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Abstract. In this paper, we study the optimal mass transportation problem in Rd for a class of cost functions
that we call relativistic cost functions. Consider as a typical example, the cost function c(x, y) = h(x− y) being
the restriction of a strictly convex and differentiable function to a ball and infinite outside this ball. We show the
existence and uniqueness of the optimal map given a relativistic cost function and two measures with compact
support, one of the two being absolutely continuous with respect to the Lebesgue measure. With an additional
assumption on the support of the initial measure and for supercritical speed of propagation, we also prove the
existence of a Kantorovich potential and study the regularity of this map. Besides these general results, a
particular attention is given to a specific cost because of its connections with a relativistic heat equation as
pointed out by Brenier in [18].

1. Setting of the problem

In the last ten years, the Monge-Kantorovich problem has been widely investigated. So far, there was no
general result that could be compared to the Gangbo-McCann theorem for strictly convex and real-valued cost
functions on Rd [29]. In this paper, we provide the first result of this kind for a large class of strictly convex
functions that are infinite outside a bounded convex set. The cost functions we consider are not even continuous
maps from Rd to [0,+∞]. We show that under quite standard assumptions including the compactness of the
supports, there exists a unique optimal transport map relative to such a cost function. We refer to Theorem
2.6 for a precise statement. Among all these cost functions, a particular attention is given to a cost function
that we call relativistic heat cost function. This relativistic heat cost, introduced by Brenier in [18], is related
to a relativistic heat equation as explained below. In [18], Brenier mentions the question of the existence of
an optimal map for this cost function, putting the emphasis on the case where only a part of the mass can be
transported. This cost function was our initial motivation to study this kind of problems. Let us now describe
more precisely the problem we are interested in.

1.1. The general optimal transportation problem. Let us first recall the Monge problem.
Given two probability measures µ0 ∈ P(Rd) and µ1 ∈ P(Rd), we consider the maps F , if any, that push µ0

forward to µ1, meaning the maps that satisfy F#µ0 = µ1. In terms of test functions, the equation F#µ0 = µ1

amounts to ∫
Rd

ϕ(F (x))dµ0(x) =
∫

Rd

ϕ(y)dµ1(y)

for any test function ϕ ∈ C0(Rd).
Monge asked whether the infimum

inf
F#µ0=µ1

∫
Rd

c(x, F (x))dµ0(x)

is attained among the maps F such that F#µ0 = µ1. The function c above is called the cost function. Note that
there might be no map that pushes µ0 forward to µ1 and that the Monge problem is nonlinear in general. This
leads Kantorovich to consider a relaxation of the Monge problem, now called the Kantorovich problem [32].
In this problem, we consider transport plans instead of transport maps. A transport plan π is a probability
measure on Rd × Rd with first marginal µ0 and second marginal µ1. This means that µ0(U) = π(U × Rd)
and µ1(U) = π(Rd × U) for any Borel set U ⊂ Rd. Note that a transport map F induces a transport plan
(Id, F )#µ0. The set of transport plans between µ0 and µ1 is denoted by Π(µ0, µ1).

The Kantorovich problem then consists in studying, given two probability measures µ0 and µ1 in P(Rd), the
optimal transport plans, namely the plans that achieve the minimum

min
π∈Π(µ0,µ1)

∫
Rd×Rd

c(x, y)dπ(x, y).
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Indeed, contrary to the Monge problem, the Kantorovich problem always admits solution as soon as the cost
function is a lower semi continuous and non-negative map, see [43, 44] for a proof. We refer to [16, 17, 28, 29,
43, 44] for existence and uniqueness of solution to the Monge-Kantorovich problem in the quadratic (or L2)
case and for strictly convex cost functions and to [4, 27, 20, 7, 6, 24, 25, 21, 42] for the study of the L1 case.

1.2. The relativistic heat cost. The original motivation of this paper comes from what we call the relativistic
heat cost given by c(x, y) = h(x− y) where

(1) h(z) =
{

1−
√

1− |z|2 |z| ≤ 1
∞ |z| > 1.

The peculiarity of this cost function is that even if it is strictly convex, it is neither real-valued nor continuous
and its gradient goes to infinity when |z| → 1.

The name of this cost function comes from the fact that it prevents the displacement – or the velocity if we
take the Lagrangian point of view – to be larger than one which corresponds to a relativistic behavior. This cost
has been proposed by Brenier in [18] to obtain a relativistic heat equation as a gradient flow of the Boltzmann
entropy (see [3, 5, 43] for references on the notion of gradient flows). Several Cauchy problems for PDE’s has
been studied via the JKO time discrete scheme [1, 31, 36]... For example, the heat equation can be obtained
by computing the time discrete solution at the time step i in the following way

(2) ρi = arg infρ∈P (Rd)

∫
ρ log ρ+ εW 2

2,ε(ρ
i−1, ρ) with W 2

2,ε(ρ
i−1, ρ) = min

π∈Π(ρi−1,ρ)

∫ (
|x− y|
ε

)2

dπ(x, y)

and by passing to the limit when the time step ε goes to zero. Analogously, a Cauchy result has been proved
by R. McCann and the second author in [34] for the equation

(3) ∂tρ = div(ρ
∇ρ
ρ√

1 + |∇ρρ |2
) = div(ρ∇h∗(∇(log ρ)))

replacing W 2
2,ε in (2) by

Wc = min
π∈Π(ρi−1,ρ)

∫
h(
x− y
ε

)dπ(x, y) where c(x, y) = h(x− y) is the relativistic heat cost.

Equation (3) is called relativistic heat equation since it can be seen as a relativistic version of the heat equation

interpreted [35, 38] as a transport of mass equation with velocity
∇ρ
ρ

. It has previously been investigated via

more PDE’s oriented method in the series of papers [9, 11, 10, 12, 13, 14, 15, 23]. The proof of the main result
of [34] already requires the existence of an optimal map relative to the problem Wc with ρi−1 and ρi. This
map is obtained by a regularization argument applied to the cost function and based on the Yosida transform
(we refer to [19] for the definition). However, the limiting process is strongly based on the double minimization
involved in the scheme, in particular the compactness of the sequence of maps comes from the fact that the
target measure ρi also minimizes the entropy. In this paper, we propose another method to prove the existence
and uniqueness of the optimal map that goes beyond the particular setting described above.

The method we found applies to more general relativistic cost functions including the cost given by formula
(1) and another important class of cost functions given by

(4) c(x, y) = f(x− y) + δ(x− y| C)

where δ(·| C) is the indicator function of a strictly convex body C containing 0, namely δ(x| C) = 0 if x ∈ C and
+∞ otherwise and f : Rd → R+ is a strictly convex and differentiable function such that f(0) = 0.

The question of the existence of an optimal map for cost functions as in (4) has been mentioned in [22].
In that paper, Carlier, De Pascale, and Santambrogio propose a different strategy based on the existence of a
maximizer in the Kantorovich dual problem. As they point out, the existence of such a maximizer is a delicate
question. We are nonetheless able to prove its existence under additional assumptions on the initial measure.
Note that the case where f = | · |2 is also considered in [30] with the weaker assumption that C is a convex
body.



THE OPTIMAL MASS TRANSPORT PROBLEM FOR RELATIVISTIC COSTS 3

1.3. The parametrized optimal transportation problem for relativistic costs. In this work, we intro-
duce an additional parameter called the speed (of light) which takes into account the relativistic behaviour of
the cost functions we consider. To explain this, it is convenient to use a Lagrangian point of view, namely given
c(x, y) = h(x− y) a relativistic cost function, observe that

c(x, y) = inf
Cu

∫ 1

0

h(γ′(s))ds

where Cu = {γ : [0, 1]→ Rd; γ(0) = x, γ(1) = y and γ is C1 on (0, 1)}.
When h(x−y) is finite, we can only consider curves whose energy

∫ 1

0
h(γ′(s))ds is finite, in other terms whose

speed γ′ is confined to C. Thus, let us introduce the one-parameter family of cost functions

ct(x, y) = h(
x− y
t

)

for any positive number t.
Now, given two probability measures µ0 and µ1 with compact support, and a relativistic cost function, we

can always change the speed of light t so that the minimum in the Kantorovich problem relative to ct is finite.
The study of the variation of this minimum in terms of the speed also gives us some useful informations. Thus,
let us define the total cost function

C(t) = min
π∈Π(µ0,µ1)

∫
R2d

c(
x− y
t

) dπ(x, y).

The overall idea is that the total cost function should be infinite when t is small (at least if µ0 6= µ1), whereas
when t is large, the transportation plans should not be affected by the discontinuity of the cost function and
we should get as in [29], existence and uniqueness of the optimal transport map. These properties are proved
as part of a more general result in the next sections together with the existence of a critical speed of light T
defined below.

Definition 1.1 (Critical speed).

(5) There exists a speed T such that for any t ≥ T, C(t) < +∞ whereas C(t) = +∞ otherwise.

2. statement of the main result

In order to state the main result of that paper, we need to introduce a few definitions and notations.

Definition 2.1. A probability measure µ = ρdx on Rd is said to be regular if there exists a domain Ω (i.e. an
open bounded connected set) on which µ is concentrated and such that

∃m > 0; ρ(x) ≥ m

for almost every x ∈ Ω.

Definition 2.2 (Directional derivatives). Let h : Rd → [0,+∞] be a convex function such that h−1([0,+∞)) =
C is the closure of an open bounded convex set. We set h′ the directional derivative map

h′ : IDom −→ R ∪ {−∞}
(x,w) 7−→ h′(x;w)

where IDom = {(x,w) ∈ C × Rd;x+ w ∈
◦
C} and

h′(x;w) = lim
λ↓0

h(x+ λw)− h(x)
λ

.

Remark 2.3. Observe that IDom is an open bounded subset of C × Rd for the induced topology.

Definition 2.4 (Relativistic cost functions). We say that c(x, y) = h(x − y) is a relativistic cost function if
h : Rd → [0,+∞] is a strictly convex function such that h−1([0,+∞)) = C is the closure of an open bounded

and strictly convex set. We further assume that h(0) = 0 and 0 ∈
◦
C. Last, we assume that h (respectively h′)

is continuous on C (respectively on the subset (h′)−1(R) ⊂ IDom).

Remark 2.5. Notice that the condition on the directional derivatives amounts to h differentiable on
◦
C when the

differential blows up on all the boundary of C as for the relativistic heat cost for instance.
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Notations: we set
||c||∞ = sup

x∈C
c(x).

Moreover, using that 0 ∈
◦
C, we set rm > 0 a positive number such that the open ball of radius rm centered

at the origin satisfies

(6) B(0, rm) ⊂ C.
Last, given two probability measures µ0 and µ1 on Rd, we denote by

Γt0(µ0, µ1)

the set of optimal transport plans relative to the cost function ct where t ≥ T (T being defined in (5)).
The aim of this paper is the proof of the following theorem.

Theorem 2.6. Let µ0 and µ1 be two probability measures with compact support on Rd and c(x, y) = h(x− y)
be a relativistic cost function. We assume that µ0 = ρ0dx is absolutely continuous with respect to the Lebesgue
measure. Then, for any critical or supercritical speed t ≥ T , there exists a unique optimal transport plan πt0 for
the cost ct(x, y) = h(x−yt ) and this plan is induced by a map

πt0 = (Id, F t)]µ0.

Moreover, if we further assume that µ0 is regular and that t > T , there exists a ct-concave map φt such that F t

is defined µ0 almost everywhere on px({x− y ∈ t
◦
C} ∩ suppπt0) by the formula

(7) F t(x) = x− t∇h∗(|∇̃φt(x)|)
where h∗ denotes the Legendre transform of h and ∇̃φt is the approximate gradient of φt (see Definition 5.14
for a definition) .

Remark 2.7. More can be said in the case of the relativistic heat cost by using that the differential of the cost
blows up on the unit sphere. Indeed, Corollary 3.6 implies that for almost every supercritical speed, the map
F t is almost everywhere given by (7) since the subset made of pairs of points at maximal distance is a negligible
set.

In the next section, we study the parametrized function C(t) and we prove the existence of a critical speed
of light T . Then, in section 4, for t ≥ T fixed, we use the notion of c-cyclical monotonicity to prove existence
and uniqueness of the optimal transport map. In the last section, we give for supercritical speed, the expression
of the optimal map in terms of the Kantorovich potential.

3. Properties of the parametrized total cost function

In this part, we are given two probability measures µ0 6= µ1 ∈ P(Rd) with compact support. Let us recall
the parametrized cost function defined above

(8) C(t) = min
π∈Π(µ0,µ1)

∫
R2d

h(
x− y
t

) dπ(x, y).

Proposition 3.1 (Properties of C(t)). The total cost function satisfies:
a) The speed T = inf{s ; C(s) <∞} is positive and finite. T is called the critical speed.
b) The function C(t) is a decreasing function on (T,+∞).
c) The total cost C(T ) is finite.
d) The fonction C(t) is right continuous on [T,+∞).

Proof. a) Let us first prove that T > 0. Since µ0 and µ1 are not equal, there exists a Borelian set B such that
µ0(B) 6= µ1(B). Without loss of generality we can assume that B is a compact set and

(9) µ0(B) < µ1(B).

The proof of T > 0 is by contradiction. First of all, note that the assumption C(t) < +∞ implies the two
following inequalities

(10) µ0(B) ≤ µ1(B + t C) and µ0(B + t C) ≥ µ1(B).

Indeed when C(t) < +∞, there exists a transport plan whose support is in {(x, y) ; x− y ∈ t C}. Therefore, if
C(t) < +∞ for any t > 0, we get by passing to the limit in µ0(B + t C) ≥ µ1(B) that µ0(B) ≥ µ1(B). Here, we
have used the fact that B is a closed subset and C is a bounded set. This contradicts (9).
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Now, let us prove that T < +∞. Since the supports of µ0 and µ1 are compact sets, the quantity sup{|x −
y|; (x, y) ∈ suppµ0 × suppµ1} is finite.

Thanks to (6), there exists t0 such that {x− y; (x, y) ∈ suppµ0 × suppµ1} ⊂ t0 C. Consequently,∫
ct0 dµ0 ⊗ dµ1 < +∞

and C(t0) < +∞.
b) Let t1 > t2 > T . By definition of T , C(t2) < +∞. Let π2 ∈ Π(µ0, µ1) be an optimal plan for the cost

ct2 . By definition of the cost function, we have suppπ2 ⊂ {(x, y);x − y ∈ t2 C}. Now, since h(0) = 0 and h is
strictly convex, for a fixed vector u 6= 0 ∈ C and 0 < a < b ≤ 1, we have h(au)

a < h(bu)
b . This yields for any

(x, y) ∈ suppπ2 such that x 6= y, h(
x− y
t1

) < h(
x− y
t2

). Therefore, since µ0 6= µ1, we get∫
ct1 dπ2 <

∫
ct2 dπ2

hence the result, by definition of π2.
c) Let us consider a sequence of speed tn ↘ T and πn a sequence of optimal plans for ctn . By definition of T ,

the total cost for any tn is finite and then for all n ∈ N, πtn({(x, y);x− y ∈ tn C}) = 1. Since πtn is a sequence
of probability measures in Γ(µ0, µ1), up to extracting a subsequence, we can assume that πtn converges weakly
to π∞ ∈ Π(µ0, µ1) thanks to Prokhorov’s theorem. Given ε > 0, by noticing that {(x, y);x− y /∈ (T + ε) C} is
an open set, we get

π∞({(x, y);x− y /∈ (T + ε) C}) ≤ lim inf
n→0

πtn({(x, y);x− y /∈ (T + ε) C}) = 0.

Thus, π∞({(x, y);x − y ∈ (T + ε) C}) = 1 for any ε > 0. Since C is a closed bounded set, this yields
π∞({(x, y);x− y ∈ T C}) = 1 and, therefore,

∫
cT dπ∞ < +∞.

d) Fix s ≥ T . Let us consider a sequence tn ↘ s and for each n, let πtn ∈ Π(µ0, µ1) be an optimal transport
plan for ctn . Thanks to Prokhorov’s theorem, we can assume that πtn converges to π∞ ∈ Π(µ0, µ1). Since
tn > s, ∫

R2d

h(
x− y
tn

)dπtn ≥
∫
{x−y∈s C}

h(
x− y
tn

)dπtn .

Moreover, since s C is a compact set and h is assumed to be continuous on C, for any ε > 0, there exists n0

such that for n ≥ n0 and x− y ∈ s C,

ctn(x, y) = h(
x− y
tn

) ≥ h(
x− y
s

)− ε.

By combining this together with the continuity of cs when restricted to {(x, y);x− y ∈ s C}, we get

lim inf
tn→s

C(tn) = lim inf
tn→s

∫
ctn dπtn ≥

∫
cs dπ∞.

On the other hand, since C is decreasing,

lim inf
tn→s

C(tn) ≤ C(s).

Thus
C(s) ≥ lim

n→+∞
C(tn) =

∫
cs dπ∞ ≥ C(s)

and the statement is proved. �

Now, we give some properties relative to the critical speed T .

Lemma 3.2. Let π ∈ Π(µ0, µ1) such that
∫
cT dπ < +∞. Then, this plan satisfies

suppπ ∩ {(x, y);x− y ∈ T∂ C} 6= ∅.
Moreover, the critical speed is characterized by the equality

T = min
π∈Π(µ0,µ1)

π − ess sup |x− y| C

where |x| C = inf{λ;x ∈ λ C} and π − ess sup |x− y| C = inf{s;π({(x, y); |x− y| C > s}) = 0}.

Remark 3.3. In the case of the relativistic heat cost (or any other radial relativistic cost function), | · | C is
nothing but the Euclidean norm (up to scaling). Thus in this case, minπ∈Π(µ0,µ1) π − ess sup |x− y| C coincides
with the ∞−Wasserstein distance studied in [26].
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Remark 3.4. This lemma means that for the critical speed T , the support of any optimal transport plan must
intersect the critical set {(x, y) ; x − y ∈ T∂ C} but we do not know whether or not all the optimal transport
plans give some mass to this critical set. See below for more on this set in the case of the relativistic heat cost.

Proof. We prove the first statement by contradiction. Suppose on the contrary that suppπ ∩ {(x, y);x − y ∈
T∂ C} = ∅. By assumption on π, we have suppπ ⊂ {(x, y);x− y ∈ T C}. Thus, by compactness of the support
of π, there exists δ > 0 such that

suppπ ⊂ {(x, y);x− y ∈ (T − δ) C}.

This implies C(T − δ) < +∞, a contradiction.
Now, we prove the second statement. Let us start with the following equalities.

T = inf{s;C(s) < +∞}
= inf{s; ∃π ∈ Π(µ0, µ1) s.t. π({(x, y);x− y ∈ s C}) = 1}
= inf{s; ∃π ∈ Π(µ0, µ1) s.t. π({(x, y); |x− y| C ≤ s}) = 1}
= inf{s; ∃π ∈ Π(µ0, µ1) s.t. π({(x, y); |x− y| C > s}) = 0}
= inf

π∈Π(µ0,µ1)
inf{s; π({(x, y); |x− y| C > s}) = 0}

= inf
π∈Π(µ0,µ1)

π − ess sup |x− y| C .

To conclude, let us prove that the infimum above is actually a minimum. To this aim, consider a minimizing
sequence (πi)i∈N and assume thanks to Prokhorov’s theorem, that πi ⇀ π∞ ∈ Π(µ0, µ1). We need the following
fact.
Fact: ∀(x, y) ∈ suppπ∞, ∃(xi, yi)i∈N ∈ suppπi; (xi, yi)→ (x, y).
A proof is given in [26, Lemma 2.3]. Thus, since C satisfies (6), this gives for any ε > 0,

suppπ∞ ⊂ suppπi + εB(0, 1) ⊂ suppπi +
ε

rm
C

for large i. This yields
sup

suppπ∞
|x− y| C ≤ lim inf

i→+∞
sup

suppπi

|x− y| C

thus π∞ is actually a minimizer. �

In the case of the relativistic heat cost, we obtain the following additional proposition and its straightforward
corollary (similar statements are probably within reach for other relativistic cost functions).

Proposition 3.5. In the case of the relativistic heat cost denoted by ct(x, y) = h( |x−y|t ), the following property
holds true for any t ≥ T

C ′+(t) > −∞ =⇒ ∀π ∈ Γt0(µ0, µ1), π({(x, y); |x− y| = t}) = 0

where C ′+(t) denotes the right derivative of C at t.

Proof. Recall that T = inf{t ; ct <∞}. Let πt ∈ Γt0(µ0, µ1). For any s > t, let us compute

C(t)− C(s) ≥
∫
h(
|x− y|
t

) dπt −
∫
h(
|x− y|
s

) dπt

≥
∫
{(x,y);|x−y|=t}

h(
|x− y|
t

)− h(
|x− y|
s

) dπt

≥
∫
{(x,y);|x−y|=t}

h(1)− h(
t

s
) dπt

≥ s− t
s

h′(
t

s
)πt({|x− y| = t}).

We get the result by letting s decrease to t. �

Since C is a monotone function, the proposition implies readily the following property on the critical set
{(x, y); |x− y| = t}.
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Corollary 3.6. In the case of the relativistic heat cost, any optimal transport plan πt0 ∈ Γt0(µ0, µ1) satisfies

πt0({(x, y); |x− y| = t}) = 0

for almost every t ≥ T .

4. Existence and uniqueness of optimal map

In this section, we prove the uniqueness of the optimal transport plan and that this plan is induced by a
map. Let us recall the definition of a relativistic cost function.

Definition 4.1 (Relativistic cost functions). We say that c(x, y) = h(x − y) is a relativistic cost function if
h : Rd → [0,+∞] is a strictly convex function such that h−1([0,+∞)) = C is the closure of an open bounded

and strictly convex set. We further assume that h(0) = 0 and 0 ∈
◦
C. Last, we assume that h (respectively h′) is

continuous on C (respectively on the subset (h′)−1(R) ⊂ IDom where IDom = {(x,w) ∈ C ×Rd;x+w ∈
◦
C}).

Remark 4.2. In general, the function h′ is an upper semi-continuous function on IDom (this follows from a
straightforward adaption of the proof of [37, Theorem 24.5]). Thus, the assumption above actually implies
that h′ is continuous on IDom. Note also that if h′(x;w) = −∞ then h′(x;w′) = −∞ for all w′ such that
(x,w′) ∈ IDom. Under our assumptions these points x are exactly those in C such that ∂h(x) = ∅ (we refer to
[37, Theorem 23.3] for a proof of the last two statements).

The main result of this part is the following theorem.

Theorem 4.3. Let µ0 and µ1 be two probability measures with compact support on Rd. We assume that
µ0 = ρ0dx is absolutely continuous with respect to the Lebesgue measure. Then, for any critical or supercritical
speed t ≥ T , there exists a unique optimal transport plan πt0 for the cost ct and this plan is induced by a map

πt0 = (Id, F t)]µ0.

The proof of this result is based on a method introduced by Champion, de Pascale and Juutinen [26]. A
cornerstone of their proof is the following lemma.

Lemma 4.4. Assume that µ << Ld. Let π ∈ Πt
0(µ, ν) and Γ a set on which π is concentrated. Then π is

concentrated on a σ−compact set R(π) ⊂ Γ such that for all (x, y) ∈ R(π) the point x is a Lebesgue point of
px(supp µ0 ×B(y, r) ∩ Γ) for all r > 0.

This precise version is proved in [24, Lemma 4.3].

Definition 4.5. A couple (x, y) ∈ Γ is said to be π-regular if x is a Lebesgue point of px(supp µ0×B(y0, r)∩Γ)
for any positive r.

Consequently, we get the corollary below.

Corollary 4.6. Let (x0, y0) ∈ R(π), r > 0, α ∈ (0, 1), ξ ∈ Sd−1 and δ > 0. Then for ε > 0 sufficiently small,
the set of points x ∈ px(supp µ0 × B(y, r)) ∩ Γ) such that x ∈ Ĉ(x0, ξ, δ) ∩ (B(x0, ε) \ B(x0, αε)) has positive
measure where

Ĉ(x0, ξ, δ) = {x ∈ Rd \ {x0};
x− x0

|x− x0|
· ξ ≥ 1− δ}.

Before we start the proof of Theorem 4.3, let us recall the definition of c−cyclically monotone subset. This
notion was introduced by Knott and Smith [41] in order to detect the optimality of a given transport plan.

Definition 4.7 (c-monotone set). A subset S ⊂ Rd ×Rd is called a c-cyclically monotone set if and only if for
any positive integer m and any pairs (x1, y1), · · · , (xm, ym) ∈ S, the following inequality is satisfied:

c(x1, y1) + · · ·+ c(xm, ym) ≤ c(x1, y2) + c(x2, y3) + · · ·+ c(xm, y1).

It is well-known that an optimal plan is concentrated on a measurable c-cyclically monotone set when (the
transport problem is well-posed and) the cost function c : Rd × Rd → R+ ∪ {+∞} is a lower semi-continuous
map [7, Theorem 3.2].
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4.1. Proof of Theorem 4.3. We are given πt0 ∈ Πt
0(µ0, µ1). Thanks to Lemma 4.4 and the result above,

there exists a measurable c-cyclically monotone set Γt0 ⊂ suppπt0 made of regular points such that πt0(Γt0) = 1.
Following the approach in [26] and the subsequent papers, we are going to prove by contradiction that Γt0 is a
graph.

Let us assume that (x0, y0) and (x0, y1) belong to Γt0 with y0 6= y1 and set u0 = (x0−y0)/t and u1 = (x0−y1)/t.
Note that u0 6= u1 and u0 and u1 belong to C since t ≥ T . We also claim that

(11) h′(u0;−−→u0u1) + h′(u1;−−→u1u0) < 0.

Indeed, h′(u0;−−→u0u1) + h′(u1;−−→u1u0) = θ′+(0) − θ′−(1) where θ′+ (respectively θ′−) denotes the right derivative
(respectively left derivative) of the convex real-valued function of a real variable θ(s) = h(u0 + s−−→u0u1). Now,

since C is a strictly convex set, the open segment (u0, u1) = {tu0 + (1 − t)u1; t ∈ (0, 1)} is actually within
◦
C.

Therefore, since IDom is an open subset of C × Rd with respect to the induced topology, we get the existence
of numbers r > 0 and r′ > 0 such that for all v ∈ B(u0, r) ∩ C, w ∈ B(u1, r) ∩ C and z ∈ B(0, r′)

v +−−→u0u1/2 + z ∈
◦
C and w −−−→u0u1/2− z ∈

◦
C.

Let us recall that y → h′(x; y) is a positively homogeneous function. Thanks to the formula above, we get that

v + λ(−−→u0u1/2 + z) ∈
◦
C and w − λ(−−→u0u1/2− z) ∈

◦
C

whenever v ∈ B(u0, r) ∩ C, 0 < λ ≤ 1 and z ∈ B(0, r′). For the sake of clarity, let us introduce a notation for
some truncated cones:

C(0,−−→u0u1/2, r′; η) = {λx ∈ Rd; λ > 0 and x ∈ −−→u0u1/2 +B(0, r′)} ∩B(0, η) \B(0, η/2).

In particular, when η is small enough (and r, r′ << |−−→u0u1/2|), we have

B(u0, r) ∩ C + C(0,−−→u0u1/2, r′; η) ⊂
◦
C and B(u1, r) ∩ C − C(0,−−→u0u1/2, r′; η) ⊂

◦
C.

Now, since h is continuous on C and h′ is continuous on IDom (see Remark 4.2), for any ε > 0 there exist
0 < r < r, 0 < r′ < r′ and η > 0 small such that

(12) sup
{∣∣∣h(v + z)− h(v)

|z|
− h′(u0,

−−→u0u1/|−−→u0u1|)
∣∣∣; v ∈ B(u0, r) ∩ C, z ∈ C(0,−−→u0u1/2, r′; η)

}
< ε

and

(13) sup
{∣∣∣h(w − z)− h(w)

|z|
− h′(u1,−−−→u0u1/|−−→u0u1|)

∣∣∣;w ∈ B(u1, r) ∩ C, z ∈ C(0,−−→u0u1/2, r′; η)
}
< ε.

In the second part of the proof, we use the fact that (x0, y1) is a regular pair in the sense of Definition
4.5 to get a contradiction. Given ε > 0, let r, r′, η > 0 such that (12) and (13) hold. We also assume
that η < tr/2. Now, applying Corollary 4.6 to (x0, y1) with r = tr/2, we get the existence of (x̃, ỹ) ∈ Γt0
such that x̃ ∈ {x0} + C(0,−−→u0u1/2, r′; η) and ỹ ∈ B(y1, tr/2) (up to shrinking η). By construction we have
(x̃− ỹ)/t ∈ B(u1, r) and (x̃− ỹ) ∈ t C since t ≥ T . Now, by applying the estimates (12) and (13) with v = u0,
w = (x̃− ỹ)/t and z = (x̃− x0)/t , we get

h((x̃− y0)/t) + h((x0 − ỹ)/t) ≤ h((x0 − y0)/t) + h((x̃− ỹ)/t)
+|(x̃− x0)/t|

(
2ε+ h′(u0;−−→u0u1/|−−→u0u1|) + h′(u1;−−→u1u0/|−−→u0u1|)

)
.

Combining this together with (11) contradicts the c-cyclical monotonicity of Γt0 for small ε. Thus, we have
proved that any optimal plan is concentrated on a measurable graph.

The uniqueness proof is more classical. Consider two opimal plans, by what precedes these plans are induced
by maps. The arithmetic mean of these plans is still an optimal plan but it cannot be induced by a map unless
the two plans coincide.

5. Supercritical speed

This section is valid only for supercritical speed. The goal of this part is to obtain (7) linking the optimal
map and the Kantorovich potential. We recall that a domain is an open bounded connected set.

Theorem 5.1. Let µ0 and µ1 be two probability measures with compact support on Rd. We assume that
µ0 = ρ0dx is regular and concentrated on a domain Ω0 in the sense of Definition 2.1. Then, for any supercritical
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speed t > T , there exists a ct-concave map φt such that the map F t defined by πt0 = (Id, F t)]µ0 is defined almost

everywhere on px({x− y ∈ t
◦
C} ∩ Γt0) by the formula

F t(x) = x− t∇h∗(∇̃φt(x)).

This section is divided into three parts. In the first one, we establish a technical result on the volume growth
of set enlargements. This result is a key result in the study of special maps related to the transport problem
(namely ct-concave maps) that is performed in the second part. In the last part, we prove the theorem above.

5.1. Volume growth estimate for set enlargements. The goal of this part is to establish the technical
proposition below.

Proposition 5.2. Let Ω be a domain and t > 0. For any constants 0 < M1 < M2 < |Ω|, there exists a positive
constant ε = ε(Ω, t,M1,M2) depending on Ω, t, M1, and M2 such that

inf
S

(|(E + t C) ∩ Ω| − |E ∩ Ω|) ≥ ε

where S = {E compact subset of Rd;M1 ≤ |E ∩ Ω| ≤M2}.
Moreover, there exists a constant 0 < κ < |Ω| depending on t and Ω such that for any compact subset E of

Rd satisfying |E ∩ Ω| > κ, the following equality holds

|(E + t C) ∩ Ω| = |Ω|.

This result is proved by contradiction. The first step of the proof is to reduce the result to a similar statement
involving the De Giorgi perimeter. Then, we use a compactness result for functions of bounded variation.

5.1.1. Notions of boundary area for a nonsmooth set. The first notion is the (relative) Minkowski content of a
set. This is the notion we are mainly interested in. Its definition is the following.

Definition 5.3 (Relative Minkowski content). Let E be a compact subset of Rd. The (relative) Minkowski
content of E is defined as

MinkC(E |Ω) = lim inf
r↓0

|(E + r C) ∩ Ω| − |E ∩ Ω|
r

.

The second notion is the De Giorgi perimeter. We refer to the book [2] for a detailed exposition.

Definition 5.4 (Relative perimeter). Let E be a mesurable subset of Rd. The perimeter of E relative to Ω is
defined as

Per(E |Ω) = sup
{∫

E

div ϕdx;ϕ ∈ C1
c (Ω, B)

}
where B = B(0, 1) is the unit Euclidean ball centered at the origin in Rd.

This definition is not the only one but is certainly the most elementary. Note that when E ⊂ Rd is a bounded
open set with smooth boundary, the divergence theorem implies Per(E |Ω) = Hd−1(∂E ∩ Ω). Moreover, with
this definition, it is easy to see that the perimeter is a lower semi-continuous functional with respect to the
L1-topology (also called topology of sets convergence) whose definition is recalled below.

Definition 5.5 (Set of finite perimeters and convergence). We setM<+∞ the set of measurable subsets E of
Rd whose relative perimeter Per(E |Ω) is finite. The setM<+∞ is endowed with the L1-topology. Namely, a
sequence (En)n∈N converges to E inM<+∞ if, by definition, the (restriction to Ω of the) characteristic functions
χEn converges to χE in L1(Ω).

Lemma 5.6. Given a domain Ω in Rd, the relative perimeter is a lower semi-continuous map

Per(· |Ω) :M<+∞ −→ R+

when the setM<+∞ is endowed with the L1-topology.

Proof. Given ϕ ∈ C1
c (Ω, B), the map E 7→

∫
E

div ϕdx is clearly continuous for the L1-topology. Therefore,
Per(· |Ω) is lower semi-continuous as the supremum of continuous functions. �

Our goal is to compare the relative Minkowski content to the De Giorgi perimeter. To this aim, we first
reduce this comparison result to the case when C = B. Recall that, by definition of C, there exists a constant
rm > 0 such that the open ball B(0, rm) satisfies

(14) B(0, rm) ⊂ C.
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Thus, we get the inequality

(15) MinkC(E |Ω) ≥ rm lim inf
r↓0

|(E + rB(1)) ∩ Ω| − |E ∩ Ω|
r

= rmMinkB(E |Ω).

Complementary to this result is the following proposition.

Proposition 5.7. Let E be a compact subset of Rd. Then, the following inequality holds

(16) MinkB(E |Ω) ≥ Per(E |Ω).

Proof. We first rewrite
|(E + rB) ∩ Ω| − |E ∩ Ω|

r
=

1
r

∫
Er\E

χΩ

where χΩ denotes the characteristic function of Ω and Er = E + rB. Now, we set dE the Euclidean distance
funtion to the set E. More precisely for any x ∈ Rd,

dE(x) = min
y∈E
|x− y|.

We have the following equalities
1
r

∫
Er\E

χΩ =
1
r

∫
Er\E

χΩ|∇dE |

=
1
r

∫ r

0

Hd−1(∂Es ∩ Ω) ds

=
∫ 1

0

Hd−1(∂Esr ∩ Ω) ds.

where the second equality follows from the coarea formula. Now, thanks to [2, Proposition 3.62], we get for any
measurable subset A of Rd

Hd−1(∂A ∩ Ω) ≥ Per(A |Ω).
Therefore, this yields

|(E + rB(1)) ∩ Ω| − |E ∩ Ω|
r

≥
∫ 1

0

Per(Esr |Ω) ds.

To conclude, note that Esr converges to E0 = E with respect to the L1-convergence. Thus, we get the result
by combining Fatou’s lemma together with Lemma 5.6. �

Remark 5.8. The proof above is inspired by [8].

5.1.2. An intermediate result. Thanks to the properties of De Giorgi perimeter, we can prove the following
result.

Proposition 5.9. Let Ω be a domain of Rd. For any constants 0 < M1 < M2 < |Ω|, there exists a positive
constant ε = ε(Ω,M1,M2) depending on Ω, M1, and M2 such that

inf
M
Per(E |Ω) ≥ ε

whereM = {E measurable subset of Ω;M1 ≤ |E| ≤M2}

Proof. We prove the result by contradiction by assuming that the infimum above is 0. Let (Ei)i∈N be a
minimizing subsequence. Thanks to [2, Theorem 3.39 p.145], there exists a subsequence still denoted by (Ei)i∈N
which converges to a measurable subset E∞ of Ω in L1(Ω). By definition of this convergence, E∞ belongs to
M and Lemma 5.6 yields

Per(E∞ |Ω) = 0.
Consequently, up to modifying E∞ on a negligible subset, χE∞ is constant on the connected set Ω (see [2,
Proposition 3.2 p118] for a proof). This contradicts the fact that E∞ ∈M and the proof is complete. �

By combining (15), Proposition 5.7 together with the proposition above, we get

Proposition 5.10. Let Ω be a domain of Rd. For any constants 0 < M1 < M2 < |Ω|, there exists ε =
ε(Ω,M1,M2) > 0 depending on Ω, M1, and M2 such that

inf
S
MinkC(E |Ω) ≥ ε.
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5.1.3. Proof of Proposition 5.2. Both statements are proved by contradiction. Let us remark that the quantity
|(E + t C) ∩ Ω| − |E ∩ Ω| is unchanged if we modify E outside a large ball B(R) (whose radius R depends on
the diameters of Ω and C). Thus in this proof, we only consider compact sets into B(R). Let (En)n∈N be a
sequence of elements in S such that

(17) |(En + t C) ∩ Ω| ≤ |En ∩ Ω|+ 1
n

and (En)n∈N converges to the compact set E∞ ⊂ B(R) with respect to the Hausdorff metric (see [40] for a
definition). By definition of this metric, we get

(18) lim sup
n→+∞

|En ∩ Ω| ≤ |E∞ ∩ Ω|.

Now, recall that B(0, rm) ⊂ C (14). For large n, we have

E∞ ⊂ En +
rmt

2
B

by definition of the Hausdorff metric, therefore

E∞ +
t

2
C ⊂ En + t C

and

(19) |E∞ ∩ Ω| ≤ |(E∞ +
t

2
C) ∩ Ω| ≤ |(En + t C) ∩ Ω|

for large n.
Consequently thanks to (17) we get lim infn→+∞ |En∩Ω| ≥ |E∞∩Ω| and, thanks to (18), E∞ ∈ S. Moreover,

(19) also yields

(20) |(E∞ +
t

2
C) ∩ Ω| − |E∞ ∩ Ω| = 0.

Let us prove that the equality above leads to a contradiction. We set θ the non decreasing and right continuous
map defined by

θ(s) = |(E∞ + s C) ∩ Ω|.
In particular, this map is differentiable for almost every s0 and the first derivative equalsMinkC(E∞ + s0 C |Ω).
Moreover, since θ is right continuous and non decreasing, the set (E∞ + s0 C) is in S when s0 is small (up to
slightly increase M2). Therefore, Proposition 5.10 implies that for almost every small s, θ′(s) ≥ ε and this
contradicts (20). The first part of the proposition is proved.

The proof of the second part is very similar so we only sketch it. Consider a sequence (En)n∈N of compact
subsets of B(R) such that |En∩Ω| → |Ω| and |(En+ t C)∩Ω| < |Ω|. Since B(R) is compact, we can assume that
En converges to a compact set E∞ with respect to the Hausdorff metric. Thanks to (18), we get |E∞∩Ω| = |Ω|.
Now, using (14), we get

En + t C ⊃ En + trmB ⊃ E∞
for large n. Thus,

|(En + t C) ∩ Ω| ≥ |E∞ ∩ Ω| = |Ω|
for large n, hence a contradiction.

5.2. Regularity of Kantorovich potentials. Throughout this section, we fix t > T a supercritical speed and
the dependence on t may be omitted at some points. Let us recall the notion of c-concave function.

Definition 5.11 (c-concave function and c-subdifferential). Let φ : Ω0 → R ∪ {−∞} be a function. We define
φc : suppµ1 → R ∪ {−∞, +∞}, the c-transform of φ by the formula

φc(y) = inf
x∈Ω0

c(x, y)− φ(x).

Such a function φ is said to be c-concave if for all y ∈ suppµ1, φc(y) < +∞ (so that (φc)c is well-defined)
and (φc)c = φ (where usually, the role of x and y is unchanged because of the possible asymmetry of the cost
function; note that in the rest of the paper, we will write φcc for simplicity). The c-subdifferential of a c-concave
function φ is defined by the formula ∂cφ(Ω0) = ∪x∈Ω0∂cφ(x) where

∂cφ(x) = {y ∈ suppµ1; φ(x) + φc(y) = c(x, y)}

Remark 5.12. The c-subdifferential of a c-convave function is a c-monotone set, see for instance [44].

In order to motivate the study of (certain) ct-concave maps, we start with a Rockafellar-type theorem.
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Theorem 5.13. Let µ0 and µ1 be two probability measures on Rd with compact support. We also assume that
µ0 = ρ0dx is regular and concentrated on a domain Ω0 in the sense of Definition 2.1. Then for t > T , there
exists a ct-concave map φt such that

πt0((Id, ∂ct
φt)) = 1

where (Id, ∂ct
φt) = {(x, y) ∈ Ω0 × suppµ1;φt(x) + φt

c(y) = ct(x, y)}. Such a map is called a Kantorovich
potential.

Proof. Let Γt0 be the set introduced in the proof of Theorem 4.3. We shall prove

Γt0 ⊂ (Id, ∂ct
φt).

We fix (x0, y0) ∈ Γt0 and define

φt(x) =

inf
m∈N

inf{ct(x1, y0)+· · ·+ct(xm, ym−1)+ct(x, ym)−(ct(x0, y0)+· · ·+ct(xm, ym));∀i ∈ {1, · · · ,m} (xi, yi) ∈ Γt0}.

Since t is a supercritical speed, suppπt0 ⊂ {ct < +∞}. Thus, for (x1, y1) · · · (xm, ym) ∈ Γt0, the term inside
the brackets above is in R ∪ {+∞} and the map φt is well-defined. Moreover, φt(Ω0) ⊂ R ∪ {±∞}. Now we
shall prove that for all x ∈ Ω0, φt(x) < +∞. To this aim, let us recall that Γt0 is a ct-monotone set. Taking
m = 0 in the definition above leads to the inequality φt(x0) ≤ 0, the ct-monotonicity of Γt0 gives us the reverse
inequality, thus φt(x0) = 0. As a particular case, consider x ∈ {y0}+ t C. By definition of the cost function, it
is clear that φt(x) < +∞ for such a x. For arbitrary x, we shall show that there exists a finite chain of points
linking x0 to x such that, loosely speaking, the previous condition is satisfied. More precisely, we shall prove
that there exists k ∈ N \ {0} such that for any x ∈ Ω0, there exists (xi, yi)ki=1 ∈ Γt0 such that

ct(x1, y0) < +∞,
∀i ∈ {1, · · · , k − 1} ct(xi+1, yi) < +∞,(21)

ct(x, yk) < +∞.
To this aim, let us notice that by Proposition 3.1, we have the property C(T ) < +∞ which implies, see (10),
that for all closed set A,

µ0(A+ T C) ≥ µ1(A),(22)
µ1(A+ T C) ≥ µ0(A).

Now, we fix t′ such that T < t′ < t and define by induction the following sequence of sets:

A0 = {y0},
Ai+1 = py(p−1

x (Ai + t′ C) ∩ Γt0).

where px and py stand for the projections on the x and y coordinates respectively, and A is the closure of A (in
Rd). Formally speaking, Property (21) is equivalent to the existence of an integer k such that Ak + t′ C ⊃ Ω0

with t′ = t. However, since the sets py(p−1
x (Ai + t C) ∩ Γt0) are not necessarily closed sets, we have to require a

little more to get the claim. Note that the existence of such a k also implies

(23) ∀x ∈ Ω0, φt(x) ≤ ||c||∞(k + 1).

Let us prove that Ak + t′ C ⊃ Ω0 for large k.
By using the optimal transport plan πt0, we obtain for any integer i

µ1(Ai+1) ≥ µ0(Ai + t′ C).
Property (22) above gives us

µ1(Ai+1) ≥ µ1(Ai) + µ0((Ai + t′ C) \ (Ai + T C))
≥ µ1(Ai) + essinf (ρ0) (|(Ai + t′ C) ∩ Ω0| − |(Ai + T C) ∩ Ω0|).(24)

Now, we claim that there exists M1 > 0 such that for any integer i ≥ 1,

(25) |(Ai + T C) ∩ Ω0| ≥M1.

To this aim, first notice that

(26) µ0(A0 + t′ C) = µ0({y0}+ t′ C) > 0.

This follows from the existence of a small ε such that

{y0}+ t′ C ⊃ {y0}+ T C +B(ε)
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together with an application of (22):

µ0(B(y0, ε) + T C) ≥ µ1(B(y0, ε)) > 0

since y0 belongs to suppµ1. Consequently, we get

µ0(A1 + T C) ≥ µ1(A1)
≥ µ0(A0 + t′ C)

where the first inequality follows from (22) and the second one from the definition of A1. Since (Ai)i∈N is a
non decreasing sequence with respect to the inclusion and by assumption on µ0, we get (25). Now, we claim
that the non decreasing sequence |(Ai + T C) ∩ Ω0| → |Ω0| when i goes to infinity. Otherwise, the sequence
|(Ai + T C) ∩Ω0| would be bounded away from 0 and |Ω0|, and using the first statement of Proposition 5.2, we
would get the existence of a positive number ε′ such that for all i ≥ 1,

|(Ai + T C + (t′ − T ) C) ∩ Ω0| − |(Ai + T C) ∩ Ω0| ≥ ε′.

This property combined with (24) clearly contradicts the fact that µ1 is a probability measure and the claim
is proved. With this property in hand, we can now apply the second statement of Proposition 5.2 and obtain
that for large i, |(Ai + t′ C) ∩ Ω0| = |Ω0|. This implies that for large i, µ0(Ai + t′ C) = 1 which in return gives
µ1(Ai+1) = 1 by definition of Ai+1. As a consequence,

suppµ1 ⊂ Ai+1.

Since t′ is a supercritical speed, C(t′) < +∞. Consequently, the following inclusion holds

Ω0 ⊂ suppµ1 + t′ C.

By combining these last two properties, we get (21).
Using the same approach, we shall show that φt > −∞ on px(Γt0) hence µ0−almost everywhere. Let us

mention that this last property entails that φtct(suppµ1) ⊂ R ∪ {−∞} as required in the definition of ct-
concave map. Once again, consider as a particular case a pair (x, y) ∈ Γt0 such that ct(x0, y) < +∞. By
definition of φt, we have for any z

(27) φt(z) ≤ φt(x) + ct(z, y)− ct(x, y).

Choosing z = x0 in (27) together with the fact that φt(x0) = 0 gives the result. To prove the general
case, let us define C0 = py(p−1

x ({x}) ∩ Γt0) (which is a non empty set by assumption on (x, y)) and Ci+1 =
py(p−1

x (Ci + t′ C) ∩ Γt0). The same computations as above give µ1(Ck) = 1 for k large enough, and consequently,
x0 ∈ Ck + t′ C. This entails φt(x) > −∞, and more precisely

(28) ∀x ∈ px(Γt0), φt(x) ≥ −||c||∞(k + 1).

It remains to check that φtctct = φt and that Γt0 ⊂ (Id, ∂ct
φt). The latter property follows easily from (27).

Let us prove the other one. We start by renaming ym as y,

φt(x) = inf
y∈ suppµ1

ct(x, y)− u(y)

where u(y) = −∞ if y /∈ py(Γt0) and

u(y) = sup
m

sup{ct(x0, y0) + · · · + ct(xm, y) − (ct(x1, y0) + · · · + ct(xm, ym−1)); (x1, y1), · · · (xm, y) ∈ Γt0}

otherwise.
By (28), u(py(Γt0)) ⊂ R, that is to say φt = uc with u : suppµ1 → R ∪ {−∞}. Now, for arbitrary admissible

map α, we have

(29) α ≤ αcc

by definition of the c-transform. Applying the c-transform again, we get

αc ≥ αccc.

On the other hand, (29) applied to α = uc gives the reverse inequality. Therefore, uccc = uc which exactly
means φt = φt

cc as required. �

To state our result concerning the regularity of the Kantorovich potential, we need to recall the notion of
approximate differential.
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Definition 5.14. We say that f : X 7→ R∪{−∞} has an approximate differential at a point x if f(x) ∈ R and
there exists a map g : X 7→ R differentiable at x such that the set {f 6= g} has density 0 at x and f(x) = g(x).
The approximate gradient of f at x is denoted by ∇̃f(x).

Theorem 5.15. Under the assumptions of Theorem 5.13, the map φt
|px({x−y∈t

◦
C}∩Γt

0)
is measurable (up to a

modification on a negligible set) and belongs to L∞(Ω0). Moreover, φt is approximately differentiable Lebesgue

almost everywhere on px({x− y ∈ t
◦
C} ∩ Γt0).

Proof. First, notice that |φt| is bounded apart from a negligible set thanks to (23) and (28). For any positive
integer n, we set

Θn =
{
x ∈ Ω0;∃ y ; (x, y) ∈ Γt0 and x− y ∈ (1− 1/n)t C

}
.

Thus, the following equality holds

(30) Θ := px({x− y ∈ t
◦
C} ∩ Γt0) =

⋃
n∈N\{0}

Θn.

Note that Θ is measurable as an analytic set. We claim that for any n, φt|Θn
is a Lipschitz map. Indeed, for

any x ∈ Θn and any z ∈ B(x, trm

2n )∩Θn (see (14) for the definition of rm), let us denote by y a point such that
(x, y) ∈ Γt0 and x− y ∈ (1− 1

n )t C. We get by (27),

φt(z)− φt(x) ≤ ct(z, y)− ct(x, y)

which implies the existence of a positive constant k(n)

φt(z)− φt(x) ≤ k(n)|x− z|

by assumption on the cost function. Thus φt is locally Lipschitz and since it is bounded, it is a Lipschitz map
on Θn.

Now using Kirszbraun’s theorem, we set φtn a Lipschitz function defined on Θ and which coincides with φt
on Θn. For all n, φtn is measurable on Θ. Moreover, using (30), we get that φtn converges pointwise to φt on Θ.
This implies the measurability of φt|Θ. To conclude the proof, let us remark that if n ≤ m, then Θn ⊂ Θm, and
consequently φtn|Θn

= φtm|Θn
. Using Rademacher’s Theorem together with Lebegue’s density Theorem, we get

|An| = 0 and |Ãn| = 0

where
An = {x ∈ Θ;φtn is not differentiable at x}

and
Ãn = {x ∈ Θn;x is not a point of density 1 of Θn}.

Note that since Θn ⊂ Θn+1 for all n, a point of density 1 of Θn is a point of density 1 of Θ as well. We claim
that φt is approximately differentiable on Z = Θ \

(
∪n∈N\{0}(An ∪ Ãn)

)
.

Indeed, given x ∈ Z, there exists n0 such that x ∈ Θn0 and φtn0
is differentiable at x. Now since by definition

of Z, x is a point of density 1 of Θn0 and Θn0 ⊂ {φt = φtn0
}, φt is approximatively differentiable at x.

�

5.3. Proof of Theorem 5.1.

Proof. In this short section, we combine previous results in order to prove Theorem 5.1. Let (x, y) ∈ {x− y ∈
t
◦
C} ∩ Γt0 ∩ Z × Rd. In particular, we have

φt(x) + φt
c(y) = ct(x, y).

Therefore by definition of the c-transform and since ct(x, y) = h(x−yt ) with h a strictly convex function, we get
for z close to x

(31) φt(z)− φt(x) ≤ h(
z − y
t

)− h(
x− y
t

) < +∞.

Let g be a differentiable map at x such that the set {φt = g} has density one at x and g(x) = φt(x). We get
that for any z ∈ {φt = g},

h(
z − y
t

)− h(
x− y
t

) ≥ ∇̃φt(x) · (z − x) + o(|z − x|)
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and since y − x ∈ t
◦
C, h is continuous at x−y

t . Therefore, the inequality above yields

∇̃φt(x) ∈ ∂h(
x− y
t

)

which gives the result since h is stricly convex. �
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