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Linear models for regression and Model
selection

1 Introduction
The linear regression model is the simplest model to study multidimensional

data. It assumes that the regression function E(Y/X) is linear in the input
(or explanatory) variables X1, . . . ,Xp. Although very simple, these models
are still widely used, because they are very interpretable and often provide
an adequate description on the influence of the input variables to the output.
For small sample sizes n (with respect to the number of variables p), or when
the signal to noise ratio is high, they often outperform more complex models.
Furthermore, it is possible to use linear models with nonlinear transformations
of the variables, which considerably enlarges the scope of these models. In
high dimensional framework, when p is possibly larger than n, model selection
for linear models has been this past twenty years and is still a very active
field of research in statistics. Some of these methods, such as Ridge or Lasso
methods, will be at the core of this course. The main references for this course
are the books "Introduction to High-Dimensional Statistics" by C. Giraud [3]
and " The elements of Statistical Learning" by T. Hastie et al [4].

2 The Linear model

2.1 The model

We have a quantitative variable Y to explain (or response variable) which is
related with p variables X1, . . . ,Xp called explanatory variables (or regres-
sors, or input variables).

The data are obtained from the observation of a n sample of R(p+1) vectors :

(x1
i , . . . , x

j
i , . . . , x

p
i , yi) i = 1, . . . , n.

We assume in a first time that n > p + 1. In the linear model, the re-
gression function E(Y/X) is linear in the input (or explanatory) variables

X1, . . . ,Xp. We assume for the sake of simplicity that the regressors are
deterministic. In this case, this means that E(Y) is linear in the explanatory
variables {1,X1, . . . ,Xp} where 1 denotes the Rn-vector with all compo-
nents equal to 1. The linear model is defined by :

Yi = β0 + β1X
1
i + β2X

2
i + · · ·+ βpX

p
i + εi i = 1, 2, . . . , n

with the following assumptions :

1. The random variables εi are independent and identically distributed
(i.i.d.) ; E(εi) = 0, V ar(εi) = σ2.

2. The regressors Xj are assumed to be deterministic or the errors ε are
independent of (X1, . . . ,Xp). In this case, we have :

E(Y|X1, . . . ,Xp) = β0+β1X
1+β2X

2+· · ·+βpXp and V ar(Y|X1, . . . ,Xp) = σ2.

3. The unknown parameters β0, . . . , βp are supposed to be constant.

4. It is sometimes assumed that the errors are Gaussian : ε = [ε1 · · · εn]′ ∼
Nn(0, σ2In). The variables εi are then i.i.d. N (0, σ2).

The explanatory variables are given in the matrix X(n×(p+1)) with general
term Xj

i , the first column contains the vector 1 (Xi
0 = 1). The regressors Xj

can be quantitative variables, nonlinear transformation of quantitative variables
(such as log, exp, square ..), interaction between variablesXj = Xk.X l, they
can also correspond to qualitative variables : in this case the variables Xj are
indicator variables coding the different levels of a factor (we remind that we
need identifiability conditions in this case).
The response variable is given in the vector Y with general term Yi. We
set β = [β0β1 · · ·βp]′, which leads to the matricial formulation of the linear
model:

Y = Xβ + ε.

2.2 Least square estimation

The regressors Xj are observed, the unknown parameters of the model are
the vector β and σ2. β is estimated by minimizing the residuals sum of square
or equivalently, assuming (4.), by maximisation of the likelihood.
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We minimise with respect to the parameter β ∈ Rp+1 the criterion :

n∑
i=1

(Yi − β0 − β1X
1
i − · · · − βpX

p
i )2 = ‖Y −Xβ‖2

= (Y −Xβ)′(Y −Xβ)

= Y′Y − 2β′X′Y + β′X′Xβ.

Derivating the last equation, we obtain the “ normal equations” :

2(X′Y −X′Xβ) = 0

The solution is indeed a minimiser of the criterion since the Hessian 2X′X is
positive semi definite (the criterion is convex) .

We make the additional assumption that the matrix X′X is invertible, which
is equivalent to the fact that the matrix X has full rank (p + 1) and so that
there is no collinearity between the columns of X (the variables). Under this
assumption, the estimation of β is give by :

β̂ = (X′X)−1X′Y

and the predicted values of Y are :

Ŷ = Xβ̂ = X(X′X)
−1

X′Y = HY

where H = X(X′X)
−1

X′ is called the “hat matrix” ; which puts a "hat" on
Y. Geometrically, it corresponds to the matrix of orthogonal projection in Rn
onto the subspace Vect(X) generated by the columns of X.
Remark. — We have assumed that X′X is invertible, which means that the
columns of X are linearly independent. If it is not the case, this means that the
application β 7→ Xβ is not injective, hence the model is not identifiable and β
is not uniquely defined. Nevertheless, even in this case, the predicted values Ŷ
are still defined as the projection of Y onto the space generated by the columns
of X, even if there is not a unique β̂ such that Ŷ = Xβ̂. In practice, if X′X
is not invertible (which is necessarily the case in high dimension when the
number of variables p is larger than the number of observations n - since p
vectors of Rn are necessarily linearly dependent), we have to remove variables

from the model or to consider other approches to reduce the dimension ( Ridge,
Lasso, PLS ...) that we will developed in the next chapters.

We define the vector of residuals as :

e = Y − Ŷ = Y −Xβ̂ = (I−H)Y

This is the orthogonal projection of Y onto the subspace Vect(X)⊥ in Rn.
The variance σ2 is estimated by

σ̂2 =
‖e‖2

n− p− 1
=

∥∥∥Y −Xβ̂
∥∥∥2

n− p− 1
.

2.3 Properties of the least square estimator

THEOREM 1. — Assuming that

Y = Xβ + ε

with ε ∼ Nn(0, σ2In), we obtain that β̂ is a Gaussian vector :

β̂ ∼ Np+1(β, σ2(X ′X)−1).

In particular, the components of β̂ are Gaussian variables :

β̂j ∼ N (βj , σ
2(X ′X)−1

j,j ).

σ̂2 ∼ σ2

n− (p+ 1)
χ2

(n−(p+1))

and is independent of β̂.

Exercise. — Prove Theorem 1

β̂ is a linear estimator of β (it is a linear transformation of the observation
Y) and it is unbiased. One can wonder if it has some optimality property. This
is indeed the case : the next theorem, called the Gauss-Markov theorem, is
very famous in statistics. It asserts that the least square estimator β̂ has the
smallest variance among all linear unbiased estimator of β.
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THEOREM 2. — Let A and B two matrices. We say that A � B if B −A is
positive semi-definite. Let β̃ a linear unbiased estimator of β, with variance-
covariance matrix Ṽ. Then, σ2(X′X)

−1 � Ṽ.

Exercise. — Prove the Gauss-Markov theorem.

Theorem 2 shows that the estimator β̂ is the best among all linear unbiased
estimator of β, nevertheless, in the next section, we will see that it can be
preferable to consider biased estimator, if they have a smaller variance than β̂,
to reduce the quadratic risk. This will be the case for the Ridge, Lasso, PCR,
or PLS regression.

2.4 Confidence intervals

One can easily deduce from Theorem 1 that

β̂j − βj√
σ̂2(X ′X)−1

i,i

∼ T(n−(p+1))

follows a Student distribution with n−(p+1) degrees of freedom. This allows
to build confidence intervals and tests for the parameters βj . The following
interval is a 0.95 confidence interval for βj :

[β̂j − tn−(p+1),0.975

√
σ̂2(X ′X)−1

j,j , β̂j + tn−(p+1),0.975

√
σ̂2(X ′X)−1

j,j ].

In order to test that the variable associated to the parameter βj has no influence
in the model, hence H0 : βj = 0 contre H1 : βj 6= 0, we reject the null
hypothesis at the level 5% if 0 does not belong to the previous confidence
interval.

Exercise. — Recover the construction of the confidence intervals.

2.5 Prediction

As mentioned above, the vector of predicted values is

Ŷ = Xβ̂ = X(X′X)
−1

X′Y = HY.

This corresponds to the predicted values at the observation points. Based on
the n previous observations, we may be interested with the prediction of the

response of the model for a new point : X0
′ = (1, X0

1, . . . , X0
p) :

Y0 = β0 + β1X
1
0 + β2X

2
0 + . . .+ βpX

p
0 + ε0,

where ε0 ∼ N (0, σ2). The predicted value is

Ŷ0 = β̂0 + β̂1X0
1 + . . . β̂pX0

p = X0
′β̂.

We derive from Theorem 1 that

E(Ŷ0) = X0
′β = β0 + β1X

1
0 + β2X

2
0 + . . .+ βpX

p
0

and that Ŷ0 ∼ N (X0
′β, σ2X

′

0(X′X)−1X0). We can deduce a confidence
interval for the mean response X0

′β at the new observation point X0:[
X0
′β̂ − tn−(p+1),0.975σ̂

√
X
′
0(X′X)−1X0,

X0
′β̂ + tn−(p+1),0.975σ̂

√
X
′
0(X′X)−1X0

]
.

A prediction interval for the response Y0 at the new observation point X0 is :[
X0
′β̂ − tn−(p+1),0.975σ̂

√
1 + X

′
0(X′X)−1X0,

X0
′β̂ + tn−(p+1),0.975σ̂

√
1 + X

′
0(X′X)−1X0

]
.

Exercise. — Recover the construction of the prediction intervals. Hint : what
is the distribution of Ŷ0 − Y0 ?

2.6 Fisher test of a submodel

Suppose that our data obey to a polynomial regression model of degree p
and we want to test the null hypothesis that our data obey to a polynomial
regression model of degree k < p , hence we want to test that the p − k last
coefficients of β are equal to 0. More generally, assume that our data obey to
the model, called Model (1) :

Y = Xβ + ε.
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where β ∈ Rp and consider another model, called Model (0):

Y = X̃θ + ε.

where θ ∈ Rl with l < p.

DEFINITION 3. — We define

V = {Xβ,β ∈ Rp}

and
W = {X̃θ,θ ∈ Rl}.

We say that Model (0) is a submodel of Model (1) if W is a linear subspace of
V .

We want to test the hypothesis :
H0 : "the vector Y of observations obeys to Model (0)” against the alternative
H1 : “the vector Y of observations obeys to Model (1)”.
In the Model (0), the least square estimator of θ is :

θ̂ =


θ̂0

θ̂1

.

.

θ̂l

 = (X̃′X̃)−1X̃′Y.

The F -statistics is defined by :

F =
‖Xβ̂ − X̃θ̂‖2/(p− l)
‖Y −Xβ̂‖2/(n− p)

.

An alternative way to write the F -statistics is :

F =
(SSR0 − SSR1)/(p− l)

SSR1/(n− p)
,

where SSR0 and SSR1 respectively denote the residuals sum of square under
Model (0) and Model (1).

Exercise. — Prove that, under the null hypothesis H0, the F -statistics is a
Fisher distribution with parameters (p− l, n− p).

The numerator of the F -statistics corresponds to
∥∥∥Ŷ0 − Ŷ1

∥∥∥2

, where Ŷ0

and Ŷ1 correspond respectively to the predicted values under the sub-model
and under the full model. This quantity is small under the null hypothesis,
when the sub-model is valid, and becomes larger under the alternative. Hence,
the null hypothesis is rejected for large values of F , namely, for a level-α test,
when

F > fp−l,n−p,1−α,

where fp,q,1−α is the (1−α) quantile of the Fisher distribution with parameters
(p, q). The statistical softwares provide the p− value of the test :

PH0
(F > Fobs)

where Fobs is the observed value for the F -statistics. The null hypothesis is
rejected at level α if the p− value is smaller than α.

2.7 Diagnosis on the residuals

The analysis and visualisation of the residuals allow to verify some hypothe-
ses :

• Homoscedasticity: the variance σ2 is assumed to be constant,

• The linear model is valid : there is no tendancy in the residuals,

• Detection of possible outliers with the Cook’s distance

• Normality of the residuals (if this assumption was used to provide confi-
dence/prediction intervals or tests).

This is rather classical for linear regression, and we focus here on the detec-
tion of possible high collinearities between the regressors, since it has an im-
pact on the variance of our estimators. Indeed, we have seen that the variance-
covariance matrix of β̂ is σ2(X′X)−1.
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When the matrix X is ill-conditioned, which means that the determinant of
X′X is close to 0, we will have high variances for some components of β̂. It
is therefore important to detect and remedy these situations by removing some
variables of the model or introducing some constraints on the parameters to
reduce the variance of the estimators.

VIF

Most statistical softwares propose collinearity diagnosis. The most classical
il the Variance Influence Factor (VIF)

Vj =
1

1−R2
j

where R2
j corresponds to the determination coefficient of the regression of

the variable Xj on the other explanatory variables ; Rj represents also the
cosine of the angle in Rn between Xj and the linear subspace generated by
the variables {X1, . . . ,Xj−1,Xj+1, . . . ,Xp}. The more Xj is “linearly”
linked with the other variables, the more Rj is close to 1 ; we show that the
variance of the estimator of βj is large in this case. This variance is minimal
whenXj is orthogonal to the subspace generated by the other variables.

Condition number

We consider the covariance matrix R between the regressors. We denote
λ1 ≥ . . . ≥ λp the ordered eigenvalues of R. If the smallest eigenvalues
are close to 0, the inversion of the matrix R will be difficult and numerical
problems arise. In this case, some components of the least square estimator β̂
will have high variances. The condition number of the matrix R is defined as
the ratio

κ = λ1/λp

between the largest and the smallest eigenvalues of R. If this ratio is large,
then the problem is ill-conditioned.
This condition number is a global indicator of collinearities, while the VIF
allows to identify the variables that are problematic.

3 Determination coefficient and Model se-
lection

3.1 R2 and adjusted R2

We define respectively the total, explicated and residual sums of squares by

SST =

n∑
i=1

(Yi − Ȳ )2 =
∥∥Y −Y1

∥∥2
,

SSE =

n∑
i=1

(Ŷi − Ȳ )2 =
∥∥∥Ŷ −Y1

∥∥∥2

,

SSR =

n∑
i=1

(Ŷi − Yi)2 =
∥∥∥Y − Ŷ

∥∥∥2

= ‖e‖2 .

Since, by Pythagora’s theorem,∥∥Y −Y1
∥∥2

=
∥∥∥Y − Ŷ

∥∥∥2

+
∥∥∥Ŷ −Y1

∥∥∥2

,

we have the following identity :

SST = SSR + SSE.

We define the determination coefficient R2 by :

R2 =
SSE
SST

= 1− SSR
SST

.

Note that 0 ≤ R2 ≤ 1. The model is well adjusted to the n training data if the
residuals sum of square SSR is close to 0, or equivalently, if the determination
coefficient R2 is close to 1. Hence, the first hint is that a "good" model is a
model for which R2 is close to 1. This is in fact not true, as shown by the
following pedagogical example of polynomial regression. Suppose that we
have a training sample (Xi, Yi)1≤i≤n where Xi ∈ [0, 1] and Yi ∈ R and we
adjust polynomials on these data :

Yi = β0 + β1Xi + β2X
2
i + . . .+ βkX

k
i + εi.
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Figure 1: Polynomial regression : adjusted model, on the left : y = β0 +β1x+
ε, R2 = 0.03, on the right : y = β0 + β1x+ β2x

2 + ε, R2 = 0.73.
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Figure 2: Polynomial regression : adjusted model, on the left : y = β0 +β1x+
. . .+ β5x

5 + ε, R2 = 0.874, , on the right : y = β0 + β1x+ . . .+
β10x

10 + ε, R2 = 1.

When k increases, the model is more and more complex, hence
∥∥∥Y − Ŷ

∥∥∥2

decreases, and R2 increases as shown in Figures 1 and 2.

The determination coefficient is equal to 1 for the polynomial of degree
n − 1 (which has n coefficients) and passes through all the training points.
Of course this model is not the best one : it has a very high variance since
we estimate as much coefficients as the number of observations. This is a
typical case of overfitting. When the degree of the polynomial increases, the
bias of our estimators decreases, but the variance increases. The best model is
the one that realizes the best trade-off between the bias term and the variance
term. Hence, we have seen that maximizing the determination coefficient is
not a good criterion to compare models with various complexity. It is more
interesting to consider the adjusted determination coefficient defined by :

R′2 = 1− SSR/(n− k − 1)

SST/(n− 1)
.

The definition of R′2 takes into account the complexity of the model, repre-
sented here by its number of coefficients : k + 1 for a polynomial of degree k,
and penalizes more complex models. One can choose, between several mod-
els, the one which maximizes the adjusted R2. In the previous example, we
would choose a polynomial of degree 3 with this criterion.
More generally, we have to define model selection procedures that realize a
good compromise between a good adjustment to the data (small bias) and a
small variance; and an unbiased estimator is not necessarily the best one in
this sense. We will prefer a biased model if this allows to reduce drastically
the variance. There are several ways to do that :

• Reducing the number of explanatory variables and by the same way sim-
plifying the model (variable selection or Lasso penalization)

• Putting some constraints on the parameters of the model by shrinking
them (Ridge or Lasso penalization)

3.2 Example

We consider the Prostate cancer data from the R package lasso 2.
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" These data come from a study that examined the correlation between the
level of prostate specific antigen and a number of clinical measures in men
who were about to receive a radical prostatectomy."
It is data frame with 97 rows and 9 columns.

source Stamey, T.A., Kabalin, J.N., McNeal, J.E., Johnstone, I.M., Freiha, F.,
Redwine, E.A. and Yang, N. (1989)
Prostate specific antigen in the diagnosis and treatment of adenocarcinoma of
the prostate: II. radical prostatectomy treated patients, Journal of Urology
141(5), 1076–1083.”

The data frame has the following components:

lcavol log(cancer volume)
lweight log(prostate weight)
age age
lbph log(benign prostatic hyperplasia amount)
svi seminal vesicle invasion (0, 1)
lcp log(capsular penetration)
gleason Gleason score of the tumor (6, 7, 8, 9)
pgg45 percentage Gleason scores 4 or 5
lpsa log(prostate specific antigen)

We denote by Y the variable (lpsa) to explain. We set X1, . . .Xp for the
explanatory variables (lcavol , lweight , gleason ..). The variables are quan-
titative (lcavol , lweight , ...), or qualitative (gleason , svi ). We consider the
linear model :

Yi = β0 + β1X
1
i + β2X

2
i + . . .+ βpX

p
i + εi, 1 ≤ i ≤ n,

For the qualitative variables, we consider indicator functions of the different
levels of the factor, and introduce some constraints for identifiability. By de-
fault, in R, the smallest value of the factor (0 for svi and 6 for gleason ) are set
in the reference. This is an analysis of covariance model (mixing quantitative
and qualitative variables).
Exercise. — Write the matrix X of the model with the default constraints of
R, and with the constraint that the sum of the coefficients associated to each

modality of the qualitative variables is equal to 0 (contr.sum in R).

For the least square estimation, with the default constraints of R, we obtain
the following results :

Coefficients Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.913313 0.840836 1.086 0.28043
lcavol 0.569989 0.090100 6.326 1.09e-08 ***
lweight 0.468783 0.169610 2.764 0.00699 **
age -0.021749 0.011361 -1.914 0.05890 .
lbph 0.099685 0.058984 1.690 0.09464 .
svi1 0.745877 0.247398 3.015 0.00338 **
lcp -0.125111 0.095591 -1.309 0.19408
gleason7 0.267601 0.219419 1.220 0.22596
gleason8 0.496798 0.769268 0.646 0.52012
gleason9 -0.056230 0.500196 -0.112 0.91076
pgg45 0.004990 0.004672 1.068 0.28847
Residual standard error: 0.7048 on 86 degrees of freedom

Multiple R-squared: 0.666, Adjusted R-squared: 0.6272

Exercise. — Prove that the Student test of H0 : βj = 0 is equivalent to the
Fisher test for the same hypothesis.

4 Variable selection
As we have seen, the least square estimator is not satisfactory since it has

low bias but generally high variance. In the previous example, several variables
seem to be non significant, and we may have better results by removing those
variables from the model. Moreover, a model with a small number of variables
is more interesting for the interpretation, keeping only the variables that have
the strongest effects on the variable to explain. There are several ways to do
that.

Assume we want to select a subset of variables among all possible subsets
taken from the input variables. Each subset defines a model, and we want to
select the "best model". We have seen that maximizing the R2 is not a good
criterion since this will always lead to select the full model. It is more inter-
esting to select the model maximizing the adjusted determination coefficient
R′2. Many other penalized criterion have been introduce for variable selection

http://wikistat.fr


8

such as the Mallow’s CP criterion or the BIC criterion. In both cases, it corre-
sponds to the minimization of the least square criterion plus some penalty term,
depending on the number k of parameters in the model m that is considered.

Crit(m) =

n∑
i=1

(Yi − Ŷi)2 + pen(k).

The Mallow’s CP criterion is

CritCP (m) =

n∑
i=1

(Yi − Ŷi)2 + 2kσ2,

and the BIC criterion penalizes more the dimension of the model with an ad-
ditional logarithmic term.

CritBIC(m) =

n∑
i=1

(Yi − Ŷi)2 + log(n)kσ2.

The aim is to select the model (among all possible subsets) that minimizes one
of those criterion. On the example of the polynomial models, we obtain the
results summarized in Figure 3.

Nevertheless, the number of subsets of a set of p variables is 2p, and it is
impossible (as soon as p > 30) to explore all the models to minimize the cri-
terion. Fast algorithms have been developed to find a clever way to explore a
subsample of the models. This are the backward, forward and stepwise algo-
rithms.
Backward/Forward Algorithms :

• Forward selection : We start from the constant model (only the inter-
cept, no explanatory variable), and we add sequentially the variable that
allows to reduce the more the criterion.

• Backward selection : This is the same principle, but starting from the
full model and removing one variable at each step in order to reduce the
criterion.

• Stepwise selection: This is a mixed algorithm, adding or removing one
variable at each step in order to reduce the criterion in the best way.
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Figure 3: Mallows’CP in function of the degree of the polynomial. Selected
model : polynomial with degree 3.

All those algorithms stop when the criterion can no more be reduced. Let us
see some applications of those algorithms on the Prostate cancer data.
Stepwise Algorithm
We apply the StepAIC algorithm, with the option both of the sofware R in
order to select a subset of variables, and we present here an intermediate result :

Step: AIC=-60.79
lpsa lcavol + lweight + age + lbph + svi + pgg45

Df Sum of Sq RSS AIC
- pgg45 1 0.6590 45.526 -61.374
<none> 44.867 -60.788
+ lcp 1 0.6623 44.204 -60.231
- age 1 1.2649 46.132 -60.092
- lbph 1 1.6465 46.513 -59.293
+ gleason 3 1.2918 43.575 -57.622
- lweight 1 3.5646 48.431 -55.373
- svi 1 4.2503 49.117 -54.009
- lcavol 1 25.4190 70.286 -19.248

Step: AIC=-61.37

lpsa ∼ lcavol + lweight + age + lbph + svi
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The algorithm stops when adding or removing a variable does no more allow
to reduce the criterion. After 4 iterations, we get the following model :

lpsa ∼ lcavol + lweight + age + lbph + svi.

5 Ridge regression
The principle of the Ridge regression is to consider all the explanatory vari-

ables, but to introduce constraints on the parameters in order to avoid overfit-
ting, and by the same way in order to reduce the variance of the estimators. In
the case of the Ridge regression, we introduce an l2 constraint on the parameter
β.

5.1 Model and estimation

If we have an ill-conditionned problem, but we want to keep all the variables,
it is possible to improve the numerical properties and to reduce the variance of
the estimator by considering a slightly biased estimator of the parameter β.

We consider the linear model

Y = X̃β̃ + ε,

where

X̃ =


1 X1

1 X2
1 . Xp

1

1 X1
2 X2

2 . Xp
2

. . . . .
1 X1

n X2
n . Xp

n

 ,

β̃ =


β0

β1

.

.
βp

 , β =


β1

β2

.

.
βp

 .

We set X0 = (1, 1, . . . , 1)′, and X the matrix X̃ where we have removed the
first column. The ridge estimator is defined by a least square criterion plus a
penalty term, with an l2 type penalty.

DEFINITION 4. — The ridge estimator of β̃ in the model

Y = X̃β̃ + ε,

is defined by

β̂Ridge = argminβ∈Rp+1

 n∑
i=1

(Yi −
p∑
j=0

X
(j)
i βj)

2 + λ

p∑
j=1

β2
j

 ,

where λ is a non negative parameter, that we have to calibrate.

Note that the parameter β0 is not penalized.

PROPOSITION 5. — The ridge estimator can be expressed as follows :

β̂0Ridge = Ȳ , β̂R =


β̂1

β̂2

.

.

β̂p


Ridge

= argminβ∈Rp
(
‖Y(c) −X(c)β‖2 + λ‖β‖2

)
.

where X(c) is the matrixX that has been centered (for each column) and Y(c)

is the vector Y , that has been centered.

We now assume that X and Y are centered. We can find the ridge estimator
by resolving the normal equations :

X′Y = (X′X + λIp)β.

We get
β̂R = (X′X + λIp)

−1X′Y.

The solution is therefore explicit and linear with respect to Y.

Remarks :

1. X′X is a nonnegative symmetric matrix (for all vector u in Rp,
u′(X′X)u = ‖Xu‖2 ≥ 0. Hence, for any λ > 0, X′X + λIp is in-
vertible.
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2. The constant β0 is not penalized, otherwise, the estimator would depend
on the choice of the origin for Y. We obtain β̂0 = Y, adding a constant
to Y does not modify the values of β̂j for j ≥ 1.

3. The ridge estimator is not invariant by normalization of the vectors X(j),
it is therefore important to normalize the vectors before minimizing the
criterion.

4. The ridge regression is equivalent to the least square estimation under the
constraint that the l2-norm of the vector β is not too large:

β̂R = arg min
β

{
‖Y −Xβ‖2 ; ‖β‖2 < c

}
.

The ridge regression keeps all the parameters, but, introducing constraints
on the values of the βj’s avoids too large values for the estimated param-
eters, which reduces the variance.

Choice of the penalty term

In the Figure 4, we see results obtained by the ridge method for several
values of the tuning parameter λ = l on the polynomial regression example.
Increasing the penalty leads to more regular solutions, the bias increases, and
the variance decreases. We have overfitting when the penalty is equal to 0 and
under-fitting when the penalty is too large.

For each regularization method, the choice of the parameter λ is crucial and
determinant for the model selection. We see in Figure 5 the Regularisation
path, showing the profiles of the estimated parameters when the tuning param-
eter λ increases.

Choice of the regularization parameter

Most softwares use the cross-validation to select the tuning parameter
penalty. The principe is the following :

• We split the data into K sub-samples. For all I from 1 to K :

– We compute the Ridge estimator associated to a regularization pa-
rameter λ from the data of all the subsamples, except the I-th (that
will be a "‘test"’ sample).
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Figure 4: Ridge penalisation for the polynomial model
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Figure 6: Selection of the regularization parameter by CV

– We denote by β̂
(−I)
λ the obtained estimator.

– We test the performances of this estimator on the data that have not
been used to build it, that is the one of the I-th sub-sample.

• We compute the criterion :

CV (λ) =
1

n

n∑
i=1

(Y i −Xiβ̂
(−τ(i))

λ )2.

• We choose the value of λ which minimizes CV (λ).

Application to the prostate cancer data: The value of λ selected by cross-
validation is 7.96. We show the obtained value in Figure 6.

Singular Value Decomposition and Ridge regression

The Singular Value Decomposition (SVD) of the centered matrix X allows
to interpret the ridge regression as a shrinkage method. The SVD of the matrix
X has the following form :

X = UDV′,
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where X is a n× p matrix, U is n× n, D is a n× p "diagonal" matrix whose
all elements are ≥ 0 and ordered by decreasing values, V is a p × p matrix.
The elements of D are the singular values of the matrix X . U and V are
orthogonal: UU′ = U′U = In, VV′ = V′V = Ip.
We have

Xβ̂R = UD(D′D + λIp)
−1D′U′Y.

Suppose that n ≤ p. We denote by u(1), . . . ,u(n) the columns of the matrix
U. Setting d1 ≥ . . . ≥ dp ≥ 0 the diagonal elements of D, UD is a n × p
matrix whose j-th column is dju(j). We therefore have

Xβ̂R =

p∑
j=1

uj

(
d2
j

d2
j + λ

)
(uj)′Y.

Let us compare this estimator with the least square estimator (which corre-
sponds to λ = 0):

Xβ̂ =

p∑
j=1

uj(uj)′Y.

(uj)′Y corresponds to the j-th component of Y in the basis (u1, . . . ,un).
In the case of the ridge regression, this component is multiplied by the factor
d2
j/
(
d2
j + λ

)
∈]0, 1[, we can say that this component has been thresholded.

Remarks :
1) When the tuning parameter λ increases, the coefficients are more and more
thresholded.
2) x 7→ x/(x + λ) is a non decreasing function of x for x > 0. The largest
coefficients are slightly thresholded : if d2

j >> λ, d2
j/
(
d2
j + λ

)
is close to 1.

The threshold decreases when j increases since dj decreases.

We can give an interpretation in relation with the Principal Components
Analysis . X being centered, X′X/n is the empirical variance-covariance
matrix of the column vectors of the matrixX .

X′X = VD′DV′,

where D′D is the diagonal matrix composed by the elements d2
i . We denote

by v1, . . . ,vp the column vectors in Rp of the matrix V.

Let v be an Rp vector with norm 1.

V ar(Xv) = (Xv)′(Xv) = v′(X′X)v,

which is maximal for v = v1 and is equal to d2
1.

z1 = Xv1 is the first principal component of the matrix X.
The orthonormal eigenvectors v1, . . . ,vp are the principal directions (or
Karhunen Loeve directions) of X. The variables zj = Xvj are the princi-
pal components. We remark that

zj = Xvj = UDV′vj = dju
(j).

We see that the ridge regression shrinks slightly the first principal components
(for which dj is large), and more the last principal components.
We can associate to the ridge procedure the quantity df(λ) which is called the
effective number of degrees of freedom in the ridge regression and is defined
by

df(λ) =

p∑
j=1

d2
j

d2
j + λ

.

If λ = 0, df(λ) = p (no shrinkage), if λ→∞, df(λ)→ 0, at the limit, all the
coefficients are equal to 0.

6 The LASSO regression
The ridge regression allows to get around the collinearity problems even if

the numbers of predictors p is large with possibly p > n. The main weak-
ness of this method is related to interpretation difficulties because, without
selection, all variables are included in the model. Other regularization ap-
proaches also allow selection, as the LASSO regression, which leads to more
interpretable solutions.

6.1 Model and estimation

LASSO is the abbreviation of Least Absolute Shrinkage and Selection Op-
erator. The Lasso estimator is introduced in the paper by Tibshirani, R.
(1996)[9]: Regression shrinkage and selection via the lasso. J. Royal. Statist.

http://wikistat.fr
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Soc B., Vol. 58, No. 1, pages 267-288. The Lasso corresponds to the mini-
mization of a least square criterion plus an l1 penalty term (and no more an l2
penalization like in the ridge regression). We denote ‖β‖1 =

∑p
j=1 |βj |.

DEFINITION 6. — The Lasso estimator of β in the model

Y = Xβ + ε,

is defined by :

β̂Lasso = argminβ∈Rp+1

 n∑
i=1

(Yi −
p∑
j=0

X
(j)
i βj)

2 + λ

p∑
j=1

|βj |

 ,

where λ is a nonnegative tuning parameter.

We can show that this is equivalent to the minimization problem :

β̂L = argminβ∈Rp,‖β‖1≤t(‖Y −Xβ‖2),

where t is suitably chosen, and β̂0Lasso = Ȳ . Like for the Ridge regression,
the parameter λ is a regularization parameter:

• If λ = 0, we recover the least square estimator.

• If λ tends to infinity, all the coefficients β̂j are equal to 0 for j = 1, . . . , p.

The solution to the Lasso is parsimonious (or sparse), since it has many null
coefficients.

If the matrix X is orthogonal : (X′X = Id), the solution is explicit.

PROPOSITION 7. — If X′X = Ip, the solution β of the minimization of the
Lasso criterion

‖Y −Xβ‖2 + 2λ‖β‖1
is defined as follows : for all j = 1, . . . , p,

βj = sign(β̂j)(|β̂j | − λ)1|β̂j |≥λ,

where β̂ is the least square estimator : β̂ = X′Y.

The obtained estimator corresponds to a soft thresholding of the least square
estimator. The coefficients β̂j are replaced by φλ(β̂j) where

φλ : x 7→ sign(x)(|x| − λ)+.

Exercise. — Prove the proposition 7.

Another formulation

The LASSO is equivalent to the minimization of the criterion

Crit(β) =

n∑
i=1

(Yi − β0 − β1X
(1)
i − β2X

(2)
i − . . .− βpX

(p)
i )2

under the constraint
∑p
j=1 |βj | ≤ t, for some t > 0.

The statistical software R introduces a constraint expressed by a relative
bound for

∑p
j=1 |βj | : the constraint is expressed by

p∑
j=1

|βj | ≤ κ
p∑
j=1

|β̂(0)
j |,

where β̂(0) is the least square estimator and κ ∈ [0, 1].

For κ = 1 we recover the least square estimator (there is no constraint) and
for κ = 0, all the β̂j , j ≥ 1, vanish (maximal constraint).

6.2 Applications

We represent in Figure 7 the values of the coefficients in function of κ for
the Prostate cancer data: this are the regularization paths of the LASSO. As
for the Ridge regression, the tuning parameter is generally calibrated by cross-
validation.

Comparison LASSO/ RIDGE

The Figure 3.12 gives a geometric interpretation of the minimization prob-
lems for both the Ridge and Lasso estimators. This explains why the Lasso
solution is sparse.
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Figure 7: Regularization paths of the LASSO when the penalty decreases

6.3 Optimization algorithms for the LASSO

Convex functions and subgradients

DEFINITION 8. — A function F : Rn → R is convex if ∀x, y ∈ Rn,∀λ ∈
[0, 1],

F (λx+ (1− λ)y) ≤ λF (x) + (1− λ)F (y).

LEMMA 9. — When F is differentiable in x, we have F (y) ≥ F (x) +
〈∇F (x), y − x〉 ∀y ∈ Rn.

When F is non differentiable, we introduce the subdifferential ∂F of F
defined by :

DEFINITION 10. — The subdifferential ∂F of F is :

∂F (x) = {ω ∈ Rn, F (y) ≥ F (x) + 〈ω, y − x〉,∀y ∈ Rn} .

A vector ω ∈ ∂F (x) is called a subgradient of F in x.
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LEMMA 11. — F is convex⇔ ∂F (x) 6= ∅ ∀x ∈ Rn.

Example : subdifferential of the l1 norm

∂|x|1 = {ω ∈ Rn, ωj = 1 for xj > 0, ωj = −1 for xj < 0,

ωj ∈ [−1, 1] for xj = 0} .

Remark : The subdifferential of a convex function is monotone in the follow-
ing sense :

〈ωx − ωy, x− y〉 ≥ 0 ∀ωx ∈ ∂F (x),∀ωy ∈ ∂F (y).

Indeed

F (y) ≥ F (x) + 〈ωx, y − x〉
F (x) ≥ F (y) + 〈ωy, x− y〉.

By summing, 〈ωx − ωy, x− y〉 ≥ 0.

First optimality condition

PROPOSITION 12. — Let F : Rn → R be a convex function.

x∗ ∈ argminx∈RnF (x)⇔ 0 ∈ ∂F (x∗).

Proof : In both cases,

F (y) ≥ F (x∗) + 〈0, y − x∗〉.

The Lasso estimator

We consider the linear model :

Y = Xβ∗ + ε.

We assume that the columns of X have norm 1. Let

L(β) = ‖Y −Xβ‖2 + λ|β|1.

By definition, the Lasso estimator

β̂λ ∈ argminβ∈Rp(L(β)).

We deduce from the first order optimality condition that 0 ∈ ∂L(β̂λ).
We have that

L(β) = ‖Y ‖2 − β∗X∗Xβ − 2β∗XY + λ|β|1.

LEMMA 13. — Let h : β 7→ β∗Aβ where A is a symmetric matrix. Then
5h(β) = 2Aβ.

Let g : β 7→ β∗z = z∗β = 〈z, β〉 where z ∈ Rp. Then5g(β) = z.

Hence we have

∂L(β) = 2X∗Xβ − 2X∗Y + λ∂|β|1.

0 ∈ ∂L(β̂λ)⇔ ∃ẑ ∈ ∂|β̂λ|1 such that :

2X∗Xβ̂λ − 2X∗Y + λẑ = 0.

This last equality is equivalent to

X∗Xβ̂λ = X∗Y − λ

2
ẑ (E).

We have seen that

ẑj = sign((β̂λ)j if (β̂λ)j 6= 0

ẑj can be any real in [−1, 1] if (β̂λ)j = 0.

Orthogonal setting

When X∗X = Ip, (E) gives (β̂λ)j = X∗j Y − λ
2 ẑj .

Moreover, ẑj = sign(β̂λ)j if (β̂λ)j 6= 0. Hence,
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{
(β̂λ)j > 0⇒ X∗j Y > λ

2

(β̂λ)j < 0⇒ X∗j Y < −λ2 .
.

(β̂λ)j 6= 0⇒
{
|X∗j Y | > λ

2

sign((β̂λ)j) = sign(X∗j Y )
.

This leads to the explicit solution of the Lasso in the orthogonal setting

(β̂λ)j = sign(X∗j Y )

(
|X∗j Y | −

λ

2

)
1|X∗j Y |>λ

2
.

It corresponds to a soft thresholding of the Ordinary Least Square estimator
β̂j = X∗j Y .

Non orthogonal setting

In this case, there is no analytic formula for the Lasso estimator β̂λ.
Let m̂λ =

{
j, (β̂λ)j 6= 0

}
be the support of β̂λ.

We can derive from Equation (E) that

• If λ ≥ 2 supj |X∗j Y |, then β̂λ = 0.

• If λ < 2 supj |X∗j Y |, then denoting Xm̂λ the submatrix obtained from
X by keeping only the columns belonging to m̂λ, we have the following
equation :

X∗m̂λXm̂λ(β̂λ)m̂λ = X∗m̂λY −
λ

2
sign((β̂λ)m̂λ).

Computing the Lasso estimator

β 7→ L(β) = ‖Y −Xβ‖2 + λ|β|1 is convex.
Hence a simple and efficient approach to minimize this function is to alternate
minimization over each coordinate of β.
This algorithm converges to the Lasso estimator thanks to the convexity of L.
If we assume that the columns of X have norm 1, then we have

∂R

∂βj
(β) = −2X∗j (Y −Xβ) + λ

βj
|βj |

, ∀βj 6= 0.

Hence, we can see (after some easy computations) that βj 7→
R(β1, . . . , βj−1, βj , . . . , βp) is minimum in

βj = Rj

(
1− λ

2|Rj |

)
+

with Rj = X∗j (Y −
∑
k 6=j βkXk).

The coordinate descent algorithm is summarized as follows :

• Initialise βinit arbitrarily

• Iterate until convergence :

∀j = 1, . . . , p, βj = Rj

(
1− λ

2|Rj |

)
+

with Rj = X∗j (Y −
∑
k 6=j βkXk).

• Output β.

This algorithm is implemented in the R package glmnet.

Due to its parsimonious solution, this method is widely used to select vari-
ables in high dimension settings (when p > n). Verzelen (2012)[10] has shown
important results on the limitation of the Lasso in ultra high dimension.

7 Elastic Net
Elastic Net is a method that combines Ridge and Lasso regression, by in-

troducing simultaneously the l1 and l2 penalties. The criterion to minimize
is

n∑
i=1

(Yi − β0 − β1X
(1)
i − β2X

(2)
i − . . .− βpX

(p)
i )2

+λ

α p∑
j=1

|βj |+ (1− α)

p∑
j=1

β2
j


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• For α = 1, we recover the LASSO.

• For α = 0, we recover the Ridge regression.

In this case, we have two tuning parameters to calibrate by cross-validation.

8 Principal Components Regression and
Partial Least Square regression

8.1 Principal Component Regression (PCR)

W
¯

e denote by Z(1), . . .Z(p) the principal components associated to the vari-
ables X(1), . . .X(p) :

• Z(1) is the linear combination of X(1), . . . , X(p) of the form∑p
i=1 αjX

(j) with
∑
α2
j = 1 with maximal variance.

• Z(m) is the linear combination of X(1), . . . , X(p) of the form∑p
i=1 αj,mX

(j) with
∑
α2
j,m = 1 with maximal variance and orthog-

onal to Z(1), . . . , Z(m−1).

The Principal Component Regression (PCR) consists in considering a predictor
of the form :

Ŷ PCR =

M∑
m=1

θ̂mZ
(m)

with

θ̂m =
〈Z(m), Y 〉
‖Z(m)‖2

.

Comments :

• If M = p, we keep all the variables and we recover the ordinary least
square (OLS) estimator.

• If one can obtain a good prediction with M < p, then we have reduced
the number of variables, hence the dimension.

• Nevertheless, interpretation is not always easy : if the variables are inter-
pretable, the principal components (that correspond to linear combination
of the variables) are generally difficult to interpret.

• This method is quite similar to the Ridge regression, which shrinks the
coefficients of the principal components. Here, we set to 0 the coefficients
of the principal components of order greater than M .

• The first principal components are not necessarily well correlated with
the variable to explain Y , this is the reason why the PLS regression has
been introduced.

8.2 Partial Least Square (PLS) regression

Le principle of this method is to make a regression on linear combinations
of the variables Xi’s, that are highly correlated with Y .

• We assume that Y has been centered, and that the variables X(j) are also
centered and normalized (with norm 1).

• The first PLS component is defined by :

W (1) =

p∑
j=1

〈Y,X(j)〉X(j).

• The prediction associated to this first component is :

Ŷ 1 =
〈Y,W (1)〉
‖W (1)‖2

W (1).

Note that if the matrix X is orthogonal, this estimator corresponds to the ordi-
nary least square (OLS) estimator, and in this case, the following steps of the
PLS regression are useless.

• In order to obtain the following directions, we orthogonalize the variables
X(j) with respect to the first PLS component W (1) :
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• We substract to each variables X(j) (1 ≤ j ≤ p) its orthogonal projec-
tion in the direction given by W (1) and we normalize the variables thus
obtained.

• We compute the second PLS componentW (2) in the same way as the first
component by replacing the variables X(j)’s by the new variables.

• We iterate this process by orthogonalizing at each step the variables with
respect to the PLS components.

The algorithm is the following :

• Ŷ 0 = Ȳ and X(j),0 = X(j). For m = 1, . . . , p

• W (m) =
∑p
j=1〈Y,X(j,m−1)〉X(j,m−1).

• Ŷ m = Ŷ m−1 + 〈Y,W (m)〉
‖W (m)‖2 W

(m).

• ∀j = 1, . . . , p, X(j),m =
X(j),m−1−Π

W (m) (X(j),m−1)

‖X(j),m−1−Π
W (m) (X(j),m−1)‖ .

• The predictor Ŷ p obtained at step p corresponds to ordinary least square
estimator.

• This method is useless if the variables X(j) are orthogonal.

• When the variables X(j) are correlated, PCR and PLS methods present
the advantage to deal with new variables, that are orthogonal.

• The choice of the number of PCR or PLS components can be done by
cross-validation.

• In general, the PLS method leads to more parcimoneous representations
than the PCR method.

• The PLS regression leads to a reduction of the dimension.

• If p is large, this is particularly interesting, but can lead to problems of
interpretation since the PLS components are linear combinations of the
variables.
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Figure 8: Estimation of the error by cross-validation in function of the number
of PLS components

• There exists a sparse version : sparse PLS (inspired from the Lasso
method), for which we consider linear combinations of the initial vari-
ables X(j) with only a few non zero coefficients, hence keeping only a
few variables, which makes the interpretation more easy.

Application of the PLS regression

Application to the prostate cancer data.
Data:

X dimension: 97 10
Y dimension: 97 1
Number of components considered: 10

VALIDATION: RMSEP
Cross-validated using 10 random segments.

(Intercept) 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps 7 comps
CV 1.160 1.066 1.031 0.8344 0.7683 0.7501 0.7634 0.7672

adjCV 1.160 1.064 1.075 0.8291 0.7641 0.7451 0.7584 0.7618

8 comps 9 comps 10 comps
CV 0.7704 0.7758 0.7730

adjCV 0.7641 0.7695 0.7671
TRAINING: % variance explained

1 comps 2 comps 3 comps 4 comps 5 comps 6 comps 7 comps 8 comps
X 93.47 98.49 99.66 99.75 99.93 99.96 99.97 99.98

lpsa 18.20 26.98 57.02 63.09 64.38 66.15 66.46 66.59

9 comps 10 comps
X 100.0 100.0

lpsa 66.6 66.6

http://wikistat.fr
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Figure 9: Model with 5 PLS components: estimated coefficients and predicted
values in function of the observations
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