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Abstract

We consider a branching-selection particle system on the real line, introduced by Brunet
and Derrida in [7]. In this model the size of the population is fixed to a constant N . At each
step individuals in the population reproduce independently, making children around their
current position. Only the N rightmost children survive to reproduce at the next step. Bérard
and Gouéré studied the speed at which the cloud of individuals drifts in [2], assuming the
tails of the displacement decays at exponential rate; Bérard and Maillard [3] took interest in
the case of heavy tail displacements. We take interest in an intermediate model, considering
branching random walks in which the critical spine behaves as an α-stable random walk.

1 Introduction
Let L be the law of a random point process on R. Brunet, Derrida et al. introduced in [7, 8] a
discrete-time branching-selection particle system on R in which the size of the population is limited
by some integer N . This process evolves as follows: for any n ∈ N, every individual alive at the nth

generation dies giving birth to children around its current position, according to an independent
version of a point process of law L. Only the N children with the largest position are kept alive
and form the (n + 1)st generation of the process. We write (xNn (1), . . . , xNn (N)) for the positions
at time n of individuals in the process, ranked in the decreasing order. This process is called the
N -branching random walk, or N -BRW for short.

In [2], Bérard and Gouéré proved that under some appropriate integrability conditions, the
cloud of particles drifts at some deterministic speed

vN := lim
n→+∞

xNn (1)
n

= lim
n→+∞

xNn (N)
n

a.s., (1.1)

and obtained the following asymptotic behaviour for vN

v∞ − vN ∼
N→+∞

C

(logN)2 , (1.2)

in which C is an explicit positive constant that depends only on the law L. Their argument
is based on a coupling (recalled in Section 4.2) between the N -branching random walk and a
branching random walk, that we define now.

A branching random walk with branching law L is a process defined as follows. It starts with
a unique individual located at position 0 at time 0. At each time k ∈ N, every individual alive in
the process at time k dies giving birth to children. The children are positioned around their parent
according to i.i.d. point processes with law L.

We write T for the genealogical tree of the process. For u ∈ T, we denote by V (u) the position
of u, by |u| the time at which u is alive, by πu the parent of u (provided that u is not the root
of T) and by uk the ancestor alive at time k of u. We set Ω(u) the set of siblings of u i.e. the set of
individuals v ∈ T such that πv = πu and v 6= u. We observe that T is a (random) Galton-Watson
tree with reproduction law #L.
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We list assumptions made on the point process law L. Let L be a point process with law L.
We first assume that the Galton-Watson tree T is supercritical and a.s. infinite, i.e.

E [#L] > 1 and P (#L = 0) = 0. (1.3)

Note that if P (#L = 0) > 0, while T might be infinite with positive probability, the N -BRW dies
out almost surely. We also suppose the point process law L to be in the stable boundary case in
the following sense:

E

[∑
`∈L

e`

]
= 1, (1.4)

and the random variable X defined by

P(X ≤ x) = E

[∑
`∈L

1{`≤x}e`
]

(1.5)

is in the domain of attraction of a stable random variable Y verifying P(Y ≥ 0) ∈ (0, 1).
Using [9, Chapter XVII], we provide a necessary and sufficient condition for X to be in the

domain of attraction of Y . Let α ∈ (0, 2] be such that Y is an α-stable random variable verifying
P(Y ≥ 0) ∈ (0, 1). We introduce the function

L∗ : x 7→ xα−2 E
[
Y 21{|Y |≤x}

]
. (1.6)

This function is slowly varying1. We set

bn = inf
{
x > 0 : xα

L∗(x) = n

}
. (1.7)

The random variable X is in the domain of attraction Y if and only if writing (Sn) for a random
walk with step distribution with the same law as X, Sn

bn
converges in law to Y .

Note that if E(|X|) < +∞, by strong law of large numbers Sn
n → E(X) a.s. Thus (1.5)

implies that E(X) = 0. In that case, L is in the boundary case as defined in [6]. Up to an affine
transformation several point process laws verify these properties, adapting the discussion in [12,
Appendix A] to this setting.

As Y is an α-stable random variable, there exists an α-stable Lévy process (Yt, t ≥ 0) such that
Y1 has the same law as Y . Using [17, Lemma 1], we define

C∗ := lim
t→+∞

−1
t

logP
(
|Ys| ≤

1
2 , s ≤ t

)
∈ (0,+∞). (1.8)

The next integrability assumption on L ensure that the spine of the branching random walk
(see Section 2.1) behaves as a typical individual staying close to the boundary of the process:

lim
x→+∞

xα

L∗(x) E
[∑
`∈L

e`1{log
(∑

`′∈L
e`′
)
>x+`

}] = 0. (1.9)

Finally, we assume that

E

[∣∣∣∣max
`∈L

`

∣∣∣∣2
]
< +∞, (1.10)

this condition is not expected to be optimal but is sufficient to bound from below in a crude way
the minimal position in the N -BRW, that we use when the coupling fails.

Theorem 1.1. Under the previous assumptions, for an N -BRW with reproduction law L, the
sequence (vN , N ≥ 1) defined in (1.1) exists and verifies

vN ∼
N→+∞

−C∗
L∗(logN)
(logN)α . (1.11)

1i.e. for all λ > 0, limt→+∞
L∗(λt)
L∗(t) = 1.
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We observe that if L satisfies

E

∑
`∈L

e` log
(∑
`′∈L

e`
′−`

)2
+ E

[∑
`∈L

`2e`

]
< +∞, (1.12)

then Theorem 1.1 implies that (1.2) holds with C = π2

2 E
[∑

`∈L `
2e`
]
, which is consistent with the

result of Bérard and Gouéré

Examples. We present two point process laws that satisfy the hypotheses of Theorem 1.1. Let
X be the law of a random variable on (0,+∞). We write Λ(θ) for the log-Laplace transform of X.
We assume there exists θ∗ > 0 such that Λ(θ∗) = log 2, and α > 1 verifying

P(X ≥ x) ∼ e−θ
∗xx−α−1.

In this case, there exists µ := E
(
Xeθ

∗X
)
/2 such that the point process L defined as the law of a

pair of independent random variables (Y1, Y2) which have the same law as θ∗(X − µ) satisfies the
hypotheses of Theorem 1.1.

Let να be the law of an α-stable random variable Y such that P(Y ≥ 0) ∈ (0, 1). If L̃ is
the law of a Poisson point process on R with intensity ν(dx)e−x, then L̃ satisfies assumptions of
Theorem 1.1, and the spine of such a branching random walk is in the domain of attraction of Y .

The rest of the article is organised as follows. In Section 2, we introduce the spinal decomposi-
tion, that links the computation of additive branching random walk moments with random walks
estimates; and the Mogul’skĭı small deviations estimate for random walks. In Section 3, these
results are used to compute the asymptotic behaviour of the survival probability of a branching
random walk with a killing line of slope −ε, using the same technique as [11]. This asymptotic is
then used in Section 4 to prove Theorem 1.1, applying the methods introduced in [2].

2 Spinal decomposition and small deviations estimate
2.1 The spinal decomposition
The spinal decomposition is a tool introduced by Lyons, Pemantle and Peres in [15] to study
branching processes. It has been extended to branching random walks by Lyons in [14]. It provides
two descriptions of a law absolutely continuous with respect to the law Pa , of the branching random
walk (T, V + a). We set Wn =

∑
|u|=n e

V (u) and Fn = σ(u, V (u), |u| ≤ n) the natural filtration on
the set of marked trees. By (1.4), (Wn) is a non-negative martingale. We define the probability
measure Pa on F∞ such that for any n ∈ N,

dPa
dPa

∣∣∣∣
Fn

= e−aWn. (2.1)

We write Ea for the corresponding expectation.
We construct a second probability measure P̂a on the set of marked trees with spine. For (T, V )

a marked tree, we say that w = (wn, n ≥ 0) is a spine of T if for any n ∈ N, |wn| = n, wn ∈ T and
(wn)n−1 = wn−1. We introduce

dL̂
dL

=
∑
`∈L

e`, (2.2)

another point process law. The probability measure P̂a is the law of the process (T, V, w) con-
structed as follows. It starts at time 0 with a unique individual w0 located at position a. It makes
children according to a point process of law L̂. Individual w1 is chosen at random among children
u of w0 with probability eV (u)/W1. Similarly, at each generation n ∈ N, every individual u in the
nth generation dies, giving birth to children according to independent point processes, with law
L̂ if u = wn or law L otherwise. Finally wn+1 is chosen among children v of wn with probability
proportional to eV (v). To shorten notations, we write P = P0, P̂ = P̂0.
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Proposition 2.1 (Spinal decomposition). Under assumption (1.4), for any n ∈ N, we have

P̂a
∣∣∣
Fn

= Pa
∣∣
Fn
.

Moreover, for any z ∈ T such that |z| = n,

P̂a (wn = z| Fn) = eV (z)

Wn
,

and (V (wn), n ≥ 0) is a random walk starting from a, with step distribution defined in (1.5).

A straightforward consequence of this proposition is the many-to-one lemma. Introduced by
Peyrière in [19], this lemma links additive moments of the branching random walks with random
walk estimates. Given (Xn) an i.i.d. sequence of random variables with law defined by (1.5), we
set Sn = S0 +

∑n
j=1Xj such that Pa(S0 = a) = 1.

Lemma 2.2 (Many-to-one lemma). Under assumption (1.4), for any n ≥ 1 and measurable non-
negative function g, we have

Ea

∑
|u|=n

g(V (u1), · · · , V (un))

 = Ea
[
ea−Sng(S1, · · · , Sn)

]
. (2.3)

Proof. We use Proposition 2.1 to compute

Ea

∑
|u|=n

g(V (u1), · · · , V (un))

 = Ea

 ea

Wn

∑
|u|=n

g(V (u1), · · · , V (un))


= Êa

ea ∑
|u|=n

P̂a (wn = u| Fn) e−V (u)g(V (u1), · · · , V (un))


= Êa

[
ea−V (wn)g(V (w1), · · · , V (wn))

]
.

We now observe that (Sn, n ≥ 0) under Pa has the same law as (V (wn), n ≥ 0) under P̂a, which
ends the proof.

The many-to-one lemma can be used to bound the maximal displacement in a branching random
walk. For example, for all y ≥ 0, we have

E

[∑
u∈T

1{V (u)≥y}1{V (uj)<y,j<|u|}

]
=

+∞∑
k=1

E

∑
|u|=k

1{V (u)≥y}1{V (uj)<y,j<|u|}


=

+∞∑
k=1

E
[
e−Sk1{Sk≥y}1{Sj<y,j<k}

]
≤ e−y

+∞∑
k=1

P (Sk ≥ y, Sj < y, j < k) ≤ e−y.

Obviously, this computation leads to

sup
n∈N

P(max
|u|=n

V (u) ≥ y) ≤ P
(

max
u∈T

V (u) ≥ y
)
≤ e−y. (2.4)

Using the spinal decomposition, to compute the number of individuals in a branching random
walk who stay in a well-chosen path, it is enough to know the probability for a random walk
decorated by additional random variables to follow that path.
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2.2 Small deviations estimate and variations
Let S be a random walk in the domain of attraction of an α-stable random variable Y . We recall
that

L∗(u) = uα−2 E(Y 21{|Y |≤u}) and bαn
L∗(bn) = n.

For any z ∈ R, we define Pz such that S under law Pz has the same law as S+ z under law P. The
Mogul’skĭı small deviation estimate enables to compute the probability for S to present fluctuations
of order o(bn).

Theorem 2.3 (Mogul’skĭı [17]). Let (an) ∈ RN
+ be such that

lim
n→+∞

an = +∞, lim
n→+∞

an
bn

= 0.

Let f < g be two continuous functions such that f(0) < 0 < g(0). If P(Y ≤ 0) ∈ (0, 1) then

lim
n→+∞

aαn
nL∗(an) logP

[
Sj
an
∈ [f (j/n) , g (j/n)] , 0 ≤ j ≤ n

]
= −C∗

∫ 1

0

ds

(g(s)− f(s))α ,

where C∗ is defined in (1.8).

This result can be seen as a consequence of an α-stable version of the Donsker theorem, obtained
by Prokhorov. This result yields the convergence of the normalized trajectory of the random walk
S to the trajectory of an α-stable Lévy process (Yt, t ∈ [0, 1]) such that Y1 has the same law as Y .

Theorem 2.4 (Prokhorov [20]). If Sn
bn

converges in law to a stable random variable Y , then
(Sbntcbn

, t ∈ [0, 1]) converges in law to (Yt, t ∈ [0, 1]) in D([0, 1]) equipped with the Skorokhod topology.

We observe that the Mogul’skĭı estimate holds uniformly with respect to the starting point.

Corollary 2.5. With the same notation as Theorem 2.3, we have

lim
n→+∞

aαn
nL∗(an) log sup

y∈R
Py
[
Sj
an
∈ [f(j/n), g(j/n)], 0 ≤ j ≤ n

]
= −C∗

∫ 1

0

ds

(g(s)− f(s))α .

Proof. Observe in a first time that if y 6∈ [anf(0), ang(0)], then

Py
[
Sj
an
∈ [f(j/n), g(j/n)], 0 ≤ j ≤ n

]
= 0.

We now choose δ > 0, and write K =
⌈
g(0)−f(0)

δ

⌉
, we have

sup
y∈R

Py
[
Sj
an
∈ [f(j/n), g(j/n)], 0 ≤ j ≤ n

]
≤ max

k≤K
Πf(0)+kδ,f(0)+(k+1)δ(f, g),

where

Πx,x′(f, g) = sup
y∈[xan,x′an]

Py
[
Sj
an
∈ [f(j/n), g(j/n)], 0 ≤ j ≤ n

]
≤ P

[
Sj
an
∈ [f(j/n)− x′, g(j/n)− x], 0 ≤ j ≤ n

]
.

Therefore, for all k ≤ K, we have

lim sup
n→+∞

aαn
nL∗(an) log Πf(0)+kδ,f(0)+(k+1)δ(f, g) ≤ −C∗

∫ 1

0

ds

(g(s)− f(s) + δ)α ,

which leads to

lim sup
n→+∞

aαn
nL∗(an) log sup

y∈R
P
[
Sj + y

an
∈ [f(j/n), g(j/n)], 0 ≤ j ≤ n

]
≤ −C∗

∫ 1

0

ds

(g(s)− f(s) + δ)α .

Letting δ → 0 concludes the proof, as the lower bound is a direct consequence of Theorem 2.3.
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Using an adjustment of the original proof of Mogul’skĭı, one can prove a similar estimate for
enriched random walks. We set (Xn, ξn) a sequence of i.i.d. random variables on R × R+, with
X1 in the domain of attraction of the stable random variable Y , such that P(Y ≥ 0) ∈ (0, 1). We
denote by Sn = S0 +X1 + · · ·+Xn, which is a random walk in the domain of attraction of Y . The
following estimate then holds.

Lemma 2.6. Let (an) ∈ RN
+ be such that limn→+∞

an
bn

= 0. We set En = {ξj ≤ n, j ≤ n} and we
assume that

lim
n→+∞

aαn
L∗(an)P(ξ1 ≥ n) = 0. (2.5)

There exists C∗ > 0, given by (1.8), such that for any pair (f, g) of continuous functions verifying
f < g, for any f(0) < x < y < g(0) we have

lim
n→+∞

aαn
nL∗(an) log inf

z∈[xan,yan]
Pz
(
Sj
an
∈ [f(j/n), g(j/n)] , j ≤ n,En

)
= −C∗

∫ 1

0

ds

(g(s)− f(s))α .

Proof. We assume in a first time that f, g are two constant functions. Let n ≥ 1, f < x < y < g
and f < x′ < y′ < g, we denote by

P x
′,y′

x,y (f, g) = inf
z∈[x,y]

Pzan
(
Sn
an
∈ [x′, y′], Sj

an
∈ [f, g], j ≤ n,En

)
. (2.6)

Let A > 0 and rn =
⌊
A

aαn
L∗(an)

⌋
. We divide [0, n] into K =

⌊
n
rn

⌋
intervals of length rn. For any

k ≤ K, we set mk = krn and mK+1 = n. Applying the Markov property at time mK , . . . ,m1, and
restricting to trajectories which are, at any time mk in [x′an, y′an], we have

P x
′,y′

x,y (f, g) ≥ πx
′,y′

x,y (f, g)
(
πx
′,y′

x′,y′ (f, g)
)K

, (2.7)

where we set πx′,y′x,y (f, g) = infz∈[x,y] Pzan
(
Srn
an
∈ [x′, y′], Sjan ∈ [f, g], j ≤ rn, Ern

)
.

Let δ > 0 be chosen small enough such that M =
⌈
y−x
δ

⌉
≥ 3. We observe easily that

πx
′,y′

x,y (f, g) ≥ min
0≤m≤M

πx
′,y′

x+mδ,x+(m+1)δ(f, g)

≥ min
0≤m≤M

πx
′−(m−1)δ,y′−(m+1)δ
x,x (f − (m− 1)δ, g − (m+ 1)δ). (2.8)

Moreover, we have

πx
′,y′

x,x (f, g) = Pxan
(
Srn
an
∈ [x′, y′], Sj

an
∈ [f, g], j ≤ rn, Ern

)
≥ Pxan

(
Srn
an
∈ [x′, y′], Sj

an
∈ [f, g], j ≤ rn

)
− rnP(ξ1 ≥ n).

By (2.5), limn→+∞ rnP(ξ1 ≥ n) = 0. Moreover, rn ∼ A
aαn

L∗(an) and X1 is in the domain of
attraction of Y . Thus Srn

an
converges in law toward A

1
αY as n → +∞. We apply Theorem 2.4,

the process
(
Sbrnt/Ac

an
, t ∈ [0, A]

)
converges as n → +∞ under law Pxan to a stable Lévy process

(x+ Yt, t ∈ [0, A]) such that YA has the same law as A1/αY . In particular

lim inf
n→+∞

πx
′,y′

x,x (f, g) ≥ Px(YA ∈ (x′, y′), Yu ∈ (f, g), u ≤ A).

Using (2.8), we have

lim inf
n→+∞

πx
′,y′

x,y (f, g) ≥ min
0≤m≤M

Px+mδ(YA ∈ (x′ + δ, y′ − δ), Yu ∈ (f + δ, g − δ), u ≤ A).
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As a consequence, recalling that K ∼ nL∗(an)
Aaαn

, (2.7) leads to

lim inf
n→+∞

aαn
nL∗(an) logP x

′,y′

x,y (f, g)

≥ 1
A

min
0≤m≤M

logPx′+mδ(YA ∈ (x′ + δ, y′ − δ), Yu ∈ (f + δ, g − δ), u ≤ A). (2.9)

By [17, Lemma 1], we have

lim
t→+∞

1
t

logPx(Yt ∈ (x′, y′), Ys ∈ (f, g), s ≤ t) = − C∗
(g − f)α ,

where C∗ is defined by (1.8). Letting A→ +∞ then δ → 0, (2.9) yields

lim inf
n→+∞

aαn
nL∗(an) logP x

′,y′

x,y (f, g) ≥ − C∗
(g − f)α (2.10)

which is the expected result when f, g are two constants.
In a second time, we consider two continuous functions f < g. Let f(0) < x < y < g(0).

We set h a continuous function such that f < h < g and h(0) = x+y
2 . Let ε > 0 such that

6ε ≤ inft∈[0,1] min(g(t)− h(t), h(t)− f(t)). We choose A > 0 such that

sup
|t−s|≤ 2

A

|f(t)− f(s)|+ |g(t)− g(s)|+ |h(t)− h(s)| ≤ ε.

and for a ≤ A, we write ma = ban/Ac and Ia,A = [f(a/A) +ε, g(a/A)−ε]. We define J0,A = [x, y],
and for 1 ≤ a ≤ A, Ja,A = [h(a/A) − ε, h(a/A) + ε]. Applying the Markov property at times
mA−1, . . . ,m1, we have

inf
z∈[xan,yan]

Pz
(
Sj
an
∈ [f(j/n), g(j/n)] , j ≤ n,En

)
≥
A−1∏
a=0

inf
z∈Ja,A

Pzan
(
Sma+1

an
∈ Ja+1,A,

Sj
an
∈ Ia,A, j ≤ ma+1 −ma, Ema+1−ma

)
.

Therefore, using equation (2.10), we have

lim inf
n→+∞

aαn
nL∗(an) log inf

z∈[xan,yan]
Pz
(
Sj
an
∈ [f(j/n), g(j/n)] , j ≤ n,En

)
≥ − 1

A

A−1∑
a=0

C∗
1

(g(a/A)− f(a/A)− 2ε)α .

As the upper bound is a direct consequence of Theorem 2.3, we let A→ +∞ and ε→ 0 to conclude
the proof.

3 Branching random walk with a barrier
Let (T, V ) be a branching random walk with reproduction law L satisfying the hypotheses of
Theorem 1.1. We study in this section the asymptotic behaviour, as n → +∞ and ε → 0 of the
quantity

%(n, ε) = P (∃|u| = n : ∀j ≤ n, V (uj) ≥ −εj) . (3.1)

The asymptotic behaviour of %(∞, ε) has been studied by Gantert, Hu and Shi in [11] for a
branching random walk with a spine in the domain of attraction of a Gaussian random variable.
They studied the asymptotic behaviour of %(n, ε) for ε ≈ θn−2/3. Using the same arguments, we
obtain sharp estimates on the asymptotic behaviour of %(n, ε) for ε ≈ θΛ(n)n−

α
α+1 , where Λ is a

well-chosen slowly varying function.
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We apply the spinal decomposition and the Mogul’skĭı estimate to compute the number of
individuals that stay at any time k ≤ n between curves anf(k/n) and ang(k/n), for an appropriate
choice of (an), f and g. We note that

E

∑
|u|=n

1{V (uj)∈[anf(j/n),ang(j/n)],j≤n}

 = E
[
e−Sn1{Sj∈[anf(j/n),ang(j/n),j≤n}

]
≈ e−ang(1)P (Sj ∈ [anf(j/n), ang(j/n)], j ≤ n)

≈ exp
(
−ang(1)− nL∗(an)

aαn
C∗

∫ 1

0

ds

(g(s)− f(s))α

)
.

This informal computation hints that to obtain tight estimates, it is appropriate to choose a
sequence (an) satisfying an ∼n→+∞

nL∗(an)
aαn

, and functions f and g verifying

∀t ∈ [0, 1], g(t) + C∗

∫ t

0

ds

(g(s)− f(s))α = g(0). (3.2)

However, instead of solving explicitly g′(t) = −C∗(g(t) + θt)−α as a function of (t, θ), we use
approximate solutions for (3.2).

For n ∈ N, we define

an = inf
{
x ≥ 0 : x

α+1

L∗(x) = n

}
. (3.3)

and we introduce the function

Φ : (0,+∞) −→ R
λ 7−→ C∗

λα −
λ
α+1 .

(3.4)

Note that Φ is a C∞ strictly decreasing function on (0,+∞), that admits a well-defined inverse
Φ−1. The main result of the section is the following.

Theorem 3.1. Under the assumptions of Theorem 1.1, for any θ > 0 we have

−C
1
α
∗

θ
1
α

≤ lim inf
n→+∞

1
an

log %
(
n, θ

an
n

)
≤ lim sup

n→+∞

1
an

log %
(
n, θ

an
n

)
≤ −Φ−1(θ).

Remark 3.2. For any µ > 0 we have abµnc ∼n→+∞ µ
1

α+1 an, by inversion of regularly varying
functions. Consequently, Theorem 3.1 implies that for any θ > 0,

− 1 ≤ lim inf
n→+∞

1
an

log %
(⌊

(θ/C∗)
α+1
α n

⌋
, C∗

an
n

)
≤ lim sup

n→+∞

1
an

log %
(⌊

(θ/C∗)
α+1
α n

⌋
, C∗

an
n

)
≤ −θ

1
αΦ−1(θ)

C
1
α
∗

. (3.5)

As limθ→+∞ θ
1
αΦ−1(θ) = C

1
α
∗ , this leads to

lim
h→+∞

lim inf
n→+∞

1
an

log %
(
bhnc, C∗

an
n

)
= lim
h→+∞

lim sup
n→+∞

1
an

log %
(
bhnc, C∗

an
n

)
= −1. (3.6)

To prove Theorem 3.1, we prove separately an upper bound in Lemma 3.3 and the lower bound
in Lemma 3.4. The upper bound is obtained by computing the number of individuals that stay
above the line of slope −θ ann during n units of time.

Lemma 3.3. Under the assumptions of Theorem 1.1, for all θ > 0 we have

lim sup
n→+∞

1
an

log %
(
n, θ

an
n

)
≤ −Φ−1(θ).
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Proof. Let θ > 0 and λ > 0, we set g : t 7→ −θt+λ(1− t)
1

α+1 . For j ≤ n, we introduce the intervals

I
(n)
j = [−θanj/n, ang(j/n)] .

As I(n)
n = {g(1)an}, an individual that stays above the curve of slope −θan/n crosses at some time

k ≤ n the line g(./n)an, therefore

%
(
n, θ

an
n

)
= P

(
∃|u| = n : ∀j ≤ n, V (uj) ≥ −θan

j

n

)
≤ P

(
∃|u| ≤ n : V (u) ≥ ang(|u|/n), V (uj) ∈ I(n)

j , j < |u|
)
.

Thus, setting
Yn =

∑
|u|≤n

1{V (u)≥ang(|u|/n)}1{V (uj)∈I(n)
j

,j<|u|
},

by the Markov inequality we have %
(
n, θ ann

)
≤ E(Yn). Applying Lemma 2.2, we have

E(Yn) =
n∑
k=1

E

∑
|u|=k

1{
V (uj)∈I(n)

j
,j<k

}1{V (u)≥ang(k/n)}


=

n∑
k=1

E
[
e−Sk1{

Sj∈I(n)
j

,j<k
}1{Sk≥ang(k/n)}

]

≤
n∑
k=1

e−g(k/n)anP
(
Sj ∈ I(n)

j , j < k
)
.

Let A ∈ N, we set ma = bna/Ac and ga,A = infs∈[ a−1
A , a+2

A ] g(s), we have

E(Yn) ≤
A−1∑
a=0

ma+1∑
k=ma+1

e−g(k/n)anP
(
Sj ∈ I(n)

j , j < k
)
≤ n

A−1∑
a=0

e−ga,AanP
(
Sj ∈ I(n)

j , j ≤ ma

)
.

Therefore, by Corollary 2.5, we have

lim sup
n→+∞

1
an

logE(Yn) ≤ max
a≤A−1

(
−ga,A − C∗

∫ a
A

0

ds

(g(s) + θs)α

)

≤ max
a≤A−1

(
−ga,A −

C∗(α+ 1)
λα

[
1− (1− a/A)

1
α+1

])
.

Letting A→ +∞, as g is uniformly continuous, we have

lim sup
n→+∞

1
an

log %
(
n, θ

an
n

)
≤ sup
t∈[0,1]

{
θt− λ(1− t)

1
α+1 − C∗(α+ 1)

λα

[
1− (1− t)

1
α+1

]}
≤ −λ+ sup

t∈[0,1]

{
θt− (α+ 1)Φ(λ)

[
1− (1− t)

1
α+1

]}
.

Note that t 7→ 1 − (1 − t)
1

α+1 is a convex function with slope 1
α+1 at t = 0. Therefore, if we

choose λ = Φ−1(θ), the function t 7→ θt− (α+ 1)Φ(λ)
[
1− (1− t)

1
α+1

]
is concave and decreasing.

As a consequence
lim sup
n→+∞

1
an

log %
(
n, θ

an
n

)
≤ −λ,

which concludes the proof.

To obtain a lower bound, we bound from below the probability for an individual to stay between
two given curves, while having not too many children. To do so, we compute the first two moments
of the number of such individuals, and apply the Cauchy-Schwarz inequality to conclude.
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Lemma 3.4. Under the assumptions of Theorem 3.1, for all θ > 0 we have

lim inf
n→+∞

1
an

log %
(
n, θ

an
n

)
≥ −C

1
α
∗

θ
1
α

.

Proof. For u ∈ T, we recall that Ω(u) = {v ∈ T : πv = πu and v 6= u} is the set of siblings of u.
We introduce ξ(u) = log

∑
v∈Ω(u) e

V (v)−V (u). Note that (1.9) implies

lim
x→+∞

xα

L∗(x) P̂ (ξ(w1) ≥ x) = 0. (3.7)

Let θ > 0, λ > 0 and δ > 0. For j ≤ n, we set I(n)
j = [−anθj/n, an(λ− θj/n)] and

Xn =
∑
|u|=n

1{
V (uj)∈I(n)

j
,j≤n

}1{ξ(uj)≤δan,j≤n}.

We observe that

%
(
n, θ

an
n

)
= P (∃|u| = n : V (uj) ≥ −anθj/n, j ≤ n)

≥ P
(
∃|u| = n : V (uj) ∈ I(n)

j , j ≤ n
)
≥ P (Xn ≥ 1) ,

thus by the Cauchy-Schwarz inequality, %
(
n, θ ann

)
≥ (E(Xn))2

E(X2
n) .

In a first time, we bound from below E(Xn). Using Proposition 2.1, we have

E(Xn) = E

 1
Wn

∑
|u|=n

1{
V (uj)∈I(n)

j
,j≤n

}1{ξ(uj)≤δan,j≤n}


= Ê

∑
|u|=n

e−V (u)P̂(u = wn|Fn)1{
V (uj)∈I(n)

j
,j≤n

}1{ξ(uj)≤δan,j≤n}


= Ê

[
e−V (wn)1{

V (wj)∈I(n)
j

,j≤n
}1{ξ(wj)≤δan,j≤n}

]
.

Let ε ∈ (0, λ), as I(n)
n = [−θan, (λ− θ)an] we have

E(Xn) ≥ Ê
[
e−V (wn)1{V (wn)≤(ε−θ)an}1{V (wj)∈I(n)

j
,j≤n

}1{ξ(wj)≤δan,j≤n}
]

≥ e(θ−ε)an P̂
[
V (wn) ≤ (ε− θ)an, V (wj) ∈ I(n)

j , ξ(wj) ≤ δan, j ≤ n
]
.

We introduce 0 < x < y and A > 0 such that P̂(V (w1) ∈ [x, y], ξ(w1) ≤ A) > 0. Applying the
Markov property at time p = bεanc, for any n ≥ 1 large enough we have

P̂
[
V (wj) ∈ I(n)

j , ξ(wj) ≤ δan, j ≤ n
]

≥ P̂(V (w1) ∈ [x, y], ξ(w1) ≤ A)p inf
z∈[xεan,yεan]

P̂z
[
V (wj) ∈ I(n)

j+p, ξ(wj) ≤ δan, j ≤ n− p
]
.

As (3.7) holds, we apply Lemma 2.6,

lim inf
n→+∞

1
an

logE(Xn) ≥ θ − ε− C∗
λα

+ ε log P̂(V (w1) ∈ [x, y], ξ(w1) ≤ A).

Letting ε→ 0, we have
lim inf
n→+∞

1
an

logE(Xn) ≥ θ − C∗
λα
.
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To bound from above the second moment of Xn, we apply once again the spinal decomposition,

E(X2
n) = E

Xn

Wn

∑
|u|=n

1{
V (uj)∈I(n)

j
,j≤n

}1{ξ(uj)≤δan,j≤n}


= E

Xn

∑
|u|=n

e−V (u)P̂(wn = u|Fn)1{
V (uj)∈I(n)

j
,j≤n

}1{ξ(uj)≤δan,j≤n}


= Ê

(
e−V (wn)Xn1{

V (wj)∈I(n)
j

,j≤n
}1{ξ(wj)≤δan,j≤n}

)
≤ eθan Ê

[
Xn1{

V (wj)∈I(n)
j

,j≤n
}1{ξ(wj)≤δan,j≤n}

]
.

We decompose the set of individuals counted in Xn under law P̂ according to their most recent
common ancestor with the spine w, we have

Xn = 1{
V (wj)∈I(n)

j
,j≤n

}1{ξ(wj)≤δan,j≤n} +
n∑
j=1

∑
u∈Ω(wj)

Λ(u),

where u′ ≥ u means u′ is a descendant of u and

Λ(u) =
∑

|u′|=n,u′≥u

1{
V (u′

j
)∈I(n)

j
,j≤n

}1{ξ(u′j)≤δan,j≤n}.

We write
G = σ ((wk,Ω(wk), V (u), u ∈ Ω(wk)), k ≥ 0)

for the sigma-field of the information of the spine. Let k ≤ n and u ∈ Ω(wk). Conditionally on G,
the subtree rooted at u with marks V is a branching random walk with law PV (u), therefore

Ê (Λ(u)| G) ≤ EV (u)

 ∑
|u′|=n−k

1{
V (u′

j
)∈I(n)

k+j ,j≤n−k
}

≤ eV (u) EV (u)

(
e−Sn−k1{

Sj∈I(n)
k+j ,j≤n−k

}]
≤ eV (u)eθan sup

z∈R
Pz
(
Sj ∈ I(n)

k+j , j ≤ n− k
)
.

Let A ∈ N, we set ma = bna/Ac and Ψa,A = supz∈R Pz
(
Sj ∈ I(n)

ma+j , j ≤ n−ma

)
. For any

k ≤ ma+1 and u ∈ Ω(wk), we have Ê (Λ(u)| G) ≤ eV (u)eθanΨa+1,A, thus

Ê

1{
V (wj)∈I(n)

j
,j≤n

}1{ξ(wj)≤δan,j≤n}
ma+1∑

k=ma+1

∑
u∈Ω(wk)

Λ(u)


≤

ma+1∑
k=ma+1

Ê

1{
V (wj)∈I(n)

j
,j≤n

} ∑
u∈Ω(wk)

1{ξ(wk)≤δan}Λ(u)


≤Ψa+1,Ae

θan

ma+1∑
k=ma+1

Ê
[
1{

V (wj)∈I(n)
j

,j≤n
}eξ(wk)+V (wk)1{ξ(wk)≤δan}

]
≤nΨa+1,AΨ0,Ae

(λ+(1−a/A)θ+δ)an .

Consequently, applying Corollary 2.5, as soon as θ ≥ C∗
λα we have

lim sup
n→+∞

1
an

logE(X2
n) ≤ max

a≤A

(
λ+ (2− a/A)(θ − C∗

λα
) + δ

)
≤ λ+ 2θ − 2C∗

λα
+ δ.
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Using the first and second moment estimates of Xn, we have

lim inf
n→+∞

1
an

log %
(
n, θ

an
n

)
≥ −λ− δ.

Letting δ → 0 and λ→ (C∗/θ)
1
α concludes the proof.

Remark 3.5. If we assume (fθ, gθ) to be a pair of functions solution of the differential equation{
f(t) = −θt
g(t) = −θ + C∗

∫ 1
t

ds
(g(s)−f(s))α ,

using similar estimates as the ones developed in Lemmas 3.3 and 3.4, we prove that for all θ ∈ R

lim
n→+∞

1
an

log %
(
n, θ

an
n

)
= −gθ(0).

Theorem 3.1 is used to obtain bounds for gθ(0) admitting a closed expression, that are precise
for large θ. Using similar methods, applied to different functions, we also obtain estimates on the
behaviour of gθ(0) for small values of θ, namely

lim
θ→0

gθ(0) = ((α+ 1)C∗)
1

α+1 .

4 Speed of the N -branching random walk
In [2], to prove that limn→+∞(logN)2vN = C for a branching random walk in the usual boundary
case, the essential tool was a version of Theorem 3.1, found in [11]. The same methods are applied to
compute the asymptotic behaviour of vN under the assumptions of Theorem 1.1. Loosely speaking,
we compare the N -BRW with N independent branching random walks in which individuals crossing
a linear boundary with slope −νN defined by

νN := C∗
L∗(logN)
(logN)α . (4.1)

By (3.6), for any h > 0 and N ≥ 1 large enough, %
(
h (logN)α+1

L∗(logN) , νN

)
≈ 1

N . Thus (logN)α+1

L∗(logN) is
expected to be the correct time scale for the study of the process.

We start this section with a more precise definition of the branching-selection particle system
we consider. We introduce additional notation that enables to describe it as a measure-valued
Markov process. In Section 4.2, we introduce an increasing coupling between branching-selection
particles systems, and use it to prove the existence of vN . Finally, we obtain in Section 4.3 an
upper bound for vN and in Section 4.4 a lower bound, that are enough to conclude the proof of
Theorem 1.1.

4.1 Definition of the N -branching random walk and notation
The branching-selection models we consider are particle systems on R. It is often convenient to
represent the state of a particle system by a counting measure on R with finite integer-valued mass
on every interval of the form [x,+∞). The set of such measures is written M. A Dirac mass at
position x ∈ R indicates the presence of an individual alive at position x. With this interpretation, a
measure inM represents a population with a rightmost individual, and no accumulation point. For
N ∈ N, we writeMN for the set of measures inM with total mass N , that represent populations
of N individuals. If µ ∈MN , then there exists (x1, . . . , xN ) ∈ RN such that µ =

∑N
j=1 δxj .

We introduce a partial order on M: given µ, ν ∈ M, we write µ 4 ν if for all x ∈ R,
µ([x,+∞)) ≤ ν([x,+∞)). Note that if µ 4 ν then µ(R) ≤ ν(R). A similar partial order can be
defined on the set of laws point processes. We say that L 4 L̃ if there exists a coupling (L, L̃) of
these two laws, such that L has law L, L̃ has law L̃ and∑

`∈L

δ` 4
∑
˜̀∈L̃ δ˜̀ a.s.

12



Let N ∈ N. We introduce a Markov chain (XN
n , n ≥ 0) on MN called the N -BRW. For any

n ≥ 0, we denote by (xNn (1), . . . , xNn (N)) ∈ RN the random vector that verifies

XN
n =

N∑
j=1

δxNn (j) and xNn (1) ≥ xNn (2) ≥ · · · ≥ xNn (N).

Conditionally on XN
n , XN

n+1 is constructed as follows. Let (L1
n, . . . , L

N
n ) be N i.i.d. point processes

with law L, we set

Y Nn+1 =
N∑
i=1

∑
`i∈Lin

δxNn (i)+`i ∈M,

which is the population after the branching step. We set y = sup{x ∈ R : Y Nn+1([x,+∞)) ≥ N} and
P = Y Nn+1((y,+∞)). We write XN

n+1 = Y Nn+1|(y,+∞) + (N −P )δy. The natural filtration associated
to the N -BRW is defined, for n ∈ N, by Fn = σ(L1

j , . . . , L
N
j , j ≤ n). Whereas this is not done

here, genealogical informations can freely be added to this process; breaking ties in any F-adapted
manner to choose which of the individuals at the leftmost position are killed.

4.2 Increasing coupling of branching-selection models
We construct here a coupling between N -BRWs, that preserves the order 4. This coupling has
been introduced in [2], in a special case and is a key tool in the study of the branching-selection
processes we consider. It is used to bound from above and from below the behaviour of the N -BRW
by a branching random walk in which individuals that cross a line of slope −νN are killed. In a
first time, we couple a single step of the N -BRW.

Lemma 4.1. Let 1 ≤ m ≤ n and µ ∈Mm, µ̃ ∈Mn be such that µ 4 µ̃. Let L 4 L̃ be two laws of
point processes. For any 1 ≤ M ≤ N , there exists a coupling of XM

1 the first step of an M -BRW
with reproduction law L starting from µ with X̃N

1 the first step of an N -BRW with reproduction
law L̃ starting from µ̃, in a way that XM

1 4 X̃N
1 a.s.

Proof. Let (L, L̃) be a pair of point processes such that
∑
`∈L δ` 4

∑
`∈L̃ δ` a.s., L has law L and

L̃ has law L̃. We set ((Lj , L̃j), j ≥ 0) i.i.d. random variables with the same law as (L, L̃). We
write µ =

∑m
i=1 δxi and µ̃ =

∑n
i=1 δyi in a way that (xj , j ≤ m) and (yj , j ≤ n) are ranked in the

decreasing order. We set

µ1 =
m∑
i=1

∑
`i∈Li

δxi+`i and µ̃1 =
n∑
i=1

∑
`i∈L̃i

δyi+`i .

We observe that that µ1 4 µ̃1 a.s.
We set XM

1 for the M individuals with highest positions in µ1 and X̃N
1 the N individuals with

highest positions in µ̃1. Once again, we have XM
1 4 X̃N

1 a.s.

A direct consequence of this lemma is the existence of an increasing coupling between N -BRWs.

Corollary 4.2. Let L 4 L̃ be two laws of point processes. For all 1 ≤ M ≤ N ≤ +∞, if
XM

0 4 X̃N
0 , then there exists a coupling between the M -BRW (XM

n ) with law L and the N -BRW
(X̃N

n ) with law L̃ verifying
∀n ∈ N, XM

n 4 X̃N
n a.s.

Using this increasing coupling, we prove that with high probability, the cloud of particles in
the N -BRW does not spread.

Lemma 4.3. Under the assumptions (1.3), (1.4) and (1.10) there exists C > 0 such that for all
N ≥ 2, y ≥ 1 and n ≥ C(logN + log y),

P
(
xNn (1)− xNn (N) ≥ y

)
≤ C

(
N(logN + log y)

y

)2
.
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Proof. Let n ∈ N and k ≤ n, we bound xNn (1) − xNn−k(1) from above and xNn (N) − xNn−k(1) from
below to estimate the size of the cloud of particles at time n. An appropriate choice of k concludes
the proof of Lemma 4.3.

We first observe that the N -BRW starting from position XN
n−k can be coupled with N i.i.d.

branching random walks ((Tj , V j), j ≤ N) with (Tj , V j) starting from position xNn−k(j), in a way
that

XN
n 4

N∑
j=1

∑
u∈Tj ,|u|=k

δV j(u).

As a consequence, by (2.4), for any y ∈ R and k ≤ n

P
(
xNn (1)− xNn−k(1) ≥ y

)
≤ P

(
max
j≤N

max
u∈Tj ,|u|=k

V j(u) ≥ y
)
≤ Ne−y. (4.2)

We now bound from below the displacements in the N -BRW. Let L be a point process with
law L. By (1.3), there exists R > 0 such that E

(∑
`∈L 1{`≥−R}

)
> 1. We denote by LR the point

process that consists in the maximal point in L as well as any other point that is greater than −R.
Using Corollary 4.2, we couple (XN

n−k+m,m ≥ 0) with the N -BRW (XN,R
m ,m ≥ 0) of reproduction

law LR, starting from a unique individual located at xNn−k(1) at time 0 in an increasing fashion.
As XN,R

m 4 XN
n−k+m, if XN,R

k (R) = N , then xN,Rk (N) ≤ xNn (N). Moreover by definition of LR,
the minimal displacement made by one child with respect to its parent is given by min(−R,maxL).
For n ∈ N, we write Qn a random variable defined as the sum of n i.i.d. copies of min(−R,maxL).
Observe that QkN is stochastically dominated by xN,Rk (N)− xNn−k(1). Consequently

P
(
xNn (N)− xNn−k(1) ≤ −y

)
≤ P

(
XN,R
k (R) < N

)
+ P (QkN ≤ −y) .

By (1.10), we have P(QkN ≤ −y) ≤ C k2N2

y2 . Moreover the process (XN,R
n (R), n ≥ 0) is a Galton-

Watson process with reproduction law given by #LR, that saturates at N . We set mR = E(#LR)
and α = − log P(#LR=1)

logmR . We have P(XN,R
k (R) < N) ≤ CNαm−kαR , by [10]. We conclude that

P
(
xNn (N)− xNn−k(1) ≤ y

)
≤ C k

2N2

y2 + C
Nα

mkα
R

. (4.3)

Combining (4.2) and (4.3), for all y ≥ 1 and k ∈ N we have

P
(
xNn (1)− xNn (N) ≥ 2y

)
≤ Ne−y + C

k2N2

y2 + C
Nα

mkα
R

.

Thus, setting k =
⌊

3(logN+log y)
α logmR

⌋
, there exists C > 0 such that for any y ≥ 1 and N ≥ 1 large

enough, for any n ≥ k,

P
(
xNn (1)− xNn (N) ≥ 2y

)
≤ C

(
N(logN + log y)

y

)2
.

Applying Lemma 4.3 and the Borel-Cantelli lemma, for any N ≥ 2 we have

lim
n→+∞

xNn (1)− xNn (N)
n

= 0 a.s. and in L1.

Lemma 4.4. Under the assumptions (1.3), (1.4) and (1.10), for any N ≥ 1, there exists vN ∈ R
such that for all j ≤ N

lim
n→+∞

xNn (j)
n

= vN a.s. and in L1. (4.4)

Moreover, if XN
0 = Nδ0, we have

vN = inf
n≥1

E(xNn (1))
n

= sup
n≥1

E(xNn (N))
n

. (4.5)
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Proof. This proof is based on the Kingman’s subadditive ergodic theorem. We first prove that if
XN

0 = Nδ0, then (xNn (1)) is a subadditive sequence, and (xNn (N)) is an overadditive one. Thus
xNn (1)
n and xNn (N)

n converge, and limn→+∞
xNn (1)
n = limn→+∞

xNn (N)
n a.s. by Lemma 4.3. We treat

in a second time the case of a generic starting value XN
0 ∈MN , using Corollary 4.2.

Let N ∈ N, let (Ljn, j ≤ N,n ≥ 0) be an array of i.i.d. point processes with common law L. We
define on the same probability space random measures (XN

m,n, 0 ≤ m ≤ n) such that for all m ≥ 0,
(XN

m,m+n, n ≥ 0) is an N -BRW starting from the initial distribution Nδ0. For any m ≥ 0, we set
XN
m,m = Nδ0. Let 0 ≤ m ≤ n, we assume that XN

m,n =
∑N
j=1 δxNm,n(j), with (xNm,n(j)) listed in the

decreasing order, is given. We define (xNm,n+1(j), j ≥ 0), again listed in the decreasing order, in a
way that

+∞∑
j=1

δxNm,n+1(j) =
N∑
j=1

∑
`jn∈Ljn

δxNm,n(j)+`jn ,

and set XN
m,n+1 =

∑N
j=1 δxNm,n+1(j).

For x ∈ R, we write φx for the shift operator on M, such that φx(µ) = µ(. − x). With this
definition, we observe that for any 0 ≤ m ≤ n we have

φxN0,n(N)
(
XN
n,n+m

)
4 XN

0,n+m 4 φxN0,n(1)
(
XN
n,n+m

)
.

As a consequence,

xN0,n+m(1) ≤ xN0,n(1) + xNn,n+m(1) and xN0,n+m(N) ≥ xN0,n(N) + xNn,n+m(N). (4.6)

We apply Kingman’s subadditive ergodic theorem. Indeed for any n ≥ 0, (xNn,n+m(1),m ≥ 0) is
independent of (xNk,l(1), 0 ≤ k ≤ l ≤ n) and has the same law as (xN0,m(1),m ≥ 0). Moreover,
E(|xN0,1(1)|) < +∞ by (1.10). As a consequence, (4.6) implies there exists vN ∈ R verifying

lim
n→+∞

xN0,n(1)
n

= vN a.s. and in L1,

and vN = infn∈N
E(xN0,n(1))

n . Similarly, limn→+∞
xN0,n(N)

n = supn∈N
E(xN0,n(N))

n a.s. and in L1, which
proves that (4.5) is verified. Moreover, by Lemma 4.3, these limits are equal.

We now consider the general case. Let (XN
n , n ≥ 0) be an N -BRW. We couple this process

with Y N and ZN two N -BRWs starting from NδxN0 (1) and NδxN0 (N) respectively, such that for all
n ∈ N, ZNn 4 XN

n 4 Y Nn . We have

∀j ≤ N, zNn (N) ≤ xNn (N) ≤ xNn (j) ≤ xNn (1) ≤ yNn (1).

Therefore, for any j ≤ N , we have

vN = lim inf
n→+∞

zNn (N)
n

≤ lim inf
n→+∞

xNn (j)
n
≤ lim sup

n→+∞

xNn (j)
n
≤ lim sup

n→+∞

yNn (1)
n

= vN a.s.

which yields limn→+∞ xNn (j)/n = vN a.s. Similarly, we have

E
[∣∣∣xNn (j)

n − vN
∣∣∣] ≤ E

[(
yNn (1)
n − vN

)
1{xNn (j)≥nvN}

]
+ E

[(
vN − zNn (N)

n

)
1{xNn (j)≤nvN}

]
≤ E

[∣∣∣yNn (1)
n − vN

∣∣∣]+ E
[∣∣∣ zNn (N)

n − vN
∣∣∣] .

We conclude that xNn (j)/n also converges to vN in L1.

Remark 4.5. Lemma 4.4 proves the limit in (4.4) does not depend on the starting position of the
N -BRW. To prove Theorem 1.1, we now study the asymptotic behaviour of vN . This can be done
considering only N -BRW starting from the initial condition Nδ0.

To study the asymptotic behaviour of vN as N → +∞, we couple the N -BRW with a branching
random walk in which individuals are killed below the line of slope −νN . Applying Theorem 3.1,
we derive upper and lower bounds for vN .
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4.3 An upper bound on the maximal displacement
To obtain an upper bound on the maximal displacement in the N -branching random walk, we link
the existence of an individual alive at time n that made a large displacement with the event there
exists an individual staying above a line of slope −νN during mN units of time in a branching
random walk. The following lemma is an easier and less precise version of [2, Lemma 2], that is
sufficient for our proofs.

Lemma 4.6. Let v < K. We set (xn, n ≥ 0) a sequence of real numbers with x0 = 0 such that
supi∈N(xi+1 − xi) ≤ K. For all m ≤ n, if xn > (n−m)v +Km, then there exists i ≤ n−m such
that for all j ≤ m, xi+j − xi ≥ vj.

Proof. Let (xn) be a sequence verifying supi∈N(xi+1−xi) ≤ K. We assume that for any i ≤ n−m,
there exists ji ≤ m such that xi+ji − xi ≤ vji. We set σ0 = 0 and σk+1 = σk + jσk . By definition,
we have

xσk+1 ≤ (σk+1 − σk)v + xσk ,

thus, for all k ≥ 0, xσk ≤ σkv. Moreover, as (σk) is strictly increasing, with steps smaller than m,
there exists k0 such that σk0 ∈ [n−m,n]. We conclude that

xn = (xn − xσk0
) + xσk0

≤ K(n− σk0) + vσk0 = Kn− (K − v)σk0

≤ Kn− (K − v)(n−m) ≤ Km+ v(n−m),

which concludes the proof.

Using Lemma 4.6 and Theorem 3.1, we bound from above the maximal position at time Nε.

Lemma 4.7. Under the assumptions of Theorem 1.1, let XN be an N -BRW with reproduction
law L starting from Nδ0. For any ε > 0 small enough, for any N ≥ 1 large enough, we have

P
(
xNbNεc(1) ≥ −(1− 2ε)νNNε

)
≤ N−ε.

Proof. Let ε ∈ (0, 1) and θ > 0. By (3.5),

lim sup
n→+∞

1
an

log %
(⌊(

θ

(1− ε)C∗

)α+1
α

n

⌋
, C∗(1− ε)

an
n

)
≤ −θ

1
αΦ−1(θ)

C
1
α
∗

.

We set mN =
⌊(

θ
(1−ε)C∗

)α+1
α (logN)α+1

L∗(logN)

⌋
. As a(logN)α+1/L∗(logN) ∼N→+∞ logN , we have

lim sup
N→+∞

1
logN log %(mN , (1− ε)νN ) ≤ −θ

1
αΦ−1(θ)

C
1
α
∗

.

Observe there exists C > 0 such that θ 1
αΦ−1(θ)−C

1
α
∗ ∼θ→+∞ −C/θ by definition of Φ. Therefore,

for any ε > 0 small enough, there exists θ > 0 such that %(mN , (1 − ε)νN ) ≤ N−(1+2ε) for any
N ≥ 1 large enough.

We set n = bNεc. Observe the N -BRW of length n is built with nN independent point processes
of law L satisfying (1.4). If L is a point process with law L, we have

P(maxL ≥ x) ≤ P

(∑
`∈L

e` ≥ ex
)
≤ e−x.

Setting K = (1 + 2ε) logN , the probability there exists one individual in the N -BRW alive before
time n that made a step larger than K is bounded from above by 1− (1−N−(1+2ε))nN ≤ N−ε.

We now consider the path of length n that links an individual alive at time n at position xNn (1)
with its ancestor alive at time 0. We write yNn (k) for the position of the ancestor at time k of this
individual. With probability 1−N−ε, this is a path with no step greater than K. For N ≥ 1 large

16



enough, we have −(1 − 2ε)νNn > −(n −mN )(1 − ε)νN + KmN . Applying Lemma 4.6, for any
N ≥ 1 large enough we have{
∀k < n, yNn (k + 1)− yNn (k) ≤ K

}
∩
{
xNn (1) ≥ −(1− 2ε)νNn

}
⊂
{
∃j ≤ n−mN : ∀k ≤ mN , y

N
n (j + k)− yNn (j) ≥ −(1− ε)νNk

}
.

Consequently if xNn (1) ≥ −(1 − 2ε)νNn, there exists an individual in the N -BRW that has a
sequence of descendants of length mN staying above the line of slope −(1 − ε)νN . This happens
with probability at most nN%(mN , (1− ε)νN ). We conclude from these observations that for any
ε > 0 and N ≥ 1 large enough

P
(
xNn (1) ≥ −νN (1− 2ε)n

)
≤ CN−ε.

Proof of the upper bound of Theorem 1.1. Let XN be an N -BRW starting from Nδ0. We note
that the maximal displacement at time n in the N -BRW is bounded from above by the maximum
of N independent branching random walks starting from 0. By (2.4), for any y ≥ 0 and n ∈ N we
have P(xNn (1) ≥ y) ≤ Ne−y.

Moreover, by Lemma 4.4 we have lim supn→+∞ xNn (1)/n ≤ E[xNp (1)/p] a.s. for all p ≥ 1. Let
ε > 0 small enough such that Lemma 4.7 apply and y > 0. Setting p =

⌊
Nε/2⌋ we have

vN ≤ E
[
xNp (1)
p 1{xNp (1)≥py}

]
+ E

[
xNp (1)
p 1{xNp (1)∈[−pνN (1−ε),py]}

]
+ E

[
xNp (1)
p 1{xNp (1)≤−p(1−ε)νN}

]
,

therefore

vN ≤
∫ +∞

y

P
(
xNp (1) ≥ pz

)
dz + yP

(
xNp (1) ≥ −p(1− ε)νN

)
− (1− ε)νN

≤Ne−N
ε/2y + yN−ε/2 − (1− ε)νN .

Letting N → +∞ then ε→ 0, we conclude that

lim sup
N→+∞

vN (logN)α

L∗(logN) ≤ −C
∗.

4.4 The lower bound
To bound from below the position of the leftmost individual in the N -BRW, we prove that with
high probability, there exists a time k ≤ mN such that xNk (N) ≥ −kνN . We use these events as
renewal times for a particle process that stays below the N -BRW.

Lemma 4.8. Under the assumptions of Theorem 1.1, let XN be an N -BRW with reproduction
law L starting from Nδ0. For any λ > 0 and any ε > 0 small enough, there exists δ > 0 such that
for all N ≥ 1 large enough,

P
(
∀n ≤ λ (logN)α+1

L∗(logN) , x
N
n (N) ≤ −n(1 + ε)νN

)
≤ exp

(
−Nδ

)
.

Proof. For N ∈ N and λ > 0, we set mN =
⌊
λ (logN)α+1

L∗(logN)

⌋
. Let ε > 0, by (3.5), we have

lim inf
N→+∞

1
logN log % (mN , (1 + ε)νN ) ≥ −(1 + ε)− 1

α > −1.
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Consequently for any ε > 0, for any δ > 0 small enough we have %(mN , (1 + ε)νN ) ≥ 1
N1−δ for any

N ≥ 1 large enough.
Let L be a point process with law L. There exists R > 0 such that E (# {` ∈ L : ` ≥ −R}) > 1.

We consider the branching random walk in which individuals that cross the line of slope −R are
killed. By standard Galton-Watson processes theory2, there exists r > 0 and α > 0 such that
for any N ≥ 1 large enough the probability there exists more than N individuals alive at time
bα logNc in this process is bounded from below by r. Thus for all N ≥ 1 large enough, the
probability there exists at least N + 1 individuals alive at time mN + bα logNc in a branching
random walk in which individuals that cross the line of slope −νN (1 + 2ε) are killed is bounded
from below by r%(mN , (1 + ε)νN ).

We set BN =
{
∀n ≤ mN + bα logNc, xNn (N) ≤ −nνN (1 + 2ε)

}
. By Corollary 4.2, the N -BRW

can be coupled with N independent branching random walks starting from 0, in which individuals
below the line of slope −νN (1 + 2ε) are killed, in a way that on BN , XN is above the branching
random walks for the order 4. The probability that at least one of the branching random walks
has at least N + 1 individuals at time mN + bα logNc is bounded from below by

1− (1− r%(mN , (1 + ε)νN ))N ≥ 1− exp(−Nδ/2),

for any N ≥ 1 large enough. On this event, the coupling is impossible as XN has no more that N
individuals alive at time N , thus BN is not satisfied. We conclude that P(BN ) ≤ e−Nδ/2 .

Proof of the lower bound of Theorem 1.1. The proof is based on a coupling of the N -BRW XN

with another particle system Y N , in a way that for any n ∈ N, Y Nn 4 XN
n . Let (Ljn, j ≤ N,n ≥ 0)

be an array of i.i.d. point processes with law L. We construct XN such that Ljn represents the set
of children of the individual xNn (j), with XN

0 = Nδ0. By Lemma 4.8, for any ε > 0 small enough,
there exists δ > 0 such that setting mN =

⌊
(logN)α+1

L∗(logN)

⌋
, for any N ≥ 1 large enough we have

P
(
∀n ≤ mN , x

N
n (N) ≤ −n(1 + ε)νN

)
≤ exp

(
−Nδ

)
.

We introduce T0 = 0 and Y N0 = Nδ0. The process Y N behaves as an N -BRW, using the same
point processes (Ljn) as used for XN until time

T1 = min
(
mN , inf

{
j ≥ 0 : yNj (N) > −jνN (1 + ε)

})
.

We then write Y N
T+

1
= NδyN

T1
(N), i.e. just after time T1, the process Y N starts over at time T+

1

from its leftmost individual. For any k ∈ N, the process behaves as an N -BRW between times T+
k

and Tk+1, defined by

Tk+1 = Tk + min
(
mN , inf

{
j ≥ 0 : yNTk+j(N)− yNTk(N) > −jνN (1 + ε)

})
.

By construction, for any k ∈ N we have Y Nk 4 XN
k a.s. and in particular yNk (N) ≤ xNk (N).

As (Tk − Tk−1, k ≥ 1) is a sequence of i.i.d. random variables, Lemma 4.4 leads to

lim
k→+∞

xNTk(N)
k

= E(T1)vN a.s.

Moreover, as (yNTk(N)− yNTk−1
(N), k ≥ 1) is another sequence of i.i.d. random variables, by law of

large numbers we have

lim
k→+∞

yNTk(N)
k

= E(yNT1
(N)) a.s.

Combining these two estimates, we have vN ≥
E(yNT1 (N))

E(T1) .
We now compute

E(yNT1
(N)) = E

(
yNT1

(N)1{T1<mN}
)

+ E
(
yNT1

(N)1{T1=mN}
)

≥ E
(
−νN (1 + ε)T11{T1<mN}

)
+ E

(
yNT1

(N)1{T1=mN}
)

≥ −νN (1 + ε)E(T1) + E
(
yNT1

(N)1{T1=mN}
)
.

2See e.g., [10].
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Note that for all j ≤ T1, we have Y Nj = XN
j . Moreover, by Corollary 4.2, we may couple XN

with an N -BRW X̃ in which individuals make only one child, with a displacement of law maxL.
Consequently, we have

yNT1
(N) ≥

(
T1∑
n=1

min
j≤N

(maxLj,n)
)

a.s.

which leads to

vN ≥ −νN (1 + ε) + 1
E(T1) E

[(
mN∑
n=1

min
j≤N

(maxLj,n)
)

1{T1=mN}

]
.

Using the Cauchy-Schwarz inequality and (1.10), we have

E

[(
mN∑
n=1

min
j≤N

(maxLj,n)
)

1{T1=mN}

]
≥ −C(NmN )1/2P (T1 = mN )1/2

.

We apply Lemma 4.8 and let N → +∞ then ε→ 0 to prove that

lim inf
N→+∞

vN (logN)α

L∗(logN) ≥ −C∗.
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[1] E. Aı̈dékon and B. Jaffuel. Survival of branching random walks with absorption. Stochastic

Process. Appl., 121(9):1901–1937, 2011.
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