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Nonparametric learning and
Regularization

Abstract

Several nonparametric methods in a regression model are presented.
First, the most classical ones: piecewise polynomial estimators, es-
timation with Spline bases, kernel estimators and projection esti-
mators on orthonormal bases (such as Fourier or wavelet bases).
Since these methods suffer from the curse of dimensionality, we also
present Generalized Additive Models and CART regression models.

The main references for this course are the following books :

• The elements of Statistical Learning by T. Hastie et al [2].

• Introduction to nonparametric statistics (2009) by A. Tsybakov [4]

• Introduction to High-Dimensional Statistics by C. Giraud [1]

• Concentration inequalities and model selection by P. Massart [3]

1 Introduction
We consider the regression model :

Yi = f(Xi) + εi, i = 1, . . . n.

We assume that the variables Xi are in Rd, and Yi ∈ R. We assume that Xi

is deterministic, and that the variables εi are i.i.d., centered, with variance σ2.

Without any assumption on the function f , we are in a nonparametric frame-
work. We propose several methods to estimate the function f . We first consider
piecewise polynomial estimators.

2 Piecewise polynomial estimators.
We assume in this chapter that the variables Xi belong to some compact set

of R, that we assume to be [0, 1].

2.1 Constant piecewise estimators

We estimate the function f by a piecewise constant function on a partition
of [0, 1]. (These estimators are analogous to histograms for density estimation
and are called regressograms).
We divide [0, 1] into D regular intervals with the same size :

Ik,D = 1]k/D,(k+1)/D], k = 0, . . . , D − 1.

It is quite natural to estimate the function f on the interval Ik,D by the mean
of the values of Yi such that Xi ∈ Ik,D, hence for all x ∈ Ik,D, we define

f̂D(x) =

∑
i,Xi∈Ik,D Yi

]{i,Xi ∈ Ik,D}

if ]{i,Xi ∈ Ik,D} 6= 0 et

f̂D(x) = 0 if ]{i,Xi ∈ Ik,D} = 0.

We can also write f̂D(x) as follows

f̂D(x) =

∑n
i=1 Yi1Xi∈Ik,D∑n
i=1 1Xi∈Ik,D

.

In the following, we assume that D < n. If for all i, Xi = i/n, we have for all
k, ]{i,Xi ∈ Ik,D} 6= 0.

This estimator corresponds to the least square estimator of f on the para-
metric model of constant piecewise functions on the intervals Ik,D:

SD = {f(x) =
D∑
k=1

ak1x∈Ik,D}.
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Indeed, if we minimize

h(a1, . . . , aD) =

n∑
i=1

(
Yi −

D∑
k=1

ak1Xi∈Ik,D

)2

=

D∑
k=1

∑
i,Xi∈Ik,D

(Yi − ak)2,

(1)
the solution is

âl =

∑
i,Xi∈Il,D Yi

]{i,Xi ∈ Il,D}
, ∀l.

Exercise. — Prove this result.

2.2 Piecewise polynomials

Piecewise polynomials with degree m on the partition defined by the inter-
vals Ik,D, 1 ≤ k ≤ D correspond to the minimization of the criterion :

n∑
i=1

(
Yi −

D∑
k=1

(ak,0 + ak,1Xi + . . .+ ak,mX
m
i )1Xi∈Ik,D

)2

=

D∑
k=1

∑
i,Xi∈Ik,D

(Yi − ak,0 − ak,1Xi − . . .− ak,mXm
i )2.

On each interval Ik,D, we adjust a polynomial with degree m, by minimizing
the least square criterion∑

i,Xi∈Ik,D

(Yi − ak,0 − ak,1Xi − . . .− ak,mXm
i )2.

This corresponds to a linear model with respect to the parameters
(ak,0, . . . , ak,m), we therefore have an explicit solution.

Exercise. — Prove this result.

The parameters D and m have to be calibrated.

2.3 Calibration of the parameters

We consider the constant piecewise estimator and we want to calibrate the
parameter D. Let us first consider two extreme cases :

• If D is of the same order as the number of observations n, we have a
single point Xi in each interval Ik,D and we estimate f by Yi on each
interval Ik,D. The estimator is very irregular, simply reproducing the
data. We have overfitting : small bias but high variance.

• On the contrary, if D = 1, we estimate f on [0, 1] by the mean of all the
observations Yi. If f is far to be a constant function, the estimator is poor,
it is underfitted, we have a large bias, and a small variance.

We have to find a compromise between these two extreme situations to realize
a good bias/variance trade-off.

2.4 Theoretical performances of the estimator.

We assume that the regression function f is a Lipschitz function, this means
that it belongs to the class of functions

S1,R = {f ∈ L2([0, 1]),∀x, y ∈ [0, 1], |f(x)− f(y)| ≤ R|x− y|}.

In this case, it is possible to give an upper bound for the quadratic risk of the
estimator, for a suitable choice D.

THEOREM 1. — We consider the regression model

Yi = f(
i

n
) + εi, i = 1, . . . , n.

The estimator

f̂D(x) =

∑n
i=1 Yi1Xi∈Ik,D∑n
i=1 1Xi∈Ik,D

,

with
D = D(n) = [(nR2)1/3]

satisfies
sup

f∈S1,R
Ef [‖f̂D − f‖22] ≤ C(σ)R

2
3n−

2
3

and the rate of convergence that is obtained is optimal.
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Of course, this is a theoretical result, since in practice, it is impossible to know
if the regression function f belongs to the class S1,R. We will see in Section 9
practical methods based on cross-validation to choose D.

Proof. —

• Computation of the expectation

For all x ∈ Ik,D,

Ef
(
f̂D(x)

)
=

∑
i,Xi∈Ik,D f(Xi)

]{i,Xi ∈ Ik,D}
.

Ef
(
f̂D(x)

)
− f(x) =

∑
i,Xi∈Ik,D (f(Xi)− f(x))

]{i,Xi ∈ Ik,D}
.

Assuming that f ∈ S1,R, we have for all x and Xi in the same interval
Ik,D, |x − Xi| ≤ 1/D, which implies that |f(x) − f(Xi)| ≤ RD−1.
Hence,

|Bias(f̂D(x))| = |Ef
(
f̂D(x)

)
− f(x)| ≤ R

D
.

• Computation of the variance

Var(f̂D(x)) = Ef [(f̂D(x)− Ef (f̂D(x)))2]

=
σ2

]{i,Xi ∈ Ik,D}
.

We consider the L2([0, 1], dx) risk to compute the performances of our esti-
mator

L(f̂D, f) = Ef [

∫ 1

0

(f̂D(x)− f(x))2dx].

We also have

L(f̂D, f) =

∫ 1

0

Ef [(f̂D(x)− f(x))2]dx.

Moreover,

Ef [(f̂D(x)− f(x))2] = Ef [
(
f̂D(x)− Ef (f̂D(x)) + Ef (f̂D(x))− f(x)

)2

]

= Ef [(f̂D(x)− Ef (f̂D(x)))2] + [Ef (f̂D(x))− f(x)]2

= Var(f̂D(x)) + Bias2(f̂D(x))

≤ σ2

]{i,Xi ∈ Ik,D}
+R2D−2.

Since Xi = i/n, we remark easily that ]{i,Xi ∈ Ik,D} ≥ [n/D] ≥ n/(2D)
assuming that D ≤ n/2. This implies:

L(f̂D, f) ≤ 2σ2D

n
+R2D−2.

It remains to choose D to optimize this quadratic risk. We set

D = [(nR2)1/3],

and we obtain
L(f̂D, f) ≤ C(σ)R

2
3n−

2
3 .

The proof of the lower bounds are given in Tsybakov[4].

3 Splines
We assume that Xi ∈ R. The estimators proposed in the previous section

are not continuous; in order to get estimators that are piecewise polynomial,
with regularity properties, we use Spline bases.

3.1 Linear and cubic Splines

We will consider estimators that are piecewise linear functions of the form

f(x) = β0 + β1x+ β2(x− a)+ + β3(x− b)+ + β4(x− c)+ + . . .+

where 0 < a < b < c . . . are the points that define the partition (also called
nodes), and x+ = max(x, 0).
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f(x) = β0 + β1x if x ≤ a
= β0 + β1x+ β2(x− a)+ if a ≤ x ≤ b
= β0 + β1x+ β2(x− a)+ + β3(x− b)+ if b ≤ x ≤ c

The function f is continuous, if we want a more regular estimator (for example
a twice continuously differentiable estimator), we consider cubic splines.

f(x) = β0+β1x+β2x
2+β3x

3+β4(x−a)3
++β5(x−b)3

++β4(x−c)3
++. . .+

The function (x− a)3 vanishes as well as its first and second derivatives in a,
hence f is twice continuously differentiable.

In order to avoid problems on the boundaries, we generally impose addi-
tional constraints on cubic splines, namely that the function is linear on the
two boundary intervals corresponding to the ends.
Assume that we are on [0, 1]. ξ0 = 0 < ξ1 < . . . < ξK < 1.

f(x) = β0 + β1x+ β2x
2 + β3x

3 +

K∑
k=1

θk(x− ξk)3
+.

We require that f ′′(0) = f (3)(0) = 0, f ′′(ξK) = f (3)(ξK) = 0. Hence we
have:

β2 = β3 = 0,

K∑
k=1

θk(ξK − ξk) = 0,

K∑
k=1

θk = 0.

f(x) = β0 + β1x+

K∑
k=1

θk[(x− ξk)3
+ − (x− ξK)3

+]

= β0 + β1x+

K−1∑
k=1

θk(ξK − ξk)[
(x− ξk)3

+ − (x− ξK)3
+

(ξK − ξk)
]

We set γk = θk(ξK − ξk) and dk(x) =
(x−ξk)3+−(x−ξK)3+

(ξK−ξk) .
∑K−1
k=1 γk = 0.

f(x) = β0 + β1x+

K−2∑
k=1

γk(dk(x)− dK−1(x)).

We obtain the natural cubic splines basis :

N1(x) = 1, N2(x) = x, ∀1 ≤ k ≤ K − 2, Nk+2(x) = dk(x)− dK−1(x).

We have to choose the position and the number of nodes.

3.2 Regularization methods for cubic splines

We consider the regression model : Yi = f(Xi) + εi, 1 ≤ i ≤ n.
We minimize among the functions f that are natural cubic splines with nodes
at the observation points Xi (f(x) =

∑n
k=1 θkNk(x)) the penalized criterion:

C(f, λ) =

n∑
i=1

(Yi − f(Xi))
2 + λ

∫ 1

0

(f ′′(t))2dt,

where λ > 0. If we denote Ωl,k =
∫ 1

0
N ′′k (x)N ′′l (x)dx and Ni,j = Nj(Xi),

the criterion to minimize is

C(θ, λ) = ‖Y −Nθ‖2 + λθ∗Ωθ.

The solution is
θ̂ = (N∗N + λΩ)−1N∗Y

where

f̂(x) =

n∑
k=1

θ̂kNk(x). (2)

Exercise. — Prove this result.

THEOREM 2. — We denote by

F = {f, C2([0, 1]),

∫ 1

0

f ′′2(t)dt < +∞}.

Let n ≥ 2, 0 < X1 < . . . < Xn < 1 and (Y1, . . . , Yn) ∈ Rn. For f ∈ F , and
λ > 0, we denote by

C(f, λ) =

n∑
i=1

(Yi − f(Xi))
2 + λ

∫ 1

0

(f ′′(t))2dt.
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For any λ > 0, there exists a unique minimizer f in F of the criterion C(f, λ),
which is the function f̂ defined in (2).

This theorem is very powerful and shows that the function f̂ is a minimizer of
the criterion f 7→ C(f, λ) over a much larger class of functions than the cubic
splines with nodes at the observation points Xi since it is indeed a minimizer
of the criterion over the class F .

4 Kernel estimators
We consider the regression model

Yi = f(Xi) + εi, i = 1, . . . , n (3)

where Xi ∈ Rd, and the variables εi are i.i.d. centered, with variance σ2,
The variables Xi may be random, in this case, they are independent of the
variables εi.

4.1 Definition of the kernel estimator

DEFINITION 3. — We call Kernel a function K : Rd → R such that
∫
K2 <

+∞ and
∫
K = 1.

DEFINITION 4. — We introduce a positive parameter h > 0 (that we call
window) and a kernel K. The kernel estimator of f in Model (3) associated to
the kernel K and the window h is the function f̂h defined by :

f̂h(x) =

∑n
i=1 YiK

(
x−Xi

h

)∑n
i=1K

(
x−Xi

h

) .

When the Xi’s are i.i.d. with uniform distribution on [0, 1]d, we also find the
following definition :

f̂h(x) =
1

nhd

n∑
i=1

YiK

(
x−Xi

h

)
. (4)

If, for example d = 1 and K(u) = (1/2)1|u|≤1, f̂h(x) is the mean of the
values Yi such that |Xi − x| ≤ h. This is a constant piecewise estimator.

Extreme cases :
Assume that d = 1 and that the Xi’s are regularly spaced on [0, 1].
-If h = 1/n, the estimator is very irregular and reproduces the data.
-If h ≥ 1, for all x, f̂h(x) =

∑n
i=1 Yi/n.

Here again, we have to optimize the value of the window h to realize a good
compromise between the bias term and the variance term.

Remark : we generally use regular kernels, leading to regular estima-
tors.
Examples of kernels in dimension 1 :
-The triangular kernel K(x) = (1− |x|)1|x|≤1.
-The Gaussian kernel K(x) = 1√

2π
e−x

2/2.

-The parabolic kernel K(x) = 3
4 (1− x2)1|x|≤1.

4.2 Theoretical properties of the kernel estimators.

For the sake of simplicity, we consider the model where theXi’s are random,
i.i.d. with uniform distribution on [0, 1] and we consider the estimator defined
by (4).

THEOREM 5. — Assume that the regression function f belongs to the class
Σ(β,R) defined by

Σ(β,R) =
{
f ∈ Cl([0, 1]),∀x, y ∈ [0, 1], |f (l)(x)− f (l)(y)| ≤ R|x− y|α

}
,

where β = l + α with l ∈ N and α ∈]0, 1].
We make the following assumptions on the kernel K :
H1
∫
ujK(u)du = 0 for j = 1, . . . , l.

H2
∫
|u|β |K(u)|du < +∞.

If we choose h such that h ≈ (nR2)−1/(1+2β), we get, ∀f ∈ Σ(β,R),

Ef
(∫ 1

0

(f̂h(x)− f(x))2

)
≤ C(β, σ, ‖s‖∞)R

2
1+2β n−

2β
1+2β ,

and this rate of convergence is optimal.
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Proof. —

Computation of the bias : we denote Kh = (1/h)K(./h),

Ef (f̂h(x)) =

∫ 1

0

f(y)Kh(x− y)dy = f ? Kh(x).

Hence, since
∫
K = 1, we get

Ef (f̂h(x))− f(x) =

∫
(f(x− uh)− f(x))K(u)du.

We use a Taylor expansion :

f(x− uh) = f(x)− f ′(x)uh+ f ′′(x)
(uh)2

2
+ . . .+ f (l)(x− τuh)

(−uh)l

l!

with 0 ≤ τ ≤ 1. Using Assumption H1,

Ef (f̂h(x))− f(x) =

∫
f (l)(x− τuh)

(−uh)l

l!
K(u)du

=

∫
(f (l)(x− τuh)− f (l)(x))

(−uh)l

l!
K(u)du.

Since f ∈ Σ(β,R), and using Assumption H2, we get

|Ef (f̂h(x))− f(x)| ≤ Rταhβ 1

l!

∫
|u|β |K(u)|du.

Computation of the variance :

V ar(f̂h(x)) =
1

n2

n∑
i=1

V ar(YiKh(x−Xi)).

≤ 1

n2

n∑
i=1

Es[Y 2
i K

2
h(x−Xi)]

=
1

n2

n∑
i=1

E[f2(Xi)K
2
h(x−Xi) + ε2

iK
2
h(x−Xi)].

Moreover,

E[f2(Xi)K
2
h(x−Xi)] =

∫
f2(y)

1

h2
K2(

x− y
h

)dy

=

∫
f2(x− uh)

1

h
K2(u)du

≤ ‖f‖2∞
1

h

∫
K2.

E[ε2
iK

2
h(x−Xi)] = σ2

∫
1

h2
K2(

x− y
h

)dy

=
σ2

h

∫
K2.

Hence, we have

V ar(f̂h(x)) ≤ C(‖f‖∞, σ)
1

nh
.

Since

Ef
(∫ 1

0

(f̂h(x)− f(x))2dx

)
=

∫ 1

0

(
Biais2(f̂h(x)) + V ar(f̂h(x))

)
dx,

we get

Ef
(∫ 1

0

(f̂h(x)− f(x))2dx

)
≤ C(β, σ, ‖f‖∞)

(
R2h2β +

1

nh

)
.

If we choose h such that
R2h2β ≈ 1

nh
,

that is h ≈ (nR2)−1/(1+2β), we obtain the desired results. For the proof of the
lower bounds, see Tsybakov[4].

5 Pointwise estimation by local polynomials
In Section 2, we have fixed a partition, this partition does not depend on the

data. The estimation of the regression function f at point x was obtained from
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the observations at the points Xi that lye in the same interval as the point x,
which leads to irregular estimators. A natural idea is to estimate the function
f at point x with the observations such that Xi is "close" to x. More generally,
we introduce a weight function (wi(x)) which derives from a kernel : wi(x) =
K((Xi − x)/h) and that will place a greater weight in the observations for
which Xi is "close" to x, and we minimize (with respect to a) the weighted
sum of squares :

n∑
i=1

wi(x)(Yi − a)2.

The solution is given by

a = f̂n(x) =

∑n
i=1 wi(x)Yi∑n
i=1 wi(x)

, (5)

which corresponds to the kernel estimator defined in previous section ! Hence,
we simply have here a new interpretation of the kernel estimator. We can gen-
eralize the previous formula by replacing the constant a by a polynomial with
degree p. Given a point x where we want to estimate the regression function,
for u in a neighborhood of x, we consider the polynomial

Px(u, a) = a0 + a1(u− x) + . . .+
ap
p!

(u− x)p.

We want to estimate the regression function in a neighborhood of x by the
polynomial Px(u, a) where the vector a = (a0, . . . ap) is obtained by mini-
mizing the weighted sum of squares :

n∑
i=1

wi(x)(Yi − a0 − a1(Xi − x)− . . .− ap
p!

(Xi − x)p)2.

The solution is given by the vector â(x) = (â0(x), . . . âp(x)), the local esti-
mator of the regression function f is

f̂n(u) = â0(x) + â1(x)(u− x) + . . .+
âp(x)

p!
(u− x)p.

At the point x, we get :
f̂n(x) = â0(x).

Note that this estimator does not correspond to the one obtained in (5), which
is obtained for p = 0 (this is the kernel estimator). If p = 1, this method is
called the local linear regression. We can express the value of â0(x) from a
weighted least square criterion : let Xx denote the matrix

Xx =


1 X1 − x . . . (X1−x)p

p!

1 X2 − x . . . (X2−x)p

p!

. . . .

. . . .

1 Xn − x . . . (Xn−x)p

p!

 .

Let Wx the diagonal matrix with ith component on the diagonal wi(x). We
therefore have:
n∑
i=1

wi(x)(Yi−a0−a1(Xi−x)−. . .−ap
p!

(Xi−x)p)2 = (Y−Xxa)∗Wx(Y−Xxa).

Minimizing the above expression leads to the weighted least square estimator:

â(x) = (X∗xWxXx)−1X∗xWxY,

and the local polynomial estimator at point x corresponds to f̂n(x) = â0(x),
which is the scalar product of the vector Y with the first line of the matrix
(X∗xWxXx)−1X∗xWx. We have the following theorem :

THEOREM 6. — The local polynomial estimator at point x is

f̂n(x) =

n∑
i=1

li(x)Yi

where l(x)∗ = (l1(x), . . . , ln(x)),

l(x)∗ = e∗1(X∗xWxXx)−1X∗xWx,

with e∗1 = (1, 0, . . . , 0).

E(f̂n(x)) =

n∑
i=1

li(x)f(Xi)

Var(f̂n(x)) = σ2
n∑
i=1

l2i (x).
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6 Projection estimators
We consider the regression model

Yi = f(Xi) + εi, i = 1, . . . , n. (6)

Let (φj , j ≥ 1) an orthonormal basis of L2([0, 1]). For D ≥ 1 we define

SD = Vect{φ1, . . . , φD}.

We denote by fD the orthogonal projection of f onto SD in L2([0, 1]):

fD =

D∑
j=1

〈f, φj〉φj ,

where

θj = 〈f, φj〉 =

∫ 1

0

f(x)φj(x)dx.

We estimate θj by

θ̂j =
1

n

n∑
i=1

Yiφj(Xi).

Indeed, if the Xi’s are deterministic,

E(θ̂j) =
1

n

n∑
i=1

f(Xi)φj(Xi),

and if fφj is regular and theXi’s are equispaced on [0, 1], this quantity is close
to θj . If the Xi’s are random, with uniform distribution on [0, 1], we have

E(θ̂j) = θj .

We introduce the estimator

f̂D(x) =

D∑
j=1

θ̂jφj(x),

which is called estimator by projection.

Example of the Fourier basis
We denote by (φj , j ≥ 1) the Fourier basis of L2([0, 1]) :

φ1(x) = 1[0,1],

φ2k(x) =
√

2 cos(2πkx) ∀k ≥ 1

φ2k+1(x) =
√

2 sin(2πkx) ∀k ≥ 1.

We obtain for all D ≥ 1, the estimator

f̂D(x) =
1

n

D∑
j=1

n∑
i=1

Yiφj(Xi)φj(x).

We can prove theoretical performances of the estimator, assuming that the re-
gression function f belongs to a class of regular and periodical functions.

DEFINITION 7. — Let L > 0 and β = l + α with l ∈ N and α ∈]0, 1]. We
define the class Σper(β,R) by

Σper(β,R) =
{
f ∈ Cl([0, 1]),∀j = 0, . . . , l, f (j)(0) = f (j)(1),

∀x, y ∈ [0, 1], |f (l)(x)− f (l)(y)| ≤ R|x− y|α
}
.

THEOREM 8. — In the model

Yi = f(
i

n
) + εi, i = 1, . . . , n,

where the εi’s are i.i.d. with distribution N (0, σ2), the estimator f̂D defined
for all x ∈ [0, 1] by :

f̂D(x) =
1

n

D∑
j=1

n∑
i=1

Yiφj(Xi)φj(x)

with D = [(nR2)1/(1+2β)], satisfies far all β > 1, R > 0,

sup
f∈Σper(β,R)

Ef
(
‖f̂D − f‖22

)
≤ C(β, σ)R

2
1+2β n

−2β
1+2β .

In the next chapter, we introduce wavelet bases, that are used in particular to
estimate very irregular functions.
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7 Wavelet bases and regularization
In this chapter, we consider the problem of estimating spatially inhomoge-

neous functions, namely, functions that may be very regular in some parts of
their definition domain, and very irregular (presenting peaks) in other parts of
the space. Wavelet bases are orthonormal bases, which are well adapted to
estimate this type of functions. We assume here that the Xi’s are in [0, 1].
In the practical works, we will consider one dimensional examples for sig-
nal processing and we will also consider two-dimensional examples for image
processing.

7.1 Wavelet bases

Haar basis

The Haar basis is the most simple wavelet basis. The father wavelet (or
scaling function) is defined by

φ(x) = 1 si x ∈ [0, 1[,

= 0 sinon.

The mother wavelet (or wavelet function) is defined by

ψ(x) = −1 si x ∈ [0, 1/2],

= 1 si x ∈]1/2, 1].

For all j ∈ N, k ∈ N, we define

φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k).

THEOREM 9. — The functions (φ, ψj,k, j ∈ N, k ∈ {0, . . . , 2j − 1}) form an
orthonormal basis of L2([0, 1]).

We deduce from this theorem that one can expand a function belonging to
L2([0, 1]) in this basis :

f(x) = αφ(x) +

∞∑
j=0

2j−1∑
k=0

βj,kψj,k(x).

α =
∫ 1

0
f(x)φ(x)dx is called "scaling coefficients" and the βj,k =∫ 1

0
f(x)ψj,k(x)dx are called "details". The approximation of f at the reso-

lution level J is the function

fJ = αφ(x) +

J−1∑
j=0

2j−1∑
k=0

βj,kψj,k(x).

This expression includes 2J coefficients. As the space generated by the func-
tions (φ, ψj,k, 0 ≤ j ≤ J − 1, 0 ≤ k ≤ 2j − 1) is the space of constant
piecewise functions over the intervals of length 1/2J , that is the space gener-
ated by the functions (φJ,k, 0 ≤ k ≤ 2J − 1), we also have

fJ =

2J−1∑
k=0

αJ,kφJ,k(x),

where αJ,k =
∫ 1

0
f(x)φJ,k(x)dx.

The Haar basis is easy to define, its functions are compactly supported.
Nevertheless, this basis leads to irregular approximations : the projection are
not even continuous. There exist other wavelet bases, that are compactly sup-
ported and more regular, for example Daubechies wavelets. (See Daubechies
(1992) : Ten Lectures on wavelets).

7.2 Estimating a regression function with wavelet’s
projections

Wavelets are well adapted for the analysis of signals, sampled on a regu-
lar, dyadic grid. They are widely used for signal and image processing. We
consider the model :

Yk = f(
k

N
) + εk, k = 1, . . . , N = 2J .

We consider the N = 2J first functions of a wavelet basis on [0, 1] :
(φ, ψj,k, 0 ≤ j ≤ J − 1, 0 ≤ k ≤ 2j − 1). We denote by W the N ∗ N

http://wikistat.fr


10

matrix

W =
1√
N


φ(1/N) ψ0,0(1/N) . . . ψJ−1,2J−1(1/N)

. . . .
φ(i/N) ψ0,0(i/N) . . . ψJ−1,2J−1(i/N)

. . . .
φ(N/N) ψ0,0(N/N) . . . ψJ−1,2J−1(N/N)


In the case of the Haar basis, W is an orthogonal matrix ( the Haar basis is also
orthonormal for the discrete scalar product). We denote by W ∗ the transpose
of W and

θ̂ = W ∗Y,

the wavelet transform of the vector Y .
This is also the least square estimator of θ in the model Y = Wθ+ ε since W
is orthogonal.

θ̂j,k =
1√
N

N∑
l=1

ψj,k(
l

N
)Yl =

1√
N

N∑
l=1

ψj,k(
l

N
)f(

l

N
) + ε̃l

≈
√
Nβj,k + ε̃l

where

ε̃l =
1√
N

N∑
l=1

ψj,k(
l

N
)εl

∼ N (0,
σ2

N

N∑
l=1

ψ2
j,k(

l

N
)).

In the case of the Haar basis, σ
2

N

∑N
l=1 ψ

2
j,k( l

N ) = σ2. We can recover a signal
from its wavelet transform by the inverse transform :

Y = (W ∗)−1θ̂.

Y = Wθ̂ in the case of the Haar basis.

Denoising by linear approximation

We approximate the regression function f by the orthogonal projection of f
onto VJ0 :

fJ0 = αφ+

J0−1∑
j=0

2j−1∑
k=0

βj,kψj,k,

which corresponds to keep only the 2J0 first wavelet coefficients. To estimate
fJ0 , we keep only the 2J0 first coefficients in the vector θ̂, the other coefficients
ar set to 0. This defines a vector that we denote θ̂J0 , then we reconstruct the
denoised signal

ŶJ0 = (W ∗)−1θ̂J0 .

The regression function f is finally estimated by

f̂J0(x) =
1√
N

(φ(x), ψ0,0(x), . . . , ψJ−1,2J−1(x))θ̂J0 .

f̂J0(x) = α̂φ(x) +

J0−1∑
j=0

2j−1∑
k=0

β̂j,kψj,k(x)

where θ̂J0 =
√
N(α̂, β̂j,k, j = 0, . . . J0 − 1, k = 0, . . . , 2j − 1, 0, . . . , 0). We

have to choose the parameter J0 in an optimal way.

Denoising by nonlinear approximation via thresholding

The thresholding method relies on the minimization with respect to θ ∈
RNof the penalized least square criterion with l1 penalty

C(θ) = ‖Y −Wθ‖2 + 2λ‖θ‖1,

with ‖θ‖1 =
∑N
i=1 |θi|. If W is orthogonal (we recall that this is the case for

the Haar basis in particular), this leads to an explicit solution. The solution is

|θ̃i| = |θ̂i| − λ si |θ̂i| ≥ λ
= 0 si |θ̂i| ≤ λ

θ̃i = sign(θ̂i)(|θ̂i| − λ)1|θ̂i|≥λ.
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Exercise. — Prove this result.

This method is called "soft thresholding", we apply a continuous function to
θ̂i. The "hard thresholding" consists in setting

θ̃i = θ̂i1|θ̂i|≥λ.

we reconstruct the denoised signal

Ỹ = Wθ̃.

The regression function f is estimated by

f̂N (x) =
1√
N

(φ(x), ψ0,0(x), . . . , ψJ−1,2J−1(x))θ̃.

We denote θ̃ =
√
N(α̃, β̃j,k, j = 0, . . . , J − 1, k = 0, . . . 2j−1), we obtain

f̂N (x) = α̃φ(x) +

J−1∑
j=0

2j−1∑
k=0

β̃j,kψj,k(x).

In practice, we have to choose the threshold λ. We take generally λ =
σ
√

2 log(N). Indeed,

θ̂ = W ∗Y =
1√
N

N∑
l=1

ψj,k(
l

N
)f(

l

N
) + ε̃l

with
ε̃ = W ∗ε ∼ NN (0, σ2IN ).

One can prove that

E

(
sup

1≤i≤N
|ε̃i|
)
≈ σ

√
2 log(N).

The coefficients that are smaller to σ
√

2 log(N) are considered as noise, and
set to 0. These thresholding methods allow to estimate very irregular signals (in
particular, functions with peaks, that can be represented with a small number
of wavelet coefficients after thresholding).

8 Generalized additive models
The previous methods suffer from the curse of dimensionality and are

mostly used in dimension 1. They are based on local means of the obser-
vations, and we have seen, that, in large dimensions, observations are isolated.
Under additional hypotheses on the structure of the regression function, one
can get around this problem. We consider in this chapter additive regression
functions. We introduce the additive model

Yi = f(Xi) + εi,

where the εi’s are i.i.d. centered, with variance σ2, and Xi ∈ Rd. We assume
that the regression function f is additive (or can be well approximated by an
additive function), namely that

f(Xi,1, . . . ,Xi,d) = α+ f1(Xi,1) + . . .+ fd(Xi,d).

In order to guaranty the unicity of this expression, we require that∫
R
fj(xj)dxj = 0, ∀j = 1, . . . , d.

We will describe in this section a method to estimate the components of an
additive model, we call these models GAM (Generalized Additive Models).
We assume that each one dimensional function is estimated with Spline bases
as explained in Section 3.2. We introduce the penalized criterion

Crit(α, f1, f2, . . . , fp) =

n∑
i=1

Yi − α− d∑
j=1

fj(Xi,j)

2

+

d∑
j=1

λj

∫
(f ′′j )2(xj)dxj ,

where for all j, λj ≥ 0 is a regularization parameter. One can prove that the
solution of this minimization problem is an additive model of cubic splines,
each function f̂j is a cubic spline with respect to the variable xj , whose nodes
correspond to the different values of the variables Xi,j , i = 1, . . . n. In order
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to guaranty the unicity of the minimizer, we impose the following constraints :

∀j = 1, . . . , d,

n∑
i=1

fj(Xi,j) = 0.

Under these conditions, we get α̂ =
∑n
i=1 Yi/n, and if the matrix with entries

Xi,j is not singular, one can show that the criterion is strictly convex, and
admits therefore a unique minimizer. The following algorithm, called the
backfitting algorithm, converges to the solution :

Backfitting algorithm for GAM models :

1. Initialization : α̂ =
∑n
i=1 Yi/n, f̂j = 0 ∀j.

2. For l = 1 to N iter
For j = 1 to d
• f̂j minimize

n∑
i=1

Yi − α̂−∑
k 6=j

f̂k(Xi,k)− fj(Xi,j)

2

+ λj

∫
(f ′′j )2(xj)dxj ,

• f̂j := f̂j − 1
n

∑n
i=1 f̂j(Xi,j).

Stop when all the functions f̂j are "stable".

The same algorithm can be used with other estimation methods than cubic
splines such as local polynomials, kernel estimators, projection estimators ..
The generalized additive models form an extension to linear models, they are
more flexible, but still very easy to interpret. These models are widely used
for statistical modeling. Nevertheless, in large dimension, they may be hard to
implement and it may be useful to combine them with a selection algorithm,
in order to reduce the dimension.

9 Regression trees CART
The CART algorithm (Classification And Regression Trees) is also a non

parametric method to build estimators of a regression function in a multidi-

mensional framework. The methods based on trees rely on a partition of the
space of input variables, we then infer a simple model (for example constant
piecewise functions) on each element of the partition. We assume that we have
a n sample (Xi, Yi)1≤i≤n with Xi ∈ Rd and Yi ∈ R. The CART algorithm
allows to define, from the learning sample, an automatic data driven partition
of the space of input variables Xi. Assume that the space of input variables
Xi is partitioned into M regions, that we denote R1, . . . RM . We introduce
the class F of constant piecewise functions on the elements of the partition :

F = {f, f(x) =

M∑
m=1

cm1x∈Rm}.

The least square estimator of the regression function f on the class F mini-
mizes the criterion

M∑
m=1

(Yi − f(Xi))
2,

among the functions f ∈ F . The solution is

f̂(x) =

M∑
m=1

ĉm1x∈Rm ,

where ĉm is the mean of observations Yi such that Xi ∈ Rm. In order to
define the partition, CART proceeds as follows : given a separation variable
X(j) and a point of separation s, one considers the half spaces

R1(j, s) = {X = (X(1), . . . , X(d))/X(j) ≤ s} and R2(j, s) = {X/X(j) > s}.

The separation variable X(j) and the separation point s are chosen in order to
solve the minimisation problem

min
j,s

[
∑

i,Xi∈R1(j,s)

(Yi − ĉ1)2 +
∑

i,Xi∈R2(j,s)

(Yi − ĉ2)2].

Given j and s, we partition the data in the two corresponding regions, and then
we proceed to a new separation on each of the two subregions, and so on, on
each obtained subregion. The size of the tree is a parameter to adjust, that

http://wikistat.fr


13

is related to the complexity of the tree. A tree with a large number of leaves
will lead to overfitting (large variance) and a tree with small size will lead to
under-fitting (large bias). It is therefore necessary to find the optimal size of
the tree with an adaptive procedure, driven from the data. The strategy is to
build a large tree and to prune the tree by minimizing a penalized criterion.

We call T a sub-tree of T0 if T can be obtained by pruning T0, that is by
reducing the number of nodes of T0. We denote |T | the number of terminal
nodes of T andRm,m = 1, . . . |T |, the partition corresponding to the terminal
nodes. We denote by Nm the number of observations for which Xi ∈ Rm.
We have

ĉm =
1

Nm

∑
i,Xi∈Rm

Yi,

and we introduce the criterion to be minimized

Cλ(T ) =

|T |∑
m=1

∑
i,Xi∈Rm

(Yi − ĉm)2 + λ|T |.

For all λ, we can prove that there exists a unique minimal tree Tλ min-
imizing the criterion Cλ(T ). To find the tree Tλ, we suppress, at each
step the internal node of the tree T which reduces the less the criterion∑
m

∑
i,Xi∈Rm(Yi − ĉm)2. This gives a sequence of subtrees, that contain

the tree Tλ.

The regularization parameter λ must also be calibrated to realize a good
compromise between the bias and the variance of the final estimator. We gen-
erally use cross validation, described in the next section, to calibrate this pa-
rameter.

Appendix : Choice of a tuning parameter by
cross-validation

In the case of kernel estimators, for estimators based on local polynomials,
we have to choose the window h; for constant piecewise estimators (or piece-
wise polynomials), as well as for projection estimators, we have to choose
the parameter D (number of pieces of the partition or dimension of the linear

space onto which the projection is realized), for CART algorithm, we have to
choose the parameter λ for the pruning procedure. In this chapter, we are going
to describe the cross-validation method, which is often used by the statistical
softwares to tune these parameters, which corresponds to select an estimator
among a collection of estimators.

We denote by λ the parameter to be tuned. Let f̂n,λ the estimator of the
regression function f associated to the parameter λ. We consider the quadratic
risk

R(λ) = E

(
1

n

n∑
i=1

(f̂n,λ(Xi)− f(Xi))
2

)
.

Ideally, we want to choose λ to minimize R(λ), but this quantity depends on
the unknown function f .

The first idea is to estimate R(λ) by the training error :

1

n

n∑
i=1

(Yi − f̂n,λ(Xi))
2,

but this quantity is optimistic, it underestimates R(λ) and leads to overfitting.
This is due to the fact that we use the same data to build the estimator f̂n,λ
(that is well adjusted to the data) and to estimate the risk for this estimator. In
order to get a better estimation of the risk, we have to build the estimator of
the risk with the observations that were not use to compute the estimator f̂n,λ.
Ideally, if we have enough observations, we can separate them in a training
sample and a test sample. This is generally not the case, and we would like
to use all the data to build the estimator. In this case, we use cross-validation.
We split the learning sample into V blocks, denoted by B1, . . .BV , with quite
similar sizes. For v from 1 to V , we denote f̂ (−v)

n,λ the estimator obtained by
removing from the learning sample the data from the block Bv .

DEFINITION 10. —

We define the V -fold cross-validation score by

CV = R̂(λ) =
1

N

N∑
i=1

(Yi − f̂ (−v(i))
n,λ (Xi))

2,
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where f̂ (−v(i))
n,λ is the estimator of f obtained by removing the observations of

the block that contain the observation (Xi, Yi).

The principle of cross-validation is to choose a value λ̂ of λ which minimizes
the quantity R̂(λ). A particular case corresponds to the leave-one-out cross-
validation, obtained when we consider n blocks, each of them containing a
single observation.

DEFINITION 11. — The leave-one-out cross-validation score is defined by

CV = R̂(λ) =
1

n

n∑
i=1

(Yi − f̂ (−i)
n,λ (Xi))

2,

where f̂
(−i)
n,λ is the estimator of f obtained by removing the observation

(Xi, Yi).

The idea of the leave-one-out cross validation comes from the following com-
putation :

E((Yi − f̂ (−i)
n,λ (Xi))

2) = E((Yi − f(Xi) + f(Xi)− f̂ (−i)
n,λ (Xi))

2)

= σ2 + E((f(Xi)− f̂ (−i)
n,λ (Xi))

2)

' σ2 + E((f(Xi)− f̂n,λ(Xi))
2).

We then obtain E(R̂(λ)) ' σ2 +R(λ).

The computation of R̂(λ) may be very long but it is sometimes note neces-
sary to compute n estimators of the regression function. For most regression
estimation methods considered in this chapter, the estimator corresponds to a
local mean algorithm, namely it can be written as follows

f̂n,λ(x) =

n∑
j=1

Yj lj(x),

with
∑n
j=1 lj(x) = 1. One can prove that

f̂
(−i)
n,λ (x) =

n∑
j=1

Yj l
(−i)
j (x),

with

l
(−i)
j (x) = 0 if j = i

=
lj(x)∑
k 6=i lk(x)

if j 6= i.

THEOREM 12. — Under the above assumptions, the leave-one-out cross vali-
dation score equals

CV = R̂(λ) =
1

n

n∑
i=1

(
Yi − f̂n,λ(Xi)

1− li(Xi)

)2

.

We also find in the softwares a slightly different definition :

DEFINITION 13. — We called the Generalized Cross Validation score the
quantity

GCV (λ) =
1

n

n∑
i=1

(
Yi − f̂n,λ(Xi)

1− ν/n

)2

,

where ν/n =
∑n
i=1 li(Xi)/n.

In this definition, li(Xi) is replaced by the mean of the quantities li(Xi). In
practice, both methods generally give quite similar results. Using the approxi-
mation (1− x)−2 ≈ 1 + 2x for x close to 0, we get

GCV (λ) ≈ 1

n

n∑
i=1

(Yi − f̂n,λ(Xi))
2 +

2νσ̂2

n
,

where σ̂2 = 1
n

∑n
i=1(Yi − f̂n,λ(Xi))

2. This corresponds to the Mallow’s Cp
criterion.
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