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Notre vie est un voyage
Dans l’hiver et dans la Nuit,
Nous cherchons notre passage
Dans le Ciel où rien ne luit.
Chanson des Gardes Suisses

1793

Voyager, c’est bien utile, ça fait travailler
l’imagination.
Tout le reste n’est que déceptions et fatigues. Notre
voyage à nous est entièrement imaginaire. Voilà sa
force.

[...]

Et puis d’abord tout le monde peut en faire autant.
Il suffit de fermer les yeux.

C’est de l’autre côté de la vie.a

aL.-F. Céline, préambule de Voyage au bout de la nuit.



ii



Introduction

This manuscript describes my recent research in geometry. Most of my work deals with both
optimal mass transport and metric geometry.

In metric geometry, I am primarily interested in Alexandrov spaces with curvature bounded
either from below or from above. Alexandrov introduced this concept in the first half of the
twentieth century mainly to study the -possibly singular- convex surfaces in three-dimensional
Euclidean space. This notion of metric spaces with bounded curvature applies to geodesic spaces
and is equivalent to bounded sectional curvature when the space is a smooth Riemannian manifold.

Alexandrov also studied many inverse problems consisting in prescribing the distance (metric
with conical singularities), the curvature, or the area measure associated with the underlying
convex polyhedron [Ale05]. The tremendous amount of work completed by the Russian school
of geometry in this field led, among other things, to a metric characterization of Riemannian
manifolds obtained by Berestovski and Nikolaev [geo93]; their result includes an estimate on the
regularity of the Riemannian metric which is proved to be locally in W 2,p for any p ≥ 1. To do
so, the authors assume the space to be locally compact and to satisfy two-sided curvature bounds,
and that, locally, a geodesic can always be extended. More generally, a relevant question is to
study the regularity of Alexandrov spaces with curvature bounded below. Indeed, according to
Gromov’s compactness theorem, the set of Alexandrov spaces with a uniform upper bound on the
Hausdorff dimension and on the diameter, whose curvature is uniformly bounded from below, forms
a compact set when endowed with the Gromov-Hausdorff distance. However, such an Alexandrov
space is not a manifold in general (except in two dimensions); nevertheless, from an analytical
point of view, it can be considered as the union of a manifold and a singular subset of codimension
at least two. Besides, the distance derives from a Riemannian metric defined almost everywhere
whose coefficients read in a map are functions of locally bounded variations -denoted by BVloc;
this property follows from Perelman’s work [Per94] and Otsu and Shioya’s paper [OS94].

In Chapter 2, we study the regularity of finite dimensional Alexandrov spaces with curvature
bounded below. Especially, we show that in two dimensions the metric components are not only
BVloc but also Sobolev. In my opinion, this result is a bit surprising since even in the case of convex
surfaces in R3 where the distance and the differential structure are induced by Euclidean space, one
gets nothing more than BVloc in general by using the extrinsic structure. In addition to this result,
we develop tools in order to improve -if possible- the regularity of the metric in higher dimensions.
Our work consists in providing a full second order calculus on finite Alexandrov spaces, building
on Perelman’s earlier work [Per94]. This is joint work with Luigi Ambrosio.

Chapter 3 is devoted to Alexandrov’s problem on prescribing the curvature measure of a convex
body as well as related topics. Various proofs of Alexandrov’s theorem are available: by reduction
to the case of polyhedra (Alexandrov’s original proof), by reduction to the case of smooth convex
bodies (proof by Pogorelov) and the study of a Monge-Ampere type equation. The last equation
also appears in optimal mass transport where weak solutions can be obtained by studying the
mass transport problem for the quadratic cost and probability measures absolutely continuous with
respect to the Lebesgue measure. Indeed, we provide a proof of Alexandrov’s curvature prescription
problem based only on Kantorovitch’s dual problem, a standard tool in optimal mass transport.
Using the same approach, we also prove a hyperbolic analogue of this result in Minkowski space.
The overall idea is to use classical functions in the theory of convex bodies, namely the support and
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iv INTRODUCTION

the radial functions, that can be defined one in terms of the other if and only if the underlying set is
convex. Those functions are not very regular in general, say Lipschitz, therefore the soft approach
provided by optimal mass transport fits well with Alexandrov’s problem. However, both proofs are
obtained by studying non-standard forms of Kantorovitch’s dual problem. In the Euclidean case,
the underlying cost function is not real-valued and the standard theory of optimal mass transport
does not apply. On the contrary, in the hyperbolic version, the cost function satisfies standard
assumptions in the field but the space on which it is defined is singular in general -precisely, the
relevant setting is that of hyperbolic orbifolds. To circumvent the issue due to singularities, we use
our generalization to Alexandrov spaces of the classical Brenier-McCann theorem about solutions
of the optimal mass transport problem. This generalization applies to hyperbolic orbifolds since
they are Alexandrov spaces of curvature at least -1. This generalization is explained in Chapter
2 and is based on the differential structure which covers all but a sufficiently small subset of the
Alexandrov space.

Another interesting feature of optimal mass transport is that it can be used to define a distance
on the set of probability measures over a given metric space that induces the *-weak convergence
of probability measures (plus the convergence of the second order moment if the base space is not
compact). This distance is usually called Wasserstein distance or quadratic Wasserstein distance
if one wants to emphasize that it corresponds to the cost function c(x, y) = d2(x, y). Of course,
there are other distances on the set of probability measures verifying the above property (like
Wasserstein distances relative to c(x, y) = dp(x, y) for p ≥ 1 but there are others); however the
Wasserstein distance is rather sensitive to the geometry of the base space. A well-known instance
of this phenomenon is the fact that the convexity of Boltzman’s entropy on the Wasserstein space
over a Riemannian manifold is governed by the behaviour of the Ricci curvature of the base space.
Roughly, the Hessian of Boltzmann’s entropy is bounded from below by k if and only if Ric ≥ k.
This is a very active field of research including work of Cordero-McCann-Schumenckenchleger
[CEMS01], Lott-Villani [LV09], Sturm [Stu06a, Stu06b, vRS05], and more recently Ambrosio-
Gigli-Savare [AGS14]. This list is far from being exhaustive. Under suitable hypotheses, the
Wasserstein space itself reveals geometrical properties of the base space. For instance, Sturm
[Stu06a] proved that the Wasserstein space over a nonnegatively curved Alexandrov space is
nonnegatively curved as well. In collaboration with Benoît Kloeckner, we consider Wasserstein
space over a nonpositively curved base space. More precisely we assume that the base space is
CAT (0) which, roughly speaking, is the global version of Alexandrov’s definition for nonpositively
curved space. Under this assumption on the base space, the Wasserstein space is not nonpositively
curved simply because a geodesic between two given points is not unique in general. However,
we prove that it satisfies properties reminiscent of those available on nonpositively curved spaces,
especially we prove the existence of a boundary at infinity. We also study the isometry group of
the Wasserstein space over a negatively curved space and we prove that, contrary to the case of
Euclidean space, any isometry derives from an isometry of the base space. All these results are
discussed in Chapter 4.

The first chapter of this memoir contains no new results. It provides a minimal introduction
to the tools, both in optimal mass transport and Alexandrov geometry, that are used constantly
in the subsequent chapters.
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CHAPTER 1

Background

Convention: in what follows, a geodesic is always assumed to be constant speed and parame-
terized on [0, 1].

1. Optimal Mass Transport

In this part, unless otherwise stated, the space (X, d) is assumed to be a complete separable
geodesic space.

1.1. The mass transport problem. Let us start with the concept of optimal transport
which consists in studying the Monge-Kantorovich problem.

There are the standard data for this problem. We are given a lower semicontinuous and
nonnegative function

c : X ×X → R+ ∪ {+∞}
called the cost function and two Borel probability measures µ0, µ1 defined on X. A transport plan
(or simply a plan) Π between µ0 and µ1 is a probability measure on X ×X whose marginals are
µ0 and µ1. This means that for any Borel set A ⊂ X

µ0(A) = Π(A×X) and µ1(A) = Π(X ×A).

One should think of a transport plan as a specification of how the mass in X, distributed
according to µ0, is moved so as to be distributed according to µ1. We denote by Γ(µ0, µ1) the set
of transport plans which is never empty (it contains µ0 ⊗ µ1) and most of the time not reduced to
one element. The Monge-Kantorovich problem is now

inf
Π∈Γ(µ0,µ1)

ˆ
X×X

c(x, y) Π(dxdy)

where the above quantity is assumed to be finite so that the problem makes sense. When it exists,
a minimizer is called an optimal transport plan. The set of optimal transport plans is denoted by
Γo(µ0, µ1).

Let us make a few comments on this problem. First, note that under these assumptions, the
cost function is measurable (see, for instance, [Vil03, p. 26]). Secondly, existence of minimizers
follows readily from the lower semicontinuity of the cost function together with the following
compactness result.

Theorem 1.1 (Prokhorov’s Theorem). Given a complete separable metric space (X, d), a
subset P ⊂ P(X) of probability measures on X is totally bounded (i.e. has compact closure) for
the weak topology if and only if it is tight, namely for any ε > 0, there exists a compact set Kε

such that µ(X \Kε) ≤ ε for any µ ∈ P .

This theorem implies that the set Γ(µ0, µ1) is always compact.
We also mention that, compared to the existence problem, proving the uniqueness of minimizers

is considerably harder (see [MRar]) and requires, in general, additional assumptions. Strongly
related to the uniqueness question is this one: how to prove that an optimal transport plan is
actually induced by a map? By convention, this is expressed in terms of the initial measure and
reads Π = (Id, T )]µ0, with T being a µ0-measurable map called optimal transport map and T]µ
defined, for any Borel set B, by the formula T]µ(B) := µ(T−1(B)). The existence of optimal
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transport map is the original problem proposed by Monge and is much more delicate that the
Monge-Kantorovitch problem. Roughly, it means that the optimal way to move mass does not
split it: all the mass located at a point x is sent to the same location T (x). In Section 1.3, we
recall the Brenier-McCann theorem which gives conditions under which the Monge problem can
be solved.

To conclude this part, we state a useful criterion to detect an optimal transport plan among
other plans, named cyclical monotonicity. A set Γ ⊂ X ×X is said to be c-cyclically monotone if
for any finite family of pairs (x1, y1), · · · , (xm, ym) in Γ, the following inequality holds

(1)
m∑
i=1

c(xi+1, yi) ≥
m∑
i=1

c(xi, yi)

where xm+1 = x1.
Note that instead of only considering a shift (xi, yi) → (xi+1, yi), we could have defined a

c-cyclically monotone set by requiring the above inequality to be true for any permutation of
{1, · · · ,m}. The two definitions are equivalent. In particular, when both measures µ0 and µ1 are
finitely supported, a plan is optimal if and only if its support is c-cyclical monotone. Actually, the
relevance of this notion goes far beyond this very specific setting. For instance, by approximating c
by "nicer" cost functions, it can be proved that an optimal plan Π0 for c is always concentrated on a
c-cyclically monotone set Γ: Π0(Γ) = 1. More surprisingly, the optimality of a plan can be detected
thanks to c-cyclical monotonicity. Precisely, when the cost function c : X × X → R+ ∪ {+∞}
is continuous (the set R+ ∪ {+∞} being endowed with the order topology), or if it is only lower
semicontinuous but real-valued, then a transport plan concentrated on a c-cyclically monotone set
is optimal. The result for continuous cost is due to Pratelli [Pra08] while the other one is due to
Schachermayer and Teichmann [ST09].

1.2. Wasserstein space. Wasserstein spaces arise in the particular case where c(x, y) =
d2(x, y).

Definition 1.2 (Wasserstein space). Given a metric space (X, d), its (quadratic) Wasserstein
space W2(X) is the set of Borel probability measures µ on X with finite second moment:ˆ

Y

d(x0, x)2 µ(dx) < +∞ for some, hence all x0 ∈ Y.

The set W2(X) is endowed with the Wasserstein distance defined by

W
2(µ0, µ1) = min

Π∈Γ(µ0,µ1)

ˆ
X×X

d2(x, y) Π(dx, dy).

From now on, the cost c will therefore be c = d2. It is sometimes more convenient to consider
1/2 d2 instead of d2; this modification has no impact on the properties described below.

The fact that W is indeed a metric follows from the so-called “gluing lemma” which enables
one to prove the triangle inequality, see e.g. [Vil09].

The Wasserstein space inherits several nice properties of the base space: first it is complete and
separable, it is compact as soon as X is, in which case the Wasserstein metric metrizes the weak
topology; but if X is not compact, then W2(X) is not even locally compact and the Wasserstein
metric induces a topology stronger than the weak one (more precisely, convergence in Wasserstein
distance is equivalent to weak convergence plus convergence of the second moment). Another
important property is that W2(X) is a geodesic space: given any µ0, µ1 ∈ W2(X), there exists
a geodesic curve (µt)t∈[0,1] in W2(X) connecting µ0 to µ1. Moreover, if G(X) denotes the set of
constant speed geodesics in X parameterized on [0, 1], there exists a measure µ ∈ P(G(X)) called
dynamical transport plan such that for any t ∈ [0, 1],

µt = et]µ

with et(γ) := γ(t).



1. OPTIMAL MASS TRANSPORT 3

Note that in general µ is not unique. Even in the case where there is a unique optimal
plan between µ0 and µ1, non uniqueness can occur if (X, d) is branching (consider for instance a
crosslike graph, take µ0 be the empirical measure supported on the two vertices on the left and µ1

its counterpart supported on the two right-vertices, you get several dynamical plans depending on
where you send the mass once it arrives at the center of the cross).

1.3. Kantorovitch’s dual problem. The variational problem defined below was introduced
by Kantorovitch in order to study the properties of the optimal transport plans. This problem is
of primary importance for us in our study of the Gauss curvature prescription problem introduced
by Alexandrov. Kantorovitch’s dual problem is the problem defined by

(2) K := sup
(φ,ψ)∈A

{ˆ
X

φ(x)dµ0(x) +

ˆ
X

ψ(y)dµ1(y)

}
.

where A is defined either as

AL1 := {(φ, ψ) ∈ L1(µ0)× L1(µ1); ∀(x, y) ∈ N0 ×X ∪X ×N1, φ(x) + ψ(y) ≤ c(x, y)}
where µ0(N0) = µ1(N1) = 0, or

AC := {(φ, ψ) ∈ Cb(X)× Cb(X); ∀(x, y) ∈ X ×X, φ(x) + ψ(y) ≤ c(x, y)}.
The objects µ0, µ1, and c are defined as in the first paragraph. From now on, the above

functional is denoted by J(φ, ψ). Note that K a priori depends on the choice of A; precisely, with
obvious notation, KC ≤ KL1 but it is not clear whether the reverse inequality holds true. As a
consequence of the approximation process described below, we get KC = KL1 .

Our goal is to relate K to the Monge-Kantorovitch problem and discuss the existence of max-
imisers of Kantorovitch’s dual problem. Fix Π ∈ Γ(µ0, µ1), and (φ, ψ) ∈ AC (the argument also
works for AL1). Now, observe that by definition of a transport planˆ

X

φ(x)dµ0(x) +

ˆ
X

ψ(y)dµ1(y) =

ˆ
X×X

(φ(x) + ψ(y)) Π(dxdy)

which combined with the definition of AC yieldsˆ
X

φ(x)dµ0(x) +

ˆ
X

ψ(y)dµ1(y) ≤
ˆ
X×X

c(x, y) Π(dxdy).

Being (φ, ψ) and Π arbitrary, we infer

KC ≤ min
Π∈Γ(µ0,µ1)

ˆ
X×X

c(x, y) Π(dxdy).

With much more work, it can be proved that both quantities actually coincide. Let us outline
the argument. The first step consists in proving the equality under the extra assumptions: (X, d)
is compact and c is a Lipschitz, bounded, real-valued cost function. In that case, a proof can
be obtained by duality in the following sense. First, observe that Riesz’s theorem implies that
the space of Radon measures (with finite total variation) is the dual space of the space C(X)
of continuous functions. Second, note that J(φ, ψ) is invariant by the transformation (φ, ψ) 7→
(φ+λ, ψ−λ) with λ being any real number. As a consequence, one can extend the functional J to
an upper semicontinous convex functional J̃ on C(X ×X) defined by J̃(f) = J(φ, ψ) if f can be
written f(x, y) = φ(x) + ψ(y) with (φ, ψ) ∈ AC and −∞ otherwise. The invariance by translation
guarantees that J̃ is well-defined. Finally, the optimisation problem K can be rewritten as

supf∈C(X×X)

{
J̃(f)− δ(f ; {f ≤ c})

}
where δ stands for the indicatrix function of the set {f ≤ c}, namely

δ(f ; {f ≤ c}) = 0 if f ≤ c and δ(f ; {f ≤ c}) = +∞ otherwise.

The result can then be proved as an application of a min-max theorem for the sum of two
concave functionals and their Legendre transforms. The fact that we extend J to C(X×X) yields
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that the Legendre transform L(J̃) of J̃ is defined on P(X × X) as in the Monge-Kantorovitch
problem. Moreover, the indicatrix functional implies that L(J̃) is finite only if Π ∈ Γ(µ0, µ1).
We refer to [Vil03] for an exhaustive argument. Note that as a by-product, we get continuous
maximisers of Kantorovitch’s problem. The general case is obtained, first by using a delicate
truncation process on the space (X, d) which allows one to remove the compactness assumption
on (X, d), and then by approximating the cost function c by a sequence of Lipschitz, bounded,
real-valued cost functions ck. (Note that the lower semicontinuity of c is needed to get the result.)
As a by-product, we get that K remains the same if we replace AC by AL1 . We refer to [Vil03]
for more details.

We emphasize that contrary to the Monge-Kantorovitch problem, the dual problem does not
admit maximisers in general. A rather broad setting for which maximisers do exist is described in
[Vil09, Chapter 5]; note however that non real-valued cost functions do not fit the assumptions.
Counter-examples to the existence of maximisers can be found in [BS11, Section 4]. In Chapter 3,
Section 2.2, we use solution of a Kantorovitch’s dual problem relative to a non real-valued cost
function to prove a geometrical result. A significant part of the proof is devoted to the existence
of such maximisers.

To conclude this part, we add a useful property on the maximisers of J assuming their existence.
In this regard, we introduce the c-transform of a function φ : X → R∪{−∞} asuming that φ 6≡ −∞.
The definition is the following:

φc(a) = inf
b∈X

c(a, b)− φ(b).

In the good cases, φc is continuous (or even Lipschitz) and real-valued. This is for instance true
when (X, d) is compact and c is Lipschitz. Note that in general, it is a difficult problem to prove
that φc is merely measurable. Note also that it is customary in the field to write φcc instead of
(φc)c. Now, discarding the measurability/integrability issue concerning the c-transform, observe
that by definition of AL1 , we have the following inequalities:

J(φ, ψ) ≤ J(φ, φc) ≤ J(φcc, φc).

In particular, if (φ, ψ) is a solution of Kantorovitch’s dual problem, this gives φ = φcc µ0-a.e.
and ψ = φc µ1-a.e. Besides, very little is required on φ to prove that φccc = φc, at least µ0-
a.e. Thus, at least formally, any solution of Kantorovitch’s problem coincides almost everywhere
with a pair (ϕ,ϕc) such that ϕ = ϕcc (where ϕ = φcc). Such a function ϕ is said to be c-
conjugate. As explained in subsequent chapters (Sections 1.2 and 2.2), when the c-conjugate
functions happen to be Lipschitz, they can be used to prove that the Monge-Kantorovitch problem
has a unique solution, furthermore this solution is induced by a map T which can be expressed
in terms of ∇ϕ. The classical Brenier-McCann theorem provides a particular instance of this
phenomenon [Bre91, McC01]. On a Riemannian manifold, the statement is as follows (note that
the assumptions on the probability measures are not sharp).

Theorem 1.3. Let (M, g) be a complete Riemannian manifold. We set c(x, y) = 1/2 d2(x, y)
the quadratic cost and µ0, µ1 two probability measures on M with compact support. We further
assume µ0 to be absolutely continuous with respect to the Riemannian measure and suppµ0 is con-
nected. Then, Kantorovitch’s dual problem admits a solution (φ, φc) with φ a c-conjugate function.
As a consequence, the mass transport problem admits a unique solution and this solution is induced
by a map F . Furthermore, for µ0 almost every x ∈ X, the map F satisfies

F (x) = exp(−∇φ(x)),

The above result is generalised to the setting of Alexandrov spaces in Section 1.2 and a proof
is sketched there.

2. Alexandrov spaces

Classical books for the material treated in this part are [BBI01, BH99].
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2.1. Definition and properties.
Definition 2.1 (Alexandrov space). Let S2

k be the 2-dimensional space form of curvature k
and δk be the distance induced by the Riemannian metric. A complete geodesic space (X, d) is said
to be an Alexandrov space of curvature bounded below by k if any point is contained in an open set
U such that whenever a point p and a constant speed geodesic γ lie within U , the following inequality
holds. Let γ be a geodesic in S2

k of same length as that of γ, and such that d(p, γ(0)) = δk(p, γ(0))
and d(p, γ(1)) = δk(p, γ(1)), then for all t ∈ [0, 1]:

d(p, γ(t)) ≥ δk(p, γ(t)).

When k > 0, we further assume that the perimeter of pγ(0)γ(1) is less than 2π/
√
k1. Similarly, a

complete geodesic space (X, d) is said to be an Alexandrov space of curvature bounded above by k
if any point admits a neighborhood U with the same properties as above except that the conclusion
is now

d(p, γ(t)) ≤ δk(p, γ(t)).

When (X, d) is isometric to a Riemannian manifold (M, g), the above definitions are equivalent
to Kg ≥ k and Kg ≤ k respectively, with Kg being the sectional curvature of g. This justifies
the terminology of curvature bounded above or below; in what follows, we will simply write that
(X, d) satisfies Curv ≥ k or Curv ≤ k.

To any triple (x, y, z) in a neighborhood U as above can be associated a unique (up to isometry)
triples (x̃, ỹ, z̃) ∈ S2

k which forms a triangle whose sidelengths are the same as the ones induced by
(x, y, z). We set ]̃yxz the angle at x̃ of this triangle. Now, given two geodesics γ, σ starting from
the same point p and contained in an open set U as in the above definitions of bounded curvature,
we obtain that ]̃γ(s)pσ(t) is a nonincreasing function of s and t whenever the curvature of (X, d) is
bounded below by k while it is a nondecreasing function of s and t when the curvature is bounded
above from k. As a consequence, in both setting, the angle between σ and γ at p can be defined as

](γ, σ) := lim
s,t→0

]̃γ(s)pσ(t).

An important property of a space with curvature bounded below is that it is a strongly non-
branching space: if two geodesics (with the same speed) coincide on an open subinterval of [0, 1],
then they actually coincide everywhere; moreover the angle between two disctinct geodesics start-
ing at the same point is positive. Spaces with curvature bounded from above do not share this
property, for instance a locally finite metric graph is a space of curvature bounded from above by
k for any number k.

Another important distinction between these two classes of spaces is that a space with curvature
bounded below satisfies a local-to-global property; namely, in the definition, the restriction to a
suitable neighborhood can be dropped. For spaces with curvature bounded above this is not
true in general as it can be easily seen from the example of a Euclidean plane with an open disc
removed. More precisely, equipped with the distance induced by the scalar product, such a space
is Curv ≤ 0 but does not satisfy the assumption globally (arbitrary complementary halfcircles are
geodesics between their common endpoints whereas on globally nonpositively curved space, there
is a unique geodesic between two given points; see below). Consequently, in what follows we will
say that a space is CAT (k) if it satisfies the Curv ≤ k condition globally (we refer to Chapter
4 for a precise definition which includes additional metric properties). When k ≤ 0, there is a
very nice characterization of CAT (k)-spaces as the simply connected Curv ≤ k spaces. Let us
add two very useful properties of CAT (0) space. First, given two geodesics σ and γ, the function
t 7→ d(γ(t), σ(t)) is convex. This property entails uniqueness of geodesic beetween two given points.
Second, given C a closed convex subset of a CAT (0) space, then the metric projection

pC : X \ C −→ C
x 7−→ argminc∈C d(x, c)

1Actually there is no triangle whose perimeter is greater than 2π/
√
k in a space of curvature at least k.
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is well-defined (i.e. realized by a unique point) and is a 1-Lipschitz function.
A relevant question is whether the metric notions Curv ≥ k and Curv ≤ k are stable with

respect to Gromov-Hausdorff Convergence. This is indeed the case for the Curv ≥ k spaces and
yields, in particular, that any limit of Riemannian manifolds with sectional curvature uniformly
bounded below by k is a Curv ≥ k space. On the contrary, Curv ≤ k is not stable with respect
to Gromov-Hausdorff convergence 2. However, its global counterpart CAT (k) is indeed stable.
Actually, CAT (k) is stable with respect to various limit processes; basically what is needed is the
stability of a four point condition. We refer to [BH99, Part II.3] for more on this subject.

Let us, to conclude this part, remind the reader of the notion of tangent cone. To do so, we
introduce an equivalence relation on the set of geodesics starting from a given point p. Two such
geodesics are said to be equivalent if they coincide on a subinterval [0, ε) of [0, 1] (where ε > 0
depends on the geodesics). We set Σp the set of directions at p, namely the completion of the set
of equivalence classes with respect to the metric angle ]. The tangent cone Cp(X) is then defined
as the Euclidean cone over [0,+∞)× Σp equipped with the distance

(3) δ((t, σ), (s, γ))2 = s2 + t2 − 2st cos]p(σ, γ).

At that stage, we need additional assumptions on the space. If (X, d) is a Curv ≥ k space, we
further assume its Hausdorff dimension is finite, say N . This forces the space to be locally compact.
In the same vein, it can be proved that Σp is a compact metric space (for any p). Finally, the local
compactness allows one to prove that any sequence (X,λn d, p) converges to Cp(X) with respect
to the pointed Gromov-Hausdorff convergence whenever λn → +∞. Since the lower bound on the
curvature behaves well under dilation of the distance, the tangent cone Cp(X) is a N -dimensional
nonnegatively curved space for any p ∈ X.

Similarly, for spaces with an upper curvature bound, extra assumptions are needed to get
analogous results on the tangent cone. These assumptions are of two kinds: local compactness
and geodesic completeness. We recall that geodesic completeness means that any geodesic is the
restriction of a complete geodesic -or geodesic line-, namely a geodesic defined on R. Under these
assumptions, the space of directions Σp is compact at any point p and any limit of rescaled spaces
as above converges to the tangent cone with respect to the pointed Gromov-Hausdorff convergence.
The tangent cone Cp(X) is a nonpositively curved space.

2.2. Examples.
2.2.1. Spaces with curvature bounded below. The first source of examples is obtained by con-

sidering Gromov-Hausdorff limits of smooth Riemannian manifolds with a uniform lower bound
on the sectional curvature. This includes as a very particular case, all convex hypersurfaces in
Euclidean space.

The product of two spaces with curvature bounded below by k is a space of curvature bounded
below by min{0, k}.

One also gets a space with nonnegative curvature by considering the Euclidean cone over a
metric space (X, d) with curvature at least one. The metric δ on the cone is given by (3). Cone
of curvature at least k can be obtained similarly. It suffices to replace the expression of δ in
accordance with the expression of the standard distance on Sk2 in polar coordinates. Note that
when k > 0, the "cones" are actually compact sets, when k = 1 they are also called sin-suspension.

Finally, the quotient of an Alexandrov space (X, d) of curvature at least k by a subgroup of
the isometry group of X is an Alexandrov space of curvature at least k provided that the orbits
are closed. In particular, one gets singular examples of Alexandrov spaces by considering quotient
of spaces forms by appropriate isometry subgroups. See Chapter 3 for an application of this result.

2Indeed, one can approximate any compact riemannian manifold by a finite ε-net where ε > 0 is arbitrarily
small. Turn this net into a metric graph by using the geodesics of the manifold. Since this graph has finitely many
vertices, it is locally a tree thus it has nonpositive curvature. On the other hand, the sequence of graphs converges
to the manifold when ε goes to 0
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2.2.2. Spaces with curvature bounded above. As for spaces with curvature bounded below, any
GH-limit of CAT (k)-spaces is a CAT (k)-space.

Spaces with curvature bounded from above are much more flexible than their counterparts
with curvature bounded below. For instance, the space obtained by gluing two spaces of curvature
bounded above by k along isometric convex subsets is a space of curvature bounded above by k.

Another important class of examples is that of metric simplicial complexes. It consists in
gluing along isometric faces simplices contained in a space form of curvature k. When they are
only finitely many models of faces (up to isometry), the distance on each simplex (induced by the
standard distance of the space form) extends to a geodesic distance on the resulting space. Such
a restriction is somehow necessary to guarantee that the pseudo-metric induced by the metrics on
the simplices is positive on pair of distinct points. For instance, a two-points metric graph whoses
vertices A,B are joined by infinitely many edges σn where the length of σn is 1/n is not a metric
space: d(A,B) = 0. A metric simplicial complex is Curv ≤ k if and only if the link at any vertex
is CAT (1). The link at a vertex x is the metric simplicial complex induced by the collection of
spaces of directions relative to a simplex to which x belongs.

When k ≤ 0, the above examples give rise to CAT (k) spaces provided that they are simply-
connected.

Another way to produce new CAT (0)-spaces is to consider the warped product of two CAT (0)
spaces. The resulting space is a CAT (0)-space whenever the warping function is concave.

2.3. Analytical properties of spaces with curvature bounded below. In this part,
we present analytical results for N -dimensional Alexandrov spaces (X, d) with curvature bounded
below. Let us mention that (X, d) is assumed to be boundaryless (see [BGP92, 7.19] for the
precise definition). These results consist in estimating the Hausdorff dimension or the Hausdorff
measure of some special subsets of X. Some of these results can be found in [BBI01], the others
are proved either in a paper by Burago, Gromov, and Perelman [BGP92] or in a paper by Otsu
and Shioya [OS94].

Let us start with the notion of δ-regular point. Given δ > 0, a point x is said to be δ-regular
if there exists N pairs of points (p1, q1), · · · , (pN , qN ) such that{

]̃pixpj > π
2 − δ for all i 6= j,

]̃pixqi > π − δ for all i

The collection of pairs (p1, q1) · · · (pN , qN ) is called a δ-strainer (at x). By continuity of the com-
parison angle with respect to x, the set of δ-regular points is open.

The main interest of this notion is twofold. First, it can be proved that for sufficiently small δ
(depending on the dimension), the strainer of a δ-regular point x can be used to build a biLipschitz
homeomorphism between a neighborhood of x and an open set of RN . The second important
property is that most of the points of X are δ-regular for a small but fixed δ.

More precisely it is proved in [BGP92] that for 0 < δ ≤ δN , if (p1, q1) · · · (pN , qN ) is a δ-strainer
at x, the map (dp1 , · · · , dpN ) is a biLipschitz homeomorphism when restricted to an appropriate
neighborhood of x. Besides, the Lipschitz constants can be chosen arbitrary close to 1 provided
that δ and the neighborhood are sufficiently small. Moreover, the set Xδ of δ-regular points is
dense in X. More precisely, the Hausdorff codimension of Xδ satisfies

(4) dimH(X \Xδ) ≤ N − 2.

We call XδN the set of quasiregular points of X. From now on, this set is denoted by X∗.
According to what precedes, X∗ is a N - dimensional Lipchitz manifold whose complement satisfies
(4).

Another important susbset is that of regular points. It is denoted by Reg(X) and defined as
the set of points whose tangent cone is isometric to N -dimensional Euclidean space. In the same
way, it is the set of points which are δ-regular for any δ > 0. Its complement set is denoted by
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Sing(X); as a consequence of (4), we get

dimH(Sing(X)) ≤ N − 2.

In particular, it will be useful to us that HN−1(Sing(X)) = 0.
The set of regular points is a strongly convex subset as proved by Petrunin [Pet98]. Namely,

any geodesic which has a regular point as an endpoint is only made of regular points except maybe
the other endpoint.

In relation to the study of distance function dp, two other subsets are particulary relevant.
The first one, denoted by Vp, is the subset of X \ {p} made of points connected to p by a unique
geodesic. In [OS94], the authors prove 3 that the complement of Vp can be covered by countably
many sets with finite HN−1-measure. From now on, such a set will be called a σ-finite set with
respect to HN−1. The second one is the Cut locus of dp. It is denoted by Cp and defined as the
complement of the set of points which belong to the interior of a geodesic starting at p. The Cut
Locus of any point p satisfies

HN (Cp) = 0.

3despite a weaker statement, this is the content of Lemma 2.2. The result follows by combining Lemma 2.2
with Proposition 3.3



CHAPTER 2

Regularity of Alexandrov space with curvature bounded
below

In this part, we describe the differential structures available on a N -dimensional Alexandrov
space with curvature bounded below. In particular, we explain our improvements regarding the
second order differential structure introduced by Perelman [Per94]. We also discuss the analogue of
the classical Brenier-McCann theorem on Alexandrov space. Our results in this part are extracted
from [7, 4, 3].

1. First order structure and optimal mass transport

1.1. First order differential structure. In this part, we review the Lipschitz structure
available on (almost all of) a finite dimensional Alexandrov space. These results come from papers
by Burago, Gromov, Perelman, Petrunin, Otsu & Shioya [BGP92, OS94, Pet98]. We then use
this structure to generalize the Brenier-McCann theorem to the setting of Alexandrov spaces.

An important result in this field is the characterization of points where the distance function
dp is differentiable in an "intrinsic sense" (i.e. without refering to a chart). This property comes
from a strong form of the first variation formula due to Otsu and Shioya [OS94] which we now
recall. For x ∈ Vp ∩ Reg(X), the following formula holds

(5) dp(y) = dp(x)− d(x, y) cos min
↑yx
](↑px, ↑yx) + o(d(x, y))

Note also that both assumptions x ∈ Vp ∩ Reg(X) are somehow necessary; the assumption
x ∈ Reg(X) guarantees the existence of a linear structure at x while it is easy to check that
dp cannot be differentiable at a point x related to p by several geodesics (recall that geodesics
in Alexandrov space are strongly non-branching, namely the angle at x between two distinct
geodesics is positive). The drawback of the above formula is that the set of differentiability points
of dp depends on p. Otsu and Shioya get rid of this by averaging the base point of dp on a small
ball. More precisely, they introduce the function

d̂p(x) :=

 
B(p,ε)

dz(x) dHN (z) =
1

HN (B(p, ε))

ˆ
B(p,ε)

dz(x) dHN (z);

where ε > 0 is a small number depending on p. The point is to observe that x ∈ Vz if and only if
z ∈ Vx. Moreover, as recalled in the previous chapter, they also prove that the complement of Vp
is HN -negligible. Consequently, formula (5) applies with p = z for HN -a.e z ∈ B(p, ε) and d̂p is
differentiable on Reg(X) 1.

Let us now explain how these functions can be used to define a Lipschitz structure on X∗. We
say that a set S admits a Lipschitz structure if there exists an atlas whose chart domains cover
S and whose transition maps are biLipschitz homeomorphisms, in other terms S is a Lipschitz
manifold.

By definition, around any fixed point x ∈ X∗, there exists N distance functions dp1 , · · · , dpN
such that the mapping (dp1 , · · · , dpN ) is a biLipschitz homeomorphism when restricted to a small
open neighborhood of x. Otsu and Shioya prove this result remains true if the distance functions are

1Note that according to (5), z 7→ o(d(x, y))/d(x, y) is integrable with respect to HN B(p, ε). Thereforeffl
B(p,ε) o(d(x, y)) dH

N (z) = o(d(x, y))

9
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replaced by their average counterparts, provided that ε is chosen sufficiently small (meaning small
compared to the number δ = δ(N) in the definition of X∗) and x ∈ Reg(X). As a consequence,
there exists an open set M where X∗ ⊃ M ⊃ Reg(X), which admits a Lipschitz structure. To
summarize, we have the following result

Theorem 1.1 (biLipschitz structure). On a finite dimensional Alexandrov space (X, d), there
exists an open setM such that X∗ ⊃M ⊃ Reg(X) andM is a Lipschitz manifold. Moreover, the
biLipschitz transition maps are differentiable at each point belonging to the image of Reg(X) and
the differential depends continuously of the base point when restricted to the image of Reg(X).

Therefore, an Alexandrov space can be seen as the union of a Lipschitz manifold and a "sin-
gular" part X \M whose Hausdorff dimension is small:

dimH(X \M) ≤ dimH(X \ Reg(X)) ≤ N − 2.

Moreover, compared to a general Lipschitz manifold, locally Lipschitz functions can be defined in
two equivalent ways: either in terms of the distance on X or through the charts using the Euclidean
metric. Note also that the property for a function to be differentiable at a regular point is intrinsic
(i.e. does not depend on the choice of the chart). Last, recall that a finite dimensional Alexandrov
space is locally compact. By combining all these properties together, we get

Theorem 1.2 (Rademacher theorem). Let f : Ω ⊂ X → R with Ω an open set and X a
finite dimensional Alexandrov space. Assume that f is a Lipschitz function, then f is differentiable
HN -almost everywhere.

Following the construction of a Riemannian metric on a smooth manifold, one ends up with a
Riemannian metric with measurable and locally bounded components when the space is equipped
with a Lipschitz structure. For Alexandrov space, better results can be proved. They are also due
to Otsu and Shioya [OS94]. Stronger results relative to a second order differential structure are
discussed in the next section.

Theorem 1.3 (Riemannian structure on Reg(X)). A N -dimensional Alexandrov space (X, d)
admits a locally bounded Riemannian metric g defined everywhere on Reg(X). Morever, the metric
varies continuously with respect to the base point x ∈ Reg(X). Finally, the metric g is compatible
with the Alexandrov distance:
i) The tangent cone based at a point x ∈ Reg(X), endowed with the cone distance induced by the
angle, is isometric to (TxX, gx).
ii) The distance induced by the Riemannian metric coincides with the original distance on X2.
iii) The volume form induced by g coincides with the N -dimensional Hausdorff measure.

1.2. The Brenier-McCann theorem on Alexandrov space. Using the Lipschitz struc-
ture above, one can generalize the Brenier-McCann theorem to the setting of Alexandrov spaces.
The statement reads as follows.

Theorem 1.4. Let (X, d) be a N -dimensional Alexandrov space. We set c(x, y) = 1
2 d

2(x, y)
the quadratic cost and µ0, µ1 two probability measures on X with compact support. We further
assume µ0 to be absolutely continuous with respect to HN . Then, Kantorovitch’s dual problem
admits a solution (φ, φc) with φ a c-conjugate function. As a consequence, the mass transport
problem admits a unique solution and this solution is induced by a map F . Furthermore, for µ0

almost every x ∈ X, the map F satisfies

F (x) = expx(−∇φ(x)),

meaning that F (x) ∈ Vx and that −∇φ(x) is the direction of the geodesic from x to F (x).

Remark 1.5. Observe that in the above theorem, the lower bound on the curvature does not
appear explicitly in the statement. Consequently, our result also applies to any compact Riemannian
manifold and allows us to give another proof of McCann’s theorem [McC01].
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By means of the Arzela-Ascoli theorem, the compactness of the supports of µ0 and µ1 guaran-
tees the existence of continuous solutions (φ, ψ) to Kantorovitch’s variational problem. Moreover,
the double complexification trick (recalled in Chapter 1) implies that φ is a c-conjugate function
and ψ coincides µ1-a.e. with φc. Besides, the compactness of suppµ1 gives us that φ is Lipschitz.

The next step is to notice that if φ is differentiable at x and y is such that

φ(x) =
1

2
d2(x, y)− φc(y)

then the first variation formula yields that d2
y is differentiable at x. As a by-product this gives

y ∈ Vx and
y = expx(−∇φ(x)).

Now, thanks to the Rademacher theorem on Alexandrov space, the c-subdifferential of φ:

∂cφ = {(x, y) ∈ suppµ0 × suppµ1;φ(x) + φc(y) = c(x, y)}
coincides with the graph of F out of a set N × suppµ1 where HN (N ) = 0.

To conclude, consider Π0 ∈ Γ0(µ0, µ1) an optimal plan. By definition,ˆ
X

φdµ0 +

ˆ
X

φc dµ1 =

ˆ
X×X

c dΠ0

which can be rewritten (using that φ, φc are Lipschitz and the definition of a transport plan)ˆ
X×X

(c− φ− φc) dΠ0 = 0

The fact that the above integrand is always nonnegative yields Π0(∂cφ) = 1. Finally, the assump-
tion on µ0 is used to discard the set N × suppµ1. Therefore Π0 is the plan (Id, F )]µ0 induced by
the map F .

In the case of Riemannian manifolds, the assumption on µ0 can be weakened. For instance,
the Brenier-McCann theorem holds whenever µ0 does not give mass to (N−1)-dimensional subsets
[McC95]. The sharp statement on µ0 can be described in terms of graphs of DC functions of
N − 1 variables. DC functions are discussed in details in the next subsection. In particular, we
state the optimal statement for µ0 there and explain why the same result holds on an Alexandrov
space.

2. Second order differential structure: DC Calculus

In this part, we describe the second order differential structure available on Alexandrov space.
These results have been initiated by Perelman in [Per94]. In collaboration with Luigi Ambrosio,
we are continuing this study. The results described in this part are contained in [3, 4]. We start
with a brief review of BV functions as a central tool in this section and refer to [AFP00] for a
more detailed account on the subject.

2.1. Review of BV functions. Given f : Ω ⊂ RN → R with Ω an open set and f ∈ L1
loc(Ω).

the function f is said to have locally bounded variation (in what follows this will be denoted by
f ∈ BVloc(Ω)) if its distributional derivative Df = (∂x1

f, · · · , ∂xN
f) is a vector-valued Radon

measure2. Moreover the total variation measure |Df | of Df is supposed to be locally finite,
meaning that for any bounded open subset Ω′ of Ω, |Df |(Ω′) < +∞. When |Df |(Ω) < +∞ then
f is said to have finite bounded variation -this will be denoted by f ∈ BV (Ω). For a vector-valued
function, a similar definition is given by arguing componentwise. Let us recall the definition of the
total variation measure |µ| of a RM -valued Radon measure µ. Given a Borel set E,

|µ|(E) := sup
(Ai);∪Ai=E

∑
i∈I
||µ(Ai)||

2Especially, Df remains unchanged if f is modified on a negligible subset.In short, a BV function is defined
up to a negligible subset. However, due to our geometric context, we will mainly have to deal with BV functions
that are defined everywhere.
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where (Ai) is a finite or countable partition of E into Borel sets and || · || is the Euclidean norm on
RM . According to the Polar decomposition, there exists a unique SM−1-valued function ρ ∈ L1(|µ|)
such that

µ = ρ |µ|.
Now, let us recall some properties relative to the derivative of a BVloc function f . The distri-

butional derivative Df can be written as

Df = Dacf +Djuf +Dcaf,

where Dacf is the absolutely continuous part w.r.t. Lebesgue measure, Djuf is the jump part,
and Dcaf is the Cantor part. The jump part of the derivative is concentrated on a set σ-finite
w.r.t. HN−1 (i.e. a countable union of sets with finite HN−1-measure) while the Cantor part is
concentrated on a L N -negligible set and vanishes on sets with finite HN−1 measure.

2.2. On the regularity of the Riemannian metric. Let us start with the notion of semi-
concave function on Alexandrov space. A locally Lipschitz function f defined on an open set Ω ⊂ X
is said to be semiconcave if for any point x in Ω, there is a neighborhood of x and a number λ
such that for any geodesic γ in this neighborhood, f ◦ γ is λ-concave, namely

t 7→ f(γ(t))− λ/2 t2

is a concave function.
Let us review some examples of semiconcave function. First, on any space form, a simple

computation of the Hessian shows that a distance function dp is semiconcave away from p. More
generally, note that the definition of Alexandrov space of curvature at least k can be rephrased
in terms of semiconcavity: locally, any distance function d2

p read along a geodesic is more concave
than it would be if the space were of constant curvature k. By combining the two preceding facts,
one gets that d2

p is semiconcave which in turn implies the semiconcavity of dp away from p. This
latter property is easily generalized to distance function from a closed set. Average of distance
functions is also an example of semiconcave function. This is an important fact since (average)
distance functions are used to build the aforementioned Lipschitz structure. Now, mimicking the
Euclidean definition, one can introduce the set of DC functions as the set of functions which,
locally, can be written as the difference of two semiconcave functions. The definition is extended
to mapping by arguing componentwise. The following striking result of Perelman allows one to
improve the differential structure. Let Φ be a chart defined as above (whose components are either
distance functions or average distance functions), then any function F well-defined on the domain
of Φ is DC if and only if F ◦Φ−1 is DC in the Euclidean sense. Furthermore, the set of Euclidean
DC mappings is known to be stable with respect to composition. An important consequence of
this result is that any transition map relative to any of the two differential structures defined
above is a Euclidean DC function. As concave functions from which they are built, Euclidean
DC functions admit second order derivatives L N -almost everywhere. Moreover, their second
distributional derivatives form a matrix-valued Radon measure. This result opens the way toward
a second order calculus on Alexandrov space. From now on, we always use the charts built from
average distance functions. As a consequence of his result on DC functions, Perelman proves that
the Riemannian metric components are functions of locally bounded variations. His idea is to
expand the equality g(∇dp,∇dp) = 1 which holds HN -a.e. using the coordinates. This gives

N∑
i=1

gij
∂fp
∂xi

∂fp
∂xj

= 1

where gij are the components of the matrix inverse of (gij), fp is the distance function dp read in
the chart -thus a Euclidean DC function. Then, consider the above equality as a linear equation
with gij being the variables. Since x ∈ Reg(X), one can find (as in the case of RN ) sufficiently
many distance functions dpi so that the combination of the equalities relative to fpi , forms a linear
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system whose matrix is invertible. As a consequence, the gij can be expressed as rational functions
of first derivatives of fpi thus they are locally BV by Perelman’s theorem.

Before we further discuss the features of a space covered by an atlas with DC transition maps,
let us first ask the following question: is BV the best regularity of the Riemannian metric one can
hope in the setting of Alexandrov spaces?

This is certainly not the case if we further assume the existence of a metric upper bound on
the curvature and if we ask the space to be locally geodesically complete (i.e. any point admits
an open neighborhood such that any geodesic contained in this neighborhood and defined on, say,
[0, T ] can be extended to a geodesic defined on [0, T + ε] where ε depends on the geodesic). Under
this set of assumptions (including finite Hausdorff dimension), Berestovski and Nikolaev proved
that the metric space is isometric to a manifold endowed with a C2,α atlas (for all α ∈ [0, 1)) and
a Riemannian metric whose components are in the Sobolev space W 2,p for any p ≥ 1 [geo93]. Let
us add that as far as the regularity of the space is concerned, the assumption of local geodesic
completeness is more important than the upper bound on the curvature. Indeed, building on Otsu-
Shioya results [OS94], Berestovski later proved that a locally geodesically complete Alexandrov
space is actually a manifold endowed with a 1/2-Hölder Riemannian metric [Ber94]; unfortunately
this paper is available in Russian only. Note however that local geodesic completeness is a very
restrictive condition. For instance, a locally geodesically complete Alexandrov surface has no
singular point 3. Indeed, Petrunin proved [Pet98] that the interior of a geodesic containing at
least one regular point is actually made of regular points. For general Alexandrov surfaces -for
which singular points can form a dense subset, we prove the following regularity result.

Theorem 2.1. Let (S, d) be a closed surface with curvature bounded below. Then S is a
topological surface and the distance d derives from a Riemannian metric g. Furthermore, for all
p ∈ [1, 2) there exists a discrete set Sp ⊂ S such that the components of g read in a local chart belong
to W 1,p

loc (S \Sp,H2). In particular, the metric components are in W 1,1
loc around any x ∈ Reg(S).

This result applies to convex surfaces in Euclidean space. Note that using the differential
structure induced by the ambient space, you can only prove that the metric components are
functions of locally bounded variation in general (the charts as well as their inverse functions are
convex, their first derivatives are then in BVloc). Therefore, even in this simple case the above
result leads to something new.

The proof of it is specific to the case of surfaces. It is based on the fact that the curvature
viewed as a Radon measure, is well-defined on a surface with curvature bounded below. This
is due to Alexandrov [Ale06]. Basically, the point is that we know how to define the curvature
measure at a (conical) point, on a geodesic, and for a geodesic triangle thanks to the Gauss-Bonnet
formula. Then, through a long and technical process, Alexandrov proves that such a surface can
be approximated by "nice" triangulated surfaces on which the curvature measure is well-defined
thanks to the previous remark. The existence of curvature measure on the initial space is then
proved by passing to the limit in the approximation process. Later, Alexandrov and Zalgaller made
this process formal and gave birth to the notion of surfaces with bounded integral curvature (i.e.
surfaces on which the curvature measure is a Radon measure that can be approximated nicely by
considering triangulated surfaces). Finally, Reshetnyak proved that a surface with bounded integral
curvature can also be approximated in a nice way by smooth Riemannian surfaces [geo93]. As a
consequence of his study, he proved the existence of isothermal coordinates on these surfaces. Our
result applies to this general setting (and the above theorem is actually a corollary of the result
below. It is based on the fact that an Alexandrov surface is a particular instance of surface with
bounded integral curvature). It reads

Theorem 2.2. Let (S, d) be a closed surface of bounded integral curvature ω and let

(6) Ω =
{
z ∈ S : ω+({z}) < 2π

}
3Actually, this is true in any dimension as a consequence of the splitting theorem.
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where ω+ is the nonnegative part of ω.
Then, for all z ∈ Ω there exist a chart (U, φ) with z ∈ U and a Riemannian metric g defined

on V = φ(U) ⊂ R2 by the formula

g(x1, x2) = λ(x1, x2)(dx2
1 + dx2

2)

such that the distance induced by the Riemannian metric coincides with the distance d. Setting for
q ≥ 4

Ωq =

{
z ∈ S : ω+({z}) < 2π

q

}
,

if z ∈ Ωq we can choose (U, φ) in such a way that:

(a) the metric components gij and the volume form
√

det(g) belong to
Lq(V, dx1dx2);

(b) the distributional derivatives ∂gij
∂xk

belong to Lp(V,
√

det(g) dx1dx2) where p = 2−6/(q+2).
(c) the Christoffel symbols Γkij belong to Lp(V,

√
det(g) dx1dx2) where p = 2− 2/q.

We emphasize that the existence of the Riemannian metric g above is due to Reshetnyak. Our
contribution consists in studying its regularity. Such a metric g is said to be subharmonic in the
sense that λ(x1, x2) = exp(−2u+(x1, x2)+2u−(x1, x2)) where u± are Euclidean subharmonic func-
tions whose distributional Laplacians coincide with the positive and negative part of the curvature
measure, denoted by ω+ and ω− respectively. The regularity results about the metric then follows
from the regularity of these subharmonic functions. The latter can be achieved by studying the
logarithmic potentials of ω+ and ω− as a consequence of Weyl’s lemma. To proceed, we make use
of estimates due to Troyanov [Tro91, Tro].

2.3. DC Calculus and measure-valued tensors on Alexandrov spaces. Let us now
come back to the DC structure induced by average distance functions. First, it is important to
notice that the transition maps are not only DC, the first partial derivatives of their components
also satisfy a weak continuity property. More precisely, according to Otsu and Shioya results,
the first derivatives of a transition map exist at (the image of) any regular point and depend
continuously of the point when it varies in Reg(X). We use Perelman’s notation and call DC0

map a DC map which satisfies this weak continuity property. Before we give further details about
this seemingly unimportant point, let us set our strategy out to develop a well-defined tensor
calculus on the manifold part of X. Due to the low regularity, we use the old-fashioned approach
consisting in defining local tensors in charts and imposing compatibility conditions between them.
We proceed in the same way to define the covariant derivative of tensor. Checking the compatibility
condition when the involved objects are Radon measure requires a careful analysis. Below, without
being too technical, we present what we think to be the more delicate points in this process. As a
guideline, we consider the problem of defining the Hessian of a DC function h as a (symmetric)
measure-valued tensor. In what follows, F : Ω→ Θ stands for a transition map, (yi) is a coordinate
system on Θ, and (xi) a coordinate system on Ω. For simplicity, we assume that h is defined on
Θ, so we want to check that h and h ◦F induce compatible tensors. We consider dh as a one form,
namely

(7) dh =
∑ ∂h

∂yi
dyi

so that

(8) D(dh) =
∑
i,j

Aijdyi ⊗ dyj ,

with

Aij =
∂

∂yi

(
∂h

∂yj

)
−
∑
m

∂h

∂yk
Γ̃kij
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where Γ̃kij are the Christoffel symbols. Note that Aij is a linear combination of derivatives of BV
function thus, in particular, it gives no mass to HN−1-negligible sets (see the reminder on BV
function in Section 2.1); the set of such Radon measures is denoted by GM. Note also that the
expression of the Christoffel symbols in terms of derivatives of the metric, and the continuity of
the metric components on Reg(X) implies that the Christoffel symbols do not give mass to sets
with finite HN−1-measure (extra explanations are given below). This subset of GM is denoted by
GM0.

In order to relate the above expression to the one of f ◦ F in the coordinate system (xi), one
can mimick the proof in the smooth case (where some of the terms are now measures multiplied
by densities). To get the compatibility result, one basically needs two properties. The first one is
the chain rule formula

(9)
∂

∂xi
(h ◦ F ) =

N∑
s=1

∂Fs
∂xi

(
∂h

∂ys
◦ F
)

and the second one is the Leibnitz rule.
Let us start with the Leibnitz rule. For general BV functions, the Leibnitz rule does not hold

because of the jump part of the derivative. Roughly speaking, the jump part is the set of points
where the function is not "continuous" in the sense of Geometric Measure Theory (the correct
term being approximately continuous). In particular, if a BV function f : Ω → R is continuous
when restricted to Ω \S with S a HN−1-negligible set then Df has no jump part. Consequently,
any first derivative of a DC0 function as well as any component of the Riemannian metric have no
jump part in their derivatives. Combining this property with the fact that Leibnitz rule holds true
provided that at least one of the two BV functions has no jump part in its derivative highlights
the importance of having DC0 transition maps instead of mere DC ones.

Now, let us discuss the validity of (9). First notice that despite F being locally biLipschitz,
it is not clear that h ◦ F is a BV function. Indeed, if we approximate h by a sequence of smooth
functions fn in L1, one needs to uniformly bound from above the L1-norm of |D(fn ◦ F )| in order
to conclude that h ◦ F is BV . To proceed, one makes use of the change of variable formula which
involves |det dF |. Consequently, discrepancy can occur when the sign of det dF is not constant
L N -a.e. Once again, the fact that transition maps areDC0 allows us to show the required property
on the determinant sign. The next step is to give a consistent meaning to

(10)
∂h

∂ys
◦ F

when h is a BV function. Inspired by the case where the partial derivative is absolutely continuous
with respect to the Lebesgue measure, we define

〈F ∗(µ), ψ〉 =

ˆ
Θ

ψ ◦ F−1|det dF−1|µ(dx),

where ψ is a compactly supported continuous function. Then when µ = ρL N , the change of
variable formula gives us F ∗(ρL N ) = ρ ◦ FL N so we define (10) using F ∗. The last important
point is that partial derivatives are continuous only in a weak sense, therefore, given ψ a compactly
supported Lipschitz function, it is not clear whether the equality below is true

(11)
ˆ
ψ
∂Fs
∂xi

(
∂h

∂ys

)
= −

ˆ
∂

∂ys

(
ψ
∂Fs
∂xi

)
h,

Fs being a component of F . However, the fact that ∂Fs

∂xi
is continuous out of a HN−1-negligible

set while ∂h
∂ys

does not give mass to such a set, allows us to prove the above formula. We can also
prove the same formula when the density (i.e. ∂Fs

∂xi
in the example above) is continuous out of a

σ-finite set with respect to HN−1 provided that ∂h
∂ys

has no jump part.
Finally, we end up with a well-defined notion of tensors S with GM-Radon measure compo-

nents. Besides, we can also define the covariant derivative DS of a tensor S provided it has BV
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components where f ∈ BV roughly means that f is a bounded function of locally finite variation
which is continuous out of a σ-finite set with respect to HN−1. The space BV is larger than the
space BV0 introduced by Perelman 4 (in our paper, we use the notation BV0 instead). Moreover,
up to considering the orientable double cover, it is a standard algebraic matter to extend our result
to differential forms with BV components and recover Perelman’s result. Last, a similar approach
can be performed for vector fields, it leads to the notion of BV vector field X as well as its covariant
derivative DX, a tensor with GM components.

As mentioned above, this degree of generality permits us to define the Hessian of a DC function
f as the covariant derivative of df . This includes the case of distance function dp. Note that even
on a smooth Riemannian manifold, the distributional Hessian of a distance function Hess dp is not,
in general, absolutely continuous with respect to the volume measure, see for instance [MMU14].
The extra term in Hess dp is of jump type, namely it is concentrated on the Cut Locus of p which
is (N − 1)-dimensional in general, N being the dimension of the manifold. For example, this
phenomenon arises on the real projective space. In our opinion, distance functions are central
objects in the theory of Alexandrov spaces, and this justifies the fine analysis needed to get a
setting encompassing them, unlike DC0.

We end this part with some of the properties of the Hessian that can be generalized to Alexan-
drov spaces. We refer to [4] for a more exhaustive picture. To proceed, the crucial technical tool
is to prove that a tensor with GM components can be evaluated by BV vector fields giving rise
to a Radon measure. For instance, Hess dp(X,X) makes sense as a Radon measure for any BV
vector field X. Note that there is an apparent discrepancy in the latter definition since, by what
precedes, Hess dp is a measure-valued tensor which, in general, gives mass to (N − 1)-dimensional
sets while BV functions are only continuous out of a σ-finite set with respect to HN−1. In such a
case, we use the precise representative of a BV function which is a specific representative defined
everywhere out of a (N − 1)-negligible set. However, despite Hess dp(X,X) being well-defined, we
cannot a priori hope for an integration by part formula like (11) at this level of generality. By a
fine study of the jump part of the derivatives, we are nonetheless capable of proving the formula

Hessf(X,Y ) = D(df(Y ))(X)− df(DXY )

for f ∈ DC, and X, Y ∈ BV. We also establish

D∇gφ∇gφ = 1/2∇g|∇gφ|2

for φ a DC function.
This extra work leads to interesting consequences however. For instance if φ = dp is a distance

function, then the modulus of its gradient equals 1 HN -a.e. Therefore, the above formulas give us

D∇gdp∇gdp = 0 and Hessf(∇gdp,∇gdp) = ∇gdp · (∇gdp · f).

Another corollary is the following integration by part formula for the Hessian, similar to that
appearing in the Γ2 calculus developed by Bakry [Bak94b]. For v a DC function, u a DC0 one,
and ψ a compactly supported Lipschitz function, it reads

ˆ
ψHess v(∇u,∇u) =

−
ˆ
ψ g(∇v,∇u)∆gu− 1

2

ˆ
ψ g(∇v,∇|∇u|2g)−

ˆ
g(∇v,∇u)g(∇u,∇ψ) dvg.

To conclude, let us mention a related (and, in my opinion, delicate) open question: does a
semiconcave function on Alexandrov space satisfy locally

Hessf ≤ λHN ,

4See in particular paragraph 4.3 on the covariant derivative of a vector field with BV0 components
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λ being related to the constant appearing in the definition of semiconcavity? This question is part
of my ongoing research in collaboration with Luigi Ambrosio. Its validity would have significant
consequences on the regularity theory of Alexandrov spaces with curvature bounded below.

2.4. Application of DC Calculus to Optimal Mass Transport on Alexandrov space.
In this part, we present an improved version of the Brenier-McCann theorem on an Alexandrov
space. On Euclidean space, the proof is due to Gangbo-McCann [GM96] while on Riemannian
manifold, it is proved by Gigli in [Gig11]. In the same paper, Gigli also proves that the assumption
on the initial measure is sharp in the setting of Riemannian manifolds -see below for more details.
The proof of the Brenier-McCann theorem sketched above highlights the connection between the
set of non-differentiability points of a c-conjugate function and the initial measure: the optimal
plan is unique and induced by a map whenever the initial measure does not give mass to the set
of non differentiability points of an arbitrary c-conjugate map.

Concerning the regularity of a c-conjugate function φ, recall that it satisfies for any x ∈ suppµ0

φ(x) = min
y∈suppµ1

1/2 d2(x, y)− φc(y).

Using the compactness of suppµ1, we infer

φ(x) = 1/2 d2(x, yx)− φc(yx) and φ(z) ≤ 1/2 d2(z, yx)− φc(yx)

for all z. Now, recall that d2
y is (locally) semiconcave on all of X. More precisely, on a given

bounded neighborhood and for y in a compact set K, the function d2
y is λ-concave where λ is

uniform with respect to y ∈ K. By definition of semiconcavity, we infer from the above formulas
that φ is semiconcave around any x ∈ suppµ0.

Thus, in the Euclidean case, the set of non differentiability points of a c-conjugate function is
that of a concave function. The latter set is well-understood as recalled below. We first introduce
the following definition.

Definition 2.3 (c-c hypersurface in RN ). A set Ω ⊂ RN is a c − c hypersurface if, up to a
permutation of the indices, there exist two convex functions f, g : RN−1 → R such that Ω is the
graph of f − g, i.e.

Ω = {(x, t) ∈ RN ; t = f(x)− g(x)}.

In [Zaj79], Zajícek proved

Theorem 2.4. Let f : RN → R be a concave function. Then the set of points where f is not
differentiable is contained in the union of countably many c− c hypersurfaces. Conversely, if a set
Ω ⊂ RN can be covered by countably many c− c hypersurfaces, then there exists a convex function
f : Rd → R which is not differentiable at all the points in Ω.

Therefore, it makes sense to introduce the following analogue of c − c hypersurfaces on X,
taking into account that the Hausdorff dimension of the complement of Reg(X) is at most N − 2.

Definition 2.5 (c− c hypersurface in X). A set Ω ⊂ X is a countable c− c hypersurface if,
up to a set of Haudorff dimension at most N − 2, it can be covered by chart domains on each of
which it can be covered by the image of a countable number of c− c hypersurfaces on RN through
the inverse of the chart.

We infer from Perelman’s DC theorem that the set of non differentiability points of a semi-
concave function is a countable c − c hypersurface. Indeed, using a partition of unity made of
compactly supported DC0 functions (see [4, Lemma 3.7] for a proof), we can without loss of gen-
erality assume that the semiconcave function is defined on the domain of a chart. The image of
the semiconcave function through the chart is then a Euclidean DC function. We get the result by
applying Zajícek’s theorem to it. Moreover, out of Sing(X), we know that the property of being
differentiable does not depend on the chart. As a consequence, we get the following sharp version
of the Brenier-McCann theorem on Alexandrov space.
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Theorem 2.6. Let (X, d) be a N -dimensional Alexandrov space and HN be the corresponding
Hausdorff measure. We set c(x, y) = 1/2 d2(x, y) and µ0, µ1 two probability measures on X with
compact supports. We further assume that µ0 does not give mass to countable c− c hypersurfaces.
Then, Kantorovitch’s dual problem admits a solution (φ, φc) with φ a c-conjugate function. As a
consequence, the mass transport problem admits a unique solution and this solution is induced by
a map F . Further, the map F satisfies for µ0 almost every x ∈ X,

F (x) = expx(−∇φ(x)).

To conclude, let us add a few words concerning the sharpness of the assumption on µ0. First,
let us mention that, in the case of Riemannian manifold, Gigli’s definition does not include the
possibility of discarding a "small" set. The sharpness is then intended as follows. Let µ0 be
compactly supported and such that for any compactly supported µ1, there is a unique plan between
µ0 and µ1, optimal relative to c, and, moreover, this plan is supposed to be induced by a map.
Gigli proves that this property holds iff µ0 does not give mass to countable c − c hypersurfaces
(actually his statement holds for measures with finite second order moments). His proof is based on
the second statement in Zajícek ’s Theorem 2.4. In our setting, we cannot adapt the argument out
of the manifold part of X. Maybe, this could be done if we had the stronger property HN−2(X \
Reg(X)) < +∞ but this property is unknown.



CHAPTER 3

Prescription of Gauss curvature

In this part, we describe results related to a classical theorem by Alexandrov on the Gauss
curvature prescription of Euclidean convex bodies [Ale42, Ale05]. These results are contained in
the papers [5, 2]. Here "Gauss curvature" is intended in a generalized measure-theoretic sense.
We thus start with describing the Gauss curvature measure introduced by Alexandrov himself.

Consider a convex body (i.e. a closed bounded convex set whose interior is nonempty) C in
Rm+1 and assume that the origin of Rm+1 is located within C. Let us call G : ∂C ⇒ Sm the Gauss
multivalued map which maps a point c ∈ ∂C onto the set of all outward unit normal vectors at c
and consider σ(G(·)) which is the pull-back of the uniform probability measure through the Gauss
map. This object is indeed a Borel measure supported on ∂C thanks to the following fact

(12) σ ({n ∈ Sm; ∃ c1 6= c2 ∈ ∂C; n ∈ G(c1) ∩ G(c2)}) = 0.

(see [Bak94a, Lemma 5.2] for a proof).
Alexandrov’s problem consists in prescribing the shape of a convex body knowing its curvature.

The above measure being supported on the boundary of C makes the question easy to solve. The
Gauss curvature measure is thus defined as the pull-back of the above measure onto the unit sphere
centered at the origin through the following homeomorphism

(13)
−→ρ : Sm −→ ∂C

x 7−→ ρ(x)x

where ρ is the radial function defined by ρ(x) = sup{s; sx ∈ C}). Note that ρ is a Lipschitz function
bounded away from 0 thanks to the assumption on the origin location. In the rest of the chapter
the Gauss curvature measure is denoted by

µ := σ(G ◦ −→ρ (·)).

Note also that the curvature measure depends on the location of the origin within the convex
body and is invariant under homotheties about that point. For instance, if the underlying convex
body is a polyhedron, then the curvature measure is a finite convex combination of Dirac masses∑
aiδxi

where xi are the directions determined by the vertices of the polyhedron and ai the exterior
normal angles.

Figure 1. Gauss curvature measure of a convex polyhedron.

19
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Let us comment a little bit on the terminology "curvature measure". When the underlying
convex body C is smooth, the Borel measure σ(G(·)) defined on ∂C is absolutely continuous with
respect to the surface measure of ∂C (equivalently, the m-Hausdorff measure restricted to this set)
and the density is nothing but the standard Gauss curvature (up to a multiplicative normalization
factor). There is another natural generalization of the Gauss curvature to arbitrary convex body.
It consists in pushing the surface measure through the generalized Gauss map. Once again, the
fact that G is multivalued in general is no trouble thanks to (12). In order to compare to the
curvature measure, note that when C is a convex polyhedron, the corresponding measure is a finite
combination of Dirac masses

∑
aiδxi

where the (xi) are the outward unit directions normal to
the polyhedron faces and ai are the area measures of the corresponding faces. In the literature,
this measure is called area measure, see for instance Schneider’s book on convex bodies [Sch93].
The area measure can also be studied by variational methods as in the paper [Car04], see also
[McC95].

Now that the Gauss curvature has been defined, let us come back to Alexandrov’s problem.
The assumption on the origin location implies the existence of ε > 0 such that the open ball
B(0, ε) ⊂ C. This fact yields the following bound

(14) ]x, n < π/2− ε′

on the angle between x and any outward normal vector n to a supporting hyperplane at −→ρ (x).

Figure 2. Upper bound on the angle.

Recall that a convex subset of Sm is defined as the intersection of a convex cone in Rm+1 with
Sm. As a consequence of (14), we get that for all non-empty spherical convex set ω ( Sm, the
curvature measure satisfies

(15) µ(ω) < σ(ωπ/2)

where ωπ/2 = {x ∈ Sm; d(x, ω) < π/2} and d(·, ·) = ]·, · is the standard distance on Sm.
In particular the above formula for ω a closed hemisphere tells us that µ cannot be supported

in ω. Alexandrov’s theorem states that (15) is actually a sufficient condition for µ arising from
this construction. More precisely

Theorem 0.1 (Alexandrov). Let σ be the uniform probability measure on Sm and µ be a Borel
probability measure on Sm such that for any non-empty convex set ω ( Sm,

µ(ω) < σ(ωπ/2).

Then, there exists a unique convex body in Rm+1 containing 0 in its interior (up to homotheties)
whose µ is the Gauss curvature measure.

In a subsequent section, we describe a variational proof of Theorem 0.1 [2]. After a detour to
the relativistic heat equation, a quite different subject which however can be treated with similar
tools, we describe an hyperbolic analogue of Alexandrov’s theorem. To proceed, we consider
Alexandrov’s result as an embedding result for manifolds homeomorphic to the sphere with a given
Gauss curvature. Of course, the Gauss formula prevents from embedding a hyperbolic manifold as
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the boundary of Euclidean convex set, however one can circumvent this problem by making use of
the Minkowski spacetime. We postpone the precise statement to the dedicated chapter.

The next part contains an outline of Alexandrov’s original arguments.

1. Alexandrov’s proof

A common feature in Alexandrov’s proofs about convex sets is that most of them are obtained
by treating the case of convex polyhedra first and then generalizing the result to all convex sets by
an approximation argument. The proof of the result discussed in the preceeding part follows this
strategy.

We first outline the proof and then comment and add more details about some specific points.
The first step is to approximate the given measure by a sequence (µk)k of finitely supported
measures which satisfy Alexandrov’s condition (this is not very difficult, we also use this argument
in our paper; a proof of this fact can be found there). Then, taking for granted that the theorem
is proved in the case of finitely supported measures, we consider a sequence of convex polyhedra
(Pk)k whose curvature measures are (µk)k. Noticing that the curvature measure is invariant
by dilations about the origin, we can further assume that all the Pk are contained in a fixed
ball. Consequently, this sequence is a compact set with respect to Hausdorff distance; thus up
to extracting a subsequence, we can assume that Pk converges to a convex body. To conclude,
Alexandrov shows that the Gauss curvature measure is a continuous mapping with respect to the
Hausdorff convergence and the ∗-weak convergence. To summarize, the two main ingredients are:
solving the problem when the underlying convex body is a polyhedron and showing that the Gauss
curvature measure is continuous.

The solution of the problem in the polyhedron case is a classical result so we only sketch it
(details can be found in Alexandrov’s book [Ale05]). If

∑k
i=1 aiδxi

is a finite measure satisfying
Alexandrov’s condition then the vertices of the polyhedron are on the half-lines determined by the
xi. The set Pol of such convex polyhedra is parameterized by (d1, · · · , dk), being di the positive
distance between the vertex relative to xi and the origin. It can be proved that Pol is a convex
cone and, being the curvature measure invariant by dilations, it is natural to restrict our attention
to the subset Pol1 ⊂ Pol whose elements satisfy

∑
di = 1. Similarly, the set Al of ai for which∑k

i=1 aiδxi
satisfies Alexandrov’s condition is a convex set (indeed, in the polyhedral case, the

condition can be rewritten as finitely many affine inequalities). The point is that both sets Al
and Pol1 have the same dimension. Finally, Alexandrov proves that mapping a convex polyhedron
in Pol1 onto its curvature measure is a continuous, injective (and proper) map; in the rest of
this part, we shall call this map "Gauss curvature mapping". Essentially, this follows from easy
considerations on how the polar cone P ◦ behaves when the initial polyhedron P varies (including
P1 ⊂ P2 ⇒ P ◦2 ⊂ P ◦1 ). Then, it suffices to apply this monotonicity result at each vertex of the
polyhedron (the cone generated by the spherical image at the vertex v is the polar cone of the
inward cone at v determined by the convex body). As a consequence of these properties, the Gauss
curvature mapping is a homeomorphism onto its image which is a closed subset of Al. The fact
that both sets are connected and have the same dimension then implies by the invariance domain
theorem that the mapping is surjective; this completes the proof.

Concerning the continuity of the Gauss curvature measure, Alexandrov’s proof is only available
in Russian so we provide a proof based on Schneider’s book [Sch93, Chapter 4]. To this end, we
denote by UC the set of points n ∈ Sm such that n ∈ G(x) for a unique vector x ∈ C; According
to (12), UC carries all the mass of σ. Also recall that for n ∈ Sm and x ∈ ∂C, n ∈ G(x) iff
hC(n) = 〈n, x〉, being hC the support function of C (the definition is recalled in the next section).
Besides, given Kj a sequence of convex bodies converging to C, the sequence of corresponding
support functions (hKj

)j converges (uniformly on compact sets) to that of C -the converse property
also holds. The proof of the continuity of the Gauss curvature measure is then as follows. Fix
Θ ⊂ Sm an open set and n ∈ G(x)∩UC where x ∈ −→ρ C(Θ). There exists a sequence xj ∈ ∂Kj such
that n ∈ G(xj); by compactness, we can further assume that xj converges to a point z. By what
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precedes, we get that hC(n) = 〈z, n〉; moreover being n ∈ UC , we infer z = x. Therefore, since
Θ ⊂ Sm is an open set, xj ∈ −→ρ Kj

(Θ) for large j and we get

µC(Θ) = σ(GC(−→ρ C(Θ))) = σ(GC(−→ρ C(Θ)) ∩ UC) ≤ lim inf σ(GKj (−→ρ Kj (Θ))).

Being Θ arbitrary, we conclude by using that the total mass of curvature measure does not depend
on the convex body, therefore it is a standard result in measure theory that µKj

weakly converges
to µC .

It remains to prove the uniqueness part of the statement, this cannot be done by the above
argument. In what follows, we call smooth point a point on the boundary of a convex body
which has a tangent hyperplane and denote by Sm,C the set of smooth points of ∂C. Given two
convex bodies K1 and K2 having the same curvature measure, Alexandrov proves that if for any
x1 ∈ Sm,K1

, x2 ∈ Sm,K2
such that 0, x1, x2 are aligned, the unique supporting hyperplanes at x1

and x2 are parallel then K1 and K2 are homothetical. This fact does not seem completely obvious
to us, so we provide an argument for completeness. Let us first assume that both K1 and K2

are polyhedra. Then, take two adjacent m-faces F1, F2 of K1 and the corresponding parallel faces
F̃1, F̃2 of K2. If the distances between the two pairs of parallel faces were distinct then, by easy
geometric considerations, the traces of F1 ∩ F2 and F̃1 ∩ F̃2 onto Sm would be disjoint and this
would give us two distinct vertices vi ∈ Ki, i ∈ {1, 2}; in particular the curvature measures of
K1 and K2 could not be equal. To prove the general case, approximate K1 and K2 by convex
polyhedra Pn1 and Pn2 respectively, defined as the intersection of finitely many halfspaces supported
at aligned smooth points for both K1 and K2 (more precisely, construct the polyhedra with the
help of a dense subset of such smooth points; the fact that

0 ∈
◦
K1 ∩

◦
K2

guarantees that the limit of Pni is not larger that Ki for i ∈ {1, 2}). By what precedes Pn1 = λnP
n
2 ,

further the coefficients λn form a bounded sequence; this gives us the result up to extracting a
subsequence.

To conclude, let us explain why the supporting hyperplanes must be parallel at smooth points
as above. The proof is by contradiction. Assume this is not true for x1 ∈ Sm,K1

and x2 ∈ Sm,K2
.

Up to dilating one of the bodies, we can further assume that x1 = x2. Next, we partition ∂K1 as

∂K1 =
(
∂K1 \K2

)
t
(
∂K1∩

◦
K2

)
t
(
∂K1 ∩ ∂K2

)
and we call F11, F12, F13 the elements of the partition (in the same order). We partition similarly
∂K2 and call F21, F22, F23 the corresponding elements, in particular F13 = F23. We are going to
prove that σ(G(F22)) < σ(G(F11)) contradicting µK1

= µK2
since the traces of F22 and F11 on the

unit sphere are the same. Notice that being Conv({0}∪F22) ⊂ Conv({0}∪F11), the corresponding
spherical images satisfy

G(F22) ⊃ G(F11).

Some extra work is needed to get a strict inequality between the measures of the above sets. First,
note that for i ∈ {1, 2}, Fi2 ∪ Fi3 is a closed set thus G(Fi2 ∪ Fi3) is closed as well. Consequently,
the set

κ :=
(
Sm \ G(F12 ∪ F13)

)
∩
(
Sm \ G(F22 ∪ F23)

)
is open. Now, by definition of a partition,

Sm \ G(F12 ∪ F13) ⊂ G(F11)

and, up to a σ-negligible set N (12),(
Sm \ G(F22 ∪ F23)

)
∩
(
G(F21) \N

)
= ∅.

From these inequalities, it is easy to infer the claim provided the open set κ is nonempty. This
last property can be proved as follows. Let us call n1 and n2 the two outward unit vectors at the
smooth point x = x1 = x2. Now take the bisector vector n of n1 and n2 in V ect(n1;n2) and set P
its orthogonal hyperplane passing through x. The hyperplane P determines two caps C1 and C2
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bounded by F11 and F22 respectively, each of which contains a point yi such that n ∈ G(yi). By
definition, these points belong to G(F11) and G(F22) respectively; a closer look actually gives us
n ∈ κ.

2. A variational approach

2.1. The variational problem. Besides the radial function

ρ(x) = sup{s; sx ∈ C},
another important function that characterizes a convex body C is its support function whose defi-
nition is

(16) h(n) = sup
x∈Sm

{ρ(x)〈x, n〉}

Note that we consider these functions only on Sm instead of Rm+1. Moreover

h(n) = ρ(x)〈x, n〉
if and only if the hyperplane orthogonal to n through −→ρ (x) supports the convex C. In other words,
this equality amounts to

n ∈ G ◦ −→ρ (x).

More generally, we can use the same formulas to define the radial and support functions of
a star-shaped set with respect to 0. For simplicity, we further assume that ρ is continuous and
bounded away from 0 and ∞. Let us call F a star-shaped set as above and consider its polar set

F ◦ = {n ∈ Rm+1; ∀x ∈ F 〈x, n〉 ≤ 1}
The set F ◦ is a convex body containing 0 in its interior. Moreover if we apply the polar transform
twice, the set F ◦◦ is the convex hull of F . Since F is star-shaped, the equality F = F ◦◦ holds if
and only if ∂F = ∂F ◦◦. Equivalently, F as above is convex if and only if

(17) ρF◦◦ = ρF

while only ≥ is true in general. An interesting feature of the polar transform is the following
relation

1

hF
= ρF◦

which follows from the definition. By using it, we can rewrite (17) as

(18) ρF = inf
n∈Sm;〈·,n〉>0

{
h(n)

〈·, n〉

}
while only ≤ is true in general.

It is then a nice idea due to Oliker [Oli07] to introduce the following transformations φ =
ln(1/h) and ψ = ln(ρ) which converts (16) and (18) into the more symmetric relations

ψ(x) = min
n∈Sm

c(n, x)− φ(n)

φ(n) = min
x∈Sm

c(n, x)− ψ(x)

where c is defined by the formula

c(n, x) =

{
− log〈n, x〉 = − log cos d(n, x) if d(n, x) < π/2
+∞ otherwise

The relations between ψ and φ are well-known in optimal mass transport. The functions φ
and ψ are said to be c-conjugate, one also uses the term c-concave map for φ (or ψ). This is due
to the fact that the variational problem

(19) sup
(φ,ψ)∈A

{ˆ
Sm
φ(n)dσ(n) +

ˆ
Sm
ψ(x)dµ(x)

}
,
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where A stands for the set of pairs (φ, ψ) of Lipschitz functions defined on Sm that satisfy φ(n) +
ψ(x) ≤ c(n, x) for all x, n ∈ Sm, is very useful to solve the optimal mass transport problem

min
Π∈Γ(σ,µ)

ˆ
Sm×Sm

c(n, x) dΠ(n, x).

It is also well-known that when solutions to (19) do exist in L1, they have to coincide with a
pair of c-conjugate functions (up to modifications on σ and µ negligible sets respectively) in order
to saturate the constraint. However, while solution does exist when the cost function c is, say,
Lipschitz regular and bounded, the fact that our cost function assume infinite values may prevent
the variational problem to have solution. We refer to Chapter 1 for a review of optimal mass
transport and to [BS11, Section 4] for a detailed discussion of the latter point.

Nonetheless, in this particular case, it can be proved that solutions exist and are essentially
unique in the sense that if (φ, ψ), (φ̃, ψ̃) are solutions then φ̃ − φ = ψ − ψ̃ is a constant. If we
rephrase this uniqueness property in terms of ρ = eψ and h = e−φ, we get, among other things,
that ρ and h satisfy (16) and (18). Therefore, the solutions of Kantorovitch’s problem determine
convex bodies, besides the convex bodies relative to the solutions are the dilations λC of a single
convex body C.

To conclude, one main property remains to be proved: the fact that the curvature measure of
C is indeed µ. There is a simple way to proceed based on Kantorovitch’s duality

max
(φ,ψ)∈A

{ˆ
Sm
φ(n)dσ(n) +

ˆ
Sm
ψ(x)dµ(x)

}
= min

Π∈Γ(σ,µ)

ˆ
Sm×Sm

c(n, x) dΠ(n, x)

which holds as a consequence of existence of solutions to (19), see (22) below for the argument. We
fix (φ0, ψ0) a solution of Kantorovitch’s variational problem and Π0 an optimal plan. The above
equality reads ˆ

(φ0 + ψ0) dΠ0 =

ˆ
c dΠ0.

As in our proof of the Brenier-McCann theorem 1.4, we infer

Π0({(n, x) ∈ (Sm)2;φ0(n) + ψ0(x) = c(n, x)}) = 1.

With the latter property at our disposal, we can show that µ is indeed the curvature measure
of the convex body determined by Kantorovitch’s variational problem. In what follows, U is an
arbitrary Borel set of Sm.

µ(U) = Π0(Sm × U)

= Π0(Sm × U ∩ {(n, x) ∈ (Sm)2;φ0(n) + ψ0(x) = c(n, x)})
= Π0(Sm × U ∩ {(n, x) ∈ (Sm)2;n ∈ G(−→ρ (x))})
= Π0(G ◦ −→ρ (U)× U ∩ {(n, x);n ∈ G(−→ρ (x))})
=

(12)
Π0(G ◦ −→ρ (U)× Sm ∩ {(n, x);n ∈ G(−→ρ (x))})

= Π0(G ◦ −→ρ (U)× Sm)

= σ(G ◦ −→ρ (U)).

2.2. Solving the variational problem. In this part, we describe the strategy to prove ex-
istence of solutions to the variational problem as well as their uniqueness up to additive constant1.
The uniqueness part is classical provided that all the solutions are differentiable σ-almost every-
where. The argument we use is the one that appears in the proof that the mass transport problem
admits a unique solution and that this solution is induced by a map, being the map defined almost
everywhere in terms of the gradient of φ. Uniqueness then follows from the fact: Let f : M → R

1Oliker also solved Kantorovitch’s problem for this cost function. His proof is more in the spirit of Alexandrov’s
one. It consists in solving the problem for finitely supported measures/ convex polyhedra first and then proving the
general case by approximation. See [2] for more comments.
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be a locally Lipschitz function defined on a closed (i.e. connected, compact, without boundary)
Riemannian manifold. Suppose ∇f = 0 a.e. then f is constant.

The question of the existence is more delicate to solve. Indeed, being c infinite on the set
of points (n, x) at distance at least π/2, the set of functions A is not compact. Our approach is
based on a generalization of a construction by Rockafellar which is a classical tool in optimal mass
transport. Rockafellar’s construction consists in building from a cyclically monotone set (i.e. a
set Γ such that for any pairs (x1, y1), · · · , (xk, yk) ∈ Γ,

∑k
i=1〈xi+1 − xi, yi〉 ≤ 0 where xk+1 = x1)

a lower semi-continuous convex function. The corresponding notion in optimal mass transport is
that of c-cyclical monotonicity (see Chapter 1 for a definition). Roughly speaking, when the cost
function c is real-valued and continuous, Rockafellar’s construction can be generalized and gives a
c-concave map from a c-cyclically monotone subset.

This approach is relevant in our problem provided that we take for granted that the mass
transport problem is well-posed

(20) min
Π∈Γ(σ,µ)

ˆ
S×S

c(n, x) dΠ(n, x) < +∞.

Indeed, when the cost function is continuous (and possibly assume infinite value), it is known
that the support of an optimal plan Π0 is a c-cyclically monotone set. Therefore, the set

Γ := supp Π0 ∩ {c < +∞}

is a c-cyclically monotone set (as a subset of supp Π0) of full Π0-measure (as a consequence of
(20)). The generalization of Rockafellar’s construction is given by

(21) φ(n) = inf
s∈N

inf
(ni,xi)si=1∈Γs

{ s∑
i=0

c(ni+1, xi)−
s∑
i=0

c(ni, xi)
}

where ns+1 = n and (n0, x0) ∈ Γ is fixed.
Our choice of Γ guarantees that the term inside the brackets belongs to R ∪ {+∞} thus φ

is well-defined and belongs to R. The main issue is to prove that the image of φ is actually in
R∪{−∞}. Indeed, if it is the case then φc(x) = infn∈Sm c(n, x)−φ(n) is well-defined and one can
prove that

Γ ⊂ {(n, x) ∈ Sm × Sm;φ(n) + φc(x) = c(n, x)}.

The above property then implies (we discard the question of integrability/regularity of φ and
φc which are only of a technical nature)

sup
(φ,ψ)∈A

ˆ
Sm
φdσ +

ˆ
Sm
ψ dµ ≤ min

Π∈Γ(σ,µ)

ˆ
Sm×Sm

c dΠ

≤
ˆ

Γ

c dΠ0 =

ˆ
Γ

φ+ φc dΠ0 =

ˆ
Sm
φdσ +

ˆ
Sm
φc dµ

which in turns gives us that (φ, φc) is a solution of Kantorovitch’s variational problem.
To conclude this part, we sketch our argument that gives Im(φ) ⊂ R∪{−∞}. When the (first)

term inside the brackets in (21) is finite, one says that there is a finite chain from n0 to n of length
at most s. We are done if we can prove that there is a finite chain from n0 to any point n. To do so,
we call Ck the set of points that can be linked to n0 by a chain of length at most k. We also define
Ak the set of "last intertwining links" of chains of length at most k. In more mathematical terms,
Ck = (Ak)π/2 by definition of the cost function. The point is to show that as long as Ck ( Sm, the
µ-measure of Ak+1 keeps growing with a uniform lower bound on the growth. Since µ(Sm) < +∞,
this can only happen finitely many times, i.e. Ck = Sm for k sufficiently large.

The existence of this uniform lower bound follows from a self-improvement of Alexandrov’s
assumption (15). Roughly, this improvement is a simple consequence of the compactness of the set
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of closed convex subsets of Sm relative to the Haussdorff distance. It reads as follows: there exists
ε > 0 such that

(22) µ(ω) ≤ σ(ωπ/2)− ε

for any closed convex subset ∅ 6= ω ( Sm.
The sets Ai are defined by induction by the following formulas

A0 = {x0}
Ai+1 = px(p−1

n ((Ai)π/2) ∩ Γ)

where pn and px stand for the projections on the n and x coordinates respectively. To estimate
the measures of the Ai, we fix an optimal transport plan Π0 in Γ0(σ, µ) and write

µ(Ai+1) =
Π0 is a plan

Π0(p−1
x (Ai+1)) ≥

def. of Ai+1

Π0(p−1
n ((Ai)π/2) ∩ Γ)

=
Π0(Γ)=1

Π0(p−1
n ((Ai)π/2)) =

Π0 is a plan
σ((Ai)π/2).

Besides, note that Sm \ (Ai)π/2 = {x ∈ Sm;∀z ∈ Ai, 〈x, z〉 ≤ 0} is defined by linear inequalities.
Thus

Sm \ (Ai)π/2 = Sm \ (Conv(Ai))π/2)

and, as long as Sm \ (Ai)π/2 6= ∅, the set Conv(Ai) satisfies the hypothesis in (22) which gives

µ(Ai+1) ≥ σ((Ai)π/2) = σ(Conv(Ai))π/2) ≥ µ(Conv(Ai)) + ε ≥ µ(Ai) + ε.

Finally, we mention that the techniques described above can also be used to the solve the mass
transport problem relative to the cost c. The statement is the following.

Theorem 2.1. Let fσ and µ two probability measures on Sm such that there exists Π ∈ Γ(fσ, µ)
for which c ∈ L∞(Π). Then, the mass transport problem

(23) min
Π∈Γ(fσ,µ)

ˆ
Sm×Sm

c(n, x) dΠ(n, x) < +∞

admits a unique solution Π0. Moreover, Π0 = (Id, T )]fσ where for σ-a.e. n ∈ Sm,

T (n) = expn

(
− arctan |∇φ(n)|
|∇φ(n)|

∇φ(n)

)
being φ a Lipschitz c-concave function.

The assumption we make (i.e. the existence of a plan Π such that c ∈ L∞(Π)) is stronger than
the standard assumption (23). It guarantees that

µ(ω) < (fσ)(ωπ/2)

for all convex sets ω. Indeed, (23) only implies the corresponding non-strict inequality and we
don’t know whether the result holds under this weaker assumption.

3. A relativistic detour

In the previous section, we construct a Kantorovitch potential by following the generalized
Rockafellar construction. The main tool is the existence of finite chain between any pair of points
(in the image of Γ). The method seems to strongly depend on the relation between the measures
µ and σ. In this part, we describe a much broader setting in which this method can be applied
to get the existence of a Kantorovitch potential. In the Monge-Kantorovitch problem, beside the
standard assumption concerning absolute continuity, we will additionally require the support of the
initial measure to be connected. Moreover, we will also assume the cost function to be relativistic.
This class of cost functions is modelled on the relativistic heat cost defined by Brenier [Bre03] in
order to study the relativistic heat equation.

The relativistic heat equation is defined by the formula
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(24) ∂tρ = div(
∇ρ√

1 + 1
s2 |
∇ρ
ρ |2

) = div(ρ∇h∗(∇(log ρ)))

where s bounds the propagation speed. Note that when s→ +∞, we formally recover the standard
heat equation.

In the above formula, h∗ is the Legendre transform of the function h defined by

(25) h(z) =

{
1−

√
1− |z|2 |z| ≤ 1

∞ |z| > 1.

Brenier introduced the relativistic heat cost c(x, y) = h(x − y) to obtain the relativistic heat
equation as a gradient flow of the Boltzmann entropy via the JKO time discrete scheme [AGS08].
Recall that the heat equation can be obtained by computing the time discrete solution at the time
step i in the following way
(26)

ρi = arg infρ∈W2(Rd)

ˆ
ρ log ρ+εW 2

2,ε(ρ
i−1, ρ) with W 2

2,ε(ρ
i−1, ρ) = min

π∈Γ(ρi−1,ρ)

ˆ (
|x− y|
ε

)2

dπ(x, y)

and by passing to the limit when the time step ε goes to zero. Analogously, a Cauchy result has
been proved by McCann and Puel in [MP09] for the relativistic heat equation replacing W 2

2,ε in
(26) by

Wc = min
π∈Γ(ρi−1,ρ)

ˆ
h(
x− y
ε

)dπ(x, y) where c(x, y) = h(x− y) is the relativistic heat cost.

More generally, we say that c(x, y) = h(x − y) is a relativistic cost if h : RN → [0,+∞] is a
strictly convex function on h−1([0,+∞)), furthermore we assume that C := h−1([0,+∞)) is the
closure of a strictly convex and bounded open set on which h is bounded. Besides, we require
that h(0) = 0. For simplicity, we also assume that h is differentiable2 on h−1([0,+∞)) and that
|∇h(x)| → +∞ when x→ ∂C.

In order to study the Monge-Kantorovitch problem relative to a relativistic cost function c,
it is convenient to introduce an additional parameter called the speed (of light) which takes into
account the relativistic behaviour of c. We set

ct(x, y) = h
(x− y

t

)
for any positive number t.

Now, given two probability measures µ0 and µ1 with compact support and a relativistic cost
function, we can always change the speed of light t so that the minimum in the Monge-Kantorovich
problem relative to ct is finite. The study of the minimum variation in terms of the speed also
gives us some useful information. Thus, we define the total cost function

C(t) = min
π∈Γ(µ0,µ1)

ˆ
R2d

c(
x− y
t

) dπ(x, y).

The overall idea is that the total cost function is infinite when t is small (at least if µ0 6= µ1),
whereas for large t, the transportation plans are not affected by the discontinuity of the cost
function and we get, as in the standard Brenier theorem, existence and uniqueness of the optimal
transport map. More precisely, it can be proved that there exists a threshold T from which the
total cost is finite:

There exists a speed T such that for any t ≥ T, C(t) < +∞ whereas C(t) = +∞ otherwise.

We call T the critical speed.

2Differentiability is not necessary for our purpose, however it gives a convenient way to express the fact that
the slope of h blows up on the boundary of C. The later property is necessary in some of our results.
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For t ≥ T , we prove the uniqueness of the optimal plan moreover this plan is induced by
a measurable map T [9]. To proceed, we adapt a method due to Champion, De Pascale, and
Juutinen [CDPJ08] to our setting. However, the study of the optimal map regularity cannot be
obtain by this approach. As a first step in this direction we prove, for supercritical speed, the
existence of a Kantorovitch potential [8].

Theorem 3.1. Let µ0 and µ1 be two probability measures with compact support on RN , ct
be a relativistic cost function, and assume that µ0 is absolutely continuous with respect to the
Lebesgue measure and has a connected support. Then, for any supercritical speed t > T there
exists a Kantorovich potential ϕt. Especially, the optimal transport map Ft is defined µ0-almost
everywhere as

Ft(x) = x− t∇h∗
(
∇̃ϕt(x)

)
where ∇̃ϕt is the approximate gradient of ϕt.

Roughly speaking, the first step of the proof is to show that no point is moved at maximal
distance whenever the speed is supercritical.

Theorem 3.2. Under the assumptions of Theorem 3.1, let γ be an optimal plan with respect
to ct. Then

γ
({

(x, y) ∈ RN × RN : x− y ∈ t ∂C
})

= 0

Combining these results with the lemma below, a Kantorovitch potential can be built following
the method sketched in the previous section.

Lemma 3.3. Under the assumptions of Theorem 3.1, we set γt the optimal transport plan for the

cost ct, Γ ⊂ {(x, y) ∈ R2n; y−x ∈ t
◦
C} a c-cyclically monotone set on which γt is concentrated, and

let (x0, y0) ∈ Γ. Then, for every (x, y) ∈ Γ there exists a finite sequence of points (xi, yi) ∈ supp γt,
1 ≤ i ≤ k, such that (xk, yk) = (x, y) and for every 0 ≤ i < k one has xi+1 − yi ∈ tC.

Before we give a proof of this lemma, we would like to point out that part of the proof of
Theorem 3.2 is also based on an abstract chain lemma for measures. We need to introduce some
notation in order to state the lemma. Given γ ∈ Π(µ, ν), a measure α = dαµ, and a measure
β = dβν, we define the measures

−→
Φ (α) := (py)](dαγ)
←−
Φ (β) := (px)](d

βγ).

These measures describe how a portion of mass of µ (resp. ν) distributed according to α (resp. β)
is transported by γ. Given two measures θ and θ′, we say that θ ≤ θ′ if θ = dθθ

′ where 0 ≤ dθ ≤ 1.
The statement of the lemma is the following.

Lemma 3.4 (finite chain lemma). Given γ, γ′ ∈ Γ(µ, ν), and γ0 ≤ γ a non-zero measure, we
define µ0 = (px)]γ0 ≤ µ and ν0 = (py)]γ0 ≤ ν the marginals of γ0. Define recursively the measures

νi+1 =
−→
Φ ′(µi) , µi+1 =

←−
Φ (νi+1) ,

where
←−
Φ and

−→
Φ ′ are the functions defined above relative to γ and γ′ respectively. Then, there

exists j > 0 such that νj ∧ ν0 > 0.

We end this part with a proof of Lemma 3.3 which is more geometrical than the one given in
[8].

Proof. As recalled above, there exists a c-cyclically monotone set Γ on which γt is concen-
trated. Moreover, according to Theorem 3.2, we can further assume that Γ ⊂ {(x, y) ∈ R2n;x−y ∈
t
◦
C}. Therefore, it suffices to prove the result for (x, y) ∈ Γ and x−y ∈ (t−ε)C for ε > 0 small. Let us
introduce some notations. Up to slightly shrink ε > 0, fix T < t′ < t such that min(t′−T, t−t′) > ε.



3. A RELATIVISTIC DETOUR 29

The overall idea is to discretize the target measure and reduce the proof to the case where ν is a
finite measure. This is possible thanks to the supercritical regime assumption.

Let ỹ0, · · · , ỹm ∈ supp ν be such that ∪mi=0B(ỹi, ε̃) ⊃ supp ν with ε̃ = rm ε/2, where rm > 0
is such that B(0, rm) ⊂ C. We assume this cover to be minimal in the sense that any strict
subcollection of (B(ỹi, ε̃))0≤i≤m is not a cover anymore. Now, consider the partition

B̃(ỹi, ε̃) = B(ỹi, ε̃) \
i−1⋃
s=0

B(ỹs, ε̃)

for i ∈ {0, · · · ,m} and let us assume that y0 ∈ B̃(ỹ0, ε̃). Define

νd =

m∑
i=0

ν(B̃(ỹi, ε̃))δỹi .

Note that the critical speed Td for the mass transport problem involving µ, νd and the cost c is at
most T + ε/2. Indeed, denoting by p the map defined by

p : supp ν −→ supp νd
y 7−→ ỹi if y ∈ B̃(ỹi, ε̃),

it is then easy to check that γ = (Id, p)]γT ∈ Γ(µ, νd) and
´
cT+ε/2 dγ < +∞. Using any transport

plan with finite cTd
-cost, the property Td ≤ T + ε/2 yields for any closed set A,

(27) νd(A) ≤ µ(A+ (T + ε/2)C).

For simplicity, we set T̃ = T + ε/2. First, consider the case where

(28) ({ỹ0}+ T̃C)c ∩ supp µ = ∅

which means that for all x ∈ suppµ, x − ỹ0 ∈ T̃C, thus x − y0 ∈ tC, and the proof is complete in
this case. For the rest of the proof, we assume

(29) ({ỹ0}+ T̃C)c ∩ supp µ 6= ∅.

We claim there exists yi1 such that

(xi1 , yi1) ∈ Γ with p(yi1) = ỹi1 6= ỹ0,

xi1 − ỹ0 ∈ t′C.(30)

Again, this yields xi1 − y0 ∈ tC. To prove the claim, we first consider the case where

µ(({ỹ0}+ T̃C) \ (Γt0)−1(B̃(ỹ0, ε̃)) > 0

where (Γt0)−1(B̃(ỹ0, ε̃)) := {x;∃ y ∈ B̃(ỹ0, ε̃); (x, y) ∈ Γ}. Using µ(px(Γ)) = 1, we get the result in
this case. Let us now assume that

µ(({ỹ0}+ T̃C) \ (Γt0)−1(B̃(ỹ0, ε̃)) = 0.

As a consequence, we claim that

(31) µ((Γt0)−1(B̃(ỹ0, ε̃)) ∩ ({ỹ0} − T̃C)c) = 0.

Let us prove this. First, we have

µ((Γt0)−1(B̃(ỹ0, ε̃)) = ν(B̃(ỹ0, ε̃)) = νd({ỹ0})

since γt is induced by a map; besides (27) applied with A = {ỹ0} gives νd({ỹ0}) ≤ µ({ỹ0}+ T̃C).
Finally, we use the fact that µ(A \B) = 0 and µ(B) ≤ µ(A) implies µ(Ac ∩B) = 0 to get (31).

Therefore, according to (29) and the fact that ({ỹ0} + T̃C)c is an open set, we can find T̃ <

t” < t′ close to T̃ such that ({ỹ0}+ t”C)c ∩ suppµ 6= ∅. Then, using the connectedness of suppµ,
we obtain

(({ỹ0}+ t”C) ∩ suppµ)
⋂

(({ỹ0} − t”C)c ∩ suppµ) 6= ∅
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where none of the subsets is empty (indeed ({ỹ0}+ t”C)∩ suppµ = ∅ would imply ν(B(ỹ0, ε̃)) = 0
by (27), contradicting ỹ0 ∈ supp ν). As a consequence, we can find z and α > 0 small such that

B(z, α) ⊂ ({ỹ0}+ T̃C)c ∩ ({ỹ0}+ t′C)
and µ(B(z, α)) > 0. Using (31) and µ(px(Γ)) = 1, we have proved claim (30) in both cases.

Repeating the whole argument with A = {ỹ0, ỹi1} instead of {ỹ0} and B̃(ỹ0, ε̃) ∪ B̃(ỹi1 , ε̃)

instead of B̃(ỹ0, ε̃) and so on, yields after a finite number of steps: 1) the full support of νd can be
reached by a finite chain or 2) suppµ ⊂ {ỹ0, · · · , ỹis}+ T̃C (as in (28) for instance). Note that, in
both cases, the graph obtained by adding an edge between yij and yij+1

is a tree; use this tree to
produce a chain from x0 to an arbitrary x ∈ suppµ. The argument is complete if 2) occurs. To
conclude in the case 1), we notice that p(y) = ỹk can be reached by a finite sequence of (xi, yi) as
above and that the assumption x− y ∈ (t− ε)C yields the missing estimate x− yk ∈ tC. �

4. A hyperbolic analogue

4.1. The Minkowski spacetime and discrete subgroups of hyperbolic isometries.
In this part, we recall results in Lorentzian geometry in connection with hyperbolic manifolds. We
refer to the books [O’N83, Rat06] for more on Lorentzian geometry.

The Minkowski spacetime in m + 1 dimensions, denoted by Rm1 , is Rm+1 endowed with the
quadratic form

q(x) =

m∑
i=1

x2
i − x2

m+1.

For simplicity, we use the same notation for the associated bilinear form. This quadratic form
is non-degenerate and admits isotropic vectors. The isotropic cone is divided into the future cone
and the past cone. We will only use the future cone defined as

Cf = {z ∈ Rm1 ; q(z) < 0 and zm+1 > 0}.
Throughout this part, we will identify the hyperbolic space Hm with the following subset of

Cf :

{x ∈ Rm1 ; q(x) = −1 and xm+1 > 0} ,
namely the unit sphere of Cf relative to q. More generally, we denote by

S(r) =
{
x ∈ Rm1 ; q(x) = −r2 and xm+1 > 0

}
the sphere of radius r. Besides, let us also recall that the distance d induced by the Riemannian
metric of Hm is related to q in the following way:

(32) ∀x, n ∈ Hm q(n, x) = − cosh(d(n, x)).

The above formula emphasizes the relation between the isometry group of the quadratic form
q and that of the Riemannian manifold Hm. More precisely, denoting by Isom(Rm1 ) the group of
isometries of the Minkowski spacetime, the Riemannian isometry group of Hm is homeomorphic
to Isom+(Rm1 ), the subset of Isom(Rm1 ) whose elements preserve the future cone Cf . Therefore,
being a compact hyperbolic manifold covered by the hyperbolic space, it can be identified with
Hm/Γ where Γ is a discrete, torsion-free, cocompact subgroup of Isom+(Rm1 ). Note that this
identification depends on a representation ρ of Π1(M) into Isom+(Rm1 ). However, throughout this
part, we assume that both the Riemannian manifold (M, g) and ρ are given once for all.

For completeness, let us recall the following definitions.

Definition 4.1 (Discrete, cocompact, and torsion-free subgroups of Isom(Hm)). Let Γ be a
subgroup of Isom(Hm). Γ is said to be

• discrete if the induced topology (by that of Isom(Rm1 )) is the discrete topology. In this
setting, it can be shown that this is equivalent to require that Γ is discontinuous.
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• discontinuous if for any compact subset K ⊂ Hm, the set K ∩ gK is nonempty only for
finitely many g ∈ Γ.

• torsion-free if for each x ∈ Hm, the stabilizer {g ∈ Γ; g. x = x} = {1} is trivial.
• cocompact if Hm/Γ endowed with the quotient topology is a compact space.

Beside compact hyperbolic manifolds, we will also consider more singular objects called hy-
perbolic orbifolds. Such a space is defined as a quotient Hm/Γ where Γ is a discrete, cocompact
subgroup of Isom+(Rm1 ). This is not a smooth manifold in general; however, this is also a com-
monly studied metric space. The distance on such a space is defined for all [x], [y] ∈ Hm/Γ by

dΓ([x], [y]) := inf
γ∈Γ

d(x, γ. y)

and coincides with the Riemannian distance when Hm/Γ is a smooth manifold.
A hyperbolic orbifold is known to be an Alexandrov space of curvature at least −1, see Chapter

1. As a consequence, we will see that hyperbolic orbifold naturally fits in our setting. In some
books, the definition of hyperbolic orbifold differs from ours, this is for instance the case in [Rat06].
However, both definitions are actually equivalent as explained in [Rat06, Chapter13].

Various statements in the next section involve equivariant maps. We recall that, given Γ a
subgroup of Isom+(Rm1 ) and A,B two subsets of the future cone Cf such that Γ.A = A, a map
f : A→ B is said to be Γ-equivariant (or just equivariant if there is no ambiguity) if for all x ∈ A,
γ ∈ Γ, f(γ.x) = γ.f(x).

The last tool we need is the existence of a proper fundamental domain relative to Γ as above.
Namely, there exists an open convex set D in Hm such that

(1) the elements of {g.D; g ∈ Γ} are pairwise disjoint
(2) Hm = ∪g∈Γ g.D.
(3) σ(∪g∈Γ g.∂D) = 0.

The last property allows us to lift an arbitrary Lipschitz map defined on Hm/Γ to a Γ-equivariant
Lipschitz map defined on Hm. The fundamental domain also permits us to build a measure σHm/Γ

on Hm/Γ defined by σHm/Γ([U ]) := σ((Γ · U) ∩D) for any Borel set [U ] ⊂ Hm/Γ. When Hm/Γ is
a smooth manifold, σHm/Γ coincides with the canonical Riemannian measure on Hm/Γ.

4.2. Looking for a hyperbolic analogue of Alexandrov’s theorem: Fuchsian convex
body. Our aim is to prove an analogue of Alexandrov’s theorem for hyperbolic orbifolds. Here,
we consider Alexandrov’s result as an embedding result for manifolds homeomorphic to the sphere
as in (13), with a given Gauss curvature measure defined on Sm. For hyperbolic manifolds, the
Gauss formula prevents from embedding such a manifold as the boundary of Euclidean convex set.
The first step is thus to determine a suitable notion of Gauss curvature measure defined on the
hyperbolic manifold (M, g). More generally, our construction applies to any compact hyperbolic
orbifold.

Our starting point is a paper by Labourie and Schlenker [LS00] in which they prove (the full
statement is more general than the one cited below):

Theorem 4.2. Let (S, g) be a closed Riemannian surface of genus at least 2 where g is a
negatively curved Riemannian metric. Then, there exists a unique equivariant isometric embedding
Φ of the hyperbolic plane into R3

1 (modulo an element of Isom(R3
1)) (and a unique representation

of the fundamental group π1(S) into Isom(R3
1)). Moreover, the image Φ(H2) is contained in Cf .

In order to relate this result to our own theorem below, let us add some comments on the
above statement. First, recall that g is conformal to a (unique) hyperbolic metric g0. Second, it is
true in this setting that the Gauss curvature of Φ(H2) is −Kg, being Kg the sectional curvature
of g. Especially, this implies that Φ(H2) bounds a Euclidean convex set. Therefore, this result
can be seen as an (equivariant) embedding result of (the universal cover of) a compact hyperbolic
surface (S, g0) where the Gauss curvature of the image is prescribed. From this point of view, it is
somewhat similar to Alexandrov’s theorem.
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Let us come back to the question of defining the Gauss curvature measure of an embedded
compact hyperbolic orbifold. As recalled above, a compact hyperbolic orbifold can be characterized
by the datum of a cocompact discrete subgroup of hyperbolic isometries (recall that the represen-
tation of the fundamental group is fixed). We first define a Fuchsian convex set as a non-empty
(Euclidean) closed convex set which lies on the open future cone Cf and which is invariant under
the action of a given cocompact discrete subgroup Γ of Isom+(Rm1 ), namely

Γ. C = C.

It is not easy to figure out what a Fuchsian convex set looks like. A particular case is that of
Fuchsian convex polyhedron which was already known before we introduce this general notion of
Fuchsian convex set (the paternity of this notion is in a way shared with François Fillastre. I first
introduced an equivalent definition which was then simplified by Fillastre in [Fil13].).

Given Γ as above, a set F is said to be a Γ-Fuchsian convex polyhedron if there exists
x1, · · · , xk ∈ Hm pairwise non-collinear and λ1, · · · , λk > 0 such that

F = {z ∈ Cf ; q(z − (1/λi)γ. xi, γ. xi) ≤ 0 ∀i = 1, · · · , k, ∀γ ∈ Γ}.

We concede that even a Fuchsian convex polyhedron is not easy to draw. However, Fuchsian
convex sets satisfy properties similar to those satisfied by their Euclidean counterparts. These
analogies are our guideline to state a hyperbolic version of Alexandrov’s theorem. Here are the
main ones, we refer to [5] for proofs.

The boundary ∂C of a Fuchsian convex set C can be parameterized by the hyperbolic space.
The homeomorphism is given by the radial projection onto Hm:

p : ∂C −→ Hm
x 7−→ x√

−q(x)

.

Besides, given any supporting hyperplane to the Fuchsian convex set (as a Euclidean convex set),
its inward unit normal vector (relative to q) belongs to Hm. As a consequence, we get a well-defined
multivalued Gauss map G : ∂C ⇒ Hm, moreover G(∂C) = Hm.

In order to define the Gauss curvature measure as a mesure on Hm/Γ, recall that both p and
G are equivariant. Therefore, G ◦ p−1 factorizes to a endomorphism GΓ ◦ p−1

Γ on Hm/Γ where pΓ

and GΓ are the maps on the quotient spaces induced by p and G respectively. As a consequence,
we define the Gauss curvature measure by the formula

µ(U) = σHm/Γ(GΓ ◦ p−1
Γ (U))

where U is an arbitrary Borel subset of Hm/Γ.
The same argument as in the Euclidean case guarantees that µ is indeed a measure on Hm/Γ.

Moreover, being G a surjective map, the total mass of µ coincides with that of σHm/Γ, namely the
volume of M . We can now state the main result of this part.

Theorem 4.3. Let M = Hm/Γ be a closed hyperbolic orbifold and µ be a Borel probability
measure on M . Then, there exists a unique (up to homotheties) Γ-equivariant homeomorphism
Φ : Hm −→ Rm1 onto its image Φ(Hm) which is the boundary of a Γ-Fuchsian convex set and
such that V ol(M)µ is the Gauss curvature measure of M relative to this Fuchsian convex body.
Especially, if µ is a finite sum of Dirac masses then the corresponding convex set is an equivariant
polyhedron.

This result generalizes a theorem by Ishkakov [Isk00] which proves the result whem m = 2
and the underlying convex body is a Fuchsian polyhedron.

The outline of the proof is the same as the one relative to Euclidean convex bodies explained
in Section 2. We consider θ : Hm → (0,+∞) the radial function of C defined by the formula

θ(x) = sup{s > 0; sx ∈ Cc}.
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By analogy, we consider the set of future starshaped sets as the closed sets in the future cone whose
complement is starshaped with respect to 0 and whose radial function (defined as above) is real-
valued, continuous and bounded away from 0. Similarly, the support function h : Hm → (−∞, 0)
of a future starshaped set is defined by

(33) h(n) = sup
x∈Hm

θ(x)q(x, n)

(recall that q(n, x) < 0 for n, x ∈ Hm) and

(34) h(n) = θ(x0)q(x0, n) if and only if n ∈ G(θ(x)x).

The hyperbolic analogue of the polar transform is given by

S◦ = {x ∈ Cf ;∀n ∈ S, q(x, n) ≤ −1} ,
being S a future starshaped set. Elementary computations guarantee that S◦◦ ⊃ S is the convex
hull of S.

When S is a Fuchsian convex body, the radial and support functions are Γ-invariant and
Lipschitz regular. They induce Lipschitz functions θHm/Γ and hHm/Γ both defined on Hm/Γ. The
relations (33) and (34) remain true for θHm/Γ and hHm/Γ in place of θ and h, provided that q(n, x)
is replaced by − cosh(dΓ([n], [x]) (this follows from (32)).

It is then natural to restrict our attention to Γ-equivariant future starshaped sets and the
induced quotient maps defined on Hm/Γ. Then, the transformations φ = ln(−hHm/Γ) and ψ =
− ln θHm/Γ lead us to consider the cost function

c([n], [x]) = ln ◦ cosh(dΓ([x], [n])).

As in the Euclidean case, S is a Fuchsian convex body if and only if the underlying maps φ and ψ
are c-conjugate (and Lipschitz regular). Consequently, to get Theorem 4.3, we are left with proving
a strong form of Kantorovitch’s duality (i.e. existence and uniqueness of Kantorovitch’s variational
problem up to an additive constant). This is known to be true when Hm/Γ is a smooth compact
manifold as a consequence of McCann’s theorem [McC01]3. If not, using that a hyperbolic orbifold
is an Alexandrov space of curvature at least −1, we can use our generalization to Alexandrov space
of McCann’s theorem (see Chapter 2) to conclude.

4.3. Perspective: yet another hyperbolic analogue. Another generalization of Alexan-
drov’s curvature prescription problem would be to extend the result to the convex bodies in the
other space forms. In [Ale05, p. 395], Alexandrov mentioned the case of convex polyhedra in Hm.
As in Euclidean space, the curvature measure is then a finite sum of Dirac masses determined by
the vertices and whose weights are given by the exterior normal angles. Some differences worth to
be highlighted however. First, the total mass of the curvature measure is not fixed anymore and the
curvature measure is no longer invariant by dilations of the convex body. Especially, Alexandrov’s
proof for general Euclidean convex bodies does not apply in this case, see Section 1. Second, notice
that because of the curvature is non-zero, the parallel transport is not trivial anymore; this makes
the general definition of curvature measure a bit cumbersome.

In collaboration with Philippe Castillon, we are currently working on this problem. Our
approach is based on a non-linear analogue of Kantorovitch’s variational problem.

3See the beginning of Section 2.2 for more details





CHAPTER 4

Wasserstein space over CAT (0) space

In this chapter, we describe some geometric properties of the Wasserstein space over a CAT (0)
space X. A CAT (0) space is a geodesic space which satisfies the Alexandrov nonpositive curvature
condition in the large, namely for all geodesic triangles. We further assume X to be locally compact
and, in some places, geodesically complete which means that any geodesic can be extended to a
geodesic line, i.e. a geodesic defined on R (recall that a geodesic in our setting corresponds to a
minimizing geodesic when X is a smooth Riemannian manifold). Some results require the space
to be negatively curved, we then assume the space to be CAT (k) where k < 0. Recall that for
k ≤ 0, a space is CAT (k) if and only if it has curvature bounded from above by k and is simply
connected. We refer to Chapter 1 for a review of Alexandrov spaces and optimal mass transport
and to the books by Ballmann [Bal95] and by Bridson & Haefliger [BH99] for all the results on
CAT spaces used in this chapter.

The results of this chapter can be summarized as follows. First, we show that, given a CAT (0)
space X, its Wasserstein space W2(X) admits a boundary at infinity which shares various properties
with the boundary at infinity of a CAT (0) space (note that up to the case X = R, W2(X) is not
CAT (0)). We then prove that a CAT (k) space (k < 0) has rank 1. We finally prove that the
isometry group of W2(X) coincides with that of X when X is a CAT (k) (k < 0) geodesically
complete space. We prefer to postpone all the necessary definitions to the core of the chapter since
it appears to us that these results are better understood once having in mind the corresponding
properties of W2(RN ). These properties are recalled in the first section.

These results come from the papers [6, 1] written in collaboration with Benoît Kloeckner.

1. Wasserstein space over Euclidean space

Since the pioneering work of Otto [Ott01], it has been known that the Wasserstein space over
Euclidean space or, more generally, over a smooth Riemannian manifold, can be considered as a
Riemannian manifold of infinite dimension. In this part, we recall some properties of W2(RN ) as
a model space for our study of Wasserstein space over CAT (0) space.

The Wasserstein space over RN is a geodesic, complete and separable space. From the topolog-
ical point of view, it is contractible -this remains true for CAT (0) space- and it admits a Euclidean
cone structure with respect to any Dirac mass. It is also an infinite dimensional space with nonneg-
ative Alexandrov curvature as a particular instance of a result proved by Sturm [Stu06a] asserting
that nonnegative curvature is preserved from the base space to its Wasserstein space. In the case
of the line, W2(R) is even a flat space since it can be isometrically embedded onto a convex sub-
space of L2([0, 1]) using the (right-)inverse of its distribution function. The isometric character
of this embedding follows from the classical Hoeffding-Fréchet theorem. In higher dimension, non
uniqueness of geodesics between well-chosen measures in W2(RN ) prevents the space to be flat1

An interesting feature of the Wasserstein space is that it always contains an isometric copy of
the base space (where, to be safe, the base space is assumed to be complete and separable). The

1indeed, notice that the comparison triangle determined by a geodesic and the midpoint of another geodesic
with the same endpoints is degenerate. If the space were flat, the distance between the two midpoints in W2(RN )
would be 0, a contradiction.

35
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isometric embedding is obtained via the mapping

X −→ W2(X)
x 7−→ δx

Especially, one can isometrically embedd RN into W2(RN ). Despite its multiple cone structures,
it has been proved by Kloeckner [Klo10] that contrary to RN , RN+1 cannot be isometrically
embedded into W2(RN ). Therefore N is the maximal dimension of a Euclidean space that can be
isometrically embedded into W2(RN ). The space W2(RN ) is said to have rank N . We point out
that there are other notions of rank available in the literature, for instance the condition of being
isometric can be weakened to biLipschitz. However, most of them are infinite for W2(X) whenever
X contains a geodesic line. We refer to [6, Section 5] for a detailed discussion.

Another interesting result concerns the isometry group of W2(Rn). Once again, the definition
of Wasserstein space guarantees that the isometry group of X can be embedded into that of W2(X)
through the following map (here, X is a merely complete and separable metric space)

(35) Isom(X) −→ Isom(W2(X))
φ 7−→ φ]

and one could expect that both groups coincide. But this is not the case for Euclidean space
where there are non trivial isometries Φ that fix the set of Dirac masses pointwise. We refer the
interested reader to [Klo10] where the isometry group of W2(Rn) is entirely determined. Let us
add the following general fact proved in [1]: the set of Dirac masses is globally preserved by an
isometry (at least if the metric space is locally compact and geodesically complete).

2. Wasserstein space over a CAT (0) space

In what follows, we describe the boundary at infinity of Wasserstein space over a CAT (0)
space. Then, we characterize the isometry group of W2(X) where X is a CAT (k) space and k < 0.

2.1. Boundary at infinity of Wasserstein space. The boundary at infinity of a (non
compact) geodesic space X is defined as follows. We consider R(X) the set of constant speed
geodesic rays and R1(X) its subset made of unit speed rays. Two geodesic rays γ(t), σ(t) are said
to be asymptotic if they are at bounded distance:

γ ∼ σ if and only if sup
t≥0

d(γ(t), σ(t)) < +∞.

In particular, note that two asymptotic rays must have the same speed.
The set ∂X of boundary points (or points at infinity) is the set of equivalence classes of unit

speed geodesic rays. The equivalence class of a unit speed geodesic ray σ is denoted by σ∞. The
set of equivalence classes R(X)/ ∼ of the full set R(X) can be identified with the cone Con(∂X)
over ∂X, the radial term being given by the speed s(γ) of the geodesic ray γ.

When X is a locally compact CAT (0) space, the space X ∪ ∂X can be equipped with a
cone topology for which both ∂X and X ∪ ∂X are compact sets, moreover the topology induced
on X coincides with the one induced by its metric. This topology is known to be compatible
with the topology of uniform convergence on compact sets for continuous curves lying on X; as a
consequence, the cone topology actually extends to Con(∂X).

To perform the construction of the boundary at infinity, the CAT (0) assumption on X is used
through the convexity of t 7→ d(γ(t), σ(t)). The latter property is also useful to introduce a distance
on Con(∂X) defined by

d∞(γ∞, σ∞) := lim
t→+∞

d(γ(t), σ(t))

t
.

The topology induced by d∞ does not coincide in general with the cone topology and is always
finer than the latter (for a CAT (0) space satisfying the visibility property, the topology induced
by d∞ is the discrete one; see below for more on the visibility property). An important feature
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from the point of view of optimal mass transport is that d∞ is a lower semicontinous mapping
with respect to the cone topology.

Given X a locally compact CAT (0) space, our goal is to characterize the boundary at infinity
∂W2(X) defined as above in terms of ∂X. As recalled in the relevant chapter, a geodesic (µt)
in W2(X) is induced by a probability measure µ on the set of geodesics in X called a dynamical
plan, in the sense that µt = et]µ with et(γ) = γ(t). A diagonal argument allows us to extend this
property to geodesic ray in W2(X) and gives us a dynamical plan µ supported on R(X) but not
on R1(X) in general. We set e∞ : R(X)→ Con(∂X) the quotient map, using the identification

(36) Con(∂X) ∼ R(X)/∼ .
We can then define the asymptotic measure of the geodesic ray (µt) as

µ∞ := (e∞)]µ.

Note that when (µt) is unit speed, we also haveˆ
s2(γ) dµ∞(γ) = 1.

The set of probability measures on Con(∂(X)) satisfying the above relation is denoted by

P1(Con(∂X)).

This set reflects the asymptotic behaviour of geodesic rays and is therefore a good candidate to be
the boundary of W2(X). However, it is important to notice that the asymptotic measure is defined
through the dynamical plan µ not the ray itself. This is harmless when the base space X is non
branching since, in that case, it can be proved that µ is uniquely defined. But this is no longer
true without this assumption. To circumvent this difficulty, a crucial tool is the following formula
which, among other things, guarantees that the asymptotic measure depends only on the geodesic
ray.

Theorem 2.1 (asymptotic formula, [6]). Consider two geodesic rays (µt)t≥0 and (σt)t≥0, let
µ and σ be any of their dynamical plans and µ∞, σ∞ be the corresponding asymptotic measures.
Then (µt) and (σt) are asymptotic if and only if µ∞ = σ∞. Moreover we have

lim
t→∞

W(µt, σt)

t
= W∞(µ∞, σ∞)

where W∞ stands for the quadratic Wasserstein space involving the distance d∞.

The asymptotic formula also allows us to overcome the lack of convexity of t 7→W(µt, σt) and
perform the construction of the cone topology on W2(X)∪∂W2(X). The cone topology retains the
properties known in the CAT (0) case except that of compactness. This non-compactness feature
is consistent with the non local compactness of W2(X) which is known to be true whenever X is
non compact. We prove that the spaces below are homeomorphic.

∂W2(X) ∼
homeo.

P1(Con(∂X))

where the latter set is endowed with the topology of weak convergence.
It is known that the cone topology on Con(∂X) is metrizable. This allows us to rephrase the

above result in a more (sym-)metric way using (36):

Con(∂W2(X)) is isometric to W2(Con(∂X)).

In words, the cone over the boundary of Wasserstein space is isometric to the Wasserstein space of
the cone over the boundary of the base space. This phenomenon is reminiscent of the one linking
geodesic rays and dynamical transport plans.

The boundary ∂W2(X) can be used jointly with the asymptotic formula to prove a non em-
bedding result into a CAT (0) space satisfying the visibility property. Such a space, called visibility
space, is a CAT (0) space for which any pair of points in the boundary at infinity can be linked by
a geodesic line in X. For example, any CAT (k) space with k < 0 satisfies this property. Using the
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formula expressing d∞ in terms of the angle metric, it can be proved that, on a visibility space,
the range of the metric d∞ is {0, 2}.

Theorem 2.2. If X is a visibility space, then the Euclidean plane cannot be isometrically
embedded into W2(X).

In other terms, the Wasserstein space of a visibility space has rank 1 as the space itself. This
result leaves open the question of the rank of the Wasserstein space over a CAT (0) space of rank
k > 1. This would require a better understanding of ∂W2(X).

The scheme of proof is as follows. Given that d∞(γ∞, σ∞) is 2 as soon as γ∞ 6= σ∞, it is not
too difficult to prove that the restriction of W∞ to P(∂X) coincides with the square root of the
total variation norm (the mass stays where it is as much as possible). Especially, the restriction
of W∞ is a "snowflake" metric and cannot contain any rectifiable curve (this follows from the
definition of length and the concavity of x 7→ x1/2). On the other hand, if Euclidean plane could
be isometrically embedded into W2(X) then the asymptotic formula would give us an isometric
embedding of the boundary at infinity of R2 -i.e. the unit circle- into ∂W2(X). Finally, some
computations only based on the triangle inequality imply that the asymptotic measure of (the
restriction to t ≥ 0 of) a geodesic line µt has to be supported in ∂X = {1}×∂X ⊂ Con(∂X). The
unit circle being rectifiable, we get a contradiction. Note that the above argument can be used to
prove other nonembedding results involving open cones (invariant by x 7→ −x) or plane endowed
with an arbitrary norm instead of Euclidean plane.

2.2. Isometry group of CAT (k) space, k < 0. The goal of this part is to determine the
isometry group of W2(X) where X is a locally compact, geodesically complete CAT (k) space. As
recalled above, the isometry group Isom W2(X) always contains an isometric copy of that of X.
We show that for negatively curved spaces, both isometry groups actually coincide. Note that the
result of this section is valid under slightly weaker assumption than CAT (k).

In Section 1, it is recalled that under very weak assumptions on X, the set of Dirac masses
is always globally preserved by an isometry. Moreover, up to composing this isometry with an
isometry coming from the base space (35), we can further assume that the set of Dirac masses is
fixed pointwise. The proof of the main result then follows from two ingredients. First, we prove that
such an isometry fixes pointwise any element of W2(X) supported on a geodesic line. Second, we
introduce the mapping (called "Radon transform" by analogy with the standard Radon transform
on Euclidean space)

R : µ 7→ ((pγ)#µ)γ∈RR(X)

which maps µ ∈ W2(X) onto the collection of all measures (pγ)#µ, with pγ being the projection
on the geodesic line γ (γ is a convex set thus the projection onto γ is well-defined since X is
CAT (0)). We then prove the Radon transform R is an injective map. As a consequence of these
two claims, the isometry we consider has to be the identy map and the proof is complete.

Below, we give elements of the proof of these two facts in order to show how properties of
CAT (k) spaces intertwine with optimal mass transport.

We start with the first property. Again, the proof is in two steps. First, we prove that the
measures supported on a geodesic line γ are globally preserved by an isometry. Then, using that γ
is isometric to R, we combined the description of Isom(W2(R)) obtained by Benoît Kloeckner with
the negative curvature assumption to prove that the measures supported on a geodesic line are
actually preserved pointwise. The proof of both steps are similar in spirit so we restrict ourself to
sketching the first one. The point is to find a way to distinguish between a measure supported on
a geodesic line and a measure which is not. The idea is the following: take a measure µ supported
on γ and pick up two points x0, x1 ∈ γ and set µt the geodesic from µ to δx1

and δx(t) the geodesic
from δx0

to δx1
. Since γ is a convex subset of X isometric to R, the Wasserstein distance between

µt and δx(t) behaves as on W2(R): it decreases linearly to 0 when t varies from 0 to 1. On the
contrary, if µ is not supported on γ, then we can find a set of points z0 of positive µ-measure such
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that the points x0, x1, z are not aligned; the negative curvature then implies

d(z(t), x(t)) < td(z0, x0)

(where z(t) is the geodesic from z0 to z1 = x1). This implies W(µt, δx(t)) < tW(µ, δx0
) and the

proof is complete.
Now, we sketch the proof that the Radon transform is injective. We first notice that it is

sufficient for our purpose to prove a slightly weaker result. Indeed, by continuity, in order to prove
that an isometry Φ is the identity map, it suffices to prove Φ(ν) = ν for ν in a dense subset of
W2(X). Having in mind this remark, it suffices to prove

R µ = R ν ⇒ µ = ν

for all µ ∈ W2(X) and all ν ∈ A, A being a dense subset of W2(X).
Let us further assume for a while that X is a smooth Riemannian manifold and define A as

the set of atomic measures. Write ν =
∑
miδxi where

∑
mi = 1. First, we claim that µ must

be supported in the (xi). Let x be another point; consider a geodesic γ such that γ0 = x and its
tangent vector γ̇0 is not orthogonal to any of the geodesics (xxi). Then for all i, pγ(xi) 6= x and
there is an ε > 0 such that the neighborhood of size ε around x in γ does not contain any of these
projections. It follows that R ν(γ) is supported outside this neighborhood, and so does R µ(γ).
On a CAT (0) space, the projection on γ is 1-Lipschitz, so that µ must be supported outside the
ε-ball at x in X. This gives x /∈ suppµ.

Now, if γ is a geodesic containing xi, then R ν(γ) is finitely supported with a mass at least mi

at xi. For a generic γ, the mass at xi is exactly mi. It follows immediately, since µ is supported
on the xi, that its mass at xi is mi.

To deal with the general case, we make use of results by Lytchak and Nagano [LN] which
describe the local structure of a geodesically complete, locally compact space of curvature bounded
from above. We restrict our attention to the spaces with nonpositive curvature. Recall that it is
rather easy to glue together two spaces of nonpositive curvature in such a way that the resulting
space remains nonpositively curved. Especially, it is possible to glue together (smooth) spaces of
various dimensions as an half-line and a Euclidean plane along a point for instance. More generally,
one can consider metric polyhedral complexes all of whose faces are (smooth) spaces of constant
Hausdorff dimension and CAT (0). A crude description of Lytchak-Nagano results is that all locally
compact, geodesically complete CAT (0) spaces look like metric polyhedral complexes as above,
up to small subsets (where "small" means small relative to the "local" Hausdorff dimension of the
space which is proved to exist and to be an integer). More precisely, as a consequence of their
results, one has

Theorem 2.3 (Lytchak-Nagano). Let U be a relatively compact open subset of X. Then, there
exists an integer n ∈ N such that

Hn(U) ∈ (0,+∞).

Moreover, the Hausdorff dimension of U is related to those of spaces of directions through the
formula

dimH(U) = sup
z∈U

dimH Σz + 1.

Let Rn(U) = {z ∈ U ; Σz is isometric to Sn−1 ∗ Z} where (Z, d) is a metric space and Sn−1 ∗ Z is
the spherical join of Sn−1 and Z. Then, the Hausdorff dimension of U \Rn(U) satisfies

dimH(U \Rn(U)) ≤ n− 1.

As a corollary of these results, it is possible to define the local dimension of a point x by
observing that all balls being relatively compact, the Hausdorff dimension of B(x, 1/k) has to be
constant when k is sufficiently large. Let us call nx ∈ N the local dimension of x and assume that
nx ≥ 2. We can also prove that if z ∈ Rnx

(B(x, 1/k)) for large k then Σz is isometric to Snx−1,
equivalently the tangent cone at z is isometric to Euclidean space of dimension nx.
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With this result at our disposal and discarding the one dimensional subspace of X which
requires more precise informations, one can adapt the argument for smooth CAT (k) spaces to the
general case. The suitable dense subset A of W2(X) is then made of atomic measures supported
on the subset of regular points, namely the points whose tangent cone is isometric to Euclidean
space (of any dimension at least 2). As explained above, Theorem 2.3 guarantees that the set of
regular points is dense in X which, in turns, gives us the density of A in W2(X). The main point
of the proof is that angles are well-defined on CAT (0) space and the characterization of pγ(x) in
terms of angle retains its validity whenever the argument is applied to a point whose tangent cone
is isometric to Euclidean space (of dimension at least 2).



41

Bibliography

[AFP00] Luigi Ambrosio, Nicola Fusco, and Diego Pallara. Functions of bounded variation and
free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press
Oxford University Press, New York, 2000.

[AGS08] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient flows in metric spaces and
in the space of probability measures. Lectures in Mathematics ETH Zürich. Birkhäuser
Verlag, Basel, second edition, 2008.

[AGS14] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Metric measure spaces with Rie-
mannian Ricci curvature bounded from below. Duke Math. J., 163(7):1405–1490, 2014.

[Ale42] A.D. Aleksandrov. Existence and uniqueness of a convex surface with a given integral
curvature. C. R. (Dokl.) Acad. Sci. URSS, n. Ser., 35:131–134, 1942.

[Ale05] A. D. Alexandrov. Convex polyhedra. Springer Monographs in Mathematics. Springer-
Verlag, Berlin, 2005. Translated from the 1950 Russian edition by N. S. Dairbekov, S. S.
Kutateladze and A. B. Sossinsky, With comments and bibliography by V. A. Zalgaller
and appendices by L. A. Shor and Yu. A. Volkov.

[Ale06] Alexander D. Alexandrov. A. D. Alexandrov selected works. Part II. Chapman &
Hall/CRC, Boca Raton, FL, 2006. Intrinsic geometry of convex surfaces, Edited by
S. S. Kutateladze, Translated from the Russian by S. Vakhrameyev.

[Bak94a] Ilya J. Bakelman. Convex analysis and nonlinear geometric elliptic equations. Springer-
Verlag, Berlin, 1994. With an obituary for the author by William Rundell, Edited by
Steven D. Taliaferro.

[Bak94b] Dominique Bakry. L’hypercontractivité et son utilisation en théorie des semigroupes.
In Lectures on probability theory (Saint-Flour, 1992), volume 1581 of Lecture Notes in
Math., pages 1–114. Springer, Berlin, 1994.

[Bal95] Werner Ballmann. Lectures on spaces of nonpositive curvature, volume 25 of DMV
Seminar. Birkhäuser Verlag, Basel, 1995. With an appendix by Misha Brin.

[BBI01] Dmitri Burago, Yuri Burago, and Sergei Ivanov. A course in metric geometry, volume 33
of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI,
2001.
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