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Abstract

We consider an exactly solvable model of branching random walk with random selection,
which describes the evolution of a population with N individuals on the real line. At each
time step, every individual reproduces independently, and its offspring are positioned around
its current locations. Among all children, N individuals are sampled at random without
replacement to form the next generation, such that an individual at position x is chosen
with probability proportional to eβx. We compute the asymptotic speed and the genealogical
behavior of the system.

1 Introduction

In a general sense, a branching-selection particle system is a Markovian process of particles on the
real line evolving through the repeated application of the two steps:

Branching step: every individual currently alive in the system splits into new particles, with
positions (with respect to their birth place) given by independent copies of a point process.

Selection step: some of the new-born individuals are selected to reproduce at the next branching
step, while the other particles are “killed”.

We will often see the particles as individuals and their positions as their fitness, that is, their
score of adaptation to the environment. From a biological perspective, branching-selection particle
systems model the competition between individuals in an environment with limited resources.
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Figure 1: One time step of a branching-selection particle system

These models are of physical interest [6,8] and can be related to reaction-diffusion phenomena
and the F-KPP equation. Different methods can be used to select the individuals. For example, one
can consider an absorbing barrier, below which particles are killed [1, 4, 14, 18]. Another example
is the case where only the N rightmost individuals are chosen to survive [2, 6, 8, 12], the so-called
“N -branching random walk”. In this paper, we introduce a new selection mechanism, in which the
individuals are randomly selected with probability depending on their positions.

Based on numerical simulations [6] and the study of solvable models [8], it has been predicted
that the dynamical and structural aspects of many branching selection particle systems satisfy
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universal properties. For example, The cloud of particles travels at speed vN , which converges to
a limit v as the size of the population N diverges. It has been conjectured [8] that

vN − v = −ϕ (logN + 3 log logN + o(log logN))−2 as N →∞,

for an explicit constant ϕ depending on the law of reproduction.
Some of these conjectures have been recently proved for the N -branching random walk [2,3,11–

13,15]. Bérard and Gouéré [2] prove that vN − v behaves like −ϕ(logN)−2. Nevertheless, several
conjectures about this process remain open, such as the asymptotic behavior of the genealogy or the
second-order expansion of the speed. Other examples in which the finite-size correction to the speed
of a branching-selection particle system is explicitly computed can be found in [3, 9, 11,12,15,17].

To study the genealogical structure of such models we define the ancestral partition process
ΠN
n (t) of a population choosing n � N individuals from a given generation T and tracing back

their genealogical linages. That is, ΠN
n (t) is a process in Pn the set of partitions (or equivalence

classes) of [n] := {1, . . . , n} such that i and j belong to the same equivalence class if the individuals
i and j have a common ancestor t generations backwards in time. Notice that the direction of time
is the opposite of the direction of time for the natural evolution of the population, that is, t = 0 is
the current generation, t = 1 brings us one generation backward in time and so on.

It has also been conjectured [8] that the genealogical trees of branching selection particle systems
converge to those of a Bolthausen-Sznitman coalescent and that the average coalescence times scale
like a power of the logarithm of the population size. These conjectures contrast with classical results
in neutral population models, such as Wright-Fisher and Moran’s models, that lay in the Kingman
coalescent universality class [16]. Mathematically, these conjectures are difficult to be verified and
they have only been proved for some particular models [4, 10].

We define in this article a solvable model of branching selection particle system evolving in
discrete time, and compute its asymptotic speed as well as its genealogical structure. Given N ∈ N
and β > 1, it consists in a population with a fixed number N of individuals. At each time step,
the individuals die giving birth to offspring that are positioned according to independent Poisson
point processes with intensity e−xdx (that we write PPP(e−xdx) for short). Then, N individuals
are sampled (without replacement) to form the next generation, such that a child at the position
x is sampled with probability proportional to eβx.

To describe the model we introduce the following notation. Let XN
0 (1), . . . , XN

0 (N) ∈ R be
the initial position of the particles and {Pt(j), j ≤ N, t ∈ N} be a family of i.i.d. PPP(e−xdx).
Given t ≥ 1 and XN

t−1(1), . . . , XN
t−1(N) the N positions at time t− 1, we define the new positions

as follows:

i. Each individual XN
t−1(j) gives birth to infinitely many children that are positioned according

to the point process XN
t−1(j) + Pt(j). Let ∆t := (∆t(k); k ∈ N) be the sequence obtained by

all positions ranked decreasingly, that is

(∆t(k), k ∈ N) = Rank
({
XN
t−1(j) + p; p ∈ Pt(j), j ≤ N

})
.

ii. We sample successively N individuals XN
t (1), . . . , XN

t (N) composing the tth generation from
{∆t(1),∆t(2), . . .} such that for all i ∈ {1, 2, . . . , N}:

P
(
XN
t (i) = ∆t(j)

∣∣∆t, X
N
t (1), . . . , XN

t (i− 1)
)

=
eβ∆t(j)1{∆t(j) 6∈{XNt (1),...XNt (i−1)}}∑+∞

k=1 eβ∆t(k) −
∑i−1
k=1 eβXNt (k)

. (1.1)

To keep track of the genealogy of the process we define

ANt (i) = j if XN
t (i) ∈

{
XN
t−1(j) + p, p ∈ Pt(j)

}
, (1.2)

that is, An(i) = j if XN
t (i) is an offspring of XN

t−1(j). We call this system the (N, β)-branching
random walk or (N, β)-BRW for short.

It can be checked that the sum in the denominator of (1.1) is finite if β ∈ (1,∞) and that it
diverges as β → 1 (see Proposition 1.3 below), thus the model is only defined for β ∈ (1,∞). Notice
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that as β → ∞ the sum in the denominator is dominated by the high values of ∆t. Precisely, it
can be checked that the following limits hold a.s.

limβ→∞ e−β∆t(1)∑+∞
k=1 eβ∆t(k) = 1, limβ→∞ e−β∆t(2)∑+∞

k=2 eβ∆t(k) = 1, and so on.

Therefore, the case “β = ∞” is the “exponential model” from [6–8], in which the N rightmost
individuals are selected to form the next generation. In contrast with the examples already treated
in the literature, when β < ∞ one does not necessarily select the rightmost offspring. In this
paper, we will take interest in the dynamical and genealogical aspects of the (N, β)-BRW, showing
that it travels at a deterministic speed and that its genealogical trees converge in distribution. The
next result concerns the speed of the (N, β)-BRW.

Theorem 1.1. For all N ∈ N and β ∈ (1,∞], there exists vN,β such that

lim
t→+∞

maxj≤N XN
t (j)

t
= lim
n→+∞

minj≤N XN
t (j)

t
= vN,β a.s. (1.3)

moreover, vN,β = log logN + o(1) as N →∞.

The main result of the paper is the following theorem concerning the convergence in law of the
ancestral partition process

(
ΠN
n (t); t ∈ N

)
of the (N, β)-BRW.

Theorem 1.2. For all N ∈ N and β ∈ (1,∞], let cN be the probability that two individuals
uniformly chosen at random have a common ancestor one generation backwards in time. Then,
we have limN→∞ cN logN = 1 and the rescaled coalescent process

(
ΠN (bt/cNc), t ≥ 0

)
converges

in distribution toward the Bolthausen-Sznitman coalescent.

The Bolthausen-Sznitman coalescent in Theorem 1.2 can be roughly explained by an individual
going far ahead of the rest of the population, so that its offspring are more likely to be selected and
overrun the next generation. Based on precise asymptotic of the coalescence time, the authors in [8]
argue that the genealogical trees of the exponential model converge to the Bolthausen-Sznitman
coalescent and conjecture that this behavior should be expected for a large class of models. The
(N, β)-BRW can be though as a finite temperature version of the exponential model from [8]. In
this sense, Theorem 1.2 attests for the robustness of their conjectures showing that even under
weaker selection constrains this convergence occurs. It indicates that whenever the rightmost
particles are likely to be selected, then the Bolthausen-Sznitman coalescent is to be expected.

Different coalescent behavior should be expected when the selection mechanism does not favor
the rightmost particles, the classical example being the Wright-Fisher model. Another example
can be obtained modifying the selection mechanism of the (N, β)-BRW. It can be checked using
the techniques developed in this paper (see for example Theorem 3.3) that if we systematically
eliminate the first individual sampled XN

1 (t), so that it does not reproduce in the next generation,
then this new branching-selection particle system lays in the Kingman’s coalescent universality
class. Notice that this new selection procedure no longer favors the rightmost particles (in this
case, the rightmost particle), which justifies this change of behavior.

Notation. In this article, we write

f(x) ∼ g(x) as x→ a if lim
x→a

f(x)
g(x) = 1; f(x) = o(g(x)) as x→ a if lim

x→a

f(x)
g(x) = 0;

and f(x) = O(g(x)) as x→ a if lim sup
x→a

f(x)
g(x) < +∞.

Preliminary results

In this section, we prove that the (N, β)-BRW is well defined and provide some elementary prop-
erties such as the existence of the speed vN,β .
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Proposition 1.3. The (N, β)-BRW is well-defined for all N ∈ N and β ∈ (1,∞]. Moreover,
setting XN

t (eq) := log
∑N
j=1 eXNt (j), the sequence

(∑
k∈N δ∆k(t+1)−XNt (eq) : t ∈ N

)
is an i.i.d.

family of Poisson point processes with intensity measure e−xdx.

Proof. With N and β fixed, assume that the process has been constructed up to time t with
XN
t (1), . . . , XN

t (N) denoting the positions of the N particles. Thanks to the invariance of super-
position of independent PPP,

{
XN
t (j) +p; p ∈ Pt(j), j ≤ N

}
is also a PPP with intensity measure∑N

i=1 e−(x−Xt(i))dx = e−(x−XNt (eq))dx.

Therefore, with probability one: all points have multiplicity one, the sequence (∆k(t + 1); k ∈
N) is uniquely defined. Since there are finitely many points ∆k(t + 1) that are positive and
E
(∑

eβ∆k(t+1)1{∆k(t+1)<0}
)
< ∞ we have that

∑
eβ∆k(t+1) < ∞ a.s. As a consequence, the

selection step is well-defined, proving the first claim. Moreover, (∆k(t + 1) −Xt(eq); k ∈ N) is a
PPP(e−xdx) independent from the t first steps of the (N, β)-BRW, proving the second claim.

Remark 1.4. It is convenient to think XN
t (eq) as an “equivalent position” of the front at time t,

in the sense that the particles positions in the (t+ 1)th generation are distributed as if they were
generated by a unique individual positioned at XN

t (eq).
We use Proposition 1.3 to prove the existence of the speed vN,β , the study of its asymptotic

behavior is postponed to Section 4.

Lemma 1.5. With the notation of the previous proposition, (1.3) in Theorem 1.1 holds with

vN,β := E(XN
1 (eq)−XN

0 (eq)).

Proof. By Proposition 1.3,
(
XN
t+1(eq) − XN

t (eq) : t ∈ N
)

are i.i.d. random variables with finite
mean, therefore

lim
t→+∞

XN
t (eq)
t

= vN,β a.s. by the law of large numbers.

Notice that both
(

maxXN
t (j)−XN

t−1(eq)
)
t

and
(

minXN
t (j)−XN

t−1(eq)
)
t

are sequences of i.i.d.
random variables with finite mean, which yields (1.3).

In a similar way, we are able to obtain a simple structure for the genealogy of the process, and
describe its law conditionally on the position of the particles.

Lemma 1.6. The sequence (ANt )t∈N defined in (1.2) is i.i.d. Moreover, it remains independent
conditionally on H = σ(XN

t (j), j ≤ N, t ≥ 0), with the conditional probabilities

P
(
ANt+1 = k | H

)
= θNt (k1). . .θNt (kN ), where k = (k1, . . . , kN ) ∈ {1, . . . , N}N ;

and θNt (k) := eXNt (k)∑N
i=1 eXNt (i)

. (1.4)

Proof. To each point x ∈
∑
δ∆t+1(k)−XNt (eq) we associate the mark i if it is a point coming from

XN
t (i) + Pt(i). The invariance under superposition of independent PPP says that

P
(
x ∈ XN

t (i) + Pt(i) | H
)

= e−(x−XNt (i))∑N
j=1 e−(x−XNt (j))

= eXNt (i)∑N
j=1 eXNt (j)

.

By definition of ANt (i), it is precisely the mark of XN
t+1(i), which yields (1.4). The independence

between the ANt can be easily checked using Proposition 1.3.

Organization of the paper. In Section 2, we obtain some technical lemmas concerning the
Poisson-Dirichlet distributions. We focus in Section 3 on a class of coalescent processes generated
by Poisson Dirichlet distributions and we prove a convergence criterion. Finally, in Section 4, we
provide an alternative construction of the (N, β)-BRW in terms of a Poisson-Dirichlet distribution,
and we use the results obtained in the previous sections to prove Theorems 1.1 and 1.2.

4



2 Poisson-Dirichlet distribution

In this section, we focus on the two-parameter Poisson-Dirichlet distribution denoted as PD(α, θ)
distribution.

Definition 2.1 (Definition 1 in [20]). For α ∈ (0, 1) and θ > −α, let (Yj : j ∈ N) be a family of
independent r.v. such that Yj has Beta(1− α, θ + jα) distribution and write

V1 = Y1, and Vj =
j−1∏
i=1

(1− Yi)Yj , if j ≥ 2.

Let U1 ≥ U2 ≥ · · · be the ranked values of (Vn), we say that the sequence (Un) is the Poisson-
Dirichlet distribution with parameters (α, θ).

Notice that for any k ∈ N and n ∈ N, we have

P
(
Vn = Uk | (Uj , j ∈ N), V1, . . . , Vn−1

)
=

Uk1{Uk 6∈{V1,...Vn−1}}

1− V1 − V2 − · · · − Vn−1
,

for this reason we say that (Vn) follows the size-biased pick from a PD(α, θ). It is well known that
there exists a strong connexion between PD distributions and PPP [20], we recall some of these
results in the proposition below.

Proposition 2.2 (Proposition 10 in [20]). Let x1 > x2 > . . . be the points of a PPP(e−xdx) and
write L =

∑+∞
j=1 eβxj and Uj = eβxj/L. Then (Uj , j ≥ 1) has PD(β−1, 0) distribution and

lim
n→+∞

nβUn = 1/L a.s.

Notice from Propositions 1.3 and 2.2 that (eβXNn (i)/
∑+∞
j=1 eβ∆n(j)) has the distribution of (Vi)

the size-biased pick from PD(β−1, 0), which makes the model solvable.
Remark 2.3 (Change of parameter). If V1, V2, . . . is a size-biased pick from a PD(α, θ), then

V2

1− V1
,

V3

1− V1
, . . . , has the distribution of a size-biased pick from a PD(α, α+ θ),

moreover, it is independent of V1. That is, the sequence obtained from V1, V2, . . . after discarding
the first sampled element V1 and re-normalizing is a size-biased pick from a PD(α, α+θ). Therefore,
ordering this sequence one obtains a PD(α, α+ θ) sequence.

In what follows, we fix α ∈ (0, 1) and θ > −α, and let c and C be positive constants, that
may change from line to line and implicitly depend on α and θ. We will focus attention on the
convergence and the concentration properties of

Σn :=
n∑
j=1

V αj =
n∑
j=1

Y αj

j−1∏
i=1

(1− Yi)α; n ∈ N. (2.1)

Lemma 2.4. Set Mn :=
∏n
i=1(1− Yi), then, there exists a positive r.v. M∞ such that

lim
n→+∞

(
n

1−α
α Mn

)γ
= Mγ

∞ a.s. and in L1 for all γ > −(θ + α), (2.2)

with γ-moment verifying E(Mγ
∞) = Φθ,α(γ) := αγ

Γ(θ+1)Γ
(
θ+γ
α +1

)
Γ(θ+γ+1)Γ

(
θ
α+1

) . Moreover, if 0 < γ < θ + α,

then there exists Cγ > 0 such that

P
(

inf
n≥0

n
1−α
α Mn ≤ y

)
≤ Cγyγ , for all n ≥ 1 and y ≥ 0. (2.3)

Notice that if γ > −θ, then Φθ,α(γ) = αγ
Γ(θ)Γ

(
θ+γ
α

)
Γ(θ+γ)Γ

(
θ
α

) .
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Proof. Fix γ > −(θ + α), then
(
Mγ
n/E(Mγ

n )
)

is a non-negative martingale with respect to its
natural filtration and

E (Mγ
n ) = Γ(θ + γ + nα)

Γ(θ + nα)
Γ
(
n+ θ

α

)
Γ
(
n+ θ+γ

α

) Γ(θ + 1)Γ
(
θ+γ
α + 1

)
Γ(θ + γ + 1)Γ

(
θ
α + 1

)
∼ Φθ,α(γ)n−γ

1−α
α , as n→ +∞.

Since limn→+∞E(Mγ/2
n ) E(Mγ

n )−1/2 > 0, Kakutani’s theorem says that Mγ
n/E(Mγ

n ) converges
a.s. and in L1 as n→ +∞, implying (2.2) with M∞ = limn→+∞Mnn

1−α
α .

In particular, if 0 < γ < θ + α we obtain from Doob’s martingale inequality that

P
(

inf
n≥0

n
1−α
α Mn ≤ y

)
= P

(
sup
n≥0

M−γn n−γ
1−α
α ≥ y−γ

)
≤ P

(
sup
n≥0

M−γn
E(M−γn ) ≥ y

−γ/Cγ

)
,

with Cγ := supn∈N E[M−γn ]/nγ 1−α
α <∞, proving (2.3).

We now focus on the convergence of the series
∑
Y αj j

α−1.

Lemma 2.5. Let Sn :=
∑n
j=1 Y

α
j j

α−1 and Ψα := α−αΓ(1 − α)−1, then, there exists a random
variable S∞ such that

lim
n→+∞

Sn −Ψα logn = S∞ a.s.

Moreover, there exists C > 0 such that for all n ∈ N and y ≥ 0,

P (|Sn −E(Sn)| ≥ y) ≤ Ce−y
2−α

.

Proof. Since Yj has Beta(1− α, θ + jα) distribution, we have

E((jYj)α) = 1
ααΓ(1− α) +O(1/j) and Var((jYj)α) = Γ(1 + α)Γ(1− α)− 1

α2αΓ(1− α)2 +O(1/j),

which implies that
∑

Var(Y α−1
j ) < +∞ and that E(Sn) = Ψα logn + CS + o(1) with CS ∈ R.

Thanks to Y αj − E(Y αj ) ∈ (−1, 1) a.s. we deduce from Kolmogorov’s three-series theorem that
Sn −E(Sn) and hence that Sn −Ψα logn converge a.s. To bound P(Sn −E(Sn) ≥ y), notice that

P(Sn −E(Sn) ≥ y) ≤ e−λy E
[
eλ(Sn−E(Sn))

]
≤ e−λy

n∏
j=1

E
(

eλj
α−1(Y αj −E(Y αj ))

)
,

for all y ≥ 0 and λ > 0. Taking c > 0 such that ex ≤ 1 + x+ cx2 for x ∈ (−1, 1), we obtain

E
[
eλj

α−1(Y αj −E(Y αj ))
]
≤

{
eλjα−1 if λjα−1 > 1;
1 + cλ2j2(α−1)Var(Y αj ) if λjα−1 ≤ 1.

Since
∑
j1−α≤λ j

α−1 < λ
1

1−α for all α ∈ (0, 1) and θ ≥ 0, there exists c = c(α, θ) such that

P (Sn −E(Sn) ≥ y) ≤ e−λy
∏

j1−α≤λ

eλj
α−1
×

∏
j1−α>λ

(
1 + c

λ2

j2

)
≤ exp

(
−λy + λ

2−α
1−α + cλ2

)
, for all n ∈ N and y ≥ 0.

Let % := (2− α)/(1− α) > 2, then there exists C = C(α, θ) > 0 such that

P (Sn −E(Sn) ≥ y) ≤ C exp (−λy + Cλ%) , for all n ∈ N and y ≥ 0.

Optimizing in λ > 0 we obtain

P (Sn −E(Sn) ≥ y) ≤ C exp
(
−y%/(%−1)C1/(1−%)

(
%1/(1−%) − %%/(1−%)

))
,

with C1/(1−%) [%1/(1−%) − %%/(1−%)
]
> 0, as % > 1. The same argument, with the obvious changes,

holds for P(Sn − E(Sn) ≤ −y), therefore, there exists C > 0 such that P (|Sn −E(Sn)| ≥ y) ≤
C exp

(
−y%/(%−1)/C

)
, proving the second statement.
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With the above results, we obtain the convergence of Σn =
∑
V αj as well as its tail probabilities.

Lemma 2.6. With the notation of Lemmas 2.4 and 2.5, we have

lim
n→+∞

Σn
logn = ΨαM

α
∞ a.s. and in L1.

Moreover, for any 0 < γ < α+ θ there exists Dγ such that for all n ≥ 1 large enough and u > 0

P (Σn ≤ u logn) ≤ Dγu
γ
α .

Proof. Notice that Σn =
∑n
j=1(Sj − Sj−1)j1−αMα

j−1 (since S0 := 0) and that

lim
n→+∞

(
Mn(n+ 1)

1−α
α

)α = Mα
∞ and lim

n→+∞

Sn
logn = Ψα a.s.

by Lemmas 2.4 and 2.5 respectively. Then, Stolz-Cesàro theorem yields Σn/ logn → ΨαM
α
∞ a.s.

as n→∞. Expanding
(
Σn
)2 we obtain

E
(
Σ2
n

)
=

n∑
j=1

E
(
V 2α
j

)
+ 2

n−1∑
i=1

n∑
j=i+1

E ((ViVj)α)

=
n∑
j=1

E
(
M2α
j−1
)
E(Y 2α

j ) + 2
n−1∑
i=1

E
(
M2α
i−1
)
E ((Yi(1− Yi))α)

n∑
j=i+1

E
(
Mα
j−1
Mα
i

)
E(Y αj )

≤C
n∑
j=1

j−2(1−α)j−2α + C

n−1∑
i=1

i−2(1−α)i−α
n∑

j=i+1

j−(1−α)

i−(1−α) j
−α ≤ C(logn)2.

Therefore, sup E
[
(Σn/ logn)2] < +∞ implying its L1 convergence. To obtain bounds for P(Σn ≤

u logn), we study the two cases u ≥ 1/n and u ≤ 1/n separately. Assume first that u ≥ 1/n, then

Σn =
n∑
j=1

(
(j − 1)

1−α
α Mj−1

)α (jYj)α

j
≥
(

inf
j∈N

j
1−α
α Mj

)α
Sn.

For all γ′ < θ + α and t > 0 such that t < E[Sn] we have

P (Σn ≤ u logn) ≤ P (Sn ≤ t) + P
((

inf j
1−α
α Mj

)α
≤ (u logn)/t

)
≤ C exp

(
−C−1(E[Sn]− t)

%
(%−1)

)
+ Cγ′

(
u logn
t

)γ′/α
.

Let 0 < ε < 1/2 and set t = uε logn, since limn→+∞
E(Sn)
logn = Ψα, there exists a constant c > 0

depending only on α such that uε logn ≤ E[Sn] for all u ≤ c. Decreasing c if necessary, we can
and will assume that C−1(E[Sn]− yε logn) < a logn for all ε < 1/2 and hence that

P (Σn ≤ u logn) ≤ C exp
(
−(a logn)%/(%−1)

)
+ Cγ′u

(1−ε)γ′/α, for all u ≤ c,

where a > 0 is to be chosen conveniently small. Observe that

C exp
(
−(η logn)%/(%−1)

)
< Cγ′u

(1−ε)γ′/α, for all u ∈
[
C
Cγ′

exp
(
− α
γ′ (η logn)

%
(%−1)

)
, c
]
,

and that e−
α
γ′ (η logn)

%
%−1
� 1/n. Therefore, taking γ = (1− ε)γ′ < α+ θ there exists Dγ such that

P (Σn ≤ u logn) ≤ Dγu
γ
α , for all n large enough and u ∈ [ 1

n ,+∞).
On the other hand if u ≤ 1/n, let j∗ ∈ N be such that (1− α)j∗ > γ, then

P(Σn < u logn) = P
( n∑
j=1

V αj ≤ u logn
)
≤ P

(
V αj < u logn; for all 1 ≤ j ≤ j∗

)
.
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Observe that if u < 1/n and V αj < u logn for all j ≤ j∗, we have

Y αj =
V αj

((1− Y1)(1− Y2) · · · (1− Yj−1))α
≤ u logn

(1− Y α1 ) · · · (1− Y αj−1) .

We prove by recurrence that under the above hypothesis Y αj ≤ u logn
/(

1− (j−1) logn
n

)
. The case

j = 1 holds by the assumption Y α1 ≤ u logn. Assuming that the statement holds for all i ≤ j − 1,
that is Y αi ≤ u logn

/(
1− (i−1) logn

n

)
then

(1− Y α1 )(1− Y α2 ) · · · (1− Y αj−1) ≥
j−1∏
i=1

(
1−

logn
n

1− (i−1) logn
n

)

≥
j−1∏
i=1

1− i logn
n

1− (i−1) logn
n

= 1− (j − 1) logn
n

,

yielding Y αj ≤ logn
/(

1− (j−1) logn
n

)
. As a consequence, for all j ≤ j∗ and n sufficiently large

Y αj < 2u logn and hence P(Σn < u logn) ≤
j∗∏
j=1

P
(
Y αj < 2u logn

)
.

Using crude estimate for the probability distribution function of the Beta distribution, we bound
the product in the display by Cu

γ
α %
(
u(j∗(1−α)−γ(logn)j∗(1−α)), with C an explicit constant. Since

u < 1/n and j∗(1 − α) − γ > 0, the term inside the parentheses tends to zero uniformly in u.
Therefore, increasing Dγ > 0 if necessary, the upper-bound P (Σn < u logn) ≤ Dγu

γ
α holds for all

n ≥ 1 and u ≥ 0 finishing the proof.

In some cases, we are able to identify the random variable ΨαM
α
∞.

Corollary 2.7. Let (Un)n be a PD(α, 0), then ΨαM
α
∞ = L−α, where 1/L = limn→+∞ n1/αUn.

Proof. By Proposition 2.2, L := limn→+∞ n−1/α/Un exists a.s. and by Lemma 2.6 we have that

ΨαM
α
∞ ∼

1
logn

n∑
j=1

V αj ≤
1

logn

n∑
j=1

Uαj ∼ L−α as n→ +∞,

thus ΨαM
α
∞ ≤ L−α a.s. By Lemma 2.4, the pth moments of ΨαM

α
∞ are equal to

E [(ΨαM
α
∞)p] = Γ(p+ 1)

Γ(pα+ 1)Γ(1− α)−p, for all p > −1.

By [20, Equation (30)], it matches with the pth moments of L−α, which implies that the two
random variables have the same distribution (the Mittag-Leffler (α) distribution), and hence that
ΨαM

α
∞ = L−α a.s. by monotonicity.

3 Convergence of discrete exchangeable coalescent processes

In this section, we study a family of coalescent processes with dynamics driven by PD-distributions
and obtain a sufficient criterion for the convergence in distribution of these processes. For the sake
of completeness, we include a brief introduction to coalescent theory with the main results we will
use, for a detailed account we recommend [5] from where we borrow the approach.

Let Pn be the set of partitions (or equivalence classes) of [n] := {1, . . . , n} and P∞ the set
of partitions of N = [∞]. A partition π ∈ Pn is represented by blocks π(1), π(2), . . . listed in the
increasing order of their least elements, that is, π(1) is the block (class) containing 1, π(2) the block
containing the smallest element not in π(1) and so on. There is a natural action of the symmetric
group Sn on Pn setting πσ :=

{
{σ(j), j ∈ π(i)}, i ∈ [n]

}
for σ ∈ Sn. If m < n, one can define

the projection of Pn onto Pm by the restriction π|m = {π(j) ∩ [m]}. For π, π′ ∈ Pn, we define the
coagulation of π by π′ to be the partition Coag(π, π′) =

{
∪i∈π′(j)π(i); j ∈ N

}
.
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With this notation, a coalescent process Π(t) is a discrete (or continuous) time Markov process
in Pn such that for any s, t ≥ 0,

Π(t+ s) = Coag(Π(t), Π̃s), with Π̃s independent of Π(t).

We say that Π(t) is exchangeable if Πσ(t) and Π(t) have the same distribution for all permutation σ.
An important class of continuous-time exchangeable coalescent processes in P∞ are the so-

called Λ-coalescents [19], introduced independently by Pitman and Sagitov. They are constructed
as follows: let Πn(t) be the restriction of Π(t) to [n], then (Πn(t); t ≥ 0) is a Markov jump process
on Pn with the property that whenever there are b blocks, each k-tuple (k ≥ 2) of blocks is merging
to form a single block at the rate

λb,k =
∫ 1

0
xk−2(1− x)b−kΛ(dx), where Λ is a finite measure on [0, 1].

Among such, we distinguish the Beta(2−λ, λ)-coalescents obtained from Λ(dx) = x1−λ(1−x)λ−1

Γ(λ)Γ(2−λ) dx,
where λ ∈ (0, 2), the case λ = 1 (uniform measure) being the celebrated Bolthausen-Sznitman
coalescent.

The set P∞ can be endowed with a topology making it a Polish space, therefore, one can study
the weak convergence of processes in D

(
[0,∞),P∞

)
, see [5] for the definitions. Without going into

details, we say that a process ΠN (t) ∈ P∞ converges in the Skorokhod sense (or in distribution) to
Π(t), if for all n ∈ N the projection ΠN (t)|n converges in distribution to Π(t)|n in D

(
[0,∞)Pn

)
.

Coalescent processes obtained from multinomial distributions

In this section, we define a family of discrete-time coalescent processes (ΠN (t); t ∈ N) and prove
sufficient criteria for its convergence in distribution. Let (ηN1 , . . . ηNN ) be an N -dimensional random
vector satisfying

1 ≥ ηN1 ≥ ηN2 ≥ · · · ≥ ηNN ≥ 0 and
N∑
j=1

ηNj = 1.

Conditionally on a realization of (ηNj ), let
{
ξj ; j ≤ N

}
be i.i.d. random variables satisfying

P(ξj = k|ηN ) = ηNk and define the partition πN =
{
{j ≤ N : ξj = k}; k ≤ N

}
. With (πt; t ∈ N)

i.i.d. copies of πN , let ΠN (t) be the discrete time coalescent such that

ΠN (0) = {{1}, {2}, . . . , {n}} and ΠN (t+ 1) = Coag
(
ΠN (t), πt+1

)
.

The goal of this section is to obtain conditions under which ΠN (t) converges in distribution. First,
we assume that there exist a sequence LN and a function f : (0, 1)→ R+ such that

lim
N→+∞

LN = +∞, lim
N→+∞

LNP
(
ηN1 > x

)
= f(x) and lim

N→+∞
LN E

(
ηN2
)

= 0. (3.1)

Denote by cN =
∑N
j=1 E

[
(ηNj )2], which corresponds to the probability that two individuals have

a common ancestor one generation backward in time.

Lemma 3.1. Assume that (3.1) holds and that∫ 1

0
x

(
sup
N∈N

LNP(ηN1 > x)
)
dx < +∞. (3.2)

Then, cN ∼N→∞ L−1
N

∫ 1
0 2xf(x)dx and the re-scaled coalescent process

(
ΠN (t/cN ); t ∈ R+

)
con-

verges in distribution to the Λ-coalescent, with Λ satisfying
∫ 1
x

Λ(dy)
y2 = f(x).

Proof. Denote by νk = #{j ≤ N : ξj = k}, then (ν1, . . . , νN ) has multinomial distribution with
N trials and (random) probabilities outcomes ηNi . By [16, Theorem 2.1], the convergence of finite
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dimensional distribution of ΠN (t) is obtained from the convergence of the factorial moments of ν,
that is

1
cN (N)b

N∑
i1,...,ia=1
all distinct

E
[
(νi1)b1 . . . (νia)ba

]
, with bi ≥ 2 and b = b1 + . . .+ ba,

where (n)a := n(n−1) . . . (n−a+1). Since (ν1, . . . , νN ) is multinomial distributed, we obtain that
E [(νi1)b1 . . . (νia)ba ] = (N)b E

[
ηb1
i1
. . . ηbaia

]
, see [10, Lemma 4.1] for a rigorous a proof. Therefore,

we only have to show that for all b and a ≥ 2

lim
N→+∞

c−1
N

N∑
i1=1

E
[
(ηNi1 )b

]
=
∫ 1

0
xb−2Λ(dx) and lim

N→+∞
c−1
N

N∑
i1,...,ia=1
all distinct

E
[
(ηNi1 )b1 . . . (ηNia )ba

]
= 0.

We obtain by dominated convergence that

LN E
[(
ηN1
)2] =

∫ 1

0
2xLNP

(
ηN1 > x

)
dx→

∫ 1

0
2xf(x)dx =

∫ 1

0
Λ(dx) < +∞, as N →∞.

Since ηNi are ordered and sum up to 1, we also get E
[(
ηN2
)2 + . . . +

(
ηNN
)2] ≤ E

[
ηN2 (1 − η1)

]
,

with LN E
(
ηN2
)

tending to zero as N →∞. In particular, it implies that LNcN = LN
∑

E[(ηNi )2]
tends to

∫ 1
0 2xf(x)dx as N →∞. A similar calculation shows that for any b ≥ 2

lim
N→∞

LN

N∑
i=1

E
[
(ηNi )b

]
=
∫
bxb−1f(x)dx =

∫
xb−2Λ(dx) = λb,b,

where λb,b is the rate at which b blocks merge into one given that there are b blocks in total. The
others λb,k can be easily obtained using the recursion formula λb,k = λb+1,k + λb+1,k+1.

We now consider the case a = 2, cases a > 2 being treated in the same way. We have

N∑
i1,i2=1
distinct

E
[(
ηNi1
)b1(

ηNi2
)b2
]

≤E
[(
ηN1
)b1
ηN2
∑(

ηNi
)b2−1 +

(
ηN1
)b2
ηN2
∑(

ηNi
)b1−1 +

∑
i1 6=1

(
ηNi1
)b1
ηN2

∑
i2 6=1
i2 6=i1

(
ηNi2
)b2−1

]

≤3×E
[
ηN2
]
,

we recall that
(
ηN2
)b + . . .+

(
ηNN
)b ≤ ηN2 + . . .+ ηNN = 1− ηN1 < 1. Since LN E ηN2 → 0 as N →∞,

the right hand side of the inequality tends to zero, concluding the proof.

The next lemma gives sufficient conditions for the convergence to the Kingman’s coalescent.

Lemma 3.2. Assume that (3.1) holds and that∫ 1

0
xf(x)dx = +∞ and ∃n ≥ 2 :

∫ 1

0
xn
(

sup
N∈N

LNP(ηN1 > x)
)
dx < +∞. (3.3)

Then, limN→+∞ cNLN = +∞ and the ancestral partition process (ΠN
n (btc−1

N c); t ∈ R+) converges
in the Skorokhod sense to the Kingman’s coalescent restricted to Pn.

Proof. A similar argument to the one used in Lemma 3.1 shows that

LNcN ≥ LN E[η2
1 ] =

∫ 1

0
2xLNP(η1 > x)dx.
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Thus, Fatou lemma and (3.3) yield lim infN→+∞ LNcN = +∞, proving the first claim. By [5,
Theorem 2.5], the convergence to the Kingman’s coalescent follows from

limN→∞
∑N
i=1 E[(νi)3]

/
(N)3cN = 0.

We rewrite the sum in the display as c−1
N

∑N
i=1 E[(ηNi )3] and apply Hölder inequality to obtain

E
[
(ηN1 )λ(ηN1 )3−λ] ≤ E

[
(ηN1 )2]λ/2 E

[
(ηN1 )

2(3−λ)
2−λ

]1−λ/2
for all λ < 2.

Let λ ∈ (0, 2) be the unique solution of 2(3− λ)
/

(2− λ) = n+ 4, then we obtain from (3.3) that

E
[
(ηN1 )3]
cN

≤
E
[
(ηN1 )3]

E
[
(ηN1 )2

] ≤ (E
[
(ηN1 )n+1]

E
[
(ηN1 )2

] )1−λ/2

−→
N→+∞

0.

A similar argument to the one used in Lemma 3.1 shows that c−1
N

∑N
i=2 E[(ηNi )3] tends to zero as

N →∞, which proves the statement.

The Poisson-Dirichlet distribution case

In this section, we construct a coalescent using the PD distribution and obtain a criterion for its
convergence in distribution. With (Vj , j ≥ 1) a size-biased pick from a PD(α, θ) partition, define

θNj :=
V αj∑N
i=1 V

α
i

and θN(1) ≥ θ
N
(2) ≥ · · · ≥ θ

N
(N), the order statistics of (θNj ).

In what follows, θN(i) will stand for the ηNi from Section 3.1 and (ΠN
n (t); t ∈ N) for the coalescent

with transition probabilities ΠN
n (t+ 1) = Coag

(
ΠN
n (t), πnt

)
, as defined there.

Theorem 3.3. With the above notation, set λ = 1 + θ/α and

LN = cα,θ(logN)λ, where cα,θ =
(

Γ(1− θ/α)Γ(1− α)θ/αΓ(1 + θ)
)−1

.

1. If θ ∈ (−α, α), then cN ∼N→+∞ (1 − θ/α)/LN and (ΠN (t/cN ), t ≥ 0) converges weakly to
the Beta(2− λ, λ)-coalescent.

2. Otherwise, limN→+∞ cNLN = +∞ and (ΠN (t/cN )) converges weakly to the Kingman’s coa-
lescent.

Before proving Theorem 3.3 we obtain a couple of technical results. The next lemma studies
the asymptotic behavior of θN1 .

Lemma 3.4. With the notations of Theorem 3.3, we have

lim
N→+∞

LNP
(
θN1 > x

)
= 1
λΓ(λ)Γ(2− λ)

(
1− x
x

)λ
=
∫ 1

x

Beta(2− λ, λ)(dy)
y2 .

Moreover, there exists C > 0 such that for all x ∈ (0, 1), sup
N∈N

LNP
(
θN1 > x

)
≤ Cx−λ.

Proof. Let Σ′N :=
∑N
j=2

(
Vj

1−Y1

)α
, then Remark 2.3 says that Σ′N and Y1 are independent and

that Σ′N has the distribution of V ′1 + . . . V ′N−1 with V ′i a size-biased pick from a PD(α, α + θ)
distribution. By Lemma 2.6, for all ε ∈ (0, 1) there exists C = C(ε) and N0 ∈ N such that

sup
N≥N0

P (Σ′N ≤ u logN) ≤ min
(
Cuλ+ε, 1

)
, for all u ≥ 0. (3.4)
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Writing P
(
θN1 > x

)
in terms of Σ′N and V1 = Y1, we obtain

P
(
θN1 > x

)
= P (V α1 > x (V α1 + (1− V1)αΣ′N )) = P

(
V1

1−V1
>
(

x
1−xΣ′N

)1/α
)

=
∫ 1

0
P
(

1/y − 1 >
(

x
1−xΣ′N

)1/α
)

Γ(1 + θ)(1− y)−αyα+θ−1

Γ(1− α)Γ(α+ θ) dy.

Making the change of variables u = ( 1−x
x logN )(1/y − 1)α the display reads

P
(
θN1 > x

)
=
(

1− x
x logN

)λ Γ(1 + θ)
αΓ(1− α)Γ(α+ θ)

∫ +∞

0

P (Σ′N < u logN)

u2−1/α
(
u1/α +

(
1−x
x logN

)1/α
)1+θ du.

Then, we use (3.4) to bound the equation within the integral, obtaining

P (Σ′N < u logN)

u2−1/α
(
u1/α +

(
1−x
x logN

)1/α
)1+θ ≤

P(Σ′N ≤ u logN)
u2+θ/α ≤ min(Cuε−1, u−2),

for all N large enough . In particular, there exists C > 0 such that LNP
(
ηN1 > x

)
≤ Cx−λ for all

N ∈ N. Moreover, by dominated convergence and Lemma 2.6, we obtain

lim
N→+∞

(logN)λP
(
θN1 > x

)
=
(

1− x
x

)λ Γ(1 + θ)
αΓ(1− α)Γ(α+ θ)

∫ +∞

0

P(Ψα(M ′∞)α < u)
u1+λ

=
(

1− x
x

)λ Γ(1 + θ)
αλΓ(1− α)Γ(α+ θ) E

(
(Ψα(M ′∞)α)−λ

)
=
(

1− x
x

)λ
αα+θ−1Γ(1− α)θ/αΓ(1 + θ)

λΓ(α+ θ) Φθ+α,α(−(θ + α)),

and hence lim
N→+∞

LNP
(
θN1 > x

)
=
(

1− x
x

)λ 1
λΓ(λ)Γ(2− λ) , proving the statement.

This result is used to study the asymptotic behavior of θN(1) = maxj≤N θNj .

Lemma 3.5. For all ε ∈ (0, 1), there exists C = C(ε) such that∣∣∣P(θN(1) > x
)
−P

(
θN1 > x

)∣∣∣ ≤ C(x logN)ε−2−θ/α, for all x ∈ (0, 1) and N large enough.

Proof. Notice that P
(
θN1 > x

)
≤ P

(
θN(1) > x

)
and that θN(1) = θN1 if V1 > 1/2, thanks to

∑
Vi ≡ 1.

Therefore, splitting the events according to V1 > 1/2 and V1 < 1/2 we obtain

P
(
θN(1) > x

)
−P

(
θN1 > x

)
=P

(
θN(1) > x;V1 ≤

1
2

)
−P

(
θN1 > x;V1 ≤

1
2

)
≤ P

(
θN(1) > x;≤ 1

2

)
.

Since 0 < Vj < 1 and V1 = Y1, we have

P
(
θN(1) > x, V1 ≤ 1/2

)
= P

(
maxj≤N V αj > x

∑N
j=1 V

α
j ;V1 ≤ 1/2

)
≤ P

(
x−1 > Y α1 + (1− Y1)αΣ′N , Y1 ≤ 1/2

)
≤ P (Σ′N < 2α/x) ,

where Σ′N =
∑
V αj /(1− Y1)α. By Lemma 2.6, we obtain that for all N sufficiently large

P
(
θN(1) > x, V1 ≤ 1/2

)
≤ C(x logN)ε−1−α+θ

α ,

which finishes the proof.
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We now study the asymptotic behavior of θN(2), the second maxima in {θN1 , . . . , θNN }.

Lemma 3.6. For all ε ∈ (0, 1], there exists C > 0 such that for any x ∈ (0, 1) and N ∈ N,

P
(
θN(2) > x

)
< C(x logN)ε−2−θ/α.

Proof. We basically use the same method as in the previous lemma

P
(
θN(2) > x

)
= P

(
θN(2) > x, V1 ≤ 1/2

)
+ P

(
θN(2) > x, V1 > 1/2, V2 < 1/3

)
+ P

(
θN(2) > x, V1 > 1/2, V2 > 1/3

)
≤ P

(
θN(1) > x, V1 ≤ 1/2

)
+ P

(
θN(2) > x, V1 > 1/2, V2 < 1/3

)
+ P

(
θN2 > x

)
.

By Lemma 3.5, we have that P
(
θN(1) > x, V1 ≤ 1/2

)
≤ C(x logN)ε−2−θ/α, so the same arguments

used in Lemma 3.4 yield

P
(
θN2 > x

)
= P

(
V α2 (1− x)− xV α1 > x(1− V1 − V2)αΣ′′N

)
≤ C(x logN)ε−2−θ/α,

with Σ′′N := (1− V1 − V2)−α
∑N
j=3 V

α
j . Moreover, Σ′′N is independent of (V1, V2) and

P
(
θN(2) > x, V1 > 1/2, V2 < 1/3

)
= P

(
max

2≤j≤N
V αj > x (V α1 + V α2 + (1− V1 − V2)αΣ′′N )

)
≤ P (Σ′′N ≤ C/x) ≤ C(x logN)ε−2−θ/α,

concluding the proof.

Proof of Theorem 3.3. Given ε > 0, Lemma 3.5 says that there exists C > 0 such that

LNP
(
θN(1) > x

)
− LNP

(
θN1 > x

)
≤ C(logN)ε−1x−λ, for all x ∈ (0, 1).

Therefore, by Lemma 3.4 we have that

lim
N→+∞

LNP
(
θN(1) > x

)
= 1
λΓ(λ)Γ(2− λ)

(
1− x
x

)λ
and

sup
N∈N

LNP
(
θN(1) > x

)
≤ Cx−λ.

(3.5)

We obtain from Lemma 3.6 that

LN E
[
θN(2)

]
=
∫ 1

0
LNP

(
θN(2) > x

)
dx ≤ (logN)ε−1

∫ 1

0
xε−1−λdx −→

N→+∞
0, (3.6)

which implies that ΠN (t) satisfies (3.1).
Assume now that θ ∈ (−α, α), so that λ ∈ (0, 2), then (3.5) yields∫ 1

0
x sup
N∈N

LNP
(
θN(1) > x

)
dx ≤ C

∫ 1

0
x1−λdx < +∞.

Therefore, the assumptions of Lemma 3.1 are satisfied implying that ΠN (t/cN ) converges in dis-
tribution to the Beta(2 − λ, λ)-coalescent and that cNLN ∼ (1 − θ/α) as N → ∞. On the other
hand if θ ≥ α, we have that

∫ 1
0 x
( 1−x

x

)λ dx = +∞. With k ≥ λ, we obtain from (3.5) that∫ 1

0
xk sup

N∈N
LNP

(
θN(1) > x

)
dx ≤ C

∫ 1

0
xk−λdx < +∞.

We apply Lemma 3.2 to conclude that ΠN (t/cN ) converges weakly to the Kingman’s coalescent.
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4 Poisson-Dirichlet representation of the (N, β)-branching random walk

In this section, we explore the relations between the (N, β)-BRW and the PD(β−1, 0) distribution
to show Theorems 1.1 and 1.2 in the case where β <∞. The case β =∞ is also studied, but using
different methods.

Proposition 4.1. With β ∈ (1,∞), let (Un)n be a PD(β−1, 0), L = limn→+∞ n−βU−1
n and (Vn)n

be its size-biased pick, then(
XN

1 (j)−XN
0 (eq), j ≤ N

) (d)=
(

1
β log Vj + 1

β logL
)
,

in particular, XN
1 (eq)−XN

0 (eq) (d)= log
∑N
j=1 V

1/β
j + 1

β logL.

Proof. By Proposition 1.3, (xk, k ≥ 1) := Rank
({
XN

0 (j) + p−XN
0 (eq), p ∈ P1(j), j ≤ N

})
is

the ordered points of a PPP(e−xdx). With L =
∑+∞
j=1 eβxj and Uj = eβxj/L, we know from

Proposition 2.2 that (Uj , j ≥ 1) is a PD(β−1, 0) and that limn→+∞ nβUn = L−1. By the definition
of the (N, β)-BRW, Vj := eβ(XN1 (j)−XN0 (eq))/L is the jth particle sampled in the size-biased pick
from (Un)n. Inversing the equation, we conclude that

XN
1 (j)−XN

0 (eq) = 1
β (log Vj + logL) ,

proving the first statement. The second statement follows from the definition of XN
1 (eq).

To study the case β = +∞, we use the following representation of N rightmost points of a
PPP(e−xdx).

Proposition 4.2. Let x1 > x2 > . . . > xN the N rightmost points of a PPP(e−xdx), then

(x1, . . . , xN ) (d)= Rank{ZN + e1, . . . , ZN + eN},

where (ej) are i.i.d exponential random variables with mean 1 and ZN is an independent random
variable satisfying P(ZN ∈ dx) = 1

N ! exp(−(N + 1)x− e−x)dx.

Proof. It is an elementary result about PPP that∑+∞
j=1 δe−xj

(d)= PPP(dx) on R+ and that e−xN+1
(d)= Gamma(N + 1, 1),

moreover, conditionally on xN+1, (e−x1 , . . . e−xn) are the ranked values of N i.i.d. uniform random
variables on the interval [0, e−xN+1 ]. Setting ZN = xN+1 and U1, . . . , UN i.i.d. uniform random
variables

(e−x1 , . . . , e−xN ) (d)= Rank{e−ZNU1, . . . , e−ZNUN}.

It is straightforward that ZN and (x1, . . . , xN ) satisfy the desired properties.

We first use these results to compute the asymptotic behavior of the speed of the (N, β)-BRW.

Proof of Theorem 1.1. Lemma 1.5 says that (1.3) holds with vN,β = E
(
XN

1 (eq)−XN
0 (eq)

)
. Thus,

if β <∞ Proposition 4.1 yields

vN,β = E
(
XN

1 (eq)−XN
0 (eq)

)
= E

log

 N∑
j=1

V
1/β
j

+ 1
β

E (logL) .

By Lemma 2.6, (logN)−1∑N
j=1 V

1/β
j converges to Ψβ−1M

1/β
∞ a.s. and in L1 as N →∞. Therefore,

the logarithm of this quantity converges a.s. as well. We notice from Lemma 2.6 that

P

log

(logN)−1
N∑
j=1

V
1/β
j

 ≤ −u
 = P

 N∑
j=1

V
1/β
j ≤ e−u logN

 ≤ D2/βe−2u, for all u > 0.
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The L1 convergence of (logN)−1∑N
j=1 V

1/β
j implies the existence of a constant K such that

P

log

(logN)−1
N∑
j=1

V
1/β
j

 ≥ u
 ≤ P

 N∑
j=1

V
1/β
j ≥ eu logN

 ≤ Ke−u for all u ≥ 0.

In particular, (log
∑N
j=1 V

1/β
j −log logN) is uniformly integrable, which implies its L1 convergence.

We know from Corollary 2.7 that Ψβ−1M
1/β
∞ = L1/β , and hence that

lim
N→∞

vN,β − log logN = lim
N→∞

E
[

log
∑N
j=1 V

1/β
j

logN

]
+ E [logL]

β

= E
[
log
(

Ψβ−1M1/β
∞

)]
+ E [logL]

β
= 0.

For β = ∞ we follow the ideas from [8] and use Laplace methods to estimate the asymptotic
mean of XN

1 (eq). Let (x1, . . . xN ) be the N largest atoms of a PPP(e−xdx), and define for λ > 0

Λ(λ) := E
(

exp
(
−λ log

N∑
k=1

exk
))

= E

( N∑
k=1

exk
)−λ .

By Proposition 4.2, we have Λ(λ) = E
(
e−λZ

)
E
((∑N

k=1 eek
)−λ)

, where (ek) are i.i.d exponential

random variables and exp(−ZN ) has Gamma(N + 1, 1) distribution. Notice that the following
equalities hold: E

(
e−λZ

)
= Γ(N+1+λ)

Γ(N+1) and

E

( N∑
k=1

eek
)−λ = 1

Γ(λ)

∫ +∞

0
tλ−1 E

(
e−t
∑N

k=1
eek
)

dt = 1
Γ(λ)

∫ +∞

0
tλ−1I0(t)Ndt, (4.1)

with I0(t) = E(e−tee1 ) the Laplace transform of ee1 . The function I0 can be represented using the
exponential integral Ei we have I0(x) = xEi(−x) + e−x. Therefore, there exists K > 0 such that

|I0(x)− 1− x log x| ≤ Kx, for any x ≥ 0.

In particular for x = t/(N logN) we have |I0(t/(N logN))− 1− t/N | ≤ Kt
N logN . Thus, (4.1) yields∫ +∞

0
tλ−1I0(t)Ndt = 1

(N logN)λ

∫ +∞

0
tλ−1I0(t/(N logN))Ndt

≤ 1
(N logN)λ

∫ +∞

0
tλ−1e−t(1−

K
logN )dt ≤ Γ(λ)

(N logN)λ (1− K
logN )−λ.

The same argument with the obvious change gives a similar lower bound, which implies

Λ(λ) = Γ(N + 1 + λ)
(N logN)λΓ(N + 1)(1 +O((logN)−1)),

uniformly in λ ∈ [0, 1], therefore log Λ(λ) = λ log logN +O((logN)−1). As a consequence

E
(

log
N∑
k=1

exk
)

= lim
λ→0

log Λ(λ)
λ

= log logN + o(1),

which concludes the proof.

In a similar way, we obtain the genealogy of the (N, β)-branching random walk.
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Proof of Theorem 1.2. If β ∈ (1,∞), then Lemma 1.6 and Proposition 4.1 say that the genealogy
of the (N, β)-BRW can be described by (1) in Theorem 3.3, with α = 1

β and θ = 0. Therefore, it
converges to the Bolthausen-Sznitman coalescent.

On the other hand if β = ∞, the genealogy of the (N,∞)-BRW is again described by a
coalescent process obtained from multinomial random variables. In this case, by Proposition 4.2
we can rewrite the coefficients ηNj as

ηNj = eej∑N
i=1 eei

, with e1, . . . , eN i.i.d. exponential random variables.

Thanks to P(eej ≥ x) = x−1, [10, Theorem 1.2 (c)] says that the genealogy of the (N,∞)-BRW
converges to the Bolthausen-Sznitman coalescent with cN ∼ N as N →∞.
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Surveys], 16, 2009.

[6] E. Brunet and B. Derrida. Shift in the velocity of a front due to a cut-off. Phys. Rev. E,
56:2597–2604, 1997.

[7] E. Brunet and B. Derrida. How genealogies are affected by the speed of evolution. Philosophical
Magazine, 92(1–3):255–271, 2012.

[8] E. Brunet, B. Derrida, A.H. Mueller, and S. Munier. Effect of selection on ancestry: an exactly
soluble case and its phenomenological generalization. Phys. Rev. E, 76(4):041104, 2007.

[9] F. Comets and A. Cortines. Finite-size corrections to the speed of a branching-selection
process. arXiv:1505.04971, 2015.

[10] A. Cortines. The genealogy of a solvable population model under selection with dynamics
related to directed polymers. Bernoulli, 22(4):2209–2236, 2016.
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