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Abstract

A continuous-time particle system on the real line verifying the branch-
ing property and an exponential integrability condition is called a branch-
ing Lévy process, and its law is characterized by a triplet (σ2, a,Λ). We
obtain a necessary and sufficient condition for the convergence of the
derivative martingale of such a process to a non-trivial limit in terms
of (σ2, a,Λ). This extends previously known results on branching Brown-
ian motions and branching random walks. To obtain this result, we rely
on the spinal decomposition and establish a novel zero-one law on the
perpetual integrals of centred Lévy processes conditioned to stay positive.
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1 Introduction
A branching random walk is a discrete-time particle system on the real line,
which can be constructed as follows. It starts with an initial individual at
position 0. This individual gives birth at time 1 to children, that are positioned
according to a certain point process. Then each child gives birth at time 2
to offspring positioned around their parent according to an i.i.d. copy of that
point process. The process continues, each generation of individuals giving birth
independently to children positioned around their parent, according to a shifted
copy of the same point process.

To describe this process, we introduce some notation. We denote by

P =
{

x = (x1, x2, . . .) ∈ (−∞,∞]N : x1 ≤ x2 ≤ · · · and lim
n→∞

xn =∞
}

the space of non-decreasing sequences x on (−∞,∞] that converge to∞. Equiv-
alently, these sequences can be identified with Radon point measures µ with
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finite mass on (−∞, 0] through the identification

µ =
∑
n≥1

δxn ⇐⇒ x =
(

inf {y ∈ R : µ((−∞, y]) ≥ n} , n ≥ 1
)
.

For y ∈ R, we denote by τyx = (xn + y, n ≥ 1) the translation operator on P.
Then, we can describe the branching random walk as a P-valued Markov

process (Xn, n ≥ 0) satisfying the branching property: for all 0 ≤ k ≤ n,
setting x = Xk, we have

Xn =
∞∑
j=1

τxjX
(j)
n−k in law, where X(j)

n−k are i.i.d. copies of Xn−k. (1.1)

Observe that if there exists θ ≥ 0 such that c = E
(∫
e−θxX1(dx)

)
< ∞, then

we have Xk ∈ P for all k ∈ N a.s.; indeed, by the branching property we then
have E

(∫
e−θxXk(dx)

)
= ck.

Branching Lévy processes are the continuous-time counterparts of branching
random walks. A branching Lévy process (with possibly infinite birth inten-
sity) is a continuous-time particle system on the real line, in which particles
move according to i.i.d. Lévy processes, and reproduce in a Poisson fashion,
possibly on an everywhere dense countable set of times. Branching Lévy pro-
cesses were introduced in [Ber16], as an intermediate tool to study homogeneous
growth-fragmentation processes. They can be constructed as increasing limits of
Uchiyama-type continuous-time branching random walks, introduced in [Uch82].

In [BM19], it is proved that branching Lévy processes are the unique càdlàg
(for the topology of vague convergence) P-valued processes Z that satisfy the
following two properties.

Branching property: for all 0 ≤ s ≤ t, setting z = Zs,

Zt =
∞∑
j=1

τzjZ
(j)
t−s in law, where Z(j)

t−s are i.i.d. copies of Zt−s. (1.2)

Exponential integrability: there exists θ > 0 such that for all t ≥ 0,

E
(∫

e−θxZt(dx)
)
<∞. (1.3)

The class of branching Lévy processes generalizes several classical models, in-
cluding the branching Brownian motion, continuous-type branching random
walks [Uch82], branching Lévy processes with finite birth intensity [Kyp99],
and, up to an exponential transform, homogeneous fragmentations [Ber01] and
compensated growth-fragmentations [Ber16]. Observe that the branching prop-
erty implies that for all t > 0, the process (Znt, n ≥ 0) is a branching random
walk.

The law of a branching Lévy process is characterized by a triplet (σ2, a,Λ),
with σ2 ≥ 0, a ∈ R and Λ a sigma-finite measure on P such that∫

P
1 ∧ x2

1Λ(dx) <∞, (1.4)
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and such that there exists θ ≥ 0 satisfying∫
P

(
e−θx11{x1<−1} +

∑
j≥2

e−θxj1{xj>−∞}
)

Λ(dx) <∞. (1.5)

Informally, the branching Lévy process can be described as follows: each particle
moves independently according to a Lévy process with diffusion coefficient σ,
drift a, and Lévy jump measure the image of Λ by the application x 7→ x1. Si-
multaneously, the particle gives birth to children in a Poissonian fashion, in such
a way that at rate Λ(dx), a particle makes a jump of x1 while simultaneously
giving birth to offspring positioned at distances x2, x3, . . . from the pre-jump
position of the parent.

The set of individuals in a branching Lévy process can be indexed by using
a generalization of the Ulam–Harris notation, introduced by Shi and Watson
in [SW19, Section 2] for the study of growth-fragmentation processes. This
enumeration allows the description of the genealogy of particles in a branching
Lévy process. For each t ≥ 0, we denote by Nt the set of individuals alive at
time t, and for all s ≤ t, by Xs(u) the position at time s of a particle u ∈ Nt or
its ancestor, if the particle is not born yet at time s.

Condition (1.4) ensures that the trajectories of particles are well-defined
Lévy processes. Condition (1.5) implies (1.3) (see [BM19, Theorem 1.2(ii)]),
which ensures that for all t≥0 the random measure

∑
u∈Nt δXt(u) almost surely

belongs to P.
Remark 1.1. The definition we give here of a branching Lévy process differs
from the ones given in [BM19, BM18]. In those articles, the branching Lévy
processes were constructed in such a way that they have finite mass on [0,∞)
a.s., instead of (−∞, 0]. We choose to change this convention in order to be
consistent with the corresponding results for branching random walks in the
boundary case, described in e.g. [BK04].

Observe that under assumption (1.5), for all z ∈ C with R(z) = θ and t ≥ 0,
we have by [BM19, Theorem 1.2(ii)]

E

(∑
u∈Nt

e−zXt(u)

)
= exp(tκ(z)), (1.6)

where

κ(z) := σ2z2

2 − az +
∫
P

∑
j≥1

e−zxj − 1 + zx11{|x1|<1}Λ(dx) (1.7)

is called the cumulant generating function of the branching Lévy process. Equa-
tion (1.6) and the branching property imply that the process defined by

Wt(θ) :=
∑
u∈Nt

e−θXt−tκ(θ), t ≥ 0

is a non-negative martingale. As such, its limit W∞ := limt→∞Wt exists a.s.
and is finite. Whether the terminal value is degenerate (i.e. W∞(θ) = 0 a.s.) or
not has fundamental importance in the study of branching processes, and has
been investigated by a considerable amount of literature.
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Under the condition that κ′(θ) := 1
i

d
dξκ(θ + iξ)|ξ=0 exists and is finite, it is

now well-known that
θκ′(θ) < κ(θ) (1.8)

is a necessary condition for the non-degeneracy of W∞(θ), and that, up to an
additional integrability assumption on Λ, this condition is also sufficient. This
result was first proved by Bigggins [Big77] in the context of branching random
walks, by McKean [McK75] (see also Neveu [Nev88]) for the branching Brownian
motion (which is the only branching Lévy process with continuous trajectories).

Lyons [Lyo97] then gave an elementary proof of this statement, by introduc-
ing the spinal decomposition, a critical tool in the study of branching processes.
Bertoin and Mallein [BM18] then adapted the proof of Lyons to the settings
of branching Lévy processes. A necessary and sufficient condition for the non-
degeneracy of W∞ regardless of the existence of κ′(θ) was obtained by Alsmeyer
and Iksanov [AI09] for branching random walks, and by Iksanov and Mallein
[IM19] for branching Lévy processes, by using result on the finiteness of perpet-
ual integrals.

In the boundary case, when (1.8) fails to hold, the role of the additive mar-
tingale is replaced by a different martingale, which is not uniformly integrable.
More precisely, if there exists θ∗ > 0 such that

θ∗κ′(θ∗) = κ(θ∗), (1.9)

then the martingale Wt(θ∗) converges to 0 almost surely, as stated above. How-
ever, the process defined by

Zt :=
∑
u∈Nt

(θ∗Xt(u) + tκ(θ∗))e−θ
∗Xt(u)−tκ(θ∗), t ≥ 0 (1.10)

is a signed martingale, often called the derivative martingale. The almost sure
limit Z∞ = limt→∞ Zt, if existing, is non-negative.

Assuming in addition that

κ′′(θ∗) := E

(∑
u∈N1

(X1(u) + κ′(θ∗))2
e−θ

∗X1(u)−κ(θ∗)

)
∈ (0,∞), (1.11)

Aı̈dékon [Aı̈d13] obtained sufficient integrability conditions for the non-degene-
racy of Z∞ for branching random walks. These conditions were shown to be
necessary by [Che15], who proved that if they do not hold, the derivative mar-
tingale converges almost surely to 0. For the branching Brownian motion, the
optimal condition for the non-degeneracy of the limit of the derivative martin-
gale was previously obtained by Yang and Ren [YR11]. It is worth noting that
with a proper rescaling, the critical martingale Wt will converge to Z∞ (see e.g.
[AS14] for a proof in the context of branching random walks and [BBM20] for
a continuous-time extension).

When Zt converges to a non-degenerate limit Z∞, the random variable Z∞
is related to the maximal displacement of the branching process. Lalley and
Sellke [LS87] showed a deep connexion between the derivative martingale and the
asymptotic behaviour of the maximal displacement of particles for the branching
Brownian motion. More precisely, they showed that for all y ∈ R,

lim
t→∞

P
(

max
u∈Nt

Xt(u) ≤
√

2t− 3
2
√

2
log t+ y

)
= E

(
exp

(
−CZ∞e−

√
2y
))

,
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famously correcting an error in [McK75], who used the critical additive instead
of the derivative martingale (see the survey of Biggins and Kyprianou [BK05] on
that subject). The convergence in law of the maximum of a branching random
walk was proved by Aı̈dékon [Aı̈d13], which is again related to the derivative
martingale. This result was then extrapolated to branching Lévy processes by
Dadoun [Dad17]. To sum up, obtaining necessary and sufficient conditions for
the derivative martingale limit to be non-trivial is relevant to understand the
asymptotic properties of extremal particles in branching processes.

For branching Lévy processes with one-sided jumps, Shi and Watson [SW19]
obtained sufficient conditions for the convergence of the derivative martingale,
by adapting spinal decomposition arguments dating back to [LPP95, BK04].
The aim of this work is to obtain optimal integrability conditions for general
branching Lévy processes, which is, however, a much harder question. Note
that since (Zn, n ≥ 0) is a branching random walk, the optimal integrability
conditions of Aı̈dékon and Chen allows us to obtain immediately a necessary
and sufficient condition for the non-degeneracy of Z∞ in terms of the law of
Z1. However, this condition does not translate easily in terms of conditions on
(σ2, a,Λ), as the connection between the two quantities is intricate.

As a result, we instead refine the spinal decomposition method in [SW19]
to prove the non-degeneracy of Z∞, for which we still have to overcome some
substantial challenges. The problem relies on the analysis of a Lévy process con-
ditioned to stay positive, a necessary and sufficient conditions for the finiteness
of perpetual integrals of this process in particular, which is, to our knowledge,
not available in the literature. We establish in the forthcoming Proposition 3.3
a novel zero-one law for the finiteness of such perpetuities of Lévy processes
conditioned to be positive, by using new techniques from [KS20, BDK20]. This
is another main contribution of this work and might be of independent interest.

2 Main results
The aim of this article is to obtain necessary and sufficient conditions for the
non-degeneracy of Z∞, the limit of the derivative martingale in a branching
Lévy process satisfying (1.9). We first observe that up to a space-time linear
transform, the branching Lévy process can be assumed to be in the so-called
boundary case, which will simplify computations and notation later on.

More precisely, assuming (1.9) and (1.11), set for all t ≥ 0, u ∈ Nt and s ≤ t

Ys(u) = θ∗Xs(u) + sκ(θ∗),

with θ∗ the unique positive solution of the equation θκ′(θ) − κ(θ) = 0. One
immediately obtains that Y is a branching Lévy process with characteristic
triplet (σ2

θ∗ , aθ∗ ,Λθ∗) which can be expressed explicitly in terms of (σ2, a,Λ)
and θ∗. Moreover, Λθ∗ satisfies the assumptions (1.4) and (1.5) with θ = 1, and
we have
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logE
(∑
u∈N1

e−Y1(u)

)
= logE

(∑
u∈N1

e−θ
∗X1(u)

)
− κ(θ∗) = 0,

E

(∑
u∈N1

Y1(u)e−Y1(u)

)
= E

(∑
u∈N1

(θ∗X1(u) + κ(θ∗))e−θ
∗X1(u)−κ(θ∗)

)
= θ∗κ′(θ∗)− κ(θ∗) = 0,

and E

(∑
u∈N1

Y1(u)2e−Y1(u)

)
= E

(∑
u∈N1

(θ∗X1(u) + κ(θ∗))2e−θ
∗X1(u)−κ(θ∗)

)
= (θ∗)2κ′′(θ∗) ∈ (0,∞).

Therefore, up to a linear transformation, we can assume without loss of
generality that the branching Lévy process X satisfies

E

(∑
u∈N1

e−X1(u)

)
= 1, E

(∑
u∈N1

X1(u)e−X1(u)

)
= 0. (2.1)

Then we say that X is in the boundary case, in the language of [BK05]. The
assumption (2.1) is classical when studying spatial branching processes around
their critical parameter. A classification of branching random walks that can
be assumed to be in the boundary case is given in the appendix of the arXiv
version of [Jaf12], or in [BG11]. Moreover, we also assume that

E

(∑
u∈N1

X1(u)2e−X1(u)

)
∈ (0,∞), (2.2)

which is a second moment integrability condition, equivalent to (1.11).
Note that in terms of the characteristic triplet (σ2, a,Λ), the boundary con-

dition (2.1) can be rewritten as
σ2

2 =
∫
P

((∑
j≥1

(1 + xj)e−xj
)
− 1
)

Λ(dx)

a = σ2

2 +
∫
P

((∑
j≥1

e−xj
)
− 1 + x11{|x1|<1}

)
Λ(dx),

(2.3)

or equivalently κ(1) = κ′(1) = 0, in terms of the cumulant generating function
κ defined in (1.7). Similarly, (2.2) can be rewritten as∫

P

∑
i≥1

x2
i e
−xiΛ(dx) <∞ ⇐⇒ κ′′(1) ∈ (0,∞). (2.4)

We now state our main result.

Theorem 2.1. Let (Xt(u), u ∈ Nt)t≥0 be a branching Lévy process satisfying
(2.1) and (2.2), and Zt =

∑
u∈Nt Xt(u)e−Xt(u) for t ≥ 0. The derivative mar-

tingale (Zt)t≥0 converges a.s. to a non-negative non-trivial limit Z∞ if and only
if ∫

P

(
Y (x) log+(Y (x)− 1)2 + Ỹ (x) log+(Ỹ (x)− 1)

)
Λ(dx) <∞, (H)
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where log+ : x ∈ [0,∞) 7→ max(0, log(x)) and for any x ∈ P, we have set

Y (x) :=
∞∑
i=1

e−xi and Ỹ (x) :=
∞∑
i=1

1{xi≥0}xie
−xi .

Remark 2.2. By the branching property of a branching Lévy process, if Z∞
exists, then the event {Z∞ = 0} is an inherited property of the underlying
Galton-Watson tree (see [Shi15, Discussion 5.4] for a related argument for the
discrete-time branching random walk). As a result, either Z∞ = 0 a.s. or
Z∞ > 0 a.s. on the survival set {Nt 6= ∅,∀t ≥ 0} of the branching Lévy process.

As we consider a general class of branching Lévy processes, Theorem 2.1 gen-
eralizes a few sufficient conditions previously obtained in the literature: [BR05]
for fragmentations, [SW19] for growth-fragmentations, and [CS20] for branch-
ing Lévy processes with finite birth rate. It also generalizes the necessary and
sufficient condition obtained by [YR11] for branching Brownian motion.

The rest of the article is organised as follows. We introduce some well-known
fact on Lévy processes conditioned to stay positive in the next section, and es-
tablish a necessary and sufficient condition for finiteness of associated perpetual
integrals. In Section 4, we introduce the spinal decomposition of the branch-
ing Lévy process associated to the additive and the derivative martingales. In
Section 5.2, we prove that under assumptions (2.1) and (2.2), the derivative
martingale converges to a non-degenerate limit using the same classical argu-
ment as in [Lyo97]. Finally, we prove the necessary part of Theorem 2.1 in
Section 5.3.

3 The many-to-one lemma and Lévy processes
conditioned to stay positive

We present in this section the many-to-one lemma, that links first moments of
additive functionals of a branching Lévy process with the law of an associated
Lévy process. Then, we introduce some estimates on Lévy processes, in par-
ticular defining the law of the Lévy process conditioned to stay positive. We
end this section by establishing a novel necessary and sufficient condition for
the finiteness of a perpetual integral of the Lévy process conditioned to stay
positive.

3.1 The many-to-one lemma
One can observe that for all r ∈ R, the function Ψ : r ∈ R 7→ κ(1 + ir) can be
rewritten as

Ψ(r) = −σ
2

2 r2 + iâr +
∫
R
eirx − 1 + rx1{|x|<1}π(dx), (3.1)

where
â = a− σ2 +

∫
P

∑
j≥1

xje
−xj1{|xj |<1} − x11{|x1|<1}Λ(dx), (3.2)
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and π is the sigma-finite measure on R satisfying for all measurable non-negative
function f : ∫

R
f(x)π(dx) =

∫
P

∑
j≥1

f(xj)e−xjΛ(dx).

In other words, the function Ψ can be seen as the Lévy-Khinchine exponent of
a Lévy process ξ with diffusion term σ2, drift â and jump measure π. This fact
can be related to the celebrated many-to-one lemma in the context of branch-
ing random walks, which can be tracked back at least to the work of Kahane
and Peyrière [Pey74, KP76]: roughly speaking, the many-to-one lemma links
additive moments of a branching random walk with random walk estimates.

Lemma 3.1 (Many-to-one lemma). Let ξ be a Lévy process with Lévy-Khin-
chine exponent Ψ. For any non-negative measurable function f and t ≥ 0, we
have

E

(∑
u∈Nt

f(Xs(u), s ≤ t)
)

= E
(
eξtf(ξs, s ≤ t)

)
.

We refer to [BM19, Lemma 2.2] for a proof in branching Lévy processes
settings, and to the proof of [BM18, Lemma 2.2] for the computation of Ψ. The
many-to-one lemma can be thought of as a preliminary version of the spinal
decomposition, that we describe in Section 4.2.

3.2 Lévy processes conditioned to stay positive
In this section, we denote by ξ a Lévy process with Lévy-Khinchine exponent Ψ
given by (3.1). By (2.1), (2.2) and the many-to-one lemma, this Lévy process
is centred with finite variance. In particular, it is oscillating, i.e.

lim sup
t→∞

ξt = lim sup
t→∞

−ξt =∞ a.s..

We recall in this section the definition of the law of ξ conditioned to stay above
a given level. We refer to [CD05, Section 2] for a self-contained construction of
this law.

For all x ∈ R, we denote by τx := inf{t ≥ 0 : ξt < x} the first passage
time below level x of ξ, and Px the law of (x + ξt, t ≥ 0), a Lévy process with
Lévy-Khinchinne exponent Ψ starting from x. To simplify notation, we also
write τ := τ0 and P := P0. We introduce the renewal function associated to this
process, defined for all x ≥ 0 by

R(x) = E
(∫ ∞

0
1{τx>t}dLt

)
, (3.3)

where L is the local time at zero of the reflected process (ξt − infs≤t ξs, t ≥ 0).
We extend this definition by setting R(x) = 0 for all x < 0. Since ξ does not
drift to −∞, we know from [CD05, Lemma 1] that the function R satisfies for
all x ∈ R and t ≥ 0

R(x) = E
(
R(ξt + x)1{τ−x>t}

)
= Ex(R(ξt)1{τ>t}). (3.4)

Let us recall some additional properties of R. If 0 is a regular point for the
Lévy process, then R(0) = 0, otherwise we normalize L such that R(0) = 1.
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Moreover, the function R is finite, continuous, increasing, and x 7→ R(x)−R(0)
is sub-additive on [0,∞). As ξ has zero mean and finite variance, there exist
0 < c1 < c? < c2 <∞ such that

c1x ≤ R(x) ≤ c2(x+ 1) and lim
x→∞

R(x)
x

= c?. (3.5)

See [Ber96, Theorem I.21].
By (3.4), the process

(R(ξt+x)
R(x) 1{τ−x>t}, t ≥ 0

)
is a non-negative P-martingale.

Let (Ft) be the filtration associated to ξ. For all x > 0, we denote by P↑x the
law defined for all t ≥ 0 by

P↑x
∣∣
Ft

= R(ξt)
R(x) 1{τ>t} · Px|Ft . (3.6)

The probability P↑x is, in the sense of Doob’s h-transform, the law of the Lévy
process ξ started from x conditioned to stay positive.

Lévy processes conditioned to stay positive have been the subject of a large
literature. We simply recall from [CD05, Proposition 1] that, for all x > 0,
the process ξ is transient under P↑x. Moreover, [CD05, Theorem 1] gives the
following path-decomposition at the last passage time of the overall minimum.

Lemma 3.2 ([CD05, Theorem 1]). We set

ξ = inf
s≥0

ξs and m = sup{t ≥ 0 : min(ξt, ξt−) = ξ}.

For all x > 0 and 0 ≤ y ≤ x, we have

P↑x(ξ ≥ y) = R(x− y)
R(x) 1{y≤x}.

Moreover, the process (ξs+m − ξ, s ≥ 0) is independent of (ξs, s ≤ m); the law
of the former process, that we write P↑, does not depend on x.

3.3 Perpetual integrals of a Lévy process conditioned to
stay positive

The main result of this section is an integral criterion for the finiteness of per-
petual integrals of the Lévy process conditioned to stay positive.

Proposition 3.3. Let ξ be a centred Lévy process with finite variance, con-
ditioned to stay positive, and f : [0,∞) → [0,∞) an eventually non-increasing
non-negative bounded function. For all x > 0, we have∫ ∞

0
f(ξs)ds <∞ P↑x-a.s. ⇐⇒

∫ ∞
0

yf(y)dy <∞∫ ∞
0

f(ξs)ds =∞ P↑x-a.s. ⇐⇒
∫ ∞

0
yf(y)dy =∞.

(3.7)

We mention that the assumptions on f could be relaxed by adding require-
ments on the law of ξ, such as requiring the law of ξ1 to be absolutely continuous
with respect to the Lebesgue measure. We also observe that

∫∞
0 1{ξs≤C}ds <∞
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P↑x-a.s for all C > 0, by [CD05, Proposition 1], and that
∫ C

0 yf(y)dy < ∞ by
boundedness of f . As a result, without loss of generality, we can assume the
function f in Proposition 3.3 to be non-increasing.

If ξ is a Brownian motion under law P, then ξ under P↑x is a 3-dimensional
Bessel process. In that case, a similar result is known [RY99, Exercise XI 2.5].
For a random walk conditioned to stay positive, the corresponding result is given
by [Che15, Proposition 2.1]. For unconditioned Lévy processes, the perpetual
integrals have been studied in [DK16, KS20]. Recent development of Bagu-
ley, Döring and Kyprianou [BDK20] gives a new characterization for transient
strong Markov processes. However, to directly apply their criterion would re-
quire characterizing all so-called supportive sets of a Markov process X, i.e. all
sets A such that P({Xt, t ≥ 0} ⊆ A) > 0. It is unclear how to do this for con-
ditioned Lévy processes. For this reason, Proposition 3.3 is not an immediate
consequence of [BDK20] but we will develop a proof based on an intermediate
result developed there (Lemma 3.5 below).

We decompose the proof of Proposition 3.3 into three lemmas. In Lemma 3.4,
we show that

∫
f(ξs)ds is finite P↑x-a.s. if and only if its mean is finite, using

Lemma 3.5. We then show in Lemma 3.6 the equivalence between the finiteness
of the mean and the integral test of the proposition. Finally, we show that∫∞

0 f(ξs)ds <∞ has a 0-1 law.

Lemma 3.4. For any bounded non-increasing measurable function f ≥ 0 and
x ≥ 0, we have

P↑x
(∫ ∞

0
f(ξs)ds <∞

)
= 1 ⇐⇒ ∃C > 0,

∫ ∞
0

E↑x(f(ξs)1{ξs≥C})ds <∞.

The proof of Lemma 3.4 is based on the following observation that we take
from [BDK20]. For unconditioned Lévy processes, an analogous result is given
in [KS20, Lemma 4.5].

Lemma 3.5 ([BDK20, Proposition 2.7]). Let ζ be a transient strong Markov
process on R+ and denote by Px the law of ζ starting from ζ0 = x. For any
non-negative measurable function f and N, p > 0, let

MN,p :=
{
y ∈ R+ : Py

(∫ ∞
0

f(ζs)ds < N

)
> p

}
.

Suppose that x ∈MN,p, then∫ ∞
0

Ex(f(ζs)1{ζs∈MN,p})ds < 2N/p2.

Proof of Lemma 3.4. We first observe that if there exists C > 0 such that∫ ∞
0

E↑x(f(ξs)1{ξs≥C})ds = E↑x
(∫ ∞

0
f(ξs)1{ξs≥C}ds

)
<∞,

then
∫∞

0 f(ξs)1{ξs≥C}ds <∞ P↑x-a.s.. Additionally, as ξ is transient under law
P↑x and f is bounded, we have

∫∞
0 f(ξs)1{ξs<C}ds < ∞ P↑x-a.s. as well, which

completes the proof of the reverse part of the lemma.
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We now turn to the direct part and assume that there exists x ≥ 0 such that∫∞
0 f(ξs)ds < ∞ P↑x-a.s.. Then, given p > 0, we can choose N large enough

such that
P↑x
(∫ ∞

0
f(ξs)ds ≥ N

)
< p,

i.e., with MN,p defined as in Lemma 3.5, we have x ∈ MN,p. We shall prove
that the set MN,p contains a semi-infinite interval.

Set
TN = inf

{
t :
∫ t

0
f(ξs)ds ≥ N

}
.

We first show that P↑y(TN <∞) is comparable to inf0≤z≤δy P↑y−z(TN <∞) for
large values of y. Setting ξ = infs≥0 ξs, we observe that, for all y, z ≥ 0,

P↑y+z(TN <∞) ≤ P↑y+z(TN <∞, ξ ≥ z) + P↑y+z(ξ < z)

≤ P↑y+z
(
TN <∞

∣∣ ξ ≥ z)+ P↑y+z(ξ < z).

Moreover, note that the law of ξ under P↑y+z( · | ξ ≥ z) is the same as the law
of ξ + z under P↑y( · | ξ ≥ 0) = P↑y. It follows that

P↑y+z
(
TN <∞

∣∣ ξ ≥ z) = P↑y
(∫ ∞

0
f(ξs + z)ds < N

)
≤ P↑y(TN <∞),

as f is non-increasing. Therefore, we have

P↑y(TN <∞) ≥ P↑y+z(TN <∞)− P↑y+z(ξ < z),

where P↑y+z(ξ < z) = 1− R(y)
R(y+z) by Lemma 3.2.

Let ε > 0 and δ < ε/2. By (3.5), there exists C1(ε) > 0 such that for all
y > C1(ε) and z ∈ [0, δy] we have R(y−z)

R(y) = P↑y+z(ξ ≥ z) > 1 − ε. As a result,
for all y ≥ C1(ε), we have

inf
0≤z≤δy

P↑y−z(TN <∞) ≥ P↑y(TN <∞)− ε. (3.8)

We now set T̂y,δ = inf{s ≥ 0 : ξs ∈ [y(1−δ), y]}. As ξ is a Lévy process with
finite variance under law P, it is well-known that the overshoot distribution
of ξ is tight under law P↑x. Indeed, by [BS11, Lemma 3] this holds under P.
Therefore, it also holds under P↑x due to the duality property [BS11, Corollary 2].
Therefore, we have

P↑x(T̂y,δ <∞) ≥ P↑x
(
ξinf{t>0:ξt>y(1−δ)} − y(1− δ) ≤ δy

)
−→
y→∞

1.

Then we set C2(ε) such that P↑x(T̂y,δ =∞) < ε for all y ≥ C2(ε).
Recall that x ∈ MN,p. For all y ≥ C(ε) := max(C1(ε), C2(ε)), using the

strong Markov property and (3.8), we deduce that

P↑x
(∫ ∞

0
f(ξs)ds ≥ N

)
≥ E↑x

(
1{

T̂y,δ<∞
}P↑ξ

T̂y,δ

(∫ ∞
0
f(ξs)ds ≥ N

))
≥ E↑x

(
1{

T̂y,δ<∞
}P↑y (∫ ∞

0
f(ξs)ds ≥ N

))
− ε

≥ P↑y
(∫ ∞

0
f(ξs)ds ≥ N

)
(1− ε)− ε.
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By choosing ε > 0 small enough, we have

P↑y
(∫ ∞

0
f(ξs)ds ≥ N

)
<

P↑x
(∫∞

0 f(ξs)ds ≥ N
)

+ ε

1− ε < p.

So we have [C(ε),∞) ⊂MN,p. Then it follows from Lemma 3.5 that∫ ∞
0

E↑x
(
f(ξs)1{ξs≥C(ε)}

)
ds <∞,

completing the proof.

Lemma 3.6. Under the same assumptions as in Proposition 3.3, for any x ≥ 0,
we have ∫ ∞

0
E↑x(f(ξs))ds <∞ ⇐⇒

∫ ∞
0

yf(y)dy <∞.

Note that, by applying Lemma 3.6 with f(x) = f(x)1{x≥C} and using the
boundedness of f , we deduce that, under the same assumptions,

∃C > 0,
∫ ∞

0
E↑x
(
f(ξs)1{ξs≥C}

)
ds <∞ ⇐⇒

∫ ∞
0

yf(y)dy <∞.

Proof. We first assume that ξ is not a compound Poisson process. It then follows
from [Ber96, Theorem VI.20] that∫ ∞

0
E↑x (f(ξt)) dt = 1

R(x)

∫ ∞
0

Ex
(
R(ξt)f(ξt)1{t<τ}

)
dt

= C

∫
[0,∞)

dR(r)
∫

[0,x]
dR(z)R(x+ r − z)f(x+ r − z),

where τ = inf{s ≥ 0: ξs < 0} and R stands for the renewal function of −ξ.
Additionally, by [Ber96, Theorem I.21], the measures dR(· + z) and dR(· + z)
converge vaguely toward multiples of the Lebesgue measures, as z →∞. Using
(3.5) as well, we deduce there exist two constants 0 < c < C <∞ such that

c

∫
[0,x]

dz
∫

[x−z,∞)
yf(y)dy ≤

∫
[0,∞)

dR(r)
∫

[0,x]
dR(z)R(x+ r−z)f(x+ r−z)

≤ C
∫

[0,x]
dz
∫

[x−z,∞)
yf(y)dy.

As the function f is bounded, this leads to the desired statement.
If ξ is a compound Poisson process, then the corresponding result on random

walks leads to the conclusion. We recall that the span of the Lévy process ξ
is defined as r := sup{s > 0 : P(ξ1 6∈ sZ) = 0} ≥ 0, with the convention
that sup ∅ = 0. Assuming that ξ is non-lattice (i.e. the span is r = 0), it is a
consequence of [Che15, Equation (2.9)] and estimates on the renewal functions
of random walks that can be found in [Fel71, Chapter XII]. If ξ is lattice with
span r > 0, a similar argument leads to∫ ∞

0
E↑x (f(ξt)) dt <∞ ⇐⇒

∞∑
k=0

kf(kr + x) <∞.
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As f is eventually non-increasing, there exists 0 < c < C <∞ such that

c

∫ ∞
x

yf(y)dy ≤
∞∑
k=0

kf(kr + x) ≤ C
∫ ∞

0
yf(y)dy,

completing the proof.

We now prove that the finiteness of a perpetual integral of a Lévy process
conditioned to stay positive satisfies a zero-one law.

Lemma 3.7. Under the assumptions of Proposition 3.3, for all x ≥ 0 we have

P↑x
(∫ ∞

0
f(ξs)ds <∞

)
∈ {0, 1}.

Proof. Since ξ is transient under P↑x and f is bounded, we may assume without
loss of generality that f is non-increasing on the entire half-line [0,∞).

We introduce the function

ψ : x ∈ R+ 7→ P↑x
(∫ ∞

0
f(ξs)ds <∞

)
.

Note that ψ is measurable, non-negative and bounded, by standard properties
of Markov processes.

We first claim that (ψ(ξt), t ≥ 0) is a closed martingale. Indeed, for all
x, t ≥ 0, as

∫ t
0 f(ξs)ds <∞ P↑x-a.s., we have

P↑x
(∫ ∞

0
f(ξs)ds <∞

∣∣∣∣Ft) = P↑x
(∫ ∞

t

f(ξs)ds <∞
∣∣∣∣Ft)

= P↑x
(∫ ∞

0
f(ξt+s)ds <∞

∣∣∣∣Ft)
= P↑ξt

(∫ ∞
0

f(ξs)ds <∞
)

= ψ(ξt), P↑x-a.s..

Therefore, (ψ(ξt), t ≥ 0) is a closed martingale. In particular, this yields

lim
t→∞

ψ(ξt) = 1{∫∞
0

f(ξs)ds<∞
}, P↑x − a.s.. (3.9)

We next prove that ψ is non-increasing in x, using Lemma 3.2. With notation
therein, we observe that, for all x > 0,

∫m
0 f(ξs)ds<∞ P↑x-a.s.. It follows that

ψ(x) = P↑x
(∫ ∞

m

f(ξs)ds <∞
)

= P↑x
(∫ ∞

0
f(ξs+m − ξ + ξ)ds <∞

)
= P↑ ⊗ Pvx

(∫ ∞
0

f(ξs + vx)ds <∞
)
,

where vx is an independent copy of ξ under law P↑x. For all x < y, vx is
stochastically dominated by vy. Hence, as f is non-increasing,

∫∞
0 f(ξs + vx)ds

13



is stochastically larger than
∫∞

0 f(ξs+vy)ds. It follows that ψ is non-increasing
and non-negative, and hence limx→∞ ψ(x) = λ exists.

Since ξt →∞ P↑x-a.s. by transience, we deduce by (3.9) that

λ = lim
t→∞

ψ(ξt) = 1{∫∞
0

f(ξs)ds<∞
}, P↑x-a.s..

This implies that λ ∈ {0, 1} and that
∫∞

0 f(ξs)ds <∞ holds with probability 0
or 1, depending on the value of λ. This completes the proof.

Proof of Proposition 3.3. By Lemmas 3.4 and 3.6, we first observe that∫ ∞
0

f(ξs)ds <∞ P↑x-a.s. ⇐⇒
∫ ∞

0
yf(y)dy <∞.

Then, as P↑x
( ∫∞

0 f(ξs)ds < ∞
)
∈ {0, 1} by Lemma 3.7, we deduce by contra-

position that∫ ∞
0

yf(y)dy =∞ ⇐⇒ P↑x
(∫ ∞

0
f(ξs)ds <∞

)
< 1

⇐⇒ P↑x
(∫ ∞

0
f(ξs)ds <∞

)
= 0,

completing the proof.

4 Truncation of the derivative martingale and
the spinal decomposition

In this section, we use the renewal function of a Lévy process to introduce the
truncated versions of a derivative martingale. We show that the non-degeneracy
of the limit of the derivative martingale is equivalent to the uniform integra-
bility of the truncated derivative martingales. We then introduce the spinal
decomposition, describing the law of a branching Lévy process biased by the
truncated martingales.

4.1 Truncated derivative martingales
To study the asymptotic behaviour of the derivative martingale, it will be nec-
essary to introduce non-negative martingales that approach its asymptotic be-
haviour. To this end, we introduce a truncated version of a Lévy process by
using its renewal function.

Lemma 4.1. Let b > 0. We set for t ≥ 0:

Zbt =
∑
u∈Nt

R(Xu(t) + b)1{infs≤tXu(s)≥−b}e
−Xu(t). (4.1)

The process Zb := (Zbt , t ≥ 0) is a non-negative martingale, called the truncated
derivative martingale, that converges a.s. to a limit Zb∞ ≥ 0 as t→∞.

Proof. The fact that Zb is a non-negative martingale is a straightforward con-
sequence of the branching property of the branching Lévy process, the many-
to-one lemma and equation (3.4).
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The family of martingales (Zb, b ≥ 0) does approach the derivative martin-
gale Z in the following sense.

Lemma 4.2. Under assumptions (2.1) and (2.2), Zt converges P-a.s. to a non-
negative limit Z∞ ≥ 0 as t→∞. Moreover, there is the identity

c?Z∞ = lim
b→∞

Zb∞, P-a.s.,

where c? > 0 is the constant given in (3.5).

Proof. By (3.5), the function R satisfies R(x) ∼ c?x as x → ∞. Hence, for all
ε > 0, there exists Aε > 0 such that x ∈ [R(x)/(c? + ε), R(x)/(c? − ε)] for all
x ≥ Aε. In particular, for every t ≥ 0 we obtain

1
c? + ε

Zbt ≤ Zt + bWt ≤
1

c? − ε
Zbt ,

on the event {infs≤tMs ≥ Aε − b}, where Wt =
∑
u∈Nt e

−Xt(u) is the additive
martingale and Ms = infu∈Ns Xs(u).

By [BM18, Theorem 1.1], under assumption (2.1) we have limt→∞Wt = 0
a.s.. Since e−Mt ≤ Wt → 0, it follows that inft≥0 Mt > −∞ a.s.. Therefore,
letting t→∞, we have on the event {inft≥0 Mt ≥ Aε − b}

1
c? + ε

Zb∞ ≤ lim inf
t→∞

Zt ≤ lim sup
t→∞

Zt ≤
1

c? − ε
Zb∞.

Observe that b 7→ Zbt is non-decreasing for all t ≥ 0, so b 7→ Zb∞ is a.s.
non-decreasing. Therefore, limb→∞ Zb∞ exists a.s.. Then letting b → ∞, as
limb→∞ P(inft≥0 Mt ≥ Aε − b) = 1, we deduce that

lim
b→∞

1
c? + ε

Zb∞ ≤ lim inf
t→∞

Zt ≤ lim sup
t→∞

Zt ≤
1

c? − ε
lim
b→∞

Zb∞, P-a.s..

Finally, letting ε→ 0 leads to the desired statement.

The previous lemma allows us to study the non-degeneracy of the limit
of the derivative martingale Z via the uniform integrability of the truncated
martingales Zb.

Corollary 4.3. If there exists b > 0 such that Zb is uniformly integrable, then
Z∞ is non-degenerate. On the other hand, if Zb∞ = 0 a.s. for all b > 0, then
Z∞ = 0 a.s..

Proof. Assume first there exists b > 0 such that Zb is uniformly integrable, then
P(Zb∞ > 0) > 0. As b 7→ Zb∞ is non-decreasing, we deduce by Lemma 4.2 that
P(Z∞ > 0) > 0.

If Zb∞ = 0 a.s. for every b > 0, then Z∞ = 0 a.s. by Lemma 4.2.

Remark 4.4. In fact, in proving Theorem 2.1, we will also show that the following
three facts are equivalent:

1. Z∞ > 0 a.s. on the survival set of the branching Lévy process;

2. there exists b > 0 such that Zb is uniformly integrable;

3. for every b > 0, Zb is uniformly integrable.
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4.2 Spinal decompositions of the branching Lévy process
The spinal decomposition consists in an alternative description of the law of a
branching process biased by a non-negative martingale as a branching process
with a special individual called the spine. This alternative description in turns
allows us to study whether the martingale is uniformly integrable or not, thanks
to the following classical argument.

Fact 4.5. Let (M,F) be a non-negative P-martingale and set Q := M · P. We
have

(Mt, t ≥ 0) is uniformly integrable ⇐⇒ lim inf
t→∞

Mt <∞ Q-a.s..

M∞ = 0 P-a.s. ⇐⇒ lim sup
t→∞

Mt =∞ Q-a.s..

Here we denote by Q = M · P the fact that, for each t ≥ 0,

dQ
dP

∣∣∣∣
Ft

= Mt a.s..

We refer to Q as the law P biased by the martingale M .
Fact 4.5 is a consequence of [Dur10, Theorem 5.3.3], and the fact that

(1/Mt, t ≥ 0) is a non-negative Q-supermartingale, thus having a finite limit
Q-a.s.. In view of Fact 4.5, we will study the spinal decomposition associated
with a truncated martingale Zb and explore its asymptotic behaviour.

To this end, we begin by introducing the spinal decomposition associated to
the additive martingale. Let P be the law of the branching Lévy process. Define
the measure P by

P := W · P, (4.2)

where the P-martingale (W,F) is defined for all t ≥ 0 as Wt =
∑
u∈Nt e

−Xt(u)

and F is the natural filtration of the branching Lévy process. This change of
measure was considered in [BM18, IM19] to study the asymptotic behaviour
of additive martingales, and is the counterpart of results of Lyons [Lyo97] for
branching random walks.

To obtain an alternative representation of P, we construct a new branching
process, with a distinguished individual called the spine. Specifically, define a
sigma-fine measure Λ̂ on P × N by

Λ̂(dx,dk) :=
∑
j≥1

e−xjΛ(dx)δj(dk). (4.3)

Let β be a Brownian motion and N̂(dt,dx,dk) an independent Poisson random
measure on R+×P×N with intensity dt⊗ Λ̂(dx,dk). We define a Lévy process
ξ̂ by the following compensated Poisson integral

ξ̂t = σβt + ât+
∫

[0,t]×P×N
xk1{|xk|<1}N̂

c(dt, dx,dk)

+
∫

[0,t]×P×N
xk1{|xk|≥1}N̂(dt,dx,dk), (4.4)
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with â the quantity defined in (3.2). The process ξ̂ is well-defined and finite,
thanks to equations (1.4) and (1.5) (see [BM18] for more details on this con-
struction). Moreover, ξ̂ is a Lévy process with Lévy-Khinchine exponent Ψ
defined in (3.1).

The branching Lévy process with spine is then constructed as follows. The
spine particle follows the trajectory of ξ̂, while making offspring according to the
point process N̂ . More precisely, for all atom (t,x, k) of N̂ , the spine particle
jumps at time t from position ξ̂t− to ξ̂t = ξ̂t−+xk, while for all j 6= k, it creates
a new particle at position ξ̂t− + xj . Each newborn particle then starts from its
current birth time and location a new independent branching Lévy process with
law P. The set of particles alive at time t is again denoted by Nt. For u ∈ Nt, let
(Xs(u), s ≤ t) be the trajectory of this particle. The label of the spine particle
at time t is written as wt ∈ Nt. The law of the branching Lévy process with
spine (X,N , w) thus defined is denoted by P̂. The spinal decomposition is the
following result.

Lemma 4.6. The law of (X,N ) is the same under laws P and P̂. Moreover,
one has

P̂(wt = u | Ft) = e−Xt(u)/Wt, ∀t ≥ 0. (4.5)

We refer to [SW19, Theorem 5.2] for the proof of the spinal decomposition
for branching Lévy processes, and to [BM18, Lemma 2.3] for a simple argument
based on the spinal decomposition of branching random walks which could be
adapted to our settings. The spinal decomposition was introduced by Lyons,
Pemantle and Peres in [LPP95] for Galton-Watson processes. The result was
then refined by Lyons [Lyo97] to study additive martingales in a branching
random walk, and was further extended to general martingales based on additive
functionals of a branching random walk in [BK04].

We now discuss a similar extension in the settings of branching Lévy pro-
cesses. Consider for every b > 0 the law Qb defined by

Qb = Zb

R(b) · P. (4.6)

Thanks to Lemma 4.6, one straightforwardly obtains a spinal decomposition
result for the law Qb.

Lemma 4.7. Let b > 0, we define a measure Q̂b by setting for all t ≥ 0

dQ̂b

dP̂

∣∣∣∣∣
Ft

= R(Xt(wt) + b)
R(b) 1{infs≤tXs(wt)>−b}. (4.7)

Then the law of (X,N ) is the same under laws Qb and Q̂b.

Proof. Let V be an Ft-measurable random variable. We observe that

EQ̂b (V ) = Ê
(
V
R(Xt(wt) + b)

R(b) 1{infs≤tXs(wt)>−b}

)
= Ê

(
V

Wt

∑
u∈Nt

e−Xt(u)R(Xt(u) + b)
R(b) 1{infs≤tXs(u)>−b}

)
,
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by conditioning on (X,N ) and using Lemma 4.6. Then, one has

EQ̂b (V ) = E
(

Zbt
R(b)Wt

V

)
= EQb(V ),

as {Wt = 0} ⊂ {Zbt = 0}.

In light of Lemma 4.7 and the spinal construction of P̂, we can still describe
Q̂b as the law of the particle system in which the spine particle follows the
trajectory ξ̂, while making offspring according to the point process N̂ . However,
we stress that under law Q̂b, ξ̂ is a Lévy process with characteristic exponent Ψ
conditioned to stay above level −b, in the sense of Section 3.2; in other words,

ξ̂ under Q̂b has the same distribution as (ξ − b) under P↑b . (4.8)

Similarly, N̂ is no longer a Poisson random measure with intensity dt⊗Λ̂(dx,dk).
We can nevertheless compute its compensator.

Lemma 4.8. The predictable compensator of N̂ under Q̂b is

1{b+ξt−>0}
R(b+ ξt− + xk)
R(b+ ξt−) e−xkdt⊗ Λ(dx)⊗ n(dk),

where n(dk) =
∑∞
j=1 δj(dk) is the counting measure on N.

Proof. This statement for the predictable compensator of N̂ follows from Gir-
sanov’s theorem for random measures (see e.g. [JS03, Theorem III.3.17(b)]). A
detailed proof is given in [SW19, Lemma 6.5].

5 Proof of the main result
Using Fact 4.5, Lemma 4.7 and Corollary 4.3, we now prove Theorem 2.1. We
begin by giving alternative expressions of the condition (H) that will help us use
Proposition 3.3. We then show that (H) implies the non-degeneracy of the limit
of the derivative martingale and finally that the derivative martingale converges
to 0 if (H) does not hold.

5.1 Equivalent integral tests for (H)
We give here some equivalent formulas for (H). Recall that, for all x ∈ P,

Y (x) =
∑
k≥1

e−xk and Ỹ (x) =
∑
k≥1

xk1{xk≥0}e
−xk .

Introduce the quantity

Y (x) =
∑
k≥1

(1 + xk1{xk≥0})e−xk = Y (x) + Ỹ (x).

We first rewrite (H) in terms of the variable Y (x).
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Lemma 5.1. Under (2.1) and (2.2), (H) is equivalent to∫
P
Y (x) log+(Y (x)− 1)2Λ(dx) <∞.

Proof. Let B = {x ∈ P : Y (x)≥2}. Since {x ∈ P : Y (x)≥2 or Ỹ (x)≥2} ⊂ B,
we have

0 =
∫
Bc
Y (x) log+(Y (x)− 1)2Λ(dx) =

∫
Bc
Ỹ (x) log+(Ỹ (x)− 1)Λ(dx).

So it suffices to prove that∫
B

Y (x) log+(Y (x)− 1)2Λ(dx) <∞ ⇐⇒∫
B

Y (x) log+(Y (x)− 1)2 + Ỹ (x) log+(Ỹ (x)− 1)Λ(dx) <∞.

Additionally, we have

Λ(B) = Λ
(
x ∈ P : Y (x)≥2

)
<∞. (5.1)

Indeed, as supx∈R xe−x1{x≥0} ≤ e−1, we deduce that Y (x) ≤ Y 2(x) + 1 + e−1

for all x ∈ P, where we have set Y 2(x) :=
∑
k≥2(1 + xk1{xk≥0})e−xk . So we

have {Y (x)≥2} ⊂
{
Y 2(x) ≥ 1− e−1}. We also note that∫

P
Y 2(x)Λ(dx) ≤

∫
P

∑
k≥2

(2 + x2
k)e−xkΛ(dx) <∞, (5.2)

where the finiteness of the last integral follows from (2.4). As a result, we have∫
P
Y (x)1{Y (x)≥2}Λ(dx) ≤

∫
P

(Y 2(x) + 1 + e−1)1{Y 2(x)≥1−e−1}Λ(dx)

≤ C
∫
P
Y 2(x)Λ(dx) <∞. (5.3)

This implies (5.1).
Therefore, we may assume, without loss of generality, that Λ is a probability

distribution on P. But in that case, the equivalence is a direct consequence
of [Aı̈d13, Lemma B.1] (for the reverse part) and [Mal18, Lemma A.1] (for the
direct part).

Using Lemma 5.1, we also write (H) as the following integral test, which will
be used later on to apply Proposition 3.3.

Lemma 5.2. For all r ≥ 0, we set P (r) =
{

x ∈ P : Y (x) ≤ er/3 + 1
}

. We
have

(H) =⇒
∫ ∞

0

∫
P (r)c

rY (x) + Ỹ (x) Λ(dx)dr <∞.
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Proof. To prove the first implication, we observe that, by Fubini-Tonelli theorem∫ ∞
0

∫
P (r)c

rY (x) + Ỹ (x)Λ(dx)dr

=
∫
P

∫ 3 log+(Y (x)−1)

0
rY (x) + Ỹ (x)drΛ(dx)

= 9
2

∫
P
Y (x) log+(Y (x)− 1)2Λ(dx) + 3

∫
P
Ỹ (x) log+(Y (x)− 1)Λ(dx).

By Lemma 5.1, the finiteness of the first integral is equivalent to (H).
It remains to prove that the second term is finite under (H). By the same

arguments as in the proof of Lemma 5.1, we may assume that Λ is a probability
measure. Then it follows from [Aı̈d13, Lemma B.1] that∫

P
Ỹ (x) log+(Y (x)− 1)Λ(dx) <∞.

5.2 The sufficient part
Let X be a branching Lévy process satisfying (2.1) and (2.2). We recall that Zb
is its truncated derivative martingale, defined in (4.1). In this section, we assume
that (H) holds and prove that Zb is uniformly integrable for all b > 0, which by
Corollary 4.3 is enough to deduce the sufficient part of Theorem 2.1.

Lemma 5.3. Under assumption (H), Zb is uniformly integrable for all b > 0.

Proof. By Fact 4.5, to prove that (Zbt , t ≥ 0) is uniformly integrable, it is enough
to prove that Qb(lim inft→∞ Zbt <∞) = 1. By Lemma 4.7, we can equivalently
prove that Q̂b(lim inft→∞ Zbt < ∞) = 1. We write G = σ(ξ̂, N̂) the sigma-
algebra generated by the spine ξ̂ and the birth times and places of its children.
To conclude the proof, it is therefore enough to show that

EQ̂b

(
lim inf
t→∞

Zbt

∣∣∣G) ≤ lim inf
t→∞

EQ̂b
(
Zbt
∣∣G) <∞ Q̂b-a.s., (5.4)

by conditional Fatou lemma.
By the spinal decomposition description of Q̂b and Lemma 4.1, we immedi-

ately obtain the following Q̂b-a.s. identity:

EQ̂b
(
Zbt
∣∣G) = R(b+ ξ̂t)e−ξ̂t

+
∫

[0,t]×P×N

∑
i 6=k

R(b+ ξ̂s− + xi)e−(ξ̂s−+xi)N̂(ds,dx,dk).

As ξ̂ under Q̂b is a centred Lévy process conditioned to stay above −b, it is
transient, i.e. limt→∞ ξ̂t = ∞ Q̂b-a.s.. Therefore, letting t → ∞, Q̂b-a.s. we
have:

lim inf
t→∞

EQ̂b
(
Zbt
∣∣G) =

∫
[0,∞)×P×N

∑
i 6=k

R(b+ξ̂s−+xi)e−(ξ̂s−+xi)N̂(ds,dx,dk). (5.5)
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We divide the above integral into two parts, depending on the relative values of
x and ξ̂t− at the atom (t,x, k) of N̂ . More precisely, recalling that

Y (x) =
∑
j≥1

(
1 + xj1{xj>0}

)
e−xj and P (r) =

{
x ∈ P : Y (x) ≤ er/3 + 1

}
,

we set

A(1) :=
∫

[0,∞)×P×N
1{x∈P (ξ̂s−+b)

}∑
i 6=k

R(b+ ξ̂s− + xi)e−(ξ̂s−+xi)N̂(ds,dx,dk),

A(2) :=
∫

[0,∞)×P×N
1{x6∈P (ξ̂s−+b)

}∑
i 6=k

R(b+ ξ̂s− + xi)e−(ξ̂s−+xi)N̂(ds,dx,dk),

so that (5.5) can be rewritten as lim inft→∞ EQ̂b
(
Zbt
∣∣G) = A(1) +A(2) Q̂b-a.s..

We now prove A(1) and A(2) to be both Q̂b-a.s. finite.
An direct application of Lemma 4.8 leads to

EQ̂b

(
A(1)

)
≤ C

∫
[0,∞)

EQ̂b

(
e−ξ̂s h(1)(ξ̂s+b)

)
ds,

where we set

h(1)(y) = 1
R(y)

∫
P (y)

(∑
k≥1

∑
j 6=k

R(y + xk)R(y + xj)e−xk−xj
)

Λ(dx).

By (3.5) and the subadditivity of x 7→ x1{x>0}, for all x ∈ R and y ≥ 0 we have
R(x+ y) ≤ c2(1 + y)(1 + x1{x>0}). Therefore,

h(1)(y) ≤ C (1 + y)2

R(y)

∫
P (y)

∑
k≥1

∑
j 6=k

(1 + xk1{xk>0})(1 + xj1{xj>0})e−xk−xjΛ(dx)

≤ C(1 + y)
∫
P (y)

((
1 + x11{x1>0}

)
e−x1Y 2(x) + Y 2(x)Y (x)

)
Λ(dx),

where Y 2(x) =
∑
k≥2

(
1 + xk1{xk>0}

)
e−xk . As a result, we have

h(1)(y) ≤ C(1 + y)
∫
P (y)

(Y (x) + C)Y 2(x)Λ(dx)

≤ C(1 + y)(ey/3 + 1)
∫
P
Y 2(x)Λ(dx).

Since
∫
P Y 2(x)Λ(dx)<∞ by (5.2), we have h(1)(y) ≤ C(1+y)(ey/3+1) and hence

y 7→ ye−yh(1)(y) is integrable on [0,∞). Combining this fact and Lemma 3.6,
we conclude that

EQ̂b(A
(1)) ≤ C

∫ ∞
0

EQ̂b

(
e−ξ̂sh(1)(ξ̂s + b)

)
ds

≤ Ceb
∫ ∞

0
EP̂↑

b

(
e−ξ̂sh(1)(ξ̂s)

)
ds <∞,

which implies that A(1) <∞ Q̂b-a.s..
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We now turn to the finiteness of A(2). Observe that A(2) is the integral of a
random point measure, whose total mass is given by

M (2) =
∫

[0,∞)×P×N
1{x6∈P (ξ̂s−+b)

}N̂(ds,dx,dk).

As for all z ≥ 0,
∑
i6=k R(z+xi)e−(z+xi) is finite for Λ̂-almost all x, the finiteness

of A(2) is a consequence of the finiteness of M (2). Using first Lemma 4.8 and
(3.5) and then (4.8), we have

EQ̂b

(
M (2)

)
=
∫ ∞

0
EQ̂b

∫
P
(
ξ̂s+b

)c∑
k≥1

R(b+ ξ̂s + xk)
R(b+ ξ̂s)

e−xkΛ(dx)

 ds

≤C
∫ ∞

0
EQ̂b

(
1

R(b+ξ̂s)

∫
P
(
ξ̂s+b

)c ((b+ξ̂s)Y (x) + Ỹ (x)
)

Λ(dx)
)

ds

≤C
∫ ∞

0
EP̂↑

b

(
1
ξ̂s

∫
P
(
ξ̂s
)c (ξ̂sY (x) + Ỹ (x)

)
Λ(dx)

)
ds.

By Lemma 5.2, under assumption (H) we have for every r > 0∫ ∞
0

∫
P (r)c

(
rY (x) + Ỹ (x)

)
Λ(dx)dr <∞.

Therefore, Proposition 3.3 shows that M (2) and hence A(2) are Q̂b-a.s. finite.
We conclude that A(1) + A(2) < ∞ Q̂b-a.s., from which we deduce by (5.5)

that (5.4) holds, completing the proof.

Proof of the sufficient part of Theorem 2.1. We assume that (H) holds. Using
Lemma 5.3, (Zbt ) is uniformly integrable for all b > 0. Therefore, by Corol-
lary 4.3, we obtain that Z∞ is non-degenerate, which completes the proof.

5.3 The necessary part
In this section, we prove that if (H) does not hold, then Z∞=0 P-a.s.. Taking
Corollary 4.3 into account, it suffices to prove that Zb∞ = 0 P-a.s. for all b > 0.
By Fact 4.5 and Lemma 4.7, the problem boils down to proving the following
lemma.

Lemma 5.4. If (H) does not hold, then for every b > 0,

lim sup
t→∞

Zbt =∞, Q̂b-a.s..

Proof. Fix b > 0. We prove this lemma by contraposition, assuming that
{lim supt→∞ Zbt < ∞} has positive probability under Q̂b, and show that it
implies (H). Recall from Lemmas 4.6 and 4.7 the construction of Q̂b from P̂ via
a change of probabilities and the spinal decomposition for both Q̂b and P̂. With
notation therein, for each atom (t,x, k) of N̂ , by (3.5) we have

Zbt ≥
∑
j≥1

R(b+ ξ̂t− + xj)e−(ξ̂t−+xj) ≥ c1e
−ξ̂t−

∑
j≥1

(
b+ ξ̂t− + xj

)
+
e−xj .
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The assumption Q̂b(lim supt→∞ Zbt <∞) > 0 implies that there exist T,A > 0
such that

Q̂b
(
∀(t,x, k) atom of N̂ : t≤T or

∑
j≥1

(
b+ξ̂t−+xj

)
+
e−xj ≤Aeξ̂t−

)
> 0. (5.6)

Write F̂ the natural filtration of the branching Lévy process with spine. Let

G :=
{

(t,x, k) atoms of N̂ :
∑
j≥1

(
b+ ξ̂t− + xj

)
+
e−xj > Aeξ̂t−+b

}
.

Since
∑
j≥1 (b+ y + xj)+ e

−xj ≤ max(b + y, 1)Y (x), we may assume that A is
large enough such that G ⊂ {(t,x, k) atoms of N̂ : Y (x) > 2}. By (5.3), we
have Λ̂(Y (x) > 2) <∞, where Λ̂ is defined by (4.3). So the first coordinates of
the atoms in G cannot accumulate in finite time P̂-a.s.. As Q̂b

|F̂t
is absolutely

continuous with respect to P̂|F̂t , they cannot accumulate in finite time Q̂b-a.s.
either. Therefore, (5.6) implies that

Q̂b(#G <∞) > 0. (5.7)

We now prove that condition (5.7) implies (H), by applying a conditional
version of the Borel-Cantelli lemma, obtained by [Che78], for a sum of bounded
random variables. To use this result, we need a time-discretization argument.
Specifically, let us enumerate the set of atoms such that Y (x) > 2 in increasing
order of time by {(τn,xn, kn), n ≥ 1}. Then (τn) is a sequence of F̂-stopping
times that does not accumulate Q̂b-a.s.. Set τ0 = 0. For n ≥ 0, define

Bn =
∑

(t,x,k) atom of N̂

1{t∈[τn,τn+1)}1{∑
j≥1

(
b+ξ̂t−+xj

)
+
e−xj>Aeξ̂t−+b

}.
Then we have #G =

∑
n≥0 Bn. Note that each Bn is F̂τn measurable and takes

values in {0, 1}.
As the family (Bn) is bounded, it follows from the conditional Borel-Cantelli

lemma [Che78] that

Q̂b
(∑
n≥0

Bn <∞
)

= Q̂b
(∑
n≥0

EQ̂b

(
Bn

∣∣∣ F̂τn−1

)
<∞

)
. (5.8)

We use the Markov property and Lemma 4.8 to obtain

EQ̂b
(
Bn
∣∣ F̂τn−1

)
= EQ̂b

(∫ τn

τn−1

h(ξ̂r)dr
∣∣∣∣ F̂τn−1

)
, Q̂b-a.s., (5.9)

where the function h : R→ R is defined by

h(y) :=
∫
P

1{∑
j≥1

(b+y+xj)+e
−xj>Aey+b

}∑
k≥1

e−xk
R(b+ y + xk)
R(b+ y) Λ(dx).

We deduce by (5.7), (5.8) and (5.9) that

Q̂b
∑
n≥0

EQ̂b

(∫ τn

τn−1

h(ξ̂r)dr
∣∣∣∣ F̂τn−1

)
<∞

 > 0.
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Then, using the reciprocal conditional Borel-Cantelli lemma [Che78] (which
does not require the random variables to be bounded), we deduce that

Q̂b
(∫ ∞

0
h(ξ̂r)dr <∞

)
> 0.

By (3.5), there exists c > 0 such that h( · ) ≥ cf( · + b), where the function
f : R→ R is defined by

f(y) :=
∫
P

1{y>0}1{∑
j≥1

(y+xj)+e−xj>Aey
}∑
k≥1

e−xk
(y + xk)+

y + 1 Λ(dx).

As a result, we deduce that

Q̂b
(∫ ∞

0
f(ξ̂r + b)dr <∞

)
> 0 ⇐⇒ P̂↑b

(∫ ∞
0

f(ξ̂r)dr <∞
)
> 0, (5.10)

in view of (4.8). To directly apply the results of Section 3.3 to this perpetual
integral of Lévy process conditioned to stay positive, we would need f to be
eventually non-increasing, which is not necessarily the case. Instead, we use
various non-increasing lower bounds of f to show that (5.10) implies the three
following integral tests:∫

Ỹ (x) log+(Ỹ (x)− 1)Λ(dx) <∞, (5.11)∫
Y (x) log+(Y (x)− 1)Λ(dx) <∞, (5.12)∫
Y (x) log+(Y (x)− 1)2Λ(dx) <∞. (5.13)

We then note that (5.11), (5.12) and (5.13) imply (H), which will complete the
proof.

We first prove (5.11). Observe that (y + xj)+ ≥ (xj)+ for y ≥ 0, so

f(y) ≥ f1(y) :=
∫
P

1{∑
j≥1

(xj)+e−xj>Aey
}∑
k≥1

e−xk
(xk)+

y + 1 Λ(dx).

As f1 is non-increasing and (5.10) implies P̂↑b
(∫∞

0 f1(ξ̂r)dr <∞
)
> 0, using

Proposition 3.3 and Fubini theorem, we deduce that

∞ >

∫ ∞
0

(y + 1)f1(y)dy

=
∫ ∞

0

∫
P

1{∑
j≥1

(xj)+e−xj>Aey
}∑
k≥1

e−xk(xk)+Λ(dx)dy

=
∫
P
Ỹ (x) log+(Ỹ (x)− logA)Λ(dx).

This yields (5.11), as Λ(Ỹ (x) ≥ 2) <∞ by (5.1).
We now turn to the proof of (5.12). For all y ≥ 0, we divide Y (x) into

Y y+(x) :=
∑
j≥1

1{xj≥−y/2}e
−xj and Y y−(x) :=

∑
j≥1

1{xj<−y/2}e
−xj .
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Remark that for all x ∈ P, L ∈ R and y ∈ R+, we have

Y (x)1{Y (x)≥L}=
(
Y y+(x) + Y y−(x)

)
1{Y (x)≥L}

= Y y+(x)1{Y y+ (x)≥L}+Y y+(x)1{Y (x)≥L≥Y y+ (x)}+Y y−(x)1{Y (x)≥L}.

Additionally, note that

Y y+(x)1{Y (x)≥L≥Y y+ (x)}≤ Y
y

+(x)1{Y (x)≥L≥Y y+ (x)≥Y y−(x)}+ Y y+(x)1{Y y+ (x)<Y y−(x)}
≤ Y (x)1{Y (x)≥L≥Y (x)/2} + Y y−(x),

using that Y (x) ≥ Y y+(x) ≥ Y (x)/2 whenever Y y+(x) ≥ Y y−(x). As a result, we
have

Y (x)1{Y (x)≤L} ≤ Y y+(x)1{Y y+ (x)≥L}+Y (x)1{Y (x)≥L≥Y (x)/2}+ 2Y y−(x). (5.14)

To show that (5.12) holds, it is enough to prove that∫ ∞
2

dy
∫
P
Y (x)1{Y (x)≥Aey}Λ(dx) =

∫
P
Y (x) log+(Y (x)/A− 2)Λ(dx) <∞,

since Λ(Y (x) ≥ 3A) <∞ as long as A is large enough, by (5.1). Then, in view
of (5.14), it suffices to prove that∫ ∞

0
dy
∫
P
Y y+(x)1{Y y+ (x)≥Aey}Λ(dx) <∞, (5.15)∫ ∞

0
dy
∫
P
Y (x)1{Y (x)≥Aey≥Y (x)/2}Λ(dx) <∞, (5.16)∫ ∞

0
dy
∫
P
Y y−(x)Λ(dx) <∞. (5.17)

Using Fubini theorem, we have∫ ∞
0

dy
∫
P
Y (x)1{Y (x)≥Aey≥Y (x)/2}Λ(dx) ≤ log 2

∫
P
Y (x)1{Y (x)≥A}Λ(dx).

So (5.16) holds by (5.3). Similarly, we have∫ ∞
0

dy
∫
P
Y y−(x)Λ(dx) ≤ 2

∫
P

∑
j≥1
|xj |e−xj1{xj<−1}Λ(dx),

which is finite by (2.4). This proves (5.17).
We now turn to the proof of (5.15). For all y ≥ 2, using the fact that

(xj + y)+ ≥ y1{xj>−y/2}/2 ≥ 1{xj>−y/2}, we obtain

f(y) ≥ f2(y) := 1
(y + 1)

∫
P

1{Y y+ (x)>Aey}Y
y

+(x)Λ(dx).

Using the same method as for the proof of (5.11), we deduce (5.15):∫ ∞
2

(y + 1)f2(y)dy =
∫ ∞

0
dy
∫
P

1{Y y+ (x)>Aey}Y
y

+(x)Λ(dx) <∞.

This completes the proof of (5.12).
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Finally, we turn to the proof of (5.13), by following similar steps as the proof
of (5.12). We observe by Fubini theorem that (5.13) is a consequence of∫ ∞

2
ydy

∫
P

1{Y (x)>Aey}Y (x)Λ(dx) <∞,

which, using again (5.14), is a consequence of the three conditions∫ ∞
2

ydy
∫
P
Y y+(x)1{Y y+ (x)≥Aey}Λ(dx) <∞, (5.18)∫ ∞

2
ydy

∫
P
Y (x)1{Y (x)≥Aey≥Y (x)/2}Λ(dx) <∞, (5.19)∫ ∞

2
ydy

∫
P
Y y−(x)Λ(dx) <∞. (5.20)

Remark that the integral in (5.19) can be rewritten∫ ∞
2
ydy

∫
P
Y (x)1{Y (x)≥Aey≥Y (x)/2}Λ(dx) ≤ C

∫
P

log+(Y (x)/A−2)Y (x)Λ(dx),

which is finite as we have already proved (5.12), on account of (5.1). Similarly,
we have ∫ ∞

2
ydy

∫
P
Y y−(x)Λ(dx) ≤

∫
P

∑
j≥1

x2
je
−xj1{xj<−1}Λ(dx),

which is finite by (2.4). We thus only have to prove (5.18).
For all y ≥ 2, bounding (y + xj)+ from below by 1{xj≥−y/2}(y + 1)/3, we

have
f(y) ≥ f3(y) := 1

3

∫
P

1{Y y+ (x)>Aey}Y
y

+(x)Λ(dx).

Using again (5.10) and Proposition 3.3, we obtain that

∞ >

∫ ∞
2

yf3(y)dy

= 1
3

∫ ∞
2

ydy
∫
P
Y y+(x)1{Y y+ (x)≥Aey}Λ(dx),

which completes the proof of (5.18), thus proving that (5.13) holds. This com-
pletes the proof of (H), assuming that Q̂b

(
lim supt→∞ Zbt <∞

)
> 0.

Proof of the necessary part of Theorem 2.1. We assume that (H) does not hold.
By Lemma 5.4, for all b > 0 we have

lim sup
t→∞

Zbt =∞, Q̂b-a.s..

By Fact 4.5, this implies that limt→∞ Zbt = 0, P-a.s.. Using Corollary 4.3, we
conclude that Z∞ = 0 P-a.s., completing the proof.

Acknowledgements. We wish to thank Samuel Baguley, Löıc Chaumont,
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