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SUMMARY

This paper presents some statistical models and estimation procedures when the explanatory variables are
functions. We put the stress on the fact that regularization techniques are needed in order to get stable and
reliable estimations. Then, an application in remote sensing in presented. It shows the potential of these
kind of models to handle real life problems. Copyright © 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

This paper addresses a specific case of statistical learning: the predictive modelling when the
training data are discretizcd curves. In the illustrative example, these curves are the evolution
along time of the reflectance of coarse pixels. The images are obtained from the Végétation
sensor of the SPOT4 satellite. The aim of this application is to predict the land use, i.e. the
proportion of each type of vegetation or land cover inside each mixed pixel. Of course
discretized curves can be considered as random vectors in a finite dimensional vectorial space
and then statistical or training methods can be performed as usual. Nevertheless, this kind of
data rises some particular questions and then requires some special care to adapt classical
methods. The main question is how the functional properties as the regularity or the smoothness
of the curves could be taken into account. Automatic measurements easily generate highly
dimensional data. Both this dimensionality and regularity drive us to take care of severe
multicollinearity and overfitting problems.

This approach is also a particular case of functional data analysis. A survey on this topic is
given in Reference [1]. The statistical analysis of data with variables taking values in a function
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space has been firstly introduced for exploratory methods such as principal component analysis
(PCA) and many articles were published treating examples from chemometrics, economy,
climatology, etc., adapting multivariable tools for functional data analysis.

Our aim is slightly different. We will mainly focus on statistical estimation, or learning, in
models with functional covariates. Nevertheless, the mathematical background is quite similar
and a reduction dimension method such as PCA is one way to prevent from multicollinearity.
Suppose we observe a sample of curves X(7),. .., X,(¢), defined for ¢ belonging to a time interval
T. It is usually assumed that these curves are drawn from the same distribution and belong to a
separable Hilbert space H, equipped with the inner product <.,.> and the norm |.||. We can take
for instance H = L?[T], the Hilbert space of squared integrable functions defined on 7. We also
suppose that E(||X|]?) is finite so that we can define the expectation u(f) = E(X (7)) and the
covariance operator I', mapping H to H,

Tﬂ@:LWWVMM,feH (1)

(s, ) being the covariance between the two random variables X (s) and X (7). This operator is
known to be non-negative and nuclear, that is to say the sum of its eigenvalues is finite.

Many studies have dealt with the statistical description of this kind of data and the main idea
was to extend PCA to a functional framework.

This was initially done by Deville [2] and Dauxois and Pousse [3] by expanding the curves in
the basis of eigenfunctions of the empirical covariance operator in order to obtain a small
dimension space which represents as well as possible the main variations of the data. This
expansion is also known as the Karhunen—Loeve expansion. Then, Besse and Ramsay [4], Rice
and Silverman [5], Besse et al. [6]... added interpolating and smoothing procedures in order to
take into account both the discretization of the curves and to give a smooth representation of
the data. Pezzulli and Silverman [7], Silverman [§8] and Cardot [9] showed that incorporating a
smoothing step could also improve the quality of the estimators.

We present, in Section 2, extensions of classical statistical models such as the linear regression
model, the AR processes and the generalized linear models for functional data. In Section 3, we
explain why, in this context, estimation is an ill-posed problem and thus regularization is
needed, either by a dimension reduction approach or by adding a penalty in the loss criterion.
Finally, in Section 4, an application of generalized linear models for remote sensing data is
presented.

2. SOME STATISTICAL MODELS FOR FUNCTIONAL DATA

Suppose now we also have observations Yi,..., Y,, supposed to be real or functional again,
linked to the curves Xi,...,X,. We may be interested in modelling and/or predicting Y as a
function of X. Almost all existing statistical models can be derived for functional data
but we will present the most studied ones which are the linear model, the generalized linear
model and the functional autoregressive process. The linear model [10—12] can be expressed as
follows,

K=u+Lﬁ@%®®+& @
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and we are willing to estimate the functional parameter f. Generalized linear models are built by
adding a link function that allows to describe distributions that are discrete, positive, etc. These
types of models have been implemented and studied by Marx and Eilers [13] or Cardot and
Sarda [14]. The remote sensing application presented in Section 4 is a particular case of
generalized linear model with a multilogit link function. Another model studied in the literature
is the functional autoregressive process of order one. It was introduced by Bosq (15) and is
defined as follows,

Xi(0) = (1) + /T p(s, D(Xi-1(s) — p(s)) ds + (1) (©)

where ¢; are 1.i.d. second order random variables taking values in H. More generally, this model
may be written X; = u + p(X;—1 — u) + ¢; and estimating operator p and mean function p allows
then to make a prediction. Note that fully non-parametric models have also been investigated
recently [16].

3. ESTIMATION PROCEDURES

The main problem is that covariance matrices are compact operators in an infinite dimension
space and so estimation is an il/l-posed problem. For instance in the linear model, it is easy to
check that the solution of the unconstrained least squares criterion satisfies the score equation:

%Zl <Xi’ﬁ>Xi:%ZI YiX;: 4)

and we can find as many B as we want satisfying (4).

A first idea consists in reducing the dimension of the space in which we seek for a solution.
Denoting by vy,...,v, the orthonormal eigenfunctions of the empirical covariance operator
associated to the eigenvalues 41> --- > 4,, we get a solution in the g-dimensional function space
V4 span by vi,...,v,,

n 4 A .
f=3 Lry, (5)

j=1 }"j

where A, =1/n)"" | Y;X;. Smoothing steps can also be combined with this approach and
they generally give better results on real data [17, 18]. Asymptotic properties of such estimators
have been derived [12, 15, 19] and show that ¢ must not tend too rapidly to infinity as
the sample size increases. Other strategies to reduce the dimension of the space in which
estimators are built exist. For instance, Preda and Saporta [20] extended PLS to the functional
framework.

A second idea consists in adding a penalty in order to get a stable and a unique solution
[13, 21, 22] since estimation can be seen in this context as a kind of ill-posed inverse problem
[23]. Consider a penalty operator J(.) which maps a subset of H to R; it can be for instance the
norm of the second derivative J(f§) = ||[3(2)||2. Assuming that J(.) is differentiable, we are seeking,
in the linear model, the function Bg satisfying

] n . . 1 n
S XX+ VIR =Y VX (6)
i=1 i=1
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¢ being a tuning parameter that controls the trade off between the fidelity to the data and the
‘regularity’ of the solution. Note that generally the solution is expanded in a basis of B-splines or
Fourier series both for computational reasons and approximation properties of such functions.
This also allows to deal with the discretization problem since curves are never observed
continuously along time. Indeed, let us consider a basis of functions By, ..., B; and expand the
functional parameter £ in this basis

k
By~ BB, teT
j=1

Then, <X, > ~ Z;‘:l B;<Xi, B;) can be evaluated with a quadrature rule and the estimation of
p is performed through the estimation of the vector of parameters (f§,..., ;) with classical
algorithms.

More generally, we can consider a loss function % such as a least squares criterion or the
opposite of the log-likelihood. Then, the regularization approach consists in minimizing

min L(Yisooo, Yo Xisooo X )+ L) Q)
€
in a space S « H. The dimension reduction approach leads to find the optimum of
ml}'l g(ylg"'! Ynsﬁlea“-aﬁqu.B) (8)
peS,

where S‘q is a g-dimensional function space and fIq is a projector onto S},. Cardot et al. [24] and
Cardot and Sarda [14] showed, in the context of linecar and generalized linear models, for
quadratic penalties based on the L, norm of given order derivatives, that the parameter ¢
should not tend too rapidly to zero to get consistent estimators. The values of the tuning
parameters ¢ and ¢ are generally obtained in practical situations with criterions based on cross-
validation.

4. A REMOTE SENSING APPLICATION

On board SPOTH4, a satellite launched in March 1998, the Végétation sensor gives, at a high
temporal resolution, daily images of Europe at a coarse spatial resolution, each pixel
corresponding to a ground area of 1km? The information given by this sensor are the
reflectances, i.e. the proportion of reflected radiation, in the four spectral bands blue (B), red
(R), near infra-red (NIR) and short wave infra-red (SWIR). We also considered two vegetation
indices, that are frequently used in bioclimatology and remote sensing [25], the normalized
difference vegetation index (NDVI), NDVI= (NIR—R)/(NIR+R), and the perpendicular

vegetation index (PVI), PVI=(NIR—1.2R)/(1/1+ (1.2)*), which are functions of the

reflectances in the red (R) and NIR channels. This information allows to characterize the
developpement of vegetation and crops at the scale of a small country [25]. Because in Europe,
and particularly in France, the size of plots is much less than 1 km?, the observed reflectances
are a mixture of different informations since they contain different agricultural plots (maize,
wheat, etc.), forests or urban areas.

We aim at estimating the land use, i.e. the proportion of each types of culture or land cover
inside each mixed pixel. This is the first step in predicting regional crop productions. Despite the
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medium spatial resolution, we take advantage of the high temporal resolution of such a sensor
to derive estimations of the land use. We consider two approaches to achieve that. A direct
approach that is based on the generalized linear models for functional data. The proportions are
assumed to be drawn from a multinomial distribution whose parameters depend on the
temporal evolution of the reflectance. The other approach, which is an inverse approach,
assumes that the observed reflectance in a mixed pixel is a weighted combination of the pure
reflectances of each theme.

Let us denote by n;, j = 1,...,p, the proportion of land use of crop j in pixel i of 1 km?. In
our application the observed area is about 40 km x 40 km so that i=1,...,n = 1554. Ten
(p = 10) different classes of crops were present. The curves of reflectance for each pixel i, in each
channel and index, are denoted by X; = [Xi(¢)), ... ,X,‘(tK)]T where t; < --- <t < --- <tg are the
instants of measure. The images in which the clouds were too important were removed to finally
get K = 39 different images from March to August 1998. We assume that the land use is fixed
during the observation period.

4.1. The multilogit model for functional data

We suppose now that the proportions m; given the temporal evolution of the reflectance
{Xi(?), t € T} can be modelled as resulting from a multinomial distribution whose parameters
satisfy

[E(n|X) _ €Xp (5J + fT OCj(l)X,'(l‘) dl)

v b exp(dr + [rou()Xi(1) dr)
For identifiability reasons we took o, = 0 and §, = 0.

We can give a sketch of interpretation on this approach. Indeed, each coarse resolution
pixel is assumed to be composed of numerous small agricultural plots of similar area. Each of
these plots of a pixel i is, with a probability E(m;|X;), of the theme j of the land use. So
that the number of plots of the themes follows exactly a multinomial distribution and we
observe the proportions. Each functional coefficient o; may have an interpretation by
comparison to the reference function «, = 0. For instance, if o; is a positive function, then
the ratio of the proportion will be higher than the mean value and thus the class j will be more
important in the pixel 7, if the centred reflectance curve is positive. Nevertheless, if the
estimations have oscillating features, giving an interpretation may be a hazardous task.

©)

We aim at estimating the vector 5:(51,...,5,,_1)T and the functional coefficients
oj(t), j=1,...,p — 1. The estimations are obtained by means of the maximum likelihood
criterion.

For computational purposes, we preferred the dimension reduction approach based on a
functional principal components analysis. The number of covariates (the principal components)
still may be large and we decided to select the most significative parameters by means of
the likelihood ratio test with an ascendant procedure. More details may be found in Cardot
et al. [26].

4.2. Results

Different models can be built to deal with the problem of land use estimation. The most natural
approach consists in assuming that the reflectance X;(r) of a pixel i at date ¢ is a linear
combination of the pure reflectance curves or characteristic curves, say p;(7), of each theme j
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weighted by the associated proportions 7;;
P
X)) =Y mp,(1) + (1) (10)
=1

where ¢(¢) is an error term. This model was proposed in Reference [27] incorporating moreover
random effects.

Model (10) is a varying-time regression model and assuming the land use is known, we can
obtain global non-parametric estimations of the characteristic curves p;, j = 1,...,p, by means
of penalized splines as in Reference [28]. Then, using the estimated curves, we are able to get
estimators of the vector of proportions in a new pixel i/ by considering a constrained least
squares estimator (my; >0 and Zj ny; = 1). More details may be found in Reference [26].

The initial sample was split into a learning sample composed of 1055 pixels used to perform
the estimations and select the best models and a test sample composed of 499 pixels used to
evaluate and compare the two different approaches. The following criterion was used to
compare on the test sample the skill of the two approaches:

Re — |7t — 7yl

Yyl

where 7; is the predicted proportion of theme j in pixel i. We also considered the most simple
model, named M), as a benchmark to indicate if it is worth building sophisticated statistical
models. It consists in predicting the land use of one crop by its empirical mean in the learning
sample. This is a particular case of the multilogit model with no covariates.

The estimators for functions «; in the multilogit model are shown in Figure 1. The reference
curve is taken for the theme ‘Urban’ since we expect that it varies less along time. We recognize
a biological cycle for the curves associated to crops such as “Winter crops’ or ‘Peas’ and a rather
flat coefficient for themes such as ‘Forest’ or ‘Permanent crops’.

We noticed (see Tables I and IT) that the functional multilogit model, even if it can appear to
be less natural since it has no direct physical interpretation, gave generally better predictions
than the mixture of curves approach which appeared to be unstable. Indeed, it seems that these
poor results (see e.g. the predictions for ‘rapeseed’, ‘winter crops’ or ‘permanent crops’ in
Table I) are mainly due to identifiability problems of the parameters. A bayesian approach
would certainly help us to improve the prediction.

Nevertheless, the effectiveness of the multilogit model may be moderated. Indeed, it relies on a
precise estimation of the location parameters ¢; which represent a kind of mean value of each
crop j. If we have to make predictions in an area whose repartition of the crops is very different
then we might get into trouble. The best predictions seem to be obtained when using the PVI
index. For instance, the errors were reduced of about 60% compared to the reference model M
which consists in predicting in the test sample by the mean value in the training sample.

Thus combinations of the original wavelengths may be more appropriate to predict the land
use and our future work will deal with finding optimal combinations of the available channels.

Other methods could also have been used and regression trees or neural networks are
potential candidates (see Reference [29]). These methods are known to be better if threshold
effects or strong non-linear effects are suspected to exist. A preliminary work with random
forests, not presented in this paper, gave good results but this point needs further investigation.
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Multilogit functional regressors
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Figure 1. Estimated functional parameters for the NDVI index.

Table I. Median value of the criterion error when predicting land use in the test sample with the mixture of
characteristic curves approach.

Themes NDVI PVI Blue Red NIR SWIR My
Urban 0.19 0.18 0.18 0.13 0.48 0.18 0.86
Water 0.00 0.00 0.00 0.00 0.00 0.00 1.30
Rapeseed 0.90 1.15 0.82 1.19 1.01 1.26 0.59
Winter crops 0.35 0.49 0.36 0.51 0.41 0.57 0.30
Spring crops 0.49 0.85 0.49 0.43 0.67 0.43 0.69
Peas 0.77 0.94 0.81 0.98 0.84 0.86 0.63
Summer crops 0.21 0.23 3.41 0.34 0.19 0.21 0.88
Permanent crops 0.79 0.72 1.01 0.78 0.91 0.95 0.61
Forest 0.36 0.33 0.48 0.54 0.37 0.34 0.98
Potatoes 0.37 0.24 0.23 0.30 0.72 0.30 1.30

Bold face numbers correspond to the best predictions. Model M| is used as a benchmark.

Copyright © 2005 John Wiley & Sons, Ltd.
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Table II. Median value of the criterion error when predicting land use in the test sample
with the GLM approach.

Themes NDVI PVI Blue Red NIR SWIR My
Urban 0.49 0.36 0.47 0.54 0.41 0.51 0.86
Water 0.43 0.29 0.78 0.62 0.61 0.31 1.30
Rapeseed 0.48 0.46 0.45 0.50 0.47 0.47 0.59
Winter crops 0.20 0.21 0.19 0.20 0.22 0.19 0.30
Spring crops 0.58 0.56 0.60 0.61 0.65 0.61 0.69
Peas 0.50 0.43 0.45 0.43 0.48 0.46 0.63
Summer crops 0.61 0.68 0.61 0.60 0.76 0.53 0.88
Permanent crops 0.47 0.46 0.52 0.49 0.46 0.50 0.61
Forest 0.34 0.36 0.34 0.31 0.45 0.35 0.98
Potatoes 0.90 0.93 0.94 0.90 1.06 0.85 1.31

Bold face numbers correspond to the best predictions. Model M| is used as a benchmark.

5. CONCLUDING REMARKS

A large number of publications, in various fields of science, deal now with functional data since
this approach has proved to be a promising alternative to more classical statistical models when
the covariates can be considered as discretized curves. It takes account of the functional nature
of the data and allows to deal with numerous discretization points and irregular sampling
designs. Nevertheless a huge amount of work is still to be done both from a theoretical and
practical point of view. More theory would help, for instance, the statisticians to test hypotheses
or build confidence intervals and the development of efficient algorithms and packages in
statistical softwares would certainly permit these approaches to be used by scientists from other
communities.
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