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Abstract
The behavior of the maximal displacement of a supercritical branching random

walk has been a subject of intense studies for a long time. But only recently the
case of time-inhomogeneous branching has gained focus. The contribution of this
paper is to analyze a time-inhomogeneous model with two levels of randomness. In
the first step a sequence of branching laws is sampled independently according to a
distribution on the set of point measures’ laws. Conditionally on the realization of
this sequence (called environment) we define a branching random walk and find the
asymptotic behavior of its maximal particle. It is of the form Vn−ϕ logn+ oP(logn),
where Vn is a function of the environment that behaves as a random walk and ϕ > 0
is a deterministic constant, which turns out to be bigger than the usual logarithmic
correction of the homogeneous branching random walk.

1 Introduction
We introduce a model of time-inhomogeneous branching random walk on R. Given a
sequence L = (Ln, n ∈ N) of point processes laws1, the time-inhomogeneous branching
random walk in the environment L is a process constructed as follows. It starts with
one individual located at the origin at time 0. This individual dies at time 1 giving
birth to children, that are positioned according to a realization of a point process of law
L1. Similarly, at each time n every individual alive at generation n − 1 dies giving birth
to children. The position of the children with respect to their parent are given by an
independent realization of a point process with law Ln. We denote by T the (random)
genealogical tree of the process. For a given individual u ∈ T we write V (u) ∈ R for the
position of u and |u| for the generation at which u is alive. The pair (T, V ) is called the
branching random walk in the time-inhomogeneous environment L.

The tree T can be encoded using the well-known Ulam-Harris-Neveu notation, and V
is then a random map T→ R. A precise construction of a time-inhomogeneous branching
random walk is presented in [23, Section 1.1].

We assume the time-inhomogeneous Galton-Watson tree T to be supercritical (the
number of individuals alive at generation n grows exponentially fast). In order to simplify
the presentation we assume that the number of children of each individual is always at
least 1. We take interest in the maximal displacement at time n of (T, V ), defined by

Mn = max
u∈T:|u|=n

V (u).
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1i.e., probability distributions on

⋃
k∈N R

k.
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When the reproduction law does not depend on the time, the asymptotic behavior of
Mn has been thoroughly investigated. Hammersley [14], Kingman [20] and Biggins [7]
proved that Mn grows at a ballistic speed v. Addario-Berry and Reed [2] and Hu and
Shi [16] proved the second order of this asymptotic is a negative logarithmic correction
in probability. Aïdékon [3] obtained the convergence in law for Mn − vn+ c logn, for the
correctly chosen constant c.

Some recent articles study the effects of a time-inhomogeneous environment on the
asymptotic behavior ofMn. Fang and Zeitouni [12] introduced a branching random walk of
length n in which individuals have two children moving independently from their parent’s
position, with law N (0, σ2

1) before time n/2 and law N (0, σ2
2) between times n/2 and n.

They proved that for this model, the maximal displacement is again given by a first ballistic
order, logarithmic correction plus stochastically bounded fluctuations. More generally, for
a branching random walk in which the reproduction law scales with n, the correction is
expected to be of the larger order n1/3 [24]. Maillard and Zeitouni [21] proved that for a
branching Brownian motion in time-inhomogeneous environment, the asymptotic behavior
is given by a ballistic speed, first correction of order n1/3, second correction of order logn
plus stochastically bounded fluctuations.

The main contribution of this article is to study the case of the environment sampled
randomly. More precisely, we set L = (Ln, n ∈ N) to be an i.i.d sequence of random
variables with the values in the space of laws of point processes. A branching random walk
in random environment (BRWre) is a branching random walk with the time-inhomogeneous
environment L. Conditionally on this sequence, we write PL for the law of this BRWre
(T, V ) and EL for the corresponding expectation. The joint probability of the environment
and the branching random walk is written P, with the corresponding expectation E.

This model of BRWre has been introduced by Biggins and Kyprianou in [8]. Huang
and Liu [18] proved that the maximal displacement in the process grows at ballistic speed
almost surely, and obtained central limit theorems and large deviations principles for the
counting measure of the process. Additional results on the behavior of the so-called bulk
of the BRWre may be found in [13, 17], where the growth rate in the bulk of the process
is studied, and a central limit theorem and a large deviation principle are derived. Prior
to these results, other kind of random environments have been studied for the branching
random walk. For example, Baillon, Clément, Greven and den Hollander [5] considered
a branching random walk in which the reproduction of individuals depending on their
position, instead of the time at which they were alive. Hu and Yoshida [15], as well as
other authors, took interest in branching random walks in space-time random environment.

Notation and assumptions. Given a sequence (xn) ∈ RN, we write OP(xn) for a
sequence of random variables (Xn, n ∈ N) such that (Xn/xn) is tight. Similarly, oP(xn)
denotes a sequence of random variables (Xn, n ∈ N) such that Xn

xn
→ 0 in P-probability.

Moreover C and c stand for two positive constants respectively large enough and small
enough, that may change from line to line.

To ensure the non-extinction and non-triviality of the BRWre (T, V ), we assume that

PL ({u ∈ T : |u| = 1} = ∅) = 0, P-a.s. (1.1)

and P (PL (#{u ∈ T : |u| = 1} > 1) > 0) > 0. (1.2)

By [26] one checks that (1.1) and (1.2) are sufficient conditions for the random tree T to
be supercritical, and its growth rate is at least exponential. The forthcoming assumption
(1.7) also implies the growth rate of the population is exponential.
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For n ∈ N, we introduce the log-Laplace transform of the point process law Ln denoted
by κn : (0,∞)→ (−∞,∞] and given by

κn(θ) = logEL

∑
`∈Ln

eθ`

 , (1.3)

where Ln is a point process on R distributed according to the law Ln. As the point process
Ln is a.s. non-empty we have κn(θ) > −∞ P-a.s. For a fixed θ > 0, (κn(θ), n ∈ N) is
an i.i.d. sequence of random variables under P. We assume that E (κ1(θ)−) < ∞ for all
θ > 0, thus we may define κ : R+ → R ∪ {∞} by κ(θ) = E (κn(θ)).

As κn is the log-Laplace transform of a measure on R, κ is a convex function, C∞ on
the interior of the interval {θ > 0 : κ(θ) <∞}. Assuming that this interval is non-empty,
we define

v = inf
θ>0

κ(θ)
θ
, (1.4)

and we assume there exists θ∗ > 0 such that κ is differentiable at point θ∗ (thus κ is finite
in a neighborhood of θ∗) that satisfies

θ∗κ′(θ∗)− κ(θ∗) = 0. (1.5)

Under this assumption, we have v = κ′(θ∗) = E (κ′1(θ∗)). We introduce two variance
terms, that we assume to be finite

σ2
Q = θ∗2 E

(
κ′′1(θ∗)

)
∈ (0,∞) and σ2

A = Var
(
θ∗κ′1(θ∗)− κ1(θ∗)

)
∈ [0,∞). (1.6)

Heuristically, the trajectory yielding to the rightmost position at time n can be seen as
a random walk path, in the time-inhomogeneous random environment. Then the quan-
tity σ2

Q represents the average quenched variance of this random walk, while σ2
A represents

the annealed variance of the quenched expectation.
Finally, we add two integrability conditions:

E

EL

∑
`∈L1

(
1 + eθ

∗`
)2


 <∞, (1.7)

as well as that there exists C > 0 and µ > 0 such that

EL

∑
`∈L1

(
e(θ∗+µ)` + e(θ∗−µ)`

) ≤ Ceκ1(θ∗), P-a.s. (1.8)

The main result of this article is to extend the scope of the result of Hu and Shi [16] and
Addario-Berry and Reed [2], which prove that for a time-homogeneous branching random
walk

Mn = nv − 3
2θ∗ logn+OP(1). (1.9)

For n ∈ N, we write Kn =
∑n
k=1 κk(θ∗). This quantity is a random walk depending only on

the environment, such that Kn = θ∗nv+OP(n1/2). We introduce a function γ : R+ → R+
given by the following limit

lim
t→∞

1
log t log P (Bs + 1 ≥ βWs, s ≤ t|W ) = −γ(β), P-a.s. (1.10)

where B,W are independent standard Brownian motions. This function and similar prob-
lems are studied in detail in the companion paper [22]. In particular, according to [22,
Theorem 1.1], the function γ is well-defined, convex and strictly increasing on (0,∞).

3



Theorem 1.1. Under the assumptions (1.1), (1.2), (1.5), (1.6), (1.7) and (1.8), writing

ϕ = 2
θ∗
γ
(
σA
σQ

)
+ 1

2θ∗ ,

we have

lim
n→∞

PL
(
Mn − 1

θ∗Kn ≥ −β logn
)

=
{

1 if β > ϕ

0 if β < ϕ
in P-probability.

When the reproduction law does not depend on the time we have σ2
A = 0. As γ(0) =

1/2, this theorem is consistent with the results of Hu and Shi, and Addario-Berry and
Reed. Moreover, as γ is increasing, as soon as σ2

A > 0 the logarithmic correction is larger
than the time-homogeneous one.
Remark 1.2. In a homogeneous branching random walk with (fixed) reproduction law
L1 by standard results we have limn→∞

Mn
n = infθ>0

κ1(θ)
θ =: v1. By Theorem 1.1,

limn→∞
Mn
n = v in probability for a BRWre. We observe that

v = inf
θ>0

E (κ1(θ))
θ

≥ E
(

inf
θ>0

κ1(θ)
θ

)
= E(v1).

This inequality is strict as soon as σ2
A > 0. Therefore, for a typical non-degenerate random

environment, the speed of the branching random walk in random environment is larger
than the expected speed of a branching random walk with law L1. This behavior is
similar to the one observed in the branching random walk with increasing variance in [12],
the optimal path can take advantage of the inhomogeneities of the environment to reach
further points.

A direct consequence of this theorem is the asymptotic behavior of Mn under law P.

Corollary 1.3. Under the assumptions of Theorem 1.1, we have

lim
n→∞

Mn − 1
θ∗Kn

logn = −ϕ in P⊗ PL-probability.

Most likely, the convergence cannot be strengthened to an almost sure result of the
form Mn = 1

θ∗Kn−ϕ logn+ oPL(logn) P-a.s. In fact, introducing the (quenched) median
of Mn:

mQ
n = sup {a ∈ R : PL(Mn ≥ a) ≥ 1/2} , (1.11)

we believe thatmQ
n exhibits non-trivial logn-scale fluctuations in P-probability. Moreover,

using the results of Fang [11], it is established that under some additional assumptions
(Mn −mQ

n ) is tight. We discuss this tightness issue for BRWre in Section A.
The proof strategy for Theorem 1.1 is very similar to method used to study the max-

imal displacement in an homogeneous branching random walk, which can for example be
found in [4]. We first introduce a result that links the the moments of additive function-
als of the branching random walk with random walk estimates: the many-to-one lemma
(Lemma 2.1). However, the randomness of the environment implies that the random walk
obtained here is a random walk in (time-inhomogeneous) random environment.

Using the many-to-one lemma, we then compute the first and second moment of the
number of particles making a suitable excursion below a well-chosen barrier. This barrier
is chosen such that the first and second moment are of the same order, therefore Markov
and Paley-Zygmund inequalities allow to bound from above and from below the probability
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for Mn to be larger than 1
θ∗Kn − ϕ logn. Finally, using a standard truncation argument

we are able to bound with high probability the position of Mn at time n.
The main impact of the random environment is that the random walk obtained in the

many-to-one lemma is a random walk in random environment. Hence, one has to study
the probability for a random walk to realize an excursion of length n above a suitable
barrier, which is done in Theorem 3.3. This probability behaves as n−λ+oP(1), with λ a
constant that depends only of σA

σQ
. This constant is directly related to the logarithmic

correction of the BRWre, through the equation ϕ = λ
θ∗ . This is similar to what happen in

the time-homogeneous case: the probability for a random walk to make an excursion of
length n is of order n−3/2, and the logarithmic correction of the branching random walk
is 3

2θ∗ .
The rest of the article is organized as follows. We introduce in the next Section A the

many-to-one lemma, and in particular the time-inhomogeneous random walk associated
to the BRWre. In Section 3, we compute the probability for this random walk in random
environment to make an excursion of length n. We use this result to prove Theorem 1.1
in Section 4, using the method described above.

2 The many-to-one lemma
We introduce the celebrated many-to-one lemma. It has been essential in studies of ex-
tremal behavior of branching random walks. It can be traced down to the early works of
Peyrière [25] and Kahane and Peyrière [19]. Many variations of this result have been in-
troduced, see e.g. [8]. In this article, we use a time-inhomogeneous version of this lemma,
that can be found in [23, Lemma 2.2]. For all n ≥ 1, we write Ln for a realization of the
point process with law Ln, and we define the probability measure µn on R by

∀x ∈ R, µn((−∞, x]) = EL

∑
`∈Ln

1{`≤x}eθ
∗`−κn(θ∗)

 , (2.1)

where we recall that κn is the log-Laplace transform of Ln given by (1.3) and θ∗ by (1.5).
Up to a possible enlargement of the probability space, we define a sequence (Xn, n ∈ N)
of independent random variables, where Xn has law µn. We set Sn =

∑n
j=1Xj . From

now on, PL stands for the joint law of the BRWre (T, V ) and the random walk in random
environment S, conditionally on the environment L.

Lemma 2.1 (Many-to-one lemma). For any n ∈ N and any measurable non-negative
function f : Rn → R, we have

EL

 ∑
|u|=n

f(V (u1), . . . , V (un))

 = EL
(
e−θ

∗Sn+
∑n

k=1 κj(θ∗)f(S1, . . . Sn)
)
, P-a.s. (2.2)

To simplify notation, we introduce the process (Tn, n ≥ 0) given by

Tn = θ∗Sn −Kn. (2.3)

Now (2.2) has a more compact form

EL

 ∑
|u|=n

f (θ∗V (uj)−Kj , j ≤ n)

 = EL
(
e−Tnf(Tj , j ≤ n)

)
. (2.4)
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The process T is a random walk in random environment: conditionally on the environ-
ment L, Tn is the sum of n independent random variables, and the law of Tj − Tj−1 only
depends on Lj . Note that under law P, T is simply a random walk.
Remark 2.2. Note that the process we call “random walk in random environment” is not a
typical random walk in random environment. Indeed, this process is “trivial”, in the sense
that each random environment is used exactly once. In typical random walks in random
environment, the random environment is either purely spatial or space-time. However,
despite looking trivial, the probability for T to make an excursion of length n above 0,
conditionally on the random environment yields a non-trivial exponent inherited from the
randomness of the environment.

By (1.5), we have E(Tn) = 0. Moreover by (2.1), we have

EL(Xj) = κ′j(θ∗) and VarL(Xj) = κ′′j (θ∗).

Thus (1.6) can be rewritten

σ2
Q = E (VarL(T1)) and σ2

A = Var (EL(T1)) .

This confirms the heuristic description of σ2
Q as the mean of a quenched variance, ans σ2

A

as the variance of a quenched mean.
Using the many-to-one lemma, we can prove that with high probability, every individ-

ual in the BRWre stays at all time below the environment-dependent path n 7→ 1
θ∗Kn + y,

for y large enough. This explains why a key tool in the study of the asymptotic behavior
of Mn is the random ballot theorem, discussed in the next section.

Lemma 2.3. Under the assumption (1.5), for any y > 0 we have

PL
(
∃u ∈ T : V (u) > 1

θ∗K|u| + y
)
≤ e−θ∗y, P-a.s.

Proof. Using (2.4), the following classical upper bound holds for any branching random
walk in time-inhomogeneous environment:

PL
(
∃u ∈ T : V (u) > 1

θ∗K|u| + y
)

≤ EL

∑
u∈T

1{
V (u)− 1

θ∗K|u|>y

}1{
V (uj)− 1

θ∗Kj≤y,j<|u|
}

≤
∞∑
n=1

EL

 ∑
|u|=n

1{θ∗V (u)−Kn>θ∗y}1{θ∗V (uj)−Kj≤θ∗y,j<n}


≤
∞∑
n=1

EL
(
e−Tn1{Tn>θ∗y}1{Tj≤θ∗y,j<n}

)
≤ e−θ∗yPL (∃n ∈ N : Tn > θ∗y) ≤ e−θ∗y, P-a.s.

Due to the time-inhomogeneity, it will be useful to consider time-shifts of the environ-
ment, and a shifted version of (2.2). For k ∈ N, write PkL for the law of the branching
random walk with the random environment (Lj+k, j ∈ N). By convention we assume that
under PkL, the random walk S is Sn = Xk+1 + · · ·+Xk+n. In this scenario (2.2) writes as

EkL

 ∑
|u|=n

f(V (u1), . . . , V (un))

 = EkL
(
e
−θ∗Sn+

∑k+n

j=k+1 κj(θ∗)
f(S1, . . . Sn)

)
, P-a.s.

(2.5)
Similarly, we assume that under PkL the process T is given by Tn = θ∗Sn−

∑k+n
j=k+1 κj(θ∗).
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3 Ballot theorem for a random walk in random environment
It is well-known, see for example [4], that the constant 3

2 in (1.9) is directly related to
the exponent of the ballot theorem problem i.e., for any centered random walk (Sn) with
finite variance

P(Sn ≥ − logn, Sj ≤ 0, j ≤ n) ≈ C

n3/2 .

For review of ballot-like theorems, one can look at [1]. To prove Theorem 1.1, we compute
similar quantities for random walks in random environment. More precisely, we compute
the probability for T to make a negative excursion of length n, conditionally on the
environment L. We devoted a companion paper [22] to study the asymptotic behavior of
the probability for a random walk in random environment to stay positive during n units
of time and to study the function γ, defined in (1.10). We start with a translation of [22,
Theorem 1.11] to our notation.

We recall again that in this article, when we consider random walks in random environ-
ment that are not the typical case of “space-not-time” random environments, in which a
given reproduction law is used multiple times (cf Remark 2.2). For typical random walks
in random environment, the process considered is a time-homogeneous Markov process
whose semigroup is random, while the random walks in random environment we study are
sums of independent random variables.
Theorem 3.1. Let T be as in (2.3), (xn) ∈ RN

+ and (fn) ∈ RN such that

lim
n→∞

xn =∞, lim
n→∞

log xn
logn = 0 and lim sup

n→∞

|fn|
n1/2−ε = 0,

for some ε > 0. For any 0 ≤ a < b ≤ ∞ we have

lim
n→∞

logPL
(
xn + Tn ∈ [an1/2, bn1/2], xn + Tj ≥ fj , j ≤ n

)
logn = −γ

(
σA
σQ

)
, P-a.s.

The proof of this theorem is rather long, but we give here a quick description of the
main steps of proof. First, using KMT-type coupling between random walks and Brownian
motions, we prove that

PL (Tj ≥ 0, j ≤ n) ≈ P (σQBs ≥ σAWs − 1, s ≤ n|W ) ,

where B and W are two independent Brownian motions, the Brownian motion σAW
approaching the random walk (with respect to the environment) (EL(Tn), n ∈ N) and
σQB replacing the sum of independent centered random variables (Tn − EL(Tn), n ∈ N).
The convergence in (1.10) then proves Theorem 3.1.

This convergence is a consequence of the fact that(
log P

(
Bs ≤ βWs, 1 ≤ s ≤ et

∣∣∣W)
, t ≥ 0

)
is a subadditive sequence, hence Kingman’s subadditive ergodic theorem guarantees the
existence and finiteness of γ(β). Moreover, one can observe that

P
(
Bs ≤ βWs, e

u ≤ s ≤ et+u
∣∣∣W) (d)=P

(
Bs ≤ βWs, 1 ≤ s ≤ et

∣∣∣W)
,

therefore the behavior of log P
(
Bs ≤ βWs, 1 ≤ s ≤ et

∣∣W )
should be similar to the sum of

t i.i.d. random variables. Hence, we conjecture the existence a central limit type theorem
can be expected, of the form

lim
t→∞

log P
(
Bs ≤ βWs, 1 ≤ s ≤ et

∣∣W )
− γ(β) log t

(log t)1/2 = N (0, %(β)) in law. (3.1)
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Observe that the statement of Theorem 3.1 also holds for −T . More precisely, under
the same assumptions, P-a.s. we have

lim
n→∞

logPL
(
−xn + Tn ∈ [−bn1/2,−an1/2, ],−xn + Tj ≤ fj , j ≤ n

)
logn = −γ

(
σA
σQ

)
, (3.2)

Remark 3.2. The results obtained in Theorem 3.1 and (3.2) can be rephrased as

PL (Tj ≥ 0, j ≤ n) = n
−γ(σA

σQ
)(1+o(1))

, as n→∞, P-a.s.

If the result (3.1) holds, then this result cannot be strengthened to a ballot-type theorem
similar to the homogeneous case, i.e. the existence of a (random) constant C > 0 such
that the probability for T to stay positive is bounded by Cn−γ for n large enough.

The exponent γ := γ
(
σA
σQ

)
is used to compute the probability for T to make a negative

excursion of length n. To do so, we observe that an excursion of length n can be divided into
three parts. Between times 0 and n/3, the random walk stays negative, which happens with
probability n−γ . Similarly, the end part between times 2n/3 and n, seen from backward is
a random walk in random environment staying positive, happening with probability n−γ .
Finally, the part between times n/3 and 2n/3 is a random walk joining these two paths,
which has probability n−1/2 by local CLT. Consequently, writing

λ := 2γ
(
σA
σQ

)
+ 1

2 , (3.3)

we expect PL (Tn ≤ 1, Tj ≥ 0, j ≤ n) ≈ n−λ. However, working with random environments
yields additional difficulties.

Theorem 3.3. Let T be as in (2.3). We set (xn), (an) ∈ RN
+ such that

an ≤ xn, lim inf
n→∞

an
logn > 0 and lim

n→∞
log xn
logn = 0.

Let α ∈ [0, 1/2), we write rn,j = min(j, n− j)α for 0 ≤ j ≤ n. For any ε > 0 we have

lim
n→∞

P
(

sup
x,y∈[0,xn]

sup
k,k′≤xn

PkL
(
Tn−k−k′ ≥ x− y, Tj ≤ x, j ≤ n− k − k′

)
≤ n−λ+ε

)
= 1,

(3.4)

lim
n→∞

P
(

inf
x,y∈[an,xn]

PL (Tn ≥ x− y, Tj ≤ x− rn,j , j ≤ n) ≥ n−λ−ε
)

= 1. (3.5)

We stress that the mode of convergence in Theorem 3.3 cannot be strengthen to a
P-a.s. result. We will see that the convergence in the forthcoming (3.15) holds only in
probability. For the moment, as an illustration, we present a simple lemma concerning an
analogous phenomenon for the Brownian motion over a Brownian motion path.

Lemma 3.4. For all β ∈ R, we have

lim
t→∞

1
log t log P (Bs + 1 ≥ β(Wt −Wt−s), s ≤ t|W ) = −γ(β) in P−probability

lim sup
t→∞

1
log t log P (Bs + 1 ≥ β(Wt −Wt−s), s ≤ t|W ) ≥ −1/2, P-a.s. (3.6)

lim inf
t→∞

1
log t log P (Bs + 1 ≥ β(Wt −Wt−s), s ≤ t|W ) ≤ −β2/2, P-a.s. (3.7)
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Note the constants we obtain in (3.6) and (3.7) are non-optimal. In particular, (3.7)
gives no information for β ∈ (−1, 1). The reason of fluctuations on logn scale is that the
environment “seen from backward” every awhile is particularly favorable or unfavorable
for the random walk to stay non-negative. More precisely, one can make the following
observation: almost surely, infinitely often the Brownian motion seen from backward stays
negative, or grows faster than t during log t units of time. As this result plays no role in
the rest of the article, we skip the detailed proof.

To prove this theorem, we first observe that Theorem 3.1 can be easily extended to
obtain uniform upper and lower bounds.

Lemma 3.5. Let (xn), (tn) ∈ RN
+ be such that

lim
n→∞

xn = lim
n→∞

tn =∞, lim
n→∞

log xn
logn = lim

n→∞
log tn
logn = 0

For any α ∈ [0, 1/2), we have

lim
n→∞

sup
k≤tn

logPkL (Tj ≥ −xn − jα, j ≤ n)
logn = −γ

(
σA
σQ

)
, P-a.s.

Proof. The lower bound of this lemma is a direct consequence of Theorem 3.1, we only
consider the upper bound in the rest of the proof. For any k ≤ tn, applying the Markov
property at time k we obtain

PL (Tj ≥ −xn − log tn − jα, j ≤ n)
≥ PL (Tj ≥ − log tn, j ≤ k)× PkL (Tj ≥ −xn − jα, j ≤ n− k) .

As a consequence for any k ≤ tn we have

PkL (Tj ≥ −xn − jα, j ≤ n− k) ≤ PkL (Tj ≥ −xn − jα, j ≤ n− tn)

≤ PL (Tj ≥ −xn − log tn − jα, j ≤ n)
PL (Tj ≥ − log tn, j ≤ tn) . (3.8)

By Theorem 3.1 we get

lim
n→∞

logPL (Tj ≥ −xn − log tn − jα, j ≤ n)
logn = −γ

(
σA
σQ

)
, P-a.s.

Similarly, as limn
log tn
logn = 0 we have

lim
n→∞

logPL (Tj ≥ − log tn, j ≤ tn)
logn = 0, P-a.s.

Applying these two estimates to (3.8) concludes the proof.

We now derive from the Berry-Esseen theorem [6, 10] a local limit theorem for random
walks in random environment. There exists a universal constant C1 such that, given
X1, . . . Xn independent centered random variables with finite third moment and N is a
standard Gaussian random variable

sup
t∈R

∣∣∣∣∣P
( ∑n

i=1Xi√∑n
i=1 Var(Xi)

≥ t
)
−P(N ≥ t)

∣∣∣∣∣ ≤ C1
maxi≤n E(|Xi|3)

Var(Xi)√∑n
i=1 Var(Xi)

. (3.9)

We obtain the following bounds.
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Lemma 3.6. Let (xn) ∈ RN
+ such that

lim
n→∞

xn =∞ and log xn
logn = 0.

For any ε > 0, we have

lim
n→∞

P
(

sup
y∈R

logPL(Tn ∈ [y, y + xn])
logn ≤ −1

2 + ε

)
= 1. (3.10)

Moreover, for any ε > 0 and a > 0,

lim
n→∞

P
(

inf
|y|<an1/2

logPL(Tn ∈ [y, y + xn])
logn ≥ −1

2 − ε
)

= 1. (3.11)

Proof. For any n ∈ N, we set Σn = VarL(Tn). By (3.9) and (1.8), we have

sup
t∈R

∣∣∣∣PL (Tn ≥ t)− PL
(
N ≥ t− EL(Tn)√

Σn

)∣∣∣∣ ≤ C2√
Σn

, P-a.s. (3.12)

where N is a Gaussian random variable independent of L and C2 > 0.
Using (3.12), for any y ∈ R we have

PL (Tn ∈ [y, y + xn]) = PL
(
Tn√
Σn
≥ y√

Σn

)
− PL

(
Tn√
Σn

>
y + xn√

Σn

)
≤ PL

(
N + EL(Tn)√

Σn
∈
[

y√
Σn
, y+xn√

Σn

])
+ 2C2√

Σn

≤ C xn√
Σn

.

Observing that by the law of large numbers we have limn→∞
Σn
n = σ2

Q P-a.s. we conclude
that

lim sup
n→∞

sup
y∈R

logPL (Tn ∈ [y, y + xn])
logn ≤ −1

2 , P-a.s.

which yields (3.10).
Similarly, for any y ∈ R with |y| ≤ an1/2, (3.12) yields

PL (Tn ∈ [y, y + xn]) ≥ PL
(
N + EL(Tn)√

Σn
∈
[

y√
Σn
, y+xn√

Σn

])

≥ c xn√
Σn

exp

−(an1/2 + |EL(Tn)|√
Σn

)2
− 2C2

µ
√

Σn
.

Under P the random variable |EL(Tn)|√
Σn

converges in law toward |N (0, σ
2
A

σ2
Q

)|, thus for any
ε > 0 we have

lim
t→∞

P
(

inf
|y|<an1/2

logPL(Tn ∈ [y, y + xn])
logn ≥ −1

2 − ε
)

= 1.

Equation (3.11) can be made more precise, to compute the probability for a random
walk in random environment to end up in a given interval, while staying below a wall at
level O(n1/2).
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Lemma 3.7. Let (xn) ∈ RN
+ such that limn→∞ xn =∞. For any a > 0, ε > 0 and η > 0,

there exists b > 0 such that

lim inf
n→∞

P
(

inf
x∈[−an1/2,an1/2]

logPL(Tn ∈ [x, x+ xn], Tj ≤ bn1/2, j ≤ n)
logn > −1

2 − ε
)
≥ 1− η.

Proof. To compute this probability, we observe that for any |x| ≤ an1/2,

PL(Tn ∈ [x, x+ xn], Tj ≤ bn1/2, j ≤ n)
= PL (Tn ∈ [x, x+ xn])− PL (Tn ∈ [x, x+ xn], τn ≤ n) ,

where τn = inf{k ∈ N : Tk ≥ bn1/2}. Moreover, recall that

PL (Tn ∈ [x, x+ xn]) ≥ c xn√
Σn

exp

−(an1/2 + |EL(Tn)|√
Σn

)2
 .

We now bound PL (Tn ∈ [x, x+ xn], τn ≤ n) from above.
Let η > 0 we set b > 2a such that for any n ∈ N

PL
(

max
j≤n
|EL(Tj)| ≤ bn1/2/2

)
> 1− η.

Thus, on the event
{

maxj≤n |EL(Tj)| ≤ bn1/2/2
}
, we have

PL (Tn ∈ [x, x+ xn], τn ≤ n) ≤ max
k≥n/2

sup
y≥bn1/2/2

PL (Tk − EL(Tk) ∈ [y, y + xn])

+ max
k≤n/2

sup
y≥bn1/2/2

PkL
(
Tn−k − En−kL (Tn−k) ∈ [y, y + xn]

)
.

By the Berry-Esseen inequality, for n large enough, we obtain

PL (Tn ∈ [x, x+ xn], τn ≤ n) ≤ C xn√
Σn

e−b
2/4σ2

Q , P-a.s.

we conclude that

lim inf
n→∞

P
(

inf
x∈[−an1/2,an1/2]

logPL(Tn ∈ [x, x+ xn], Tj ≤ bn1/2, j ≤ n)
logn > −1

2 − ε
)
≥ 1− η.

Using the above results, we prove Theorem 3.3, starting from the upper bound.

Proof of (3.4). We decompose the path of T into three pieces. We set p = bn/3c, applying
the Markov property at time p, we have

PkL
(
Tn−k−k′ ≥ x− y, Tj ≤ x, j ≤ n− k − k′

)
≤ PkL (Tj ≤ xn, j ≤ p− k) sup

z∈R
PpL
(
Tn−k′−p + z ≥ x− y, Tj + z ≤ x, j ≤ n− p− k′

)
.

(3.13)
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We introduce T̂n−p−k
′

j = Tn−p−k′ − Tn−p−k′−j the time reversed random walk. Using the
fact that Tn−p−k′ + z ∈ [x− y, x] and y ≤ xn, we have

PpL
(
Tn−p−k′ + z ≥ x− y, Tj + z ≤ x, j ≤ n− p− k′

)
≤ PpL

(
T̂n−p−k

′

n−p−k′ ∈ [x− y − z, x− z], T̂n−p−k
′

j ≥ −xn, j ≤ n− p− k′
)
.

Applying the Markov property to T̂ at time p− k′ yields

PpL
(
Tn−p−k′ + z ≥ x− y, Tj + z ≤ x, j ≤ n− p− k′

)
≤ PpL

(
T̂n−p−k

′

j ≥ −xn, j ≤ p− k′
)

sup
h∈R

PpL
(
T̂n−p−k

′

n−p−k′ − T̂
n−p−k′
p−k′ ∈ [h, h+ xn]

)
.

A direct calculation shows that T̂n−p−k
′

n−p−k′ − T̂
n−p−k′
p−k′ = Tn−2p, therefore (3.13) yields

PkL
(
Tn−k−k′ ≥ x− y, Tj ≤ y, j ≤ n− k − k′

)
≤ PkL (Tj ≤ xn, j ≤ p− k)

× PpL
(
T̂n−p−k

′

j ≥ −xn, j ≤ p− k′
)

sup
h∈R

PpL (Tn−2p ∈ [h, h+ xn]) . (3.14)

We conclude that

sup
0≤x,y≤xn

sup
k,k′≤xn

PkL
(
Tn−k−k′ ≤ x, Tj ≥ y, j ≤ n− k − k′

)
≤ sup

k≤xn

Pk (Tj ≥ −xn, j ≤ p− xn) sup
k′≤xn

Pp
(
T̂n−p−k

′

j ≤ xn, j ≤ p− xn
)

× sup
h∈R

PpL (Tn−2p ∈ [h, h+ xn]) .

Applying (3.2) we have

lim
n→∞

sup
k≤xn

logPkL(Tj ≥ −xn, j ≤ p− xn)
logn = −γ

(
σA
σQ

)
, P-a.s.

Moreover, under the measure P⊗PL, the process T̂n−k has the same law as T , thus using
Lemma 3.5 for the second term, we have

lim
n→∞

sup
k′≤xn

logPpL
(
T̂n−p−k

′

j ≤ xn, j ≤ p− xn
)

logn = −γ
(
σA
σQ

)
in P-probability. (3.15)

Finally, by (3.10), for any ε > 0 we have

lim
n→∞

P
(

sup
h∈R

logPpL (Tn−2p ∈ [h, h+ xn])
logn ≤ −1

2 + ε

)
= 1.

Combining these three estimates concludes the proof.

We then prove the lower bound of Theorem 3.3.

Proof of (3.5). We implement a decomposition similar to (3.14). However in this case we
aim to obtain a bound from below. We set p = bn/3c and fix 0 < a < b. Applying the
Markov property at time p we get

PL (Tn ≥ x− y, Tj ≤ x− rn,j , j ≤ n)

≥ PL
(
Tp ∈

[
−bn1/2,−an1/2

]
, Tj ≤ an − jα, j ≤ p

)
× inf
z∈[an1/2,bn1/2]

PpL (Tn−p − z ≥ x− y, Tj − z ≤ x+ rn,j , j ≤ n− p) . (3.16)
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As in the proof of (3.4) we use notation T̂n−p, defined by T̂n−pj = Tn−p − Tn−p−j for the
time-reversed random walk. Observe that the condition Tn−p − z ∈ [x − y, x] is weaker
than Tn−p − z ∈ [x− an, x], and

PpL (Tn−p − z ∈ [x− an, x], Tj − z ≤ x+ rn,j , j ≤ n− p)

≥ PpL
(
T̂n−pn−p ∈ [x− an + z, x+ z], T̂n−pj ≥ −an + jα, j ≤ n− p

)
.

Applying the Markov property to T̂n−p at time p, we have

PpL (Tn−p − z ∈ [x− an, x], Tj − z ≤ x− rn,j , j ≤ n− p)

≥ PpL
(
T̂n−pp ∈ [an1/2, bn1/2], T̂n−pj ≥ jα − an, j ≤ p

)
× inf
z′∈[an1/2,bn1/2]

PpL

(
T̂n−pn−2p − T̂n−pp + z′ ∈ [x+ z − an, x+ z]
T̂n−pj − T̂n−pp + z′ ≥ rn,p+j − an, j ≤ n− 2p

)
.

Thus (3.16) yields

PL (Tn ≥ x− y, Tj ≤ x− rn,j , j ≤ n)

≥ PL
(
Tp ∈

[
−bn1/2,−an1/2

]
, Tj ≤ an − jα, j ≤ p

)
× PpL

(
T̂np ∈

[
an1/2, bn1/2

]
, T̂nj ≥ −an + jα, j ≤ p

)
× pn,

where

pn = inf
|z|≤(b−a)n1/2

PpL
(
Tn−2p ∈ [x− an − z′, x− z], Tj ≥ −an1/2/2, j ≤ n− 2p

)
.

Using (3.2) we have

lim
n→∞

logPL
(
Tp ∈

[
−bn1/2,−an1/2

]
, Tj ≤ an − jα, j ≤ p

)
logn = −γ

(
σA
σQ

)
, P-a.s.

Further using Theorem 3.1 we handle the second term

lim
n→∞

logPpL
(
T̂np ∈

[
an1/2, bn1/2

]
, T̂nj ≥ −an + jα, j ≤ p

)
logn = −γ

(
σA
σQ

)
in P-probability.

Note that due to time-reversal, Theorem 3.1 only provides convergence in probability, and
Lemma 3.4 hints that this convergence cannot be strengthened into almost sure conver-
gence.

Finally, using Lemma 3.7 for any ε, η > 0, choosing a > 0 large enough, we have

lim
n→∞

P
( log pn

logn ≥ −
1
2 − ε

)
≥ 1− η.

Combining the last three estimates and letting η → 0 concludes the proof.
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4 Maximal displacement for the branching random walk in
random environment

We analyze the asymptotic behavior of PL(Mn ≥ y) as n, y →∞. Roughly speaking this is
done by controlling the number of individuals that are at time n greater than Kn−ϕ logn
and stayed below the environment-dependent border k 7→ Kk + y. It is fairly easy to
obtain a bound from above by calculating the mean number of particles crossing at some
time this boundary. As can be seen in Figure 1, with high probability no particle will
cross the line. The bound from below requires bounding the second moment and a more
subtle analysis.

time

spaceenvironment 0

Figure 1: A branching random walk in random environment and its border

4.1 Proof of the upper bound of Theorem 1.1

Lemma 4.1. We assume that (1.5), (1.6) and (1.8) hold. For any β < ϕ, we have

PL
(
Mn ≥ 1

θ∗Kn − β logn
)
→ 0 in P− probability.

Proof. For any n ∈ N and β > 0, we set

Yn(β) =
∑
|u|=n

1{θ∗V (u)−Kn≥−βθ∗ logn}1{θ∗V (uj)−Kj≤logn,j≤n}. (4.1)

We observe that

PL
(
Mn ≥

Kn

θ∗
− β logn

)
≤ PL

(
∃u ∈ T : V (u) ≥

K|u| + logn
θ∗

)
+ PL(Yn(β) ≥ 1).

Applying Lemma 2.3 and the Markov inequality, we have

PL
(
Mn ≥

Kn

θ∗
− β logn

)
≤ n−1 + EL (Yn(β)) (4.2)
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To bound from above EL (Yn(β)) we use (2.4), obtaining

EL (Yn(β)) = EL
(
e−θ

∗Sn+Kn1{θ∗Sn−Kn≥−βθ∗ logn}1{θ∗Sj−Kj≤logn,j≤n}
)

≤ nβθ∗PL (Tn ≥ −βθ∗ logn, Tj ≤ logn, j ≤ n) .

By (3.4), for any ε > 0 we have

lim
n→∞

P
(PL (Tn ≥ −βθ∗ logn, Tj ≤ logn, j ≤ n)

logn ≤ −λ+ ε

)
= 1.

As ϕ = λ
θ∗ , we conclude

lim
n→∞

P
({

PL (Tn ≥ −βθ∗ logn, Tj ≤ logn, j ≤ n) ≤ n−θ∗ϕ+ε
})

= 1.

Setting ε = θ∗

2 (ϕ − β) > 0, we have limn→∞P ({EL (Yn(β)) ≤ n−ε}) = 1. Therefore,
EL (Yn(β)) converges to 0 in P-probability. By (4.2) we conclude the proof.

4.2 Proof of the lower bound of Theorem 1.1

To prove the lower bound of Theorem 1.1, we first prove that the probability to observe
individuals above Kn

θ∗ − ϕ logn does not decrease too fast. Secondly, we use the fact that
the population grows at exponential rate to conclude the proof.

Lemma 4.2. We assume that (1.5), (1.7), (1.6) and (1.8) hold. For any ε > 0, we have

lim
n→∞

P
({

PL
(
Mn ≥

Kn

θ∗
− ϕ logn

)
≥ n−ε

})
= 1.

Proof. In the proof we use the second moment method. We introduce an environment-
dependent path which individuals are disallowed to cross. This enforces the first and
second moment to have the same behavior. Let δ > 0, for k ≤ n we set

rn,k =
{
k1/3 − δ logn if k ∈ {1, . . . , bn/2c}
(n− k)1/3 + (ϕ− δ) logn if k ∈ {bn/2c+ 1, . . . , n}.

In Xn(δ) we count particles near Kn/θ
∗ − ϕ logn who stayed below2 Kj/θ

∗ − rn,j at all
time j ≤ n viz.

Xn(δ) =
∑
|u|=n

1{V (u)−Kn/θ∗+ϕ logn∈[0,δ logn],V (uj)≤Kj/θ∗−rn,j}.

We use the Cauchy-Schwarz inequality to get

PL
(
Mn ≥

Kn

θ∗
− β logn

)
≥ PL(Xn(δ) ≥ 1) ≥ (ELXn(δ))2

EL (Xn(δ)2) . (4.3)

We first bound from below EL(Xn(δ)). Applying (2.2) and recalling (2.3), we have

EL (Xn(δ)) = EL
(
e−Tn1{Tn/θ∗+ϕ logn∈[0,δ logn]}1{Tj/θ∗≤−rn,j ,j≤n}

)
≥ nθ∗ϕ−θ∗δPL (Tn/θ∗ + ϕ logn ∈ [0, δ logn] , Tj/θ∗ ≤ −rn,j , j ≤ n) .

2Note that the choice of the exponent 1/3 in the definition of rn,k is arbitrary, any exponent γ ∈ (0, 1/2)
would yield a similar result, using the result in Theorem 3.3.
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space

0 time

Kn
θ∗ + y

ϕ logn
δ logn

rn,j

Figure 2: Some trajectories counted in Xn(δ)

Using (3.4), for any ε > 0 we have

lim
n→∞

P
(
EL (Xn(δ)) ≥ n−θ∗δ−ε

)
= 1. (4.4)

Further, we bound from above E
(
Xn(δ)2). We note that Xn(δ)2 is the number of

pairs of individuals that are at time n in a neighborhood of Kn/θ
∗ − ϕ logn and stayed

at any time k ≤ n at distance at least rn,k from Kk/θ
∗. We partition this set of pairs

(u1, u2) ∈ T according to the most recent common ancestor, denoted by u1 ∧ u2. More
precisely, Xn(δ)2 =

∑n
k=0 Λk, where

Λk =
∑
|u|=k

∑
|u1|=|u2|=n
u1∧u2=u

1{V (ui)−Kn/θ∗+ϕ logn∈[0,δ logn],V (ui
j)≤Kj/θ∗−rn,j ,i∈{1,2},j≤n}.

We notice that Λn = Xn(δ). For k < n we study Λk applying the Markov property at
time k + 1, namely we denote Fk = σ(u, V (u), |u| ≤ k) and calculate

EL (Λk| Fk+1) ≤
∑
|u|=k

1{V (uj)≤Kj/θ∗−rn,j ,j≤k}
∑

|u1|=|u2|=k+1
u1∧u2=u

fk+1(V (u1))fk+1(V (u2)), (4.5)

where

fk+1(x) = Ek+1
L

 ∑
|u|=n−k−1

1{
V (u)−Kn/θ∗+x+ϕ logn∈[0,δ logn]
V (uj)−Kk+j+1/θ

∗+x≤−rn,k+j+1,j≤n−k−1

}
 .

Note that if x ≥ Kk+1/θ
∗ − rn,k+1 then fk+1(x) = 0.

We recall that under law PkL, for any n ∈ N we write Tn = θ∗Sn −
∑k+n
j=k+1 κj(θ∗) and∑k+n

j=k+1 κj(θ∗) = Kk+n −Kk. Applying (2.5) we have

fk+1(x) ≤ Ek+1
L

e−Tn−k−11{
Tn−k−1+θ∗x−Kk+1+θ∗ϕ logn∈[0,θ∗δ logn]
Tj≤Kk+1−θ∗x−θ∗rn,j+k+1,j≤n−k−1

}
 .
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Observe that for any j ≤ n, rn,j ≥ −δ logn. We have

fk+1(x) ≤ nθ∗ϕeθ∗x−Kk+1PkL

(
Tn−k−1 −Kk+1 + θ∗x+ θ∗ϕ logn ∈ [0, θ∗δ logn]
Tj ≤ Kk+1 − θ∗x+ 2θ∗δ logn, j ≤ n− k − 1

)
. (4.6)

We set bn =
⌈
(logn)6⌉, and bound from above EL (Λk) in three different manners depend-

ing whether k ≤ bn, k ≥ n− bn or k ∈ [bn, n− bn]. We write

Φstart
n = max

k≤bn

EL


∑
`∈Lk

eθ
∗`−κk(θ)

2
 , Φend

n = max
k∈[n−bn,n]

EL


∑
`∈Lk

eθ
∗`−κk(θ)

2


and Φn = max
k≤n

EL


∑
`∈Lk

eθ
∗`−κk(θ)

2
 .

By (4.6), fk+1(V (u)+`) ≤ nθ∗ϕeθ∗`−κk+1(θ∗)eθ
∗V (u)−Kk for k ∈ [bn, n−bn] thus (4.5) yields

EL (Λk)

≤n2θ∗ϕEL

 ∑
`,`′∈Lk+1

eθ
∗(`+`′)−2κk+1(θ∗)

EL

∑
|u|=k

e2(θ∗V (uk)−Kk)1{V (uj)≤Kj/θ∗−rn,j ,j≤k}


≤n2θ∗ϕΦnEL

(
eTk1{Tj≤−θ∗rn,j ,j≤k}

)
. (4.7)

by (2.2). For k ∈ [bn, n− bn] we have rn,k ≥ (logn)2 − δ logn thus we obtain

EL (Λk) ≤ Φnn
θ∗(2ϕ−δ)e−θ

∗(logn)2
. (4.8)

Secondly, we consider k ∈ [n− bn, n− 1]. We have rn,k ≥ (ϕ− δ) logn and analogously
to (4.7) we get

EL (Λk) ≤ Φend
n n2θ∗ϕEL

(
eTk1{Tj≤−θ∗rn,j ,j≤k}

)
,

we decompose this expectation depending on the endpoint Tk, we obtain

EL (Λk) ≤ Φend
n n2θ∗ϕEL

(
eTk1{Tj≤−θ∗rn,j ,j≤k}(1{Tk≤−bn} + 1{Tk≥−bn})

)
≤ Φend

n n2θ∗ϕ
(
e−bn + n−θ

∗(ϕ−δ)PL (Tk ≥ −bn, Tj ≤ −θ∗rn,j , j ≤ k)
)

≤ Φend
n

(
nθ
∗(ϕ+δ)P end

n + e−θ
∗(logn)2)

, (4.9)

for n ≥ 1 large enough, where

P end
n = max

k∈{n−bn+1,...,n}
PL (Tk ≥ −bn, Tj ≤ −θ∗rn,j , j ≤ k) .

Finally, we deal with k ≤ bn. We use (4.6) to obtain

fk+1(x) ≤ nθ∗ϕeθ∗x−Kk+1
(
P start
n 1{θ∗x−Kk+1≥−bn} + 1{θ∗x−Kk+1≤−bn}

)
,

where
P start
n = sup

k≤bn

sup
y≤bn

PkL

(
Tn−k−1 + θ∗(ϕ logn− y) ∈ [0, δ logn],
Tj ≤ θ∗(2δ logn+ y), j ≤ n− k − 1

)
.
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Applying (2.2) similarly to (4.7) and recalling that rn,k ≥ −δ logn we get

EL (Λk) ≤ Φstart
n n2θ∗ϕEL

(
eTk

(
(P start

n )21{Tk≤θ∗δ logn} + 1{Tk≤−bn}
))
.

Thus for all n large enough,

EL (Λk) ≤ Φstart
n

[
n2θ∗(ϕ+δ)(P start

n )2 + e−θ
∗(logn)2/2

]
. (4.10)

As EL
(
Xn(δ)2) =

∑n
k=1 EL (Λk), gathering (4.8), (4.9) and (4.10), we obtain

EL
(
Xn(δ)2

)
≤ bnΦstart

n

(
n2θ∗(ϕ+δ)(P start

n )2 + e−θ
∗(logn)2/2

)
+ n1+θ∗(2ϕ−δ)Φne

−θ∗(logn)2/2

+ bnΦend
n

(
nθ
∗(ϕ+δ)P end

n + e−θ
∗(logn)2/2

)
+ EL (Xn(δ)) .

Using (1.7), we observe that for any η > 0 there exists x ≥ 0 such that for any n ∈ N

P
(
Φstart
n ≥ xbn

)
+ P

(
Φend
n ≥ xbn

)
+ P (Φn ≥ xn) ≤ η.

Further, by (3.4) and (3.3), for any ε > 0,

lim
n→∞

P
(
P start
n ≤ n−θ∗ϕ+ε

)
= 1, lim

n→∞
P
(
P end
n ≤ n−θ∗ϕ+ε

)
= 1.

We recall (4.1), we have E(Xn(δ)) ≤ E(Yn(δ)). Applying Lemma 4.1, we conclude that
for any ε > 0 and η > 0, lim infn→∞P

(
EL
(
Xn(δ)2) ≤ n2θ∗δ+2ε

)
≥ 1 − η. Letting η → 0

we obtain
lim
n→∞

P
(
EL
(
Xn(δ)2

)
≤ n2θ∗δ+2ε

)
= 1. (4.11)

Finally using (4.3), (4.4) and (4.11) for any δ > 0 we have

lim
n→∞

P
(
PL
(
Mn ≥

Kn

θ∗
− ϕ logn

)
≥ n−4θ∗δ−4ε

)
= 1.

Choosing ε, δ > 0 small enough we conclude the proof.

Proof of Theorem 1.1. Lemma 4.1 covers the case of β < ϕ. We are now left to prove that
for β > ϕ we have

lim
n→∞

PL
(
Mn ≥

Kn

θ∗
− β logn

)
= 1 in P-probability.

To do so, we use the fact that the population grows at exponential rate, and that each
individual in the branching random walk alive at a given time starts an independent
branching random walk.

Let A ∈ N, we set TA the subtree of T consisting in the set of particles that never
made a jump smaller than −A. We also trim the tree so that the maximal number of
offspring is A (for example by choosing the A largest children). We denote by NA

n =
#
{
u ∈ TA : |u| = n

}
. For A large enough, by [26, Theorem 5.5 (iii)] and (1.2), there

exists a constant %A > 1 such that

lim inf
n→∞

(
NA
n

)1/n
= %A, P-a.s. (4.12)

on the set AA =
{

limn→∞N
A
n =∞

}
. Observe that V (u) ≥ −A|u| for any u ∈ TA.
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For n ∈ N, we set ε = β−ϕ
4 and k = dε logne and Bn = {|Kk| ≤ εθ∗ logn}. As each

of the individuals alive at generation k starts an independent BRWre with environment
(Lk+j , j ∈ N), applying the Markov property at time k,

1BnPL (Mn ≤ Kn/θ
∗ − β logn) ≤ 1BnPkL (Mn−k ≤ Kn/θ

∗ − β logn+Ak)N
A
k

≤ 1BnPkL (Mn−k ≤ (Kn −Kk)/θ∗ − ϕ log(n− k))N
A
k ,

P-a.s. for n large enough. Let rA ∈ (1, %A) and denote the event

Cn =
{
PkL (Mn−k ≤ (Kn −Kk)/θ∗ − ϕ log(n− k)) ≤ 1− r−kA

}
.

By (4.12), we conclude that

1AA∩Bn∩CnPL (Mn ≤ Kn/θ
∗ − β logn)→ 0, P-a.s.

By translation invariance and Lemma 4.2 we have limn→∞P(Cn) = 1. As |Kk| < ∞
P-a.s. we have limn→∞P(Bn) = 1. This yields

1AA
PL (Mn ≤ Kn/θ

∗ − β logn)→ 0, in P-probability.

Finally, we observe that when A↗∞ we have 1AA
↗ 1 by the assumption in (1.1).

A Precise behavior of the median and tightness
In this section we will discuss how the results of Theorem 1.1 can be restated and refined.
We recall thatmQ

n , defined in (1.11), is the median ofMn conditionally on the environment.
We would like to describe the asymptotic behavior of mQ

n as simply as possible. We
recall that (Kn, n ∈ N) is a random walk measurable with respect to the environment.
Theorem 1.1 yields that mQ

n ≈ Kn and more precisely

mQ
n = Kn − ϕ logn+ oP (logn).

However, the sequence hidden in oP is not trivial i.e. mQ
n −Kn+ϕ logn does not converge

P-a.s. (see Lemma 3.4). This happens because every now and again the environment can
speed up (or slow down) every individual in the process in a way not captured correctly
by Kn. It is not clear for us if there exists a simple function of the environment which
describes mQ

n more precisely. Finding such a function might be an interesting research
task. In this section we discuss another question: the tightness of (Mn −mQ

n , n ∈ N).

A.1 Quenched tightness

We fix the environment L and ask whether the sequence {∆n}n≥1 defined by

∆n = Mn −mQ
n ,

is tight (with respect to PL). For some cases this question has been answered positively in
[11]. We skip lengthy description of conditions referring the reader to [11, Section 2] and
[11, Section 5]. Instead, we brief in words the ones of [11, Section 2]. We require that the
branching law has uniformly bounded support and the mean offspring number is uniformly
bounded away from 1. The law of displacements need to be such that there exists uniform
x0 such that particles moves above x0 with high probability. Further, the marginal of
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the displacement decays exponentially (with an uniform exponent). Finally, we assume
that with high and uniform probability all particles born in one event stay in a ball of an
uniform size. The setting of [11] is quite general and thus these conditions are somewhat
restrictive. We suspect uniformization effects in our case of i.i.d. environments. We are
quite convinced that the condition about branching laws can be relaxed and that it is
enough to assume only mild moment conditions. The situation of the displacement law is
less clear. Let us illustrate this on a concrete example. Consider a system with the dyadic
branching and the displacements being N (0, σ2

n), where {σ2
n} is an i.i.d. environment

sampled from a exponentially integrable distribution with an unbounded support. We
pose as an open question determining whether this {∆n} is tight.

A.2 Annealed tightness

Another way is to study the tightness in the annealed setting. One way to state this
question would be to ask whether the sequence

{Mn − ELMn}n≥0,

is tight with respect to the joint law of the environment and the branching law i.e. P.
This is a weaker notion than the quenched tightness and we suspect this tightness may
hold under quite general conditions. Before discussing further, let us present a vanilla
version of the Host-Dekking argument [9].

Fact A.1. Assume that P(#{` ∈ L1} ≥ 2) = 1 and C = E minl∈L1 l > −∞. Then for
n ≥ 1 we have

E |Mn − ELMn| ≤ 2|EMn+1 −EMn − C|.

Proof. Let L1 be a realization of L1 and for any l ∈ L1 let M l
n denote the maximum of

the sub-system starting from l (relatively to l). Obviously we have

Mn = max
l∈L1
{l +M l

n} ≥ max
l∈L1
{M l

n}+ min
l∈L1

l.

Now we use the first assumption. Let l1, l2 denote two atoms of L1. We write

EMn ≥ E max
{
M l1
n ,M

l2
n

}
+ E min

l∈L1
l,

and use the equality max(a, b) = (a+ b+ |a− b|)/2 obtaining

EMn ≥ EM l1
n + 1

2 E |M l1
n −M l2

n |+ E min
l∈L1

l.

Rearranging we obtain

E |M l1
n −M l2

n | ≤ 2
(

EMn −EM l1
n −E min

l∈L1
l

)
.

The crucial point of the argument is using the time homogeneity of the environment with
respect to E. This implies EM l1

n = EMn−1. We notice that conditionally on L the
random variables M l1

n ,M
l2
n are independent and have the same distribution. Using this,

the Jensen inequality and the time homogeneity again we obtain

E |M l1
n −M l2

n | ≥ E |M l1
n − ELM l1

n | = E |Mn−1 − ELMn−1|.

This concludes the proof.
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The assumption P(number of individuals in L1 ≥ 2) = 1 is made only to simplify the
argument and the condition C = E minl∈L1 l > −∞ is non-restrictive. Consequently,
the usefulness of the fact depends on the quality of estimates for EMn+1 − EMn. A
very simple case is to assume that there exists K such that P(∀l∈L1 |l| ≤ K) = 1. Then
obviously EMn+1 −EMn ≤ K and the tightness follows. For a general case one can use a
standard sub-additivity argument showing EMn/n→ c ∈ R and, thus, the existence of a
constant C1 and a sequence {nk} having positive density such that EMnk+1−EMnk

≤ C1.
Consequently, the tightness holds on the subsequence {nk}. The usual way to obtain a
better result is to establish precise estimates for EMn. Refining our methods we can
deduce that EMn = cn− ϕ logn+ o(logn) implying that

E |Mn − ELMn| = o(logn).
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