∑∞

j=1 Z
′
jδJ ′j , where (J ′j , j ≥ 1)

are the atoms of a Poisson point process with intensity φ(λ), (Zj , j ≥ 1) are i.i.d. random

variables, independent of (J ′j , j ≥ 1), such that

P(Z1 = k) =
1

φ(λ)

ˆ ∞
0

(λx)k

k!
e−λx`(dx) + d1{k=1} = (−1)k−1λ

k

k!

φ(k)(λ)

φ(λ)
,

and Z ′j =

{
Zj if supi<j Zi <∞,
0 otherwise.

Proof. Let Y be a subordinator with Laplace exponent λ 7→ dλ +
´

1 − e−λx`(dx), and R an
independent Poisson process with intensity κ. Observe that for all r > 0, the process de�ned by

Y r
t = Yt + rRt, t ≥ 0,

is a Lévy process, and that X = limr→∞ Y
r is a Lévy process with Laplace exponent φ. We set

(J ′rj , j ≥ 1) and (Zrj , j ≥ 1) the quantities obtained by applying Lemma A.3, and T = inf{t > 0 :
Rt = 1}. Observe that for all j such that J ′rj < T , the quantities J ′rj and Z

r
j do not depend on

r. On the contrary, past time T , as r →∞, all values J ′rj converge toward T , and the associated
value of Zr converges toward ∞.

Explicit formulas for the law of Z∞ are straightforward Poisson computations.
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