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Linear and nonlinear methods for
classification

Support Vector Machines

1 Introduction
In this chapter, we consider supervised classification problems. We have

a training data set with n observation points (or objects) Xi and their class
(or label) Yi. For example, the MNIST data set is a database of handwritten
digits, where the objects Xi are images and Yi ∈ {0, 1, . . . , 9}. Many other
examples can be considered, such as the recognition of an object in an image,
the detection of spams for emails, the presence of some illness for patients
(the observation points may be gene expression data) ... We will first introduce
the notion of best classifier, which is also called the Bayes classifier, we will
then propose linear methods for classification. The core of the chapter will
be devoted to the Support Vector machine, which are very powerful nonlinear
methods for classification.

The main references for this course are the following books :

• An introduction to Support Vector Machines by N. Cristianini and J.
Shawe-Taylor [1]

• Introduction to High-Dimensional Statistics by C. Giraud [3]

• The elements of Statistical Learning by T. Hastie et al [4].

• Learning with kernels by A. Smola and B. Scholkopf [5].

• Statistical Learning Theory by V. Vapnik [6].

• M2 courses, M. Fromont-Renoir, Université de Rennes 2 :
https://perso.univ-rennes2.fr/magalie.fromont

2 Optimal rules for classification
Suppose that dn corresponds to the observation of a n-sample Dn =

{(X1, Y1), . . . , (Xn, Yn)} with joint unknown distribution P on X × Y , and
that x is one observation of the variable X , where (X, Y ) has joint distribu-
tion P and is independent of Dn. Since we consider a classification problem,
Y is a finite set. The sampleDn is called the learning sample.

A classification rule is a measurable function f : X → Y that associates the
output f(x) to the input x ∈ X .

In order to quantify the quality of the prevision, we introduce a loss function.

DEFINITION 1. — A measurable function l : Y × Y → R+ is a loss function
if l(y, y) = 0 and l(y, y′) > 0 for y 6= y′.

If f is a classification rule, x an input, y the output that is really associated
to the input x, then l(y, f(x)) quantifies the loss when we associate to the
input x the predicted output f(x).

In a regression framework when Y = R : we consider the Lp loss (p ≥ 1)

l(y, y′) = |y − y′|p.

If p = 2, this is the quadratic loss.

For binary classification : Y = {−1, 1}

l(y, y′) = 1y 6=y′ =
|y − y′|

2
=

(y − y′)2

4
.

We consider the expectation of this loss, this leads to the definition of the
risk :

DEFINITION 2. — Given a loss function l, the risk - or generalisation error -
of a prediction rule f is defined by

RP (f) = E(X,Y )∼P [l(Y, f(X))].
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It is important to note that, in the above definition, (X, Y ) is independent of
the training sampleDn that was used to build the prediction rule f .

Let F denote the set of all possible prediction rules. We say that f∗ is an
optimal rule if

RP (f∗) = inf
f∈F

RP (f).

A natural question arises : is it possible to build optimal rules ? This is indeed
the case. We focus here on the classification framework. We define the Bayes
rule, and show that it is an optimal rule for classification.

DEFINITION 3. — We call Bayes rule any measurable function f∗ in F such
that for all x ∈ X ,

P(Y = f∗(x)|X = x) = max
y∈Y

P(Y = y|X = x).

THEOREM 4. — If f∗ is a Bayes rule, then RP (f∗) = inff∈F RP (f).

The definition of a Bayes rule depends on the knowledge of the
distribution P of (X, Y ). In practice, we have a training sample
Dn = {(X1, Y1), . . . , (Xn, Yn)} with joint unknown distribution P ,
and we construct a classification rule. The aim is to find a "good" classi-
fication rule, in the sense that its risk is close to the optimal risk of a Bayes rule.

Exercise. — Prove Theorem 4.

3 Linear discriminant analysis
Let (X, Y ) with unknown distribution P on X × Y , where we assume that

X = Rp and Y = {1, 2, . . . ,K}. We define

fk(x) = P(Y = k/X = x).

A Bayes rule is defined by

f∗(x) = argmax
k∈{1,2,...,K}

fk(x).

We assume that the distribution of X has a density fX and the distribution of
X given Y = k has a density gk with respect to the Lebesgue measure on Rp,
and we set πk = P(Y = k).

Exercise. — Prove that

fX(x) =

K∑
l=1

gl(x)πl

and that

fk(x) =
gk(x)πk∑K
l=1 gl(x)πl

.

If we assume that the distribution ofX given Y = k is a multivariate normal
distribution, with mean µk and covariance matrix Σk, we have

gk(x) =
1

(2π)p/2|Σk|1/2
exp

(
−1

2
(x− µk)′Σ−1k (x− µk)

)
.

For the linear discriminant analysis, we furthermore assume that Σk = Σ for
all k. In this case we have

log

(
P(Y = k/X = x)

P(Y = l/X = x)

)
= log

(
πk
πl

)
+ x′Σ−1(µk − µl)

− 1

2
(µk + µl)

′Σ−1(µk − µl).

Hence the decision boundary between the class k and the class l, {x,P(Y =
k/X = x) = P(Y = l/X = x)} is linear. We can write

logP(Y = k/X = x) = C(x)δk(x)

where C(x) does not depend on the class k, and

δk(x) = x′Σ−1µk −
1

2
µ′kΣ−1µk + log(πk).

The Bayes rule will assign x to the class f∗(x) which maximises δk(x).
We want now to built a decision rule from a training sample Dn =
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{(X1, Y1), . . . , (Xn, Yn)} which is close to the Bayes rule. For this purpose,
we have to estimate for all k πk, µk and the matrix Σ. We consider the follow-
ing estimators.

π̂k =
Nk
n

µ̂k =

∑n
i=1Xi1Yi=k

Nk

where Nk =
∑n
i=1 1Yi=k. We estimate Σ by

Σ̂ =

K∑
k=1

n∑
i=1

(Xi − µ̂k)(Xi − µ̂k)′1Yi=k
n−K

.

To conclude, the Linear Discriminant Analysis assigns the input x to the class
f̂(x) which maximises δ̂k(x), where we have replaced in the expression of
δk(x) the unknown quantities by their estimators.
Remark : If we no more assume that the matrix Σ does not depend on the
class k, we obtain quadratic discriminant functions

δk(x) = −1

2
log |Σk| −

1

2
(x− µk)′Σ−1k (x− µk) + log(πk).

This leads to the quadratic discriminant analysis.

4 Logistic regression
Noting that the Bayes classifier only depends on the conditional distribution

of Y given X , we can avoid to model the distribution of X as previously. We
assume that X = Rd. One of the most popular model for binary classification
when Y = {−1, 1} is the logistic regression model, for which it is assumed
that

P(Y = 1/X = x) =
exp(α+ 〈β,x〉)

1 + exp(α+ 〈β,x〉)
for all x ∈ X ,

with α ∈ R and β ∈ Rd.

Exercise. — Compute the Bayes classifier f∗ for this model and determine the
border between f∗ = 1 and f∗ = −1.

We can estimate the parameters (α,β) by maximizing the conditional like-
lihood of Y givenX .

L(α,β) =
∏
i,Yi=1

exp(α+ 〈β,Xi〉)
1 + exp(α+ 〈β,Xi〉)

∏
i,Yi=−1

1

1 + exp(α+ 〈β,Xi〉)
.

We then compute the logistic regression classifier :

∀x ∈ X , f̂(x) = sign(α̂+ 〈β̂,x〉).

In general, the logistic regression provides different classifiers as LDA. If the
distribution of X if far from a Gaussian distribution, the logistic regression
outperforms the LDA, as soon as the logistic model is still valid.

5 Linear Support Vector Machine

5.1 Linearly separable training set

We assume that X = Rd, endowed with the usual scalar product 〈., .〉, and
that Y = {−1, 1}.

DEFINITION 5. — The training set dn1 = (x1, y1), . . . , (xn, yn) is called
linearly separable if there exists (w, b) such that for all i,
yi = 1 if 〈w, xi〉+ b > 0,
yi = −1 if 〈w, xi〉+ b < 0,
which means that

∀i yi (〈w, xi〉+ b) > 0.

The equation 〈w, x〉+b = 0 defines a separating hyperplane with orthogonal
vector w.

The function fw,b(x) = 1〈w,x〉+b≥0 − 1〈w,x〉+b<0 defines a possible linear
classification rule.

The problem is that there exists an infinity of separating hyperplanes, and
therefore an infinity of classification rules.

Which one should we choose ? The response is given by Vapnik [6]. The
classification rule with the best generalization properties cooresponds to the
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separating hyperplane maximizing the margin γ between the two classes on
the training set.

If we consider two entries of the training set, that are on the broder defining
the margin, and that we call x1 and x−1 with respective outputs 1 and −1,
the separating hyperplane is located at the half-distance between x1 and x−1.
The margin is therefore equal to the half of the distance between x1 and x−1
projected onto the normal vector of the separating hyperplane :

γ =
1

2

〈w, x1 − x−1〉
‖w‖

.

Let us notice that for all κ 6= 0, the couples (κw, κb) and (w, b) define the
same hyperplane.

DEFINITION 6. — The hyperplane 〈w, x〉 + b = 0 is canonical with respect
to the set of vectors x1, . . . , xk if

mini=1...k |〈w, xi〉+ b| = 1.

The separating hyperplane has the canonical form relatively to the vectors
{x1, x−1} if it is defined by (w, b) where 〈w, x1〉+ b = 1 and 〈w, x−1〉+ b =
−1. In this case, we have 〈w, x1 − x−1〉 = 2, hence

γ =
1

‖w‖
.

5.2 A convex optimisation problem

Finding the separating hyperplane with maximal margin consists in finding
(w, b) such that

‖w‖2 or 1
2‖w‖

2 is minimal
under the constraint

yi (〈w, xi〉+ b) ≥ 1 for all i.

This leads to a convex optimization problem with linear constraints, hence
there exists a unique global minimizer.

Primal optimization problem Let us recall some definitions.

We want to minimize for u ∈ R2 h(u) under the constraints gi(u) ≥ 0 for
i = 1 . . . n, h is a quadratic function, gi are affine functions.

The Lagrangian of the optimization problem is the function defined on
R2 × Rn by
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L(u, α) = h(u)−
n∑
i=1

αigi(u).

The variables αi are called the dual variables .
For all α ∈ Rn, uα is the value of u minimizing L(u, α).
The dual function is defined by

θ(α) = L(uα, α) = minu∈R2L(u, α).

Dual optimization problem
Maximizing θ(α) = L(uα, α) = minu∈R2L(u, α) under the constraints

αi ≥ 0 for i = 1 . . . n.

The solution of the dual problem α∗ gives the solution of the primal prob-
lem:

u∗ = uα∗ .

Karush-Kuhn-Tucker conditions for the dual problem

• α∗i ≥ 0 for all i = 1 . . . n.

• gi(uα∗) ≥ 0 for all i = 1 . . . n.

• Back to the dual problem :

We have to minimize L(u, α) = h(u) −
∑n
i=1 αigi(u) with respect to u

and to maximize L(uα, α) with respect to the dual variables αi. Note that if
gi(uα∗) > 0, then we get α∗i = 0.
The complementary Karush-Kuhn-Tucker condition writes α∗i gi(uα∗) =
0.

Let us come back to the linear support vector machine optimization problem.

The primal problem to solve is :

Minimizing 1
2‖w‖

2 s. t. yi (〈w, xi〉+ b) ≥ 1 ∀ i.

Lagrangian L(w, b, α) = 1
2‖w‖

2 −
∑n
i=1 αi (yi (〈w, xi〉+ b)− 1) .

Dual Function

∂L

∂w
(w, b, α) = w −

n∑
i=1

αiyixi = 0 ⇔ w =

n∑
i=1

αiyixi

∂L

∂b
(w, b, α) = −

n∑
i=1

αiyi = 0 ⇔
n∑
i=1

αiyi = 0

θ(α) =
1

2

n∑
i,j=1

αiαjyiyj〈xi, xj〉+

n∑
i=1

αi −
n∑

i,j=1

αiαjyiyj〈xi, xj〉

=

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyj〈xi, xj〉.

The corresponding dual problem is :

Maximizing

θ(α) =

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyj〈xi, xj〉

under the constraint
∑n
i=1 αiyi = 0 and αi ≥ 0 ∀i.

The solution α∗ of the dual problem can be obtained with classical opti-
mization softwares.

Remark : The solution does not depend on the dimension d, but depends
on the sample size n, hence it is interesting to notice that when X is high
dimensional, linear SVM do not suffer from the curse of dimensionality.

5.3 Supports Vectors

For our optimization problem, the Karush-Kuhn-Tucker conditions are

• α∗i ≥ 0 ∀i = 1 . . . n.
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• yi (〈w∗, xi〉+ b∗) ≥ 1 ∀i = 1 . . . n.

• α∗i (yi (〈w∗, xi〉+ b∗)− 1) = 0 ∀ i = 1 . . . n.
(complementary condition)

Only the α∗i > 0 are involved in the resolution of the optimization problem.
If the number of values α∗i > 0 is small, the solution of the dual problem is
called "sparse".

DEFINITION 7. — The xi such that α∗i > 0 are called the support vec-
tors. They are located on the border defining the maximal margin namely
yi (〈w∗, xi〉+ b∗) = 1 (c.f. complementary KKT condition).

We finally obtain the following classification rule :

f̂(x) = 1〈w∗,x〉+b∗≥0 − 1〈w∗,x〉+b∗<0,

with

• w∗ =
∑n
i=1 α

∗
i xiyi,

• b∗ = − 1
2 {minyi=1〈w∗, xi〉+ minyi=−1〈w∗, xi〉}.

The maximal margin equals γ∗ = 1
‖w∗‖ =

(∑n
i=1(α∗i )

2
)−1/2

.

The α∗i that do not correspond to support vectors (sv) are equal to 0, and
therefore

f̂(x) = 1∑
xi sv

yiα∗i 〈xi,x〉+b∗≥0 − 1∑
xi sv

yiα∗i 〈xi,x〉+b∗<0.

6 Linear SVM in the non separable case
The previous method cannot be applied when the training set is not linearly

separable. Moreover, the method is very sensitive to outliers.

6.1 Flexible margin

In the general case, we allow some points to be in the margin and even on
the wrong side of the margin. We introduce the slack variable ξ = (ξ1, . . . , ξn)
and the constraint yi(〈w, xi〉+ b) ≥ 1 becomes yi(〈w, xi〉+ b) ≥ 1− ξi, with
ξi ≥ 0.

• If ξi ∈ [0, 1] the point is well classified but in the region defined by the
margin.

• If ξi > 1 the point is misclassified.

The margin is called flexible margin.

6.2 Optimization problem with relaxed constraints

In order to avoid too large margins, we penalize large values for the slack
variable ξi.

The primal optimization problem is formalized as follows :

Minimize with respect to (w, b, ξ) 1
2‖w‖

2 + C
∑n
i=1 ξi such that

yi (〈w, xi〉+ b) ≥ 1− ξi ∀ i
ξi ≥ 0
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Remarks :

• C > 0 is a tuning parameter of the SVM algorithm. It will determine
the tolerance to misclassifications. If C increases, the number of misclas-
sified points decreases, and if C decreases, the number of misclassified
points increases. C is generally calibrated by cross-validation.

• One can also minimize 1
2‖w‖

2 + C
∑n
i=1 ξ

k
i , k = 2, 3, . . ., we still have

a convex optimization problem.
The choice

∑n
i=1 1ξi>1 (number of errors) instead of

∑n
i=1 ξ

k
i would

lead to a non convex optimization problem.

The Lagrangian of this problem is:

L(w, b, ξ, α, β) =
1

2
‖w‖2 +

n∑
i=1

ξi(C − αi − βi)

+

n∑
i=1

αi −
n∑
i=1

αiyi (〈w, xi〉+ b) ,

with αi ≥ 0 and βi ≥ 0.

The cancellation of the partial derivatives ∂L
∂w (w, b, ξ, α, β),

∂L
∂b (w, b, ξ, α, β) and ∂L

∂ξi
(w, b, ξ, α, β) leads to the following dual prob-

lem.

Dual problem :

Maximizing θ(α) =
∑n
i=1 αi −

1
2

∑n
i,j=1 αiαjyiyj〈xi, xj〉

s. t.
∑n
i=1 αiyi = 0 and 0 ≤ αi ≤ C ∀i.

Karush-Kuhn-Tucker conditions :

• 0 ≤ α∗i ≤ C ∀i = 1 . . . n.

• yi (〈w∗, xi〉+ b∗) ≥ 1− ξ∗i ∀i = 1 . . . n.

• α∗i (yi (〈w∗, xi〉+ b∗) + ξ∗i − 1) = 0 ∀ i = 1 . . . n.

• ξ∗i (α∗i − C) = 0.

6.3 Supports vectors

We have the complementary Karush-Kuhn-Tucker conditions:

α∗i (yi (〈w∗, xi〉+ b∗) + ξ∗i − 1) = 0 ∀ i = 1 . . . n,

ξ∗i (α∗i − C) = 0

DEFINITION 8. — The points xi such that α∗i > 0 are the support vectors.

We have two types of support vectors :

• The support vectors for which the slack variables are equal to 0. They are
located on the border of the region defining the margin.

• The support vectors for which the slack variables are not equal to 0: ξ∗i >
0 and in this case α∗i = C.

For the vectors that are not support vectors, we have α∗i = 0 and ξ∗i = 0.

The classification rule is defined by

f̂(x) = 1〈w∗,x〉+b∗≥0 − 1〈w∗,x〉+b∗<0,

= sign(〈w∗, x〉+ b∗)
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with

• w∗ =
∑n
i=1 α

∗
i xiyi,

• b∗ such that yi (〈w∗, xi〉+ b∗) = 1 ∀xi, 0 < α∗i < C.

The maximal margin equals γ∗ = 1
‖w∗‖ =

(∑n
i=1(α∗i )

2
)−1/2

.

The α∗i that do not correspond to support vectors are equal to 0, hence

f̂(x) = 1∑
xisv

yiα∗i 〈xi,x〉+b∗≥0 − 1∑
xisc

yiα∗i 〈xi,x〉+b∗<0.

7 Non linear SVM and kernels
A training set is rarely linearly separable.

In this case, a linear SVM leads to bad performances and a high number of
support vectors. We can make the classification procedure more flexible by en-
larging the feature space and sending the entries {xi, i = 1 . . . n} in an Hilbert
spaceH, with high or possibly infinite dimension, via a function φ, and we ap-
ply a linear SVM procedure on the new training set {(φ(xi), yi), i = 1 . . . n}.
The space H is called the feature space. This idea is due to Boser, Guyon,
Vapnik (1992).
In the previous example, setting φ(x) = (x21, x

2
2, x1, x2), the training set be-

comes linearly separable in R4, and a linear SVM is appropriate.

7.1 The kernel trick

A natural question arises : how can we chooseH and φ ? In fact, we do not
chooseH and φ but a kernel .
The classification rule is

f̂(x) = 1∑
yiα∗i 〈φ(xi),φ(x)〉+b∗≥0 − 1∑

yiα∗i 〈φ(xi),φ(x)〉+b∗<0,

where the α∗i ’s are the solutions of the dual problem in the feature spaceH :

Maximizing θ(α) =
∑n
i=1 αi −

1
2

∑n
i,j=1 αiαjyiyj〈φ(xi), φ(xj)〉

s. t.
∑n
i=1 αiyi = 0 and 0 ≤ αi ≤ C ∀i.

It is important to notice that the final classification rule in the feature
space depends on φ only through scalar products of the form 〈φ(xi), φ(x)〉 or
〈φ(xi), φ(xj)〉.
The only knowledge of the function k defined by k(x, x′) = 〈φ(x), φ(x′)〉
allows to define the SVM in the feature space H and to derive a classification
rule in the space X . The explicite computation of φ is not required.

DEFINITION 9. — A function k : X × X → R such that k(x, x′) =
〈φ(x), φ(x′)〉 for a given function φ : X → H is called a kernel.

A kernel is generally more easy to compute than the function φ that returns
values in a high dimensional space. For example, for x = (x1, x2) ∈ R2,
φ(x) = (x21,

√
2x1x2, x

2
2), and k(x, x′) = 〈x, x′〉2.

Let us now give a property to ensure that a function k : X ×X → R defines a
kernel.

PROPOSITION 10. — Mercer condition If the function k : X × X → R is
continuous, symmetric, and if for all finite subset {x1, . . . , xk} inX , the matrix
(k(xi, xj))1≤i,j≤k is positive definite :

∀c1, . . . , cn ∈ R,
k∑

i,j=1

cicjk(xi, xj) ≥ 0,

then, there exists an Hilbert space H and a function φ : X → H such that
k(x, x′) = 〈φ(x), φ(x′)〉H. The space H is called the Reproducing kernel
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Hilbert Space (RKHS) associated to k.
We have :

1. For all x ∈ X , k(x, .) ∈ H where k(x, .) : y 7→ k(x, y).

2. Reproducing property :

h(x) = 〈h, k(x, .)〉H for all x ∈ X and h ∈ H.

Let us give some examples. The Mercer condition is often hard to verify but
we know some classical examples of kernels that can be used. We assume that
X = Rd.

• p degree polynomial kernel : k(x, x′) = (1 + 〈x, x′〉)p

• Gaussian kernel (RBF) : k(x, x′) = e−
‖x−x′‖2

2σ2

φ returns values in a infinite dimensional space.

• Laplacian kernel : k(x, x′) = e−
‖x−x′‖

σ .

• Sigmoid kernel : k(x, x′) = tanh(κ〈x, x′〉 + θ) (this kernel is not
positive definite).

By way of example, let us precise the RKHS associated with the Gaussian
kernel.

PROPOSITION 11. — For any function h ∈ L1(Rd) ∩ L2(Rd) and ω ∈ Rd,
we define the Fourier transform

F [f ](ω) =
1

(2π)d/2

∫
Rd
f(t)e−i〈ω,t〉dt.

For any σ > 0, the functional space

Hσ = {f ∈ C0(Rd) ∩ L1(Rd) such that
∫
Rd
|F [f ](ω)|2eσ|ω|

2/2dω < +∞}

endowed with the scalar product

〈f, g〉Hσ = (2πσ2)−d/2
∫
Rd
F [f ](ω)F [g](ω)eσ|ω|

2/2dω,

is the RKHS associated with the Gaussian kernel k(x, x′) = e−
‖x−x′‖2

2σ2 .

Indeed, for all x ∈ Rd, the function k(x, .) belongs toHσ and we have

〈h, k(x, .)〉Hσ = F−1[F [h]](x) = h(x).

The RKHS Hσ contains very regular functions, and the norm ‖h‖Hσ controls
the smoothness of the function h. When σ increases, the functions of the
RKHS become smoother. See A. Smola and B. Scholkopf [5] for more details
on RKHS.

We have seen some examples of kernels. One can construct new ker-
nels by aggregating several kernels. For example let k1 and k2 be two kernels
and f a function Rd → R, φ : Rd → Rd′ , B a positive definite matrix, P a
polynomial with positive coefficients and λ > 0.

The functions defined by k(x, x′) = k1(x, x′) + k2(x, x′), λk1(x, x′),
k1(x, x′)k2(x, x′), f(x)f(x′), k1(φ(x), φ(x′)), xTBx′, P (k1(x, x′)), or
ek1(x,x

′) are still kernels.

We have presented examples of kernels for the case where X = Rd but a
very interesting property is that kernels can be defined for very general input
spaces, such as sets, trees, graphs, texts, DNA sequences ...

7.2 Minimization of the convexified empirical risk

The ideal classification rule is the one which minimizes the risk L(f) =
P(Y 6= f(X)), we have seen that the solution is the Bayes rule f∗. A classical
way in nonparametric estimation or classification problems is to replace the
risk by the empirical risk and to minimize the empirical risk :

Ln(f) =
1

n

n∑
i=1

1Yi 6=f(Xi).
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In order to avoid overfitting, the minimization is restricted to a set F :

f̂ = argminf∈FLn(f).

The risk of f̂ can be decomposed in two terms :

0 ≤ L(f̂)− L(f∗) = min
f∈F

L(f)− L(f∗) + L(f̂)−min
f∈F

L(f).

The first term minf∈F L(f)− L(f∗) is the approximation error, or bias term,
the second term L(f̂) − minf∈F L(f) is the stochastic error or variance
term. Enlarging the class F reduces the approximation error but increases
the stochastic error.
The empirical risk minimization classifier cannot be used in practice because
of its computational cost, indeed Ln is not convex. This is the reason why we
generally replace the empirical misclassification probability Ln by some con-
vex surrogate, and we consider convex classes F . We consider a loss function
l, and we require the condition l(z) ≥ 1z<0, which will allow to give an upper
bound for the misclassification probability; indeed

E(l(Y f(X))) ≥ E(1Y f(X)<0) = P(Y 6= f(X)).

Classical convex losses l are the hinge loss l(z) = (1 − z)+, the exponential
loss l(z) = exp(−z), the logit loss l(z) = log2(1 + exp(−z)).

Let us show that SVM are solutions of the minimization of the convexified
and penalized empirical risk. For the sake of simplicity, we consider the linear
case.

We first notice that the following optimization problem :

Minimizing 1
2‖w‖

2 + C
∑n
i=1 ξis. t.

{
yi (〈w, xi〉+ b) ≥ 1− ξi ∀ i
ξi ≥ 0

is equivalent to minimize

1

2
‖w‖2 + C

n∑
i=1

(1− yi (〈w, xi〉+ b))+ ,

or equivalently

1

n

n∑
i

(1− yi (〈w, xi〉+ b))+ +
1

2Cn
‖w‖2.

γ(w, b, xi, yi) = (1− yi (〈w, xi〉+ b))+ is a convex upper bound of the
empirical risk 1yi(〈w,xi〉+b)<0

Hence, SVM are solutions of the minimization of the convexified empirical
risk with the hinge loss l plus a penalty term. Indeed, SVM are solutions of

argminf∈F
1

n

n∑
i=1

l(yif(xi)) + pen(f),

where
F = {〈w, x〉+ b, w ∈ Rd, b ∈ R}

and

∀f ∈ F , pen(f) =
1

2Cn
‖w‖2.
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8 Agregation of classifiers with Adaboost
Adaboost (or adaptive boosting) is a boosting method introduced by Freund

and Schapire [2] to combine several classifiers f1, . . . , fk, for example SVM
obtained with different kernels or different penalty terms. The principle of the
algorithm is to minimize the empirical risk for the exponential loss function
over the linear space F generated by the classifiers f1, . . . , fk. The aim is to
compute

f̂ = argmin
f∈span(f1,...,fk)

{ 1

n

n∑
i=1

exp(−Yif(Xi))}.

To approximate the solution, Adaboost computes a sequence of functions f̂m
for m = 0, . . .M with

f̂0 = 0

f̂m = f̂m−1 + βmhjm

where (βm, jm) minimizes the empirical convexified risk

argmin
β∈R,j=1,...,p

{ 1

n

n∑
i=1

exp(−Yi(f̂m−1(Xi) + βhj))}.

The final classification rule is given by

f̂ = sign(f̂M ).

Exercise. — We denote

w
(m)
i =

1

n
exp(−Yif̂m−1(Xi))

and we assume that for all j = 1, . . . , p,

errm(j) =

∑n
i=1 w

(m)
i 1hj(Xi)6=Yi∑n
i=1 w

(m)
i

∈]0, 1[.

Prove that
jm = argmin

j=1,...,p
errm(j),

and

βm =
1

2
log

(
1− errm(j)

errm(j)

)
.

This leads to the AdaBoost algorithm :

• w
(1)
i = 1/n for i = 1, . . . , n.

• For m = 1, . . . ,M

jm = argmin
j=1,...,p

errm(j)

βm =
1

2
log

(
1− errm(j)

errm(j)

)
w

(m+1)
i = w

(m)
i exp(2βm1fjm (Xi) 6=Yi − βm) for i = 1, . . . , n

• f̂M (x) =
∑M
m=1 βmfjm(x).

• f̂ = sign(f̂M ).

In the above computation, note that, since fjm(Xi) ∈ {−1, 1}, Yifjm(Xi) =
21fjm (Xi) 6=Yi − 1.

9 Regression and kernels
Although the framework of the chapter is classification, let us mention that

kernel methods can also be used for regression function estimation. We present
here the Kernel Regression Least Square procedure. It is based on a penalized
least square criterion. Let (Xi, Yi)1≤i≤n the observations, with Xi ∈ Rp,
Yi ∈ R. We consider a positive definite kernel k defined on Rp :

k(x,y) = k(y,x);

n∑
i,j=1

cicjk(Xi,Xj) ≥ 0.

We are looking for a predictor of the form

f(x) =

n∑
i=1

cjk(Xj ,x), c ∈ Rn.
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Let us denote by K the matrix defined by Ki,j = k(Xi,Xj). The KRLS
method consists in minimizing for f on the form defined above the penalized
least square criterion

n∑
i=1

(Yi − f(Xi))
2 + λ‖f‖2K ,

where

‖f‖2K =

n∑
i,j=1

cicjk(Xi,Xj).

Equivalently, we minimize for c ∈ Rn the criterion

‖Y −Kc‖2 + λc′Kc.

There exists an explicit solution

ĉ = (K + λIn)−1Y,

which leads to the predictor

f̂(x) =

n∑
j=1

ĉjk(Xj ,x).

Ŷ = Kĉ.

With a kernel corresponding to the scalar product, we recover a linear predictor

K = XX′, ĉ = (XX′ + λIn)−1Y,

f̂(x) =

n∑
j=1

ĉj〈Xj ,x〉.

For polynomial or Gaussian kernels for example, we obtain non linear predic-
tors. As for SVM, an important interest of this method is the possibility to be
generalized to complex predictors such as text, graphs, DNA sequences .. as
soon as one can define a kernel function on such objects.

10 Conclusion
• Using kernels allows to delinearize classification algorithms by mapping
X in the RKHS H with the map x 7→ k(x, .). It provides nonlinear
algorithms with almost the same computational properties as linear ones.

• SVM have nice theoretical properties, cf. Vapnik’s theory for empirical
risk minimization [6].

• The use of RKHS allows to apply to any setX (such as set of graphs, texts,
DNA sequences ..) algorithms that are defined for vectors as soon as we
can define a kernel k(x, y) corresponding to some measure of similarity
between two objects of X .

• Important issues concern the choice of the kernel, and of the tuning pa-
rameters to define the SVM procedure.

• Note that SVM can also be used for multi-class classification problems
for example, one can built a SVM classifier for each pair of classes and
predict the class for a new point by a majority vote.

• Kernels are also used for regression as mentioned above or for non super-
vised classification (kernel PCA).
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