
Second order behavior of the block counting
process of beta coalescents

Lin Yier and Bastien Mallein

February 8, 2017

Abstract

The Beta coalescents are stochastic processes modeling the genealogy
of a population. They appear as the rescaled limits of the genealogical
trees of numerous stochastic population models. In this article, we take
interest in the number of blocs at small times in the Beta coalescent.
Berestycki, Berestycki and Schweinsberg [2] proved a law of large num-
bers for this quantity. Recently, Limic and Talarczyk [9] proved that a
functional central limit theorem holds as well. We give here a simple proof
for an unidimensional version of this result, using a coupling between Beta
coalescents and continuous-time branching processes.

1 Introduction
A coalescent process is a stochastic model for the genealogy of an infinite haploid
population, built backward in time. In such a model, an individual is represented
by an integer n ∈ N. At each time t, we denote by Π(t) the partition of N such
that two individuals i and j belong to the same set in Π(t) (that we call “bloc”
from now on) if they share a common ancestor less than t units of time in
the past. In particular, we always assume that Π(0) = {{1}, {2}, . . .} is the
partition in singletons. We construct (Π(t), t ≥ 0) as a Markov process on the
set of partitions, that gets coarser over time.

Let Λ be a probability measure on [0, 1]. The Λ-coalescent is a coalescent
process such that given there are b distinct blocs in Π(t), any particular set of
k blocs merge at rate

λb,k =
∫ 1

0
xk−2(1− x)b−kΛ(dx).

The Λ-coalescent has been introduced independently by Pitman [10] and Sagi-
tov [11]. In this process, several blocs may merge at once, but at most one such
coalescing event may occur at a given time.

For any t ≥ 0, we denote by N(t) the number of blocs in Π(t). We have
in particular N(0) = +∞. We say that the Λ-coalescent comes down from
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infinity if almost surely N(t) < +∞ for any t > 0. Pitman [10] proved that if
Λ({1}) = 0, either the Λ-coalescent comes down from infinity, or N(t) = +∞
for any t > 0 a.s. In the rest of the article, we always assume that Λ has no
atom at 1.

Schweinsberg [12] obtained a necessary and sufficient condition for the Λ-
coalescent to come down from infinity, that Bertoin and Le Gall [3] proved
equivalent to∫ +∞

1

dq

ψ(q) < +∞, where ψ(q) =
∫ 1

0
(e−qx − 1 + qx)x−2Λ(dx). (1.1)

Berestycki, Berestycki and Limic [1] obtained the almost sure behaviour for the
number of blocs N(t) as t goes to 0, which they called the speed of coming down
from infinity. More precisely, setting vψ(t) = inf{s > 0 :

∫ +∞
s

dq
ψ(q) ≤ t}, they

proved that for a Λ-coalescent that comes down from infinity,

lim
t→0

N(t)
vψ(t) = 1 a.s. (1.2)

In this article, we consider the one parameter family of coalescent processes
called Beta-coalescents. For any α ∈ (0, 2), we consider the Λ-coalescent such
that the measure Λ is Beta(2− α, α), i.e.

Λ(dx) = 1
Γ(α)Γ(2− α)x

1−α(1− x)α−1dx.

The Beta-coalescents have a number of interesting properties (see e.g. [4, 2]
and references therein). In particular, if α ∈ (1, 2), it can be constructed as the
genealogy of an α-stable continuous state branching process.

We observe that thanks to (1.1), α ∈ (1, 2) is a necessary and sufficient
condition for the Beta-coalescent to come down from infinity. Moreover, (1.2)
can be restated as

lim
t→0

t
1

α−1N(t) = (αΓ(α))
1

α−1 a.s.

The speed of coming down from infinity for the Beta coalescent can also be
found in [2]. The main result of this article is a central limit theorem for the
number of blocs, as t→ 0.

Theorem 1.1. Let α ∈ (1, 2) we set (Π(t), t ≥ 0) the Beta(2− α, α)-coalescent
and N(t) = #Π(t) the number of blocs at time t, we have

lim
t→0

t
1

α(α−1)

(
N(t)−

(
αΓ(α)
t

) 1
α−1
)

= −DαX in law,

where Dα = (Γ(α)α)
1

α(α−1) (α − 1)− 1
α , X =

∫ 1
0 Y (t)dt and (Y (t), t ≥ 0) is a

Lévy process satisfying E(e−λYt) = etλ
α .
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Note that a more precise functional central limit theorem has been obtained
by [9] for any Λ-coalescent with a regularly varying density in a neighbourhood
of 0. However, our proof follows from simple coupling arguments, that might
be of independent interest.
Remark 1.2. We observe that the random variable X defined in Theorem 1.1 is
an α-stable random variable, that satisfies

E(e−λX) = exp
(

λα

α+ 1

)
.

In Section 2, we use [2] to couple the Beta-coalescent with a stable continu-
ous state branching process, and link the small times behaviour of the number of
blocs with the small times behaviour of the continuous-state branching process.
In Section 3, we use the so-called Lamperti transform to transfer the compu-
tations into the small times asymptotic of an α-stable Lévy process, and use
scaling properties to conclude.

2 Continuous state branching process
A continous-state branching process (or CSBP for short) is a càdlàg (right-
continuous with left limits at each point) Markov process (Z(t), t ≥ 0) on R+
that satisfies the so-called branching property: For any x, y ≥ 0, if (Zx(t), t ≥ 0)
and (Zy(t), t ≥ 0) are two independent versions of Z starting from x and y
respectively, then the process (Zx(t)+Zy(t), t ≥ 0) is also a version of Z starting
from x+ y.

The study of CSBP started with the seminal work of [6]. As observed in
[8, 13], there exists a deep connexion between CSBP and Lévy processes. In
effect, we observe that for any x, t, λ ≥ 0, the Laplace transform of the CSBP
Z satisfies

E (exp(−λZx(t)) = exp(−xut(λ)),

where u is the solution of the following differential equation

∂tut(λ) = φ(ut(λ)), with u0(λ) = λ, (2.1)

and φ is the Lévy-Khinchine exponent of a spectrally positive Lévy process (i.e.
a Lévy process with no negative jump). The function φ is called the branching
mechanism of the CSBP. If φ : λ 7→ λα with α ∈ (1, 2), we call Z the α-stable
CSBP.

Let α ∈ (1, 2). Berestycki, Berestycki and Schweinsberg gave in [2] a coupling
between the α-stable CSBP and the Beta(2 − α, α)-coalescent, that we recall
here. Let (Za(t), t ≥ 0, a ∈ [0, 1]) be a random field, càdlàg in t and a, such that
for any a < b, the process (Zb(t) − Za(t), t ≥ 0) is the α-stable CSBP starting
from b − a, and is independent with (Zc(t), t ≥ 0, c < a). For any t > 0, the
function a 7→ Za(t) is a.s. increasing, and we set

D(t) = # {a ∈ (0, 1) : Za−(t) < Za(t)} (2.2)
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the number of atoms in the measure µt satisfying µt([0, a]) = Za(t) a.s.
We also introduce R(t) = Cα

∫ t
0 Z1(s)1−αdt, where Cα = α(α − 1)Γ(α), as

well as its generalized inverse

R−1(t) = inf {s ≥ 0 : R(s) > t} . (2.3)

The coupling between the CSBP and the Beta-coalescent is obtained as a
straightforward combination of Lemmas 2.1 and 2.2 in [2].

Lemma 2.1 ([2]). For any t > 0, we have N(t)(d)=D(R−1(t)).

Using this result, to compute the small times behaviour of N(t), it is enough
to study the asymptotic behaviour of D(r) and R−1(t) separately. We first
provide a straightforward estimate on the asymptotic behaviour of D.

Theorem 2.2. For any α ∈ (1, 2), for any ε > 0, we have

lim
r→0

D(r)− ((α− 1)r)−
1

α−1

r−
1

2(α−1)−ε
= 0 a.s.

Proof. We note that (D(r), r > 0) is decreasing. Moreover, for any r ≥ 0, D(r)
is a Poisson random variable with parameter θr = ((α−1)r)−

1
α−1 , by Lemma 2.2

of [2]. Therefore, by a deterministic change of variables, it is enough to observe
that for any increasing process (P (t), t ≥ 0) such that P (t) is a Poisson random
variable with parameter t, we have

lim
t→+∞

P (t)− t
t

1
2 +ε = 0 a.s.

Using the exponential Markov inequality, for any λ > 0 we have

P(P (t)− t > t
1
2 +ε) ≤ e−λt

1
2 +ε

E
(
eλ(P (t)−t)

)
= exp

(
t(eλ − 1− λ)− λt 1

2 +ε
)
.

Applying this inequality with λ = t−1/2, there exists Cε > 0 such that for any
t ≥ 1, P(P (t)− t > t

1
2 +ε) ≤ Cεe−t

ε . With similar computations, we have

P(P (t)− t < −t 1
2 +ε) ≤ Cεe−t

ε

.

We apply the Borel-Cantelli lemma, yielding lim supn→+∞
|P (n)−n|
n

1
2 +ε ≤ 1 a.s.

As P is increasing, we obtain that for any ε > 0, limt→+∞
P (t)−t
t

1
2 +ε = 0 a.s.

concluding the proof.

3 The Lamperti transform
The connexion between CSBP and spectrally positive Lévy processes observed in
(2.1) can be strengthen. In [8], Lamperti observed that a CSBP with branching
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mechanism φ could be constructed as a random time change of a Lévy process
with Lévy-Khinchine exponent φ. A proof of this result can be found in [5].
More precisely, let (Y (t), t ≥ 0) be a spectrally positive Lévy process starting
from a, such that E(e−λY (t)) = e−aλ+tφ(λ). We set T = inf{s ≥ 0 : Y (s) ≤ 0}
and

U(t) = inf
{
s ≥ 0 :

∫ s

0

dr

Y (r ∧ T ) > t

}
.

The Lamperti transform states that for Z a CSBP with branching mechanism
φ such that Z(0) = a, we have

(Z(t), t ≥ 0) (d)= (Y (U(t)), t ≥ 0) (3.1)

In the rest of the section, we denote by (Y (t), t ≥ 0) a Lévy process with
Lévy-Khinchine exponent φ(λ) = λα such that Y (0) = 1 a.s. We also set
Y0(t) = Y (t)− 1. We write T = inf {s ≥ 0 : Y (s) ≤ 0} and

U(t) = inf
{
s ≥ 0 :

∫ s

0

du

Y (u ∧ T ) ≥ t
}
.

Using (3.1), the process defined in (2.3) satisfies(
R−1(t), t ≥ 0

) (d)=
(

inf
{
s ≥ 0 : Cα

∫ s

0
Y (U(u))1−αdu ≥ t

}
, t ≥ 0

)
. (3.2)

Therefore, up to a slight abuse of notation, we write

R(t) = Cα

∫ t

0
Y (U(s))1−αds = Cα

∫ U(t)

0
Y (u)−αdu, (3.3)

by change of variable, and again R−1(t) = inf {s ≥ 0 : R(s) ≥ t}. We first prove
a central limit theorem for the asymptotic behaviour of R(t) as t→ 0.

Theorem 3.1. We denote by X =
∫ 1

0 Y0(s)ds. We have

lim
t→0

R(t)− Cαt
t1+ 1

α

= (1− α)CαX in law.

Proof. For any ε > 0 and t > 0, we write At,ε = {|Y (s) − 1| ≤ ε, s ≤ 2t} the
event such that Y stays in an ε neighbourhood of 1 until time 2t. As observed
in [2, Lemma 4.2], there exists C > 0 such that P(Act,ε) ≤ Ctε−α.

We first prove that limt→0
U(t)
t = 1 and limt→0

R(t)
t = Cα a.s. Let ε < 1/2,

observe that on the event At,ε, we have T > 2t, therefore for any s ≤ t, we have

U(s) = inf
{
r ≥ 0 :

∫ r

0

du

Y (u) ≥ s
}
∈
[

s
1+ε ,

s
1−ε

]
.

In particular, letting t→ 0 we obtain

1
1 + ε

≤ lim inf
s→0

U(s)
s
≤ lim sup

s→0

U(s)
s
≤ 1

1− ε a.s.
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Letting ε→ 0, this yields limt→0
U(s)
s = 1 a.s. Similarly, by (3.3) we have

1
(1 + ε)1+α ≤ lim inf

s→0

R(s)
Cαs

≤ lim sup
s→0

R(s)
Cαs

≤ 1
(1− ε)1+α ,

yielding limt→0
R(t)
t = Cα a.s.

We set R̃(t) = R(t)− Cαt, we have

R̃(t) = Cα

∫ U(t)

0

(
Y (s)−α − 1

Y (s)

)
ds = Cα

∫ U(t)

0

(1 + Y0(s))1−α − 1
1 + Y0(s) ds.

As a consequence, we have

R̃(t) = Cα(1− α)
∫ U(t)

0
Y0(s)ds+ ∆(t), (3.4)

where ∆(t) = Cα
∫ U(t)

0
(1+Y0(s))1−α−1−(1−α)Y0(s)−(1−α)Y0(s)2

1+Y0(s) ds. Note that as Y0
is an α-stable Lévy process, the following scaling property holds for any λ > 0:

(Y0(t), t ≥ 0) (d)=
(
λ

1
αY0(t/λ), t ≥ 0

)
. (3.5)

We first prove that limt→0
∆(t)
t1+ 1

α
= 0 in probability. There exists Kα > 0

such that |(1 + x)1−α − 1 − (1 − α)x − (1 − α)x2| ≤ Kαx
2 for any x ∈ (0, 1).

Therefore, on the event At,ε, for any s ≤ t, we have

|∆(s)| ≤
∫ U(s)

0

∣∣(1 + Y0(r))1−α − 1− (1− α)Y0(r)− (1− α)Y0(r)2
∣∣

Y (r) dr

≤ Kα

1− ε

∫ (1+ε)s

0
Y0(r)2dr.

Using (3.5) with λ = t, for any δ > 0, we have

P(|∆(t)| ≥ δt1+ 1
α ) ≤ P(Act,ε) + P

(
Kαt

1+ 2
α

1− ε

∫ 1+ε

0
Y0(r)2 ≥ δt1+ 1

α

)

≤ Ctε−α + P
(
Kα

1− ε

∫ 1+ε

0
Y0(r)2 ≥ δt− 1

α

)
.

Letting t→ 0, we have limt→0 t
−1− 1

α∆(t) = 0 in probability.
We now study the asymptotic behaviour of t−1− 1

α

∫ U(t)
0 Y0(s)ds. First ob-

serve that for any δ, η > 0, we have

P

(∣∣∣∣∣
∫ U(t)

t

Y0(s)ds

∣∣∣∣∣ ≥ ηt1+ 1
α

)

≤P (|U(t)− t| ≥ δt) + P

(∫ (1+δ)t

(1−δ)t
|Y0(s)|ds ≥ ηt1+ 1

α

)

≤P
(∣∣∣∣U(t)

t
− 1
∣∣∣∣ ≥ δ)+ P

(∫ 1+δ

1−δ
|Y0(s)|ds ≥ η

)
,
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using (3.5). As limt→0
U(t)
t = 1 a.s, letting t→ 0 then δ → 0, we conclude that

lim
t→0

∫ U(t)

t

Y0(s)ds = 0 in probability.

Finally, using (3.5) again, we have t−1− 1
α

∫ t
0 Y0(s)ds(d)=

∫ 1
0 Y0(s)ds = X for any

t > 0. As a conclusion, (3.4) yields lim
t→0

t−1− 1
α R̃t = (1− α)CαX in law.

As a straightforward consequence of Theorem 3.1, we obtain the asymptotic
behaviour of R−1 at small times.

Corollary 3.2. We have limt→0
R−1(t)− t

Cα

t1+ 1
α

= (α−1)

C
1+ 1

α
α

X in law.

Proof. Let x ∈ R and t ≥ 0, we observe that

P
(
R−1(t)− t

Cα
> t1+ 1

αx

)
= P (R(τx,t) < t) ,

where we set τx,t = t
Cα

+ t1+ 1
αx. Observe that for any fixed x ∈ R, we have

t = Cατx,t − xC
2+ 1

α
α τ

1+ 1
α

x,t + o(τ1+ 1
α

x,t ),

as t→ 0. Therefore, by Theorem 3.1, we obtain

lim
t→0

P
(
R−1(t)− t

Cα
> t1+ 1

αx

)
= P

(
(1− α)CαX < −xC2+ 1

α
α

)
= P

(
(α− 1)X

C
1+ 1

α
α

> x

)
.

Using this result, we now compute the asymptotic behaviour of R−1(t)−
1

α−1 ,
which is used to prove Theorem 1.1.

Lemma 3.3. We denote by Dα = (αΓ(α))
1

α(α−1)

(α−1)
1
α

, we have

lim
t→0

t
1

α(α−1)

((
(α− 1)R−1(t)

)− 1
α−1 − (αΓ(α)/t)

1
α−1
)

= −DαX in law.

Proof. The proof follows the same lines as Corollary 3.2. For any x ∈ R, for
any t > 0 small enough we have

P
((

(α− 1)R−1(t)
)− 1

α−1 − (αΓ(α)/t)
1

α−1 > xt−
1

α(α−1)

)
= P

(
(α− 1)R−1(t) <

(
(αΓ(α)/t)

1
α−1 + xt−

1
α(α−1)

)1−α
)

= P
(

(α− 1)R−1(t) < t

αΓ(α) + (1− α)x
(αΓ(α))

α
α−1

t1+ 1
α + o(t1+ 1

α )
)
.
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Therefore, using Corollary 3.2, we obtain for any x ∈ R

lim
t→0

P
((

(α− 1)R−1(t)
)− 1

α−1 − (αΓ(α)/t)
1

α−1 > xt−
1

α(α−1)

)
= P(DαX < −x),

which concludes the proof.

Proof of Theorem 1.1. By Lemma 2.1, the asymptotic behaviours of the number
of blocs N(t) and D(R−1(t)) are the same. Therefore, we only have to prove
that

lim
t→0

t
1

α(α−1)

(
D(R−1(t))− (αΓ(α)/t)

1
α−1
)

= −DαX in law.

Observe that by Corollary 3.2, we have limt→0 CαR
−1(t)/t = 1 in probabil-

ity. Moreover, as α ∈ (1, 2), we have 1
α(α−1) >

1
2(α−1) , thus

lim
τ→0

D(τ)− ((α− 1)τ)
−1
α−1

τ
−1

α(α−1)
= 0 a.s.

by Theorem 2.2. We conclude that

lim
t→0

t
1

α(α−1)

(
D(R−1(t))−

(
(α− 1)R−1(t)

) −1
α−1

)
= 0 in probability.

Therefore, using Lemma 3.3, we have

lim
t→0

t
1

α(α−1)

(
D(R−1(t))− (αΓ(α)/t)

1
α−1
)

= lim
t→0

t
1

α(α−1)

((
(α− 1)R−1(t)

) −1
α−1 − (αΓ(α)/t)

1
α−1

)
= −DαX in law.
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2008.

[3] J. Bertoin and J.-F. Le Gall. Stochastic flows associated to coalescent pro-
cesses. III. Limit theorems. Illinois J. Math., 50(1-4):147–181 (electronic),
2006.

[4] M. Birkner, J. Blath, M. Capaldo, A. Etheridge, M. Möhle, J. Schweins-
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