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Chapitre 1

Introduction

Les travaux fondateurs de la topologie des variétés algébriques réelles
sont dus & A. Harnack (voir [Har76]) et F. Klein. Une variété algébrique
réelle (X, c) est une variété algébrique complexe X dotée d’une involution
antiholomorphe c. On note RX et on appelle partie réelle de (X, ¢) 'ensemble
des points fixes de c. Lorsque I'involution ¢ ne préte pas a confusion, on notera
tout simplement X la variété algébrique réelle (X, c).

Un polynéme homogene a d + 1 variables a coefficients réels définit une
hypersurface algébrique réelle (Z,conj) de CP?, ou conj est la restriction
sur Z de la conjugaison complexe dans CP?. Soit A une courbe algébrique
réelle de degré m dans CP? et [ le nombre de composantes connexes de RA.

w + 1. L’inégalité de Harnack peut aussi

Harnack a montré que [ < ™
étre écrite dans la forme [ < g+1, ou g est le genre de A. C’est sous cette forme
que Klein a montré 'inégalité qui s’applique a toutes les courbes algébriques
réelles non singulieres compactes. Les courbes pour lesquelles I'inégalité de
Harnack est une égalité sont dites mazimales. On les appelle aussi M -courbes.
Harnack a montré qu’il existait des courbes algébriques réelles maximales de
tout degré dans le plan projectif.

D. Hilbert, dans son seizieme probleme, a posé la question de la classifi-
cation & homéomorphisme prés des paires (RP?,RA), ou A est une courbe
algébrique réelle non singuliere de degré donné. Il a considéré aussi le proble-
me de la classification & homéomorphisme prés des paires (RP3?,RS), ot S
est une surface algébrique réelle non singuliere de degré donné. Plus générale-
ment, ce probleme peut étre compris comme celui de la classification a
homéomorphisme pres des paires (RP4,RZ), o Z est une hypersurface
algébrique réelle non singuliere de degré donné.



L’inégalité de Smith-Thom généralise pour les variétés algébriques réelles
I'inégalité de Harnack. Soit b,(X,Zs) la somme des dimensions des groupes
d’homologie de X a coefficients dans Z,. Soit X une variété algébrique réelle.
L’inégalité de Smith-Thom (voir, par exemple, [DK00] et [Wil78]) affirme que

b*(RX: ZQ) S b*(Xa Z2)

Dans le cas des courbes, cela correspond bien a I'inégalité de Harnack. On dit
que X est mazimale (ou que X est une M -variété), si b, (RX, Zs) = b.(X, Z3).

Dans les années 1970, les travaux de V. Arnold, V. Rokhlin et V. Kharla-
mov donnent un nouvel essort a la topologie des variétés algébriques réelles.
En 1979, O. Viro a inventé une méthode de construction d’hypersurfaces
dans les variétés toriques projectives qui lui a permis d’obtenir la classifi-
cation des courbes algébriques réelles non singulieres de degré 7 dans RP?
(voir [Vir84]). Une version combinatoire de cette méthode, le patchwork com-
binatoire (ou T-construction) a été utilisée par 1. Itenberg et O. Viro pour
démontrer 'existence d’hypersurfaces algébriques réelles maximales dans les
espaces projectifs en tout degré (voir [IV02]).

Dans son article [Stu94b], B. Sturmfels a proposé une version de la 7-
construction adaptée pour la construction d’intersections completes dans des
variétés toriques projectives. Itenberg et Viro 'ont utilisé pour démontrer
I’existence d’intersections completes maximales de k£ hypersurfaces de degré
ma,--- ,my dans RP¢ pour tous les entiers strictement positifs d, k¥ < d et
mi,...,Mkg.

1.1 Résultats

Un polynoéme P de polytope de Newton A définit une hypersurface Zp
dans la variété torique XA associée a A. On dit que A est le polytope de
Newton de Zp.

On montre que, a partir de la dimension 3, il y a des polytopes de Newton
A pour lesquels il n’existe pas d’hypersurfaces Z de XA qui soient maximales
et aient A pour polytope de Newton. Cela signifie qu’il n’est pas possible de
généraliser directement aux variétés toriques le résultat d’Itenberg et Viro
sur l'existence d’hypersurfaces maximales dans les espaces projectifs.

Cependant, pour tout polytope & sommets entiers dans (R*)", o Rt =
{z € R: z > 0}, il existe des familles d’hypersurfaces dans X qui sont
asymptotiquement maximales. Soit { Z, } yen+ une famille d’hypersurfaces avec
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des polytopes de Newton Ay. On suppose que tous les polytopes A, corres-
pondent & la méme variété torique X = X, et que le volume de A, tend vers
'infini quand A — +o00. On dit que la famille { Z, } en est asymptotiquement
mazimale si b,(RZy; Zs) est équivalent a b,(Zy; Zs) quand A — +o00.

Théoréme 1.1

Soit A un polytope & sommets entiers dans (RT)?, et {\- A} en+ la famille
des multiples de A. Alors, il existe une famille asymptotiquement maximale
d’hypersurfaces Z, de X telle que )\ - A est le polytope de Newton de 7.

On prouve 'existence d’hypersurfaces maximales dans plusieurs variétés
toriques de dimension 3. Les polytopes de Nakajima sont définis récursivement.
Un polytope de Nakajima de dimension 0 est un point. Un polytope A
de dimension d est un polytope de Nakajima s’il existe une fonction affine
[ :R¥! — R et un polytope de Nakajima A’ C R*! de dimension d — 1 tels
que [(Z%") C Z, | est positive sur A’ et A = {(z,24) € A’ x R 24 < I(z)}.

Théoréme 1.2

Soit A un polytope de Nakajima de dimension 3 correspondant a une variété
torique non singuliére X . Alors, il existe une surface réelle maximale dans
RXA ayant A comme polytope de Newton.

Soient o un entier positif ou nul et n, m et [ des entiers strictement posi-
tifs. Notons 67" 'enveloppe convexe des points (0, 0), (n + ma,0), (0, m) et
(n,m) dans R?. Comme corollaire du théoréme 1.2, on obtient que le poly-
tope 6™" x [0,] dans R?, est le polytope de Newton d’une surface maximale
dans ¥, x CP!, ot 3, est une surface rationnelle réglée associée a §7".

La démonstration du théoreme 1.2 est basée sur une relation entre la
signature de certaines hypersurfaces obtenues par la T-construction et la ca-
ractéristique d’Euler de leur partie réelle. On dit qu’une triangulation & som-
mets entiers d’'un polytope de dimension d est primitive si tous les d-simplexes
de la triangulation sont de volume i. Les T-hypersurfaces obtenues a partir
d’une triangulation primitive sont appelées T-hypersurfaces primitives. Si Z
est une hypersurface non singuliére, on pose 0(2) = 3 . oo (—1)Ph"(Z)
ou I'on somme pour tous les couples (p, q) tels que p+ ¢ = 0 mod 2. Si la
dimension de Z est paire, alors o(Z) est la signature de Z. On note x(RZ)
la caractéristique d’Euler de R~Z.



Théoréeme 1.3
Soit A un polytope correspondant a une variété torique non singuliére, et
soit Z une T-hypersurface primitive de X. Alors

a(Z) = x(RZ).

Dans le cas de l'espace projectif de dimension 3, le théoreme 1.3 est di a
Itenberg (voir [Ite97]).

Pour tout entier d > 3, on donne des exemples de polytopes Ay C (R*)?
a sommets entiers tels que les hypersurfaces définissant une intersection
complete maximale dans XA, ne peuvent pas toutes avoir le polytope de
Newton Agy.

En utilisant la construction de Sturmfels, pour toute variété torique pro-
jective X, on prouve l’existence de familles d’intersections completes dans
X qui sont asymptotiquement maximales. Soit A C (R*)? un polytope a
sommets entiers de dimension d, et soit {(Z1m, - , Zkm) }men une famille
de k-uplets d’hypersurfaces algébriques réelles dans X telles que le polytope
de Newton de Z;,, (pour tout i = 1,...,k et tout entier strictement positif
m) est un multiple de A. Notons J; ., I'entier tel que A, ,, - A est le polytope
de Newton de Z,,,. On suppose que,

— pour tout m, la variété Y,, = Z;, N ---N Z;,, est une intersection

complete,

— pour tout ¢ = 1,...,k, lasuite {);,, } tend vers I'infini quand m — +o0.
On dit que la famille {Y;,, };nen+ est asymptotiquement maximale si b, (RY;;,; Z5)
est équivalent a b,(Y;,; Zs) quand m tend vers I'infini.

Théoreme 1.4
Soit A un polytope a sommets entiers de dimension d, et XA la variété
torique associée a A. Soient k un entier strictement positif inférieur ou égal
adet (Am, -, \em) une suite de k-uplets telle que chaque \;,, est un
entier strictement positif et, pour tout i = 1,...,k, la suite {\;,,} tend vers
Pinfini quand m — +o0. Alors, il existe une suite de k-uplets (Z1,m, - - - , Zkm)
d’hypersurfaces algébriques réelles dans X telle que

— Aim - A est le polytope de Newton de Z;

— pour tout m, la variété Y,, = Z; ,, N --- N Zm, est est une intersection

compleéte, et la famille {Y,, }men est asymptotiquement maximale.

On construit par la méthode de Sturmfels les intersections completes
décrites dans le théoreme ci-dessous. Pour des entiers positifs ou nuls a, m tels
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que (o, m) # (0,0) et pour tout entier strictement positif n, considérons le po-
lygone ™™ dans R? aux sommets (0,0), (m+na,0), (0,n) et (m,n). Remar-
quons que tout polygone de Nakajima de dimension 2 est égal a un des poly-
gones 0™ (& permutation des coordonnées pres). Sim est non nul, la variété
torique associée a 0™ est une surface rationnelle réglée ¥,. Pour 7 = 1,2,
notons A®™"#! Tenveloppe convexe des points (0,0,0), (m; 4+ an;,0,0),
(0,7;,0), (m;,n;,0) et (0,0,1;) dans R®, oul o, my, msy sont des entiers posi-
tifs et I1, nq,ng, lo sont des entiers strictement positifs. La pyramide A;'”’"““
est un cone de sommet (0, 0, ;) sur 67¢™ x {0}. On va supposer que m; = Al;
et n; = pl;, ol p est un entier strictement positif et (A, «) # (0, 0).

Théoreme 1.5

Soient «, my, my des entiers positifs ou nuls et ni,li,ny et ly des entiers
strictement positifs qui vérifient les égalités m; = Al; et n; = ul; pour certains
entiers A et i tels que (a, \) # (0, 0). Alors, il existe une intersection compléte

maximale dans XAa,ml,nl,ll = XAa,ml,nl,ll de deux surfaces dont les polytopes
1 2

! ! :
de Newton sont AT"™™" et AZ™>">"  respectivement.

Ce résultat généralise celui de L. Brusotti [Bru28| qui a construit, pour
tous entiers strictement positifs d; et do, une intersection compléte maximale
dans RP? de deux surfaces de degrés d; et dy, respectivement.

Le texte est organisé de la facon suivante. Le chapitre 3 est consacré
a la démonstration de la relation o(Z) = x(RZ) sous les hypotheéses du
théoreme 1.3. Les constructions de variétés maximales dans des variétés to-
riques de dimension 3 font 'objet du chapitre 4 pour les hypersurfaces et 8
pour les intersections compleétes. Au chapitre 5 (respectivement, 7), on prouve
I'existence de familles d’hypersurfaces (respectivement, d’intersections comp-
letes) asymptotiquement maximales dans les variétés toriques projectives.
Les exemples de polytopes Ay C (R*)? tels que les hypersurfaces définissant
une intersection complete maximale dans X, ne peuvent pas toutes avoir le
polytope de Newton A, sont présentés dans les chapitres 4 et 6.






Chapter 2

Preliminaries

2.1 Toric varieties

We fix here some conventions and notations, and recall briefly the construc-
tion of toric varieties following [Ful93].

2.1.1 Cones and affine toric varieties

Fix an orthonormal basis of R¢ and thus an inclusion Z¢ — R®. This inclusion
defines a lattice N in Re.

Definition 2.1.1 A cone o in R? is the set of positive combinations of a set
of points {A;} in RY, i.e. 0 = {\A;, \; € RY}. We say that {A;} generates
o. A cone o is called polyhedral if it can be generated by a finite number of
points. A cone is called rational if it can be generated by integer points. A
cone is strongly convex if it contains no linear subspace.

In what follows we use only polyhedral rational cones, and we will call
them cones for simplicity. Denote by M the dual lattice Hom(N,Z) of N.

Definition 2.1.2 Let o be a (polyhedral rational) cone. The dual cone of
o is the coneoc¥ ={u € M @R : Vz € 0 one has < u,z >> 0}.

Proposition 2.1 Let o be a polyhedral rational cone. Then oV is also a
polyhedral rational cone.

Denote by S, the semigroup (ov N M, +). Associate to S, its semigroup
C-algebra C[S,].



Proposition 2.2 (Gordon Lemma) Let o be a strongly convez polyhedral
rational cone. Then S, is a finitely generated semigroup and C[S,] is a
finitely generated commutative C-algebra.

Associate to o the affine algebraic variety U, = Spec(C[S,]). The variety
U, is called an affine toric variety.

2.1.2 Fans and toric varieties

Definition 2.1.3 A fan € in N ® R is a set of strongly convex polyhedral
rational cones in N ® R such that

1. any face of a cone in € is a cone in €,
2. the intersection of two cones in € is a face of each.

For two cones ¢ and 7 in € the affine toric variety U,n, is a principal
open subset of both U, and U, .

To a fan € we associate an algebraic variety X (€). First take the disjoint
union of the affine toric varieties associated to the cones of €. Then glue
each pair (Uy,, U;) along U,n,. The variety X (€) is called the toric variety
associated to the fan €.

Definition 2.1.4 A fan in N ® R is called complete if the union of its
cones is N @ R.

Proposition 2.3 If € is a complete fan, then X (€) is complete variety.

2.1.3 Polytopes and toric varieties

Here we consider polytopes in M ® R. Unless explicitly specified, polytope
will mean convex polytope whose vertices are integer (i.e. belong to the
lattice M). Let A be a polytope in M @ R.

Definition 2.1.5 Let I' be a facet of A. The minimal inner normal vector
of I' is the smallest vector v in N such that

1. v is nonzero,

2. v 1s orthogonal to T,
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3. for any x in A, < x,v > is non-positive.

Let p be a vertex of A and let I'y,--- , [’y be the facets of A containing p.
To p we associate the cone o, generated by the minimal inner normal vectors
of I'y, -+, [,

Definition 2.1.6 The inner normal fan €a is the fan whose d-dimensional
cones are the cones o, for all vertices p of A.

Definition 2.1.7 The toric variety XA associated to A is the toric variety
X(@).

Proposition 2.4 Let A be a d-dimensional polytope, and X be its associ-
ated toric variety. Then the torus (C*)¢ acts on Xa and has an open dense
orbit.

Let a be a vertex of A and let Ay, ---, A be the edges of A containing a.
Let b; be the nearest integer point to a on A; and denote v; the vector ab;.

Definition 2.1.8 We say that A is very simple in a if (v;)icq1,... } 15 @ basis
of M. The polytope § is very simple if it is very simple in all its vertices.

Definition 2.1.9 A d-dimensional polytope A is simple if for each verter a
of A, the number of edges of A containing a is d.

Proposition 2.5 The toric variety X a is nonsingular if and only if the poly-
tope A is very simple.

2.2 Combinatorial patchworking

By a subdivision of a polytope we mean a subdivision in convex polytopes
whose vertices have integer coordinates.

Definition 2.2.1 A subdivision 7 of a d-dimensional polytope A is called
convex if there exists a convex piecewise-linear function ® : A — R whose
domains of linearity coincide with the d-dimensional polytopes of .

A piecewise-linear function v on a polytope A defines a subdivision §
of A. The graph of v has a natural decomposition 9, into linear pieces.
The decomposition ¢ is induced by the natural projection of §; on A. The
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procedure described in the following remark is often used in the sequel to
construct convex piecewise-linear functions.

Remark 1 Fiz a real function vy defined on a set A of integer points of
a polytope A. We associate to vy the convex piecewise-linear function v :
A — R whose graph is the lower part of the convex hull of the graph of vy.
Note that the vertices of the decomposition ¢ defined by v are points in A.
Howewver, the set of vertices of & can be a proper subset of A.

Let us describe the combinatorial patchworking, also called T'-construction,
which is a particular case of the Viro method. Given a triple (A, 7, D), where
A is a polytope, 7 a convex triangulation of A, and D a distribution of signs
at the vertices of 7, the combinatorial patchworking, produces an algebraic
hypersurface Z in Xa.

Let A be a d-dimensional polytope with integer vertices which belongs to
the positive orthant (R*)¢ = {(z1,...24) € R? | 2, > 0,...,24 > 0}, and 7
be a convex triangulation of A. Denote by s, the reflection with respect to
the coordinate hyperplane z; = 0 in R?. Consider the union A* of all copies
of A under the compositions of reflections s,, and extend 7 to a triangulation
7* of A* by means of these reflections. Let D(7) be a sign distribution at
the vertices of the triangulation 7 (i.e. each vertex is labelled with + or —).
We extend D(7) to a distribution of signs at the vertices of 7* using the
following rule : for a vertex a of 7*, one has sign(s,(a)) = sign(a) if the
i-th coordinate of @ is even, and sign(s,,(a)) = —sign(a), otherwise.

Let o be a d-dimensional simplex of 7* with vertices of different sign, and
E be the hyperplane piece which is the convex hull of the middle points of
the edges of o with endpoints of opposite signs. We separate vertices of o
labelled with + from vertices labelled with — by E. The union of all these
hyperplane pieces forms a piecewise-linear hypersurface H*.

Remark 2 Note that we get a natural cell decomposition of H* whose d-
dimensional pieces are the hyperplane pieces described above.

Definition 2.2.2 Let x be an integer point (resp., a vector) in RY. We call

the parity of x and denote by T the coordinatewise reduction modulo 2 of x.
For any facet I' of A*, let N* = (v,v5,...,v;) be a minimal integer
vector normal to I'. Identify T' with s, 0 85," --- 0 55,% (I') via the map

sxl"lF o sm"g ---0 8, d”g . Denote by A the result of the identifications.
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Proposition 2.6 (see, for ezample, [GKZ94]) The variety A is homeomor-
phic to the real part RXa of Xa.

Denote by H the image of H* in A. Let @ be a polynomial with Newton
polytope A. It defines a hypersurface Z; in the torus (C*)? contained in Xa.
The closure of Zy in X, is the hypersurface defined by @ in Xa.

Definition 2.2.3 Let (Q be a polynomial with Newton polytope A and Z be
the hypersurface defined by ) in Xa. We call A the Newton polytope of
Z.

Theorem 2.7 (T-construction, O. Viro)
Under the hypotheses made above, there exists a hypersurface Z of Xa

with Newton polytope A and a homeomorphism h : RXa — A such that
h(RZ) = H. If A is very simple, then Z is nonsingular.

Definition 2.2.4 The hypersurface Z in the above theorem is called a real
algebraic T-hypersurface.

Definition 2.2.5 A d-dimensional simplex with integer vertices is called
primitive if its volume is equal to é. A triangulation T of a d-dimensional
polytope is primitive if every d-simplex of the triangulation is primitive. A
real algebraic T-hypersurface is called primaitive if the triangulation T used
i its construction S primitive.

We define here some useful notions related to the combinatorial patch-
working.

Definition 2.2.6 With the above notations a simplex of T* is called non-
empty if it has vertices of different signs.

Definition 2.2.7 Let A be a d-dimensional polytope. We call lattice vol-
ume of A and denote by Vol(A) the volume normalized so that a primitive
d-simplex has volume 1. The usual volume is denoted by vol(J).

Remark 3 If A is a d-dimensional polytope, then Vol(A) = d!vol(A).

Definition 2.2.8 Let 7 be a triangulation with a distribution of signs at its
vertices. A vertex v of T is called isolated, if all the vertices in the star of
v except v itself have the sign opposite to the sign of v.
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Let p be an isolated vertex of the triangulation 7* of A*. Assume that p
is in the interior of A*. Then the star of p contains a connected component
of H* homeomorphic to a sphere S?. So, p corresponds to a d-dimensional
sphere of the real part of the hypersurface Z obtained by Viro’s theorem.

Definition 2.2.9 A k-dimensional simplex in R? is called elementary if
the reductions modulo 2 of its vertices generate a k-dimensional affine space.

The following proposition is due to Itenberg (see [Ite97] Proposition 3.1).

Proposition 2.8 Let s be an elementary k-simplex of a triangulation T of
a d-dimensional polytope. Assume that s is contained in j coordinate hy-
perplanes. Then the union of the symmetric copies of s contains exactly
(24 — 29°%) /27 cells of dimension k — 1 of the cell decomposition of H*.

2.3 Sturmfels theorem for complete intersec-
tions

In [Stu94b] B. Sturmfels gave a combinatorial way to construct complete
intersections. We quote here this theorem in the particular case we need.
For the general statement and the proof we refer to [Stu94b].

Let Ay be a d-dimensional polytope. Let Aj,---, Ay be positive integers,
where £ < d. Denote by A; the polytope A;-Ag and by A the Minkowski sum
A1+ -4+ Ayg. Let y; be a piecewise-linear convex function on A; defining a
triangulation 7;. For each A;, choose a distribution of signs D; at the vertices
of Ti-

The initial data of the procedure of construction of a complete intersection
using Sturmfels’ theorem are the polytopes A;, the functions v; and the
sign distributions D;. Apply the T-construction for each triple (A;, 7;, D;)
to construct the hypersurfaces S;. Let D] be the sign distribution at the
vertices of 7;*.

The functions vy, - - - , v, define a convex decomposition of A in the fol-
lowing way. Let z be an integer point of A. Denote by FE, the set of k-
tuples (x1,---,x) such that z; is a vertex of 7; and z; + - -- + 2, = z. Set

vo(r) = ming, ... g)ep, (V1(21) + - - + vx(2x)) and extend the function v, to
the piecewise-linear convex function v whose graph is the lower part of the

14



convex hull of the graph of 1 (cf. remark 1). The function v : A — R de-
fines a convex subdivision § of A. Sturmfels’ theorem requires the following
genericity condition on the functions ;.

Definition 2.3.1 With the notation as above, the function v is called suffi-
ciently generic, if each polytope " in § can be uniquely written as the sum
of simplices I'; for T'; in 1;, and one has dimI’ = dimI'y + - - - + dim T'.

If § satisfies the above genericity condition, it is called a mixed subdz-
viston of A.

Let ¢ be a mixed subdivision of A. To each vertex v of § we assign a sign
vector €(v) = (e, ,€x), where ¢; € {+, —} is the sign of the vertex of 7
corresponding to v.

Extend § to a subdivision §* of A* by means of the reflections with respect
to coordinate hyperplanes. The extension of the sign distribution to ¢* is as
follows. Let v be a vertex of 0*, and let vy, - - - , v, be the vertices of 7,--- , 7}
corresponding to v. Then

€j (Swi (U)) = sign(sxi (Uj))'

For j € {1---k} construct the hypersurface 5’] in the following way.
Notice that any polytope in §* can be uniquely written as the sum of simplices
Pi for Fz in Ti*' Put SjﬂF =F1++S]ﬂfj++Fk Let Sj be the
image of S} in A.

Theorem 2.9 (B. Sturmfels)

With the above notation, there exist hypersurfaces Z; with Newton poly-
topes A;, respectively, and a homeomorphism f : RXx — A such that the
hypersurfaces Z; define a complete intersection Y in X, and f sends RZ;
(resp, RY ) onto S;. (resp., Nj=1..xS;).

2.3.1 A very simple example

As an example we construct a maximal complete intersection of two curves
of given degrees in CP? (see Figures 2.1 and 2.2).

Let Aq be the triangle in R? with vertices (0,0), (0,1)and(1,0). Let X\
and Ay be two positive integers. Denote by A; the triangle \; - Aq (i = 1, 2).
The triangle A = (A; + A2)A is the Minkowski sum of A; and A,. Take
any convex triangulations of A; and Ay such that any integer point of the

15



+ + -
+ — + +
- T +

+

+ + -
+ ~ + + +
+ + + + - +
+
+ 3 -
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Figure 2.4: §’2

Figure 2.5: §1 and 572
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edge [(A1,0), (0, A1)] (resp., [(0,0), (Ag,0)]) of Ay (resp., Ag) is a vertex of the
chosen triangulation of A; (resp., Ay). Let v, and v, be convex functions
certifying the convexity of these triangulations. Add to v, a linear function
v3((z,y)) = Cry + Cox with C; > Cy. For C, large enough the obtained
mixed subdivision of A is as follows. The triangle ((0,0), (A1,0), (0, 1)) is
triangulated as A;. The triangle ((0, A1), (0, A1 + A2), (A1, A2)) is the image
of Ay under the translation ¢, by the vector (0, A;). Take the image of the
triangulation of Ay by t),. The rest of A is a parallelogram I' decomposed
into parallelograms of area 1 having two edges parallel to ((1,0), (0,1)) and
the two other edges parallel to the z-axis. Notice that any parallelogram of
area 1 has exactly one symmetric copy, where S; and S intersect (see Figure
2.5). So, the number of intersection points of the real parts of our curves
is the area of the parallelogram I', i.e. A\;A;. By Sturmfels’ theorem 2.9 we
associate to S; and Sy (see Figures 2.3 and 2.4) two curves of degrees \; and
A2, respectively, defining a maximal complete intersection in the projective
plane.

2.3.2 Cayley trick

Instead of constructing the complete intersection in the Minkowski sum of
Newton polytopes, it is convenient to use so-called Cayley trick (see, for
example, [Stu94a]).

Let Ay, ..., Ag be convex polytopes with integer vertices in R? (k < d).
For any i =1,...,k put

~

A ={(21,. .., Tpraq) ER |z, = 1,2, =0if j < k and j # i
(Tha1s- -5 Thgd) € A}

The convex hull of Al, s Ay in RF is called Cayley polytope and is
denoted by C(Ay,...,Ag). The intersection of C'(Ay, ..., Ax) with the sub-
space B C R¥*4 defined by z; = ... = x;, = 1/k is naturally identified with
the Minkowski sum A of Ay, ..., Ay multiplied by 1/k. Thus, any trian-
gulation of the Cayley polytope C(A,...,Ax) induces a subdivision of the
Minkowski sum of Ay, ..., Ag.

The following lemma can be found, for example, in [Stu94a).

Lemma 1 The correspondence described above establishes a bijection be-
tween the set of conver triangulations with integer vertices of C(Aq, ..., Ag)
and the set of mized subdivisions of the Minkowski sum of Ay, ..., Ay. O
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Denote by C* the union of the symmetric copies of C(Ay,...,A) under
the reflections s, t = k+1, ..., k+n, where s(;) is the reflection of R¥+¢ with
respect to the hyperplane {z; = 0}, and compositions of these reflections.

Choose a convex triangulation 7 of C'(Ay, ..., Ag) having integer vertices
and a distribution of signs at the vertices of 7. Extend the triangulation 7
to a symmetric triangulation 7* of C* and the distribution of signs at the
vertices of 7 to a distribution at the vertices of the extended triangulation
by the same rule as in Section 2.2: passing from a vertex to its mirror image
with respect to a coordinate hyperplane we preserve its sign if the distance
from the vertex to the plane is even, and change the sign if the distance is
odd.

For any (k + d — 1)-dimensional simplex v of 7* and any j7 = 1,...,k
denote by 7; the maximal face of v which belongs to a symmetric copy of
A;. Let K;(7) be the convex hull of the middle points of the edges of 7;
having endpoints of opposite signs, and let H(y) be the intersection of the
join Ki(7) *...x Ki(y) with B. Denote by H* the union of the intersections
H(v), where 7 runs over all the (k + d — 1)-dimensional simplices of 7*, and

denote by H the image of H* in (LA).
The following statement is an immediate corollary of Theorem 2.9.

Proposition 2.10 Assume that all the polytopes A+, ..., Ay are multiples of
the same polytope 11 with integer vertices. Then, there exist nonsingular real
hypersurfaces Z1, ..., Zy in X with Newtwolytopes Ay, ..., Ay, respec-
tively, and a homeomorphism f : RXg — (%A) such that the hypersurfaces
Z1, .., Zy define a complete intersection Y in Xy and f maps the set of
real points RY of Y onto H. O

Definition 2.3.2 A (k + d — 1)-dimensional simplex vy of T is said to be
nonempty if H(y) # 0.

Remark 4 A (k+d—1)-dimensional simplex~y of T* is nonempty if and only
if the simplices y; are all nonempty (i.e. have vertices of different signs).

Let us reformulate the construction described in the example presented
in the begining of this section (Subsection 2.3.1) using the Cayley polytope.
Let A; be the convex hull of the points (0,0), (0, A1), (A1,0), and Ay be the
convex hull of the points (0,0), (0, A2), (A2,0). Consider a convex primitive
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triangulation 7; of A; and a convex primitive triangulation 75 of As. In
the Cayley polytope C(A;, Ay) take the cone Cy (resp., C3) with the ver-
tex (1,0,0, ;) (resp., (0,1,0,0)) over A, (resp., Al) Let J be the join of
the edges [(0,1,0,0), (0,1, A2, 0)] and [(1,0, A1,0),(1,0,0,A;)]. The triangu-
lations 7; and 7» induce primitive triangulations of 'y, Cy and J which patch
into a convex triangulation 7 of C'(A1, Ay). Choose any sign distribution at
the vertices of 7 apply the construction. Then, any tetrahedron in the trian-
gulation of J has exactly one symmetric copy containing a point of H*. Since
J has lattice volume A1\, the complete intersection constructed is maximal.

2.4 Some facts about triangulations of lattice
polytopes

2.4.1 Ehrhart Polynomial

As we saw in section 2.2, the combinatorial patchworking deals with trian-
gulations of lattice polytopes. We sum up here some results that will be
used latter on. First, recall the results of E. Ehrhart on the number of inte-
ger points in a lattice polytope. Ehrhart showed that the number of integer
points in the multiple A - A of a not necessarily convex polytope A, where
A is a positive integer, is a polynomial in A (see [Ehr94]). We denote by
[(A) and [*(A) the numbers of integer points in A and in the interior of A,
respectively.

Theorem 2.11 (E. Ehrhart)

Let A be a polytope with integer vertices. Then, the numbers [(A - A) and
I*(A- A) are polynomials in A of degree dim A. Denote them respectively by
Ehra(X) and Ehri()). They satisfy the reciprocity law

(=1)EmAEhra(=\) = Ehry (V).

One often considers the Ehrhart series
SE,(t) =Y Ehra(A)t*.
A=0

Put Qa(t) = (1 — )" SE,(t), where d is the dimension of A. In fact,
Qa(t) is a polynomial of degree d (see [Bri94] or lemma 2), and we define
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the numbers ¥; to be the coefficients of Qa(?) :
Qalt) =) b,
=0

Let af be the coefficient of ' in Ehra()).

Lemma 2 One has

d J
W =3 (3 (1l nar
=0

7 n=0
and ¥; =0 for j > d+ 1.

We insert here technical lemmas that will be used quite often, mainly in
chapter 3.

Lemma 3 (c¢f. [VLW92] p. 71) Let a be a nonnegative integer such that
a+1 < i .Then one has Y7, _((—=1)*C¢(i — a)* = 0, and equivalently
S o (=1)2Cla* = 0.

a=0
Lemma 4 Let o be a nonnegative integer such that o +1 <1 .Then

i

S (-1 - a)* =0

a=0

Proof . -
Write p—a = (i — a) + (p — %) and then,

(p—a) = Y Cii—a)*™(p—i)"

= > Calp—d)" ( > (-1 Ci(i~a) m)



The last term is zero by lemma, 3. O

Proof of lemma 2.
From the definitions we see that

d+1 [ d .
~ (5 Chatt (- e
n=0 i=0
and thus, W; _Zz ol zl:o( 1)7- nCd+1") a;.
Let A; =37 _((=1)7"Ciin'. If j > d+ 1, then
d+1
Aj =Y (~1)fCh (G = k),
k=0
which is zero according to lemma 4. O

2.4.2 Formula for the number of simplices of a primi-
tive triangulation

In order to compute the Euler characteristic of a T-hypersurface RZ we often
need to know the number of simplices of any dimension in the triangulation
7 of A. In the case of a primitive triangulation, these numbers happen not to
depend on the primitive triangulation chosen. This statement can be found
in [Dai00]. Here we prove the statement for primitive convex triangulations.

Let nbs® be the number of r-dimensional simplices in a primitive tri-
angulation of A which are contained in the interior of A, and let ¢ be the
dimension of A. Let Ss be the Stirling number of the second kind defined by

Sa(i,§) = 1/ (1) 3 oheo(—1)77FCFE
Proposition 2.12 Under the above hypotheses we have,

i+1
nbst = Z stir(r +1,01)(=1)"".a2 |,
I=r+1

where stir(i,j) = (i — 1)1S5(4, 7).
In order to prove this formula we first check that it is true for all primitive

simplices.
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Formula for a primitive simplex

Let s; be a primitive simplex of dimension 7. Then

1 i+1
Ehry(\) = (A +1)... (A +1) = z'z )8 (0 + 1, )N

where S; is the first Stirling number defined by the formula )" _; Si(n, m)z™ =
z(r—1)...(x —n+1) (see [BVIT7]). Thus
. —1)t= .
a; = %51(2 +1,7).
It remains to show that
' i+1
nbss’— ZSQZT+1)51(Z+15)
l r+1
We have Z;;{H So(l,m +1).51(i + 1,1) = 6,; (see [VLW92] p. 107), and
thus, & ;;LiH So(l, 7 +1).51(i +1,1) = §,,; which is exactly the number of

r-dimensional simplices contained in the interior of s;.

Proof for a general polytope

Definition 2.4.1 A triangulation T of a polytope of dimension d is called
shellable if there exists a numbering of its d-simplices si,Sa,...,Sr such
that for i € {2,...,k}

siNUZLs;
is a nonempty union of (d—1)-simplices of T homeomorphic to a (d—1)-ball.
This numbering is called a shelling of 7.

Theorem 2.13 (Ziegler ([Zie95], p. 243))
Every convex triangulation of a polytope is shellable.

The formula holds for a point (with the convention that the point is in its
interior). We now assume that the formula is true in all dimensions less than
d. Let A be a d-dimensional polytope, and 7 be a primitive triangulation of
A. Fix sq, So, ..., s; ashelling of 7, and put U; = U!_;s;. Note that U; need
not to be convex. Assume that the formula is true for U;. Note that the
formula also holds for U; N s;4; which is (d — 1)-dimensional, eventhough it
is not a polytope. We know that it is also true for s;,;.
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Lemma 5 The numbers nbs, satisfy the relation
nbs¥i + nbsii+t + nbsliMsitt = ppsli+t,

Proof . -

This follows immediately from the fact that U; LI Sjo+1 U (U; N sjy1)=Uj41

where (} stands for the interior of U. O

By induction hypothesis,

d
s . —1 U;ns;
nbsiNsi+t = E stir(r +1,1)(=1) a7+,
I=r+1

UjﬁSj+1

and since a, = 0, we can also write

dt1
Nss . —1 Uj;ns;
nbstiMsitt = E stir(r + 1,1)(=1)* a7 ",
I=r+1

Uj A+l _ Uj sit1 _ UjNsipn

Then nbs,”*' = Y777 stir(r + 1,1)(-1)*" (0,7, + oY — a7 7),
Uj : UiNsj+1 - : . Uitt s

and ;) + %' — a7 7" is precisely the coefficient a,’1" in the Ehrhart

polynomial of Uj ;. This completes the proof of the formula.

2.5 Danilov and Khovanskii formulae

V. Danilov and A. Khovanskii [DK87] computed the Hodge numbers of a
smooth hypersurface in a toric variety XA in terms of the polytope A. For
a face F' of A, denote by af the coefficient of the term of degree i of the
Ehrhart polytope of F. Let F;(A) be the set of i-dimensional faces of A,
and f; be the cardinality of F;(A).

Theorem 2.14 (V. Danilov, A. Khovanskii)
Let A be a simple polytope of dimension d, and Z be a smooth or quasi-
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smooth algebraic hypersurface in Xa. Then, for p # %%

d

A (_1)3’+1 Z (—l)inHfz'(A)

_d+1 eFi(

P2 = (Y Y )

i=p+1 FEF;(A)
hP? = Qifg#porp#d—1—p,

where U,y (F) = 300 S°0F (—1)2Ce,, (p+ 1 — a)*al_,.

Let X be a topological space, and K a field. We denote by b;(X; K) the i-
th Betti number of X with coefficients in K, i.e. the dimension of HZ (X; K).
Put b,.(X; K) = .2, b;(X; K). Sometimes, we write b;(X) and b,(X) for
b;(X;Zs) and b.(X; Zs), respectively.

The following lemma is an immediate corollary of theorem 2.14.

Lemma 6 Let A be a 3-dimensional simple polytope, and Z be an algebraic
hypersurface of Xa with Newton polytope A. Then b.(Z;C) = I*(2A) —
21*(A) - ZFGFQ(A) (l*(F) - 1) -1

The following two propositions can be derived from Khovanskii’s results
(see [Hov77] and [Hov78]) or can be found in [Mik].

Proposition 2.15 Let A be a polytope, and {Z\}ren be a family of alge-
braic hypersurfaces in Xa with Newton polytopes X - A. Then b,(Zx;Zs) is
equivalent to Vol(A - A) when A tends to infinity.

Denote by Vol(Ay, - - - , Ag) the mixed volume of the polytopes Ay, -« -, Ag.
We choose a normalization of the mixed volume in such a way that for a
primitive simplex ¢ we have Vol(o,--- ,0) = 1.

Proposition 2.16 Let A be a d-dimensional polytope, and k be a positive
integer satisfying k < d. Assume that for any collection A1, - - - , A\, of positive
integers we have a collection of k hypersurfaces Zy,,---, 2y, in Xa with

Newton polytopes A1 - A, ..., A\g- A, respectively, such that Zy,,--- , Z,, define
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a complete intersection Yy, .. x, in Xa. Then by (Y, . x.; Zs) is equivalent to
Vol(A1 - A, -+, Mg - A) when \; tends to infinity for all i.

We also use the following result of Khovanskii on the Euler characteristic
of a complete intersection in the torus (C*)¢ (see [Hov78]).

Theorem 2.17 (A. Khovanskii)

Let Y be a complete intersection in (C*)? defined by polynomials P, - - , Py
with Newton polytopes A+, - - - , Ay, respectively. Then, the Fuler character-
istic of Y is the homogeneous term of degree d of

AT(T4+A)T o AL+ AT

where the product of d polytopes stands for their mixed volume and (1+A;)~!
stands for the series Y2 ((—1)7(A;)7.

In the case of two 3-dimensional polytopes we use the following direct
consequence of Theorem 2.17.

Corollary 2.18
Let A be a simple 3-dimensional polytope and \; and )\, be positive integers.
Fori=1,2 put A; = \;-A. Let Y be a complete intersection in XA defined

by polynomials P, and P, with Newton polytopes Ay and A,, respectively.
Then, b.(Y;C) = (A A2 + A3A1) VoI(A) = 35, a) A2 VoI(T') + 4.

Proof . - By theorem 2.17, the Euler characteristic x(Y) of YV is given
by x(V) = —(M A2+ A3);) Vol(A) + ZFEB(A) A1 Vol(T'). Since b,(Y;C) =
—x(Y) + 4, we have the desired result. O
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Chapter 3

Primitive T-hypersurfaces

3.1 Statement

Let A be a d-dimensional polytope such that the toric variety XA associated
with P is nonsingular. Let Z be a primitive T-hypersurface with Newton
polytope A, and 7 be the primitive triangulation used in the construction
of Z. Let v : Hy 1(Z;Z)/tors x Hq_1(Z;Z)/tors — Z be the intersection
form of Z. If d is odd, then ¢ is a symmetric bilinear form, and its signature
is called the signature of Z and is denoted o(Z). One can express o(Z) in
terms of Hodge numbers of Z (see, for example, [GH78]):

o(2)= Y (-1P(Z).
p+q=0[2]

If d is even, denote by ¢(Z) the number defined by the same formula. We
have the following statement.

Theorem 3.1
If 7 is a primitive real algebraic T-hypersurface in a nonsingular toric variety
X As then

X(RZ) = o(Z),
where x(RZ) is the Euler characteristic of the real part RZ of Z.

Recall that [*(A) is the number of integer points in the interior of A.
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Corollary 3.2

Assume that A is a 3-dimensional polytope, X is nonsingular, and Z is a
primitive T-surface in X with Newton polytope A. If the number by(RZ)
of connected components of RZ is at least I*(A)+1, then by(RZ) = I*(A)+1
and 7 is maximal.

Proof . - First, note that [*(A) = h*%(Z). Then x(RZ) > 2r*%(Z) +2 —
b1 (RZ). Now using the equalities x(RZ) = o(Z) = 2h*°(Z) + 2 — h*'(Z)
one gets b (RZ) > hY'(Z). Furthermore h'°(Z) = h®'(Z) = 0 (see Theo-
rem 2.14), and thus b,(Z; C) = 2h*°(Z) + 2 + h"'(Z). Hence b.(RZ;Zs) >
b.(Z;C) = b.(Z;Zs). The Smith-Thom inequality implies that b.(RZ; Zy) =
b.(Z;7Z,), and thus, that b;(RZ) = h"!'(Z) and by(RZ) = h*°(Z)+1. O

3.2 Proof of Theorem 3.1

If d is even, the proof of 3.1 is straightforward. Indeed, in this case Z is a
(smooth) odd dimensional hypersurface, so x(RZ) = 0. On the other hand,
we have the equality h??(Z) = h¢~17P4=1=4(7) for any p and ¢, and d — 1 is
odd. Thus, 0(Z) =3, o1 (-1)PRP4(Z) = 0.

Assume now that d is odd and denote by F;(A) the set of i-dimensional
faces of A. The number of i-dimensional faces of A is denoted by f;(A).

Lemma 7 We have

i+1

d i+1
Z Z ZXlH-lal , and o(Z) = Z Z Z l,z’+1a£1,
i=1 FEF;(A) =2

=1 FeF;(A

where af' is the coefficient of the degree | term of the Ehrhart polynomial of
F (see Section 2.4.1) and

XL+l = )" l+lzl_]+1 Z( LFCL g+1k

ji= k=0
d—1 4 p+1
oL = ) (FD)'D)PT Y (-)C b+ 1)
p=0 q=0
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Proof . - The triangulation 7* induces a cell decomposition D of H. Let
Ir be the image in A of the union of the symmetric copies of the inte-
rior of a face F' and D(Ir) be the set of cells of D contained in Irp. Put

P= ZJED(};)(—l)dzm(‘s). Then x(RZ) = 30, > rer(ay Xr- According to
Proposition 2.8, if () is a k-simplex of 7 contained in j coordinate hyperplanes
then the union of the symmetric copies of ) contains exactly (2¢ — 2¢-F) /27
cells of dimension k£ — 1. An i-face F' of A* contained in j coordinate hyper-
planes is identified with 2=~/ — 1 other copies of F' when passing from A*
to A. Thus, the number of (k — 1)-cells in D(};) is equal to (2(1;12:1;,“)711)55,
where nbst is the number of k-simplices in the interior of F. According to
Proposition 2.12 of section 2.4.2

41
nbsg = Y KISy(I,k+1)(=1)"af
I=k+1

where S, is the Stirling number of the second kind defined by S(i,7) =
1/513 7% _o(=1)77*CkE". Tt finishes the proof of the formula for x(RZ).

To compute o(Z), we use the Danilov and Khovanskii formulae (see The-
orem 2.14). One obtains the following expression for o(Z):

d—1 d ) i+1p+1
) = 3 iy T (—c€+1+<—1>p+lzz Gt (41— 0 )

p=0i=p+1 FeF;(A) I=14¢=0

Consider o(Z) as a polynomial in the variables af. Denote by o' the
constant term of o(Z), and by o' the sum of monomials in variables al". We
have

d-1 d
cst p+1
ot ==Y ()T (P
p=0 i=p+1
and
d—1 d p+1
i p+1
Z Z Z z-l—laO
p=0 i=p+1 FeF;(P) a=0

Lemma 8 We have 0% + o' = 0.
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Proof . - Since a% = 1, we obtain

d—1 d . p+1
ol = S0P YT Y (-neer,
p=0 i=p+1 FeF;(P) a=0
d—1 d ' p+1
= > EDIEDPTRP) Y (-1)1Cy-
p=0 i=p+1 a=0

Furthermore, 2" (—1)°C¢,, = (—1)P*'C?*™*, and thus,

Lemma 9 Let | and i be nonnegative integers. Then, for | +1 <1, one has
Y amo(=1)ICY (i - q)! =0 (cf. [VLWI2] p. 71) and, as a consequence,
Y (=1)Cip—g) =0.

q=0

Using Lemma 9 one shows that

i—1 p+1
o1 =Y (=)' (=1 Y (=1)7Cl(p+ 1)
p=0 g=0

Then we can prove the following lemma.
Lemma 10 For 2 <[ <i+ 1, one has the following equalities

OLiva = —200;41,
Xii+2 = —2Xuit1-

Proof . - To prove the first equality, write C,, = CI| + CZ | to get

i p+1
orise = ()Y (1) (-)CE(p+1- )
p=0 g=1
_ i p+1
DT (P (1)t
p=0 q=0
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Notice that Y, ;(=1)9C? {(p+ 1 — ¢)'~" is 0. Similarly, in the second

term, ZZ“( 1)?C%, (i + 1 — ¢)'~! makes no contribution, because

i+1

S (DCh(i+ 11—t =0
q=0
for [ <441 by Lemma 9.
Then,
) 7 p+1
oiva = (1) (=1 (-1)CH (p+1— )
p=1 g=1
. i—1 p+1
HEDTY (=P () (p+ 1 -9t
p=0 q=0

So, with the changes of indices c=¢ — 1 and r = p — 1 one gets

i—1 r+1
ey = (DY (1 O 41
r=0 c=0
) i—1 p+1
+(=D)TY (1P (-1)CL (1 -9
p=0 q=0
= —20041.
To prove the second equality stated in the lemma, use Lemma 9 to get
rid of the term with 5 = 0 in the sum ZJ o ]fl) Z_:]OH(—l)’“Cf_ijl:
1+2 (2 - 27) AN kk l
_ z
Xiit2 = Z P ; (=1)"Cij ok

21—|—1 -1 i+2
l( Z+ 5 ) Z(_l)kcﬁakl

k=0

= (1"

—j+2

z l 22+1 _2]) kk kl
iy CEE RS e

j=1 k=0

21—}—1 ) i—j+2

— )i lz P D (—1)FCE, LK

k=0
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With the change of index m = 7 — 1 we get

i—1 21+1 2m+1) m+1

Xli+2 = Z : Z i—ma1 (_1)kcf—m+1kl
m=0 k=0
= _2Xl,z—|—1-
O
Remark 5 One has Y% _ 2P "Ck =30 CL...
Proof . - We use the fact that Y2 _, Ck = Ckt] »i1 and write
P P
Srct = Y
n=0 n=~k
P P p—i
SRS
n==k =0 n==k
pk  pk
Cpti+_(2) ) _Cpii
i=0 i=0
p+1
Ck__:j + Z op+1- nck—|—1
n=k+1
and the result follows by induction. O

Lemma 11 For 2 <[ <d+1, we have x1; = 0.

Proof . - By Lemma 10 it is enough to prove the equality x;; = 0. Using
the fact that Y2 _ 20 "Ck =3P CL_ | write

l

X1 = 2[—1 Z(_l)kcgckl—l Z Zczkl 1

k=1 k=1

and
lol

gy = (—1)l_1 ZZ(—l)bC{blil.

b=1 j=b
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By Lemma 9, x;,; = —Zﬁc:l(—lyc Zé:k Cik!=! and x;; = (—1)'oy;. This is
the desired equality for [ even. For an odd [ > 2 we use the symmetry of the
expression of 0;; and write

-3

2 p+1
o =Y (=1 Z(_l)ch(p +1—g)'!
p=0 q=0
I-1-p
llpz qul—l—p q)l 1)
q=0

p=0
of the last equality is zero by Lemma 9, and thus, o;; = x;; = 0. O

-3
Thus, oy = 3,20 (—1)" 320 _o(~1)?C{(p+ 1 — q)* 1. The right hand side

According to Lemma 11 the coefficients of ¢(Z) and x(RZ) in the ex-
pressions of Lemma 7 are equal, and thus, o(Z) = x(RZ). a
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Chapter 4

Nakajima polytopes and
M-surfaces

In this chapter we give examples of families of M-surfaces obtained by 7T-
construction as hypersurfaces of 3-dimensional toric varieties. In section 4.3
we show that, in dimension d > 3, there exist polytopes A such that no
hypersurface in XA with Newton polytope A is maximal.

4.1 Nakajima polytopes

Definition 4.1.1 A polytope P in R? is a Nakajima polytope if either
P is 0-dimensional or there exists a Nakajima polytope P in R and a
linear function f : Rt — R, nonnegative on P, such that f(Z* ') C Z and
P={(z,24) e PxR|0< 14 < f(2)}.

Definition 4.1.2 A polytope P in R is a nondegenerate Nakajima poly-
tope if either P is 0-dimensional or there exists a nondegenerate Naka-
jima polytope P in R* and a linear function f : R™! — R such that
f(Z4=Y) C Z, f is positive on P, and P = {(x,24) € PxR |0 < z4 < f(z)}.

4.2 Construction of M-surfaces

Theorem 4.1
Let P be a 3-dimensional Nakajima polytope corresponding to a nonsingular
toric variety Xp. Then, there exists a maximal surface in Xp with the
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Figure 4.1: A 2-dimensional Nakajima polytope.

Figure 4.2: A 3-dimensional Nakajima polytope.
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AZ

A0 - BOk A4

Figure 4.3: Slicing a nondegenerate Nakajima polytope.

Newton polytope P.

Proof . - Let us first assume that P is nondegenerate.

Decompose P into slices T, = PN{(z,y,2) € (R")3, k-1 <y < k}. Let
s be the section PN {(z,y,2) € (R")3, y = k}. Denote by B% BLE B2k
and B3* the vertices of s; (see Figure 4.3). We subdivide the slices T} in
two cones and two joins. Take the cones of apex B%%* and B%%**2 on sy,
and the cones of apex B>%* ! and B>**! on s,;. Take primitive triangula-
tions of the sections si. They induce a primitive triangulation of the cones.
The jOiIlS [BO,Qk’Bl,Qk] * [B1’2k+1,B3’2k+1], [BO’Qk,B2’2k] * [32’2k+1,B3’2k+1],
[BO2k+2 B12k+2] o B2+ B3.2k+1) [BO2k6+2 B2.2k+2] 4 [B22k+1 B326+1] ape
also naturally primitively triangulated. Take the following distribution of
signs at the integer points of P:

any integer point (i, 4, k) gets “~” if j and k are both odd, and it gets “+7,
otherwise.

The polytope P is now equipped with a convex primitive triangulation
and a sign distribution, so we can apply the T-construction as in chapter 2
section 2.2.

Let p be an integer interior point of P and Star(p) be its star. Assume
that p belongs to a section s;. Then, Star(p) has two vertices ¢; and ¢, outside
s;- They are the apices of the two cones over s;. Since they have the same
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parity, with the chosen distribution of signs, in each octant their symmetric
copies carry the same sign. Consider an octant where the symmetric copy
go of p is isolated in s; (i.e. all vertices of Star(qy) N s; except qq carry the
sign opposite to the sign of go. Then, either in this octant the symmetric
copies of ¢; and ¢, carry the sign opposite to the sign of gy (and, hence,
qo is isolated), or 7(qo) is isolated, where 7 is the reflection with respect to
the coordinate plane x = 0. Thus, for each integer interior point p of P,
there exists a symmetric copy ¢ of p such that ¢ is surrounded by a sphere
S%(p) = Star(q) N H*. Moreover, one can check that at least one component
of H* intersects the coordinate planes. Thus, the T-surface constructed has
at least [*(P) + 1 connected components, and Corollary 3.2 shows that this
surface is maximal.

C2

€1

Figure 4.4: The star of p.

The degenerate case splits into two subcases. Either the Nakajima poly-
tope is a truncated cylinder over a triangle corresponding to the projective
plane, or it is a tetrahedron corresponding to the projective 3-space. The exis-
tence of M-surfaces in the latter case is contained in Itenberg-Viro’s theorem.
In the former case the Nakajima polytope P is the convex hull of the trian-
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gles ((0,0,0), (m,0,0),(0,m,0)) and ((0,0,(), (m,0,l + me), (0,m,l + mf))
for some integers m, [, e and f (see Figure 4.5).

(0,m, 1 + me)

(0,0,1)

(m, 0,1 +mf)

)
=)
.3
=
S mm mm mm m wm w

\

\

-, 2
., s
- , ,

(0,0,0) (m,0,0)

Figure 4.5: A degenerate Nakajima polytope.

Decompose P into slices T, = PN{(z,y,2) € (R")3, k-1 <y < k}. Let
si be the section PN{(x,y, z) € (R")3,y = k}. We triangulate PN{(z,y, 2) €
(RT)3,y < m — 1} using the same triangulation that in the nondegenerate
case. Take the cone over s, 1 of apex (m,0,0) if m is even or (m, 0, +mf),
otherwise. Take in the cone the triangulation induced by the triangulation
of s;—1. Subdivide the only one remaining non-primitive tetrahedron into
primitive ones in the unique possible way. Take the same distribution of signs
that in the nondegenerate case.

Then, as in the nondegenerate case, any interior point has an isolated sym-
metric copy. There is also a component intersecting the coordinate planes.
Thus, the surface is maximal. O

Note that Theorem 4.1 produces, in particular, M-surfaces in X, x CP*.
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(0,m) (n,m)

m,n
Oa’

(0,0) (n + ma, 0)

Figure 4.6: §7"".

For a non-negative integer o and positive integers m and n denote by
o™ the polygon having the vertices (0,0), (n + ma,0), (0,m), and (n,m)
in R?. The toric variety associated with §™" is a rational ruled surface %,,.
Consider now the truncated cylinder P>™" of base ™" whose vertices are

(0,0,0), (n+ ma,0,0),(0,m,0), (n,m,0),
(0,0,1), (n + ma,0,1), (0, m, 1), and (n,m,1),

where [ is a positive integer. The toric variety X ,i.m» associated with pLmn
is ¥, x CP!. Since P,™" is a Nakajima polytope, the following statement
is a corollary of Theorem 4.1.

Corollary 4.2
For any non-negative integer o and any positive integers m, n, and [, there
exists a maximal surface in ¥, X CP* with the Newton polytope PL™n. [

4.3 Newton polytopes without maximal hy-
persurfaces

In this section we show that Itenberg-Viro’s theorem of existence of M-
hypersurfaces of any degree in the projective spaces of any dimension cannot

be generalized straightforwardly to all projective toric varieties. More pre-
cisely, we show that there exist polytopes A such that no hypersurface in X
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0,m,1) (n,m,1)

(n+ ma,0,1)

i

(0,m,0) 3 ,,,,,,,,,,,, i\gn, m,0)

\\\ (n +ma,0,0)

(0,0,0)

Figure 4.7: PL™n.

with Newton polytope A is maximal. Note that this does not mean that the
toric variety Xa does not admit M-hypersurfaces.

Clearly, if A is an interval [a,b] in R, where a and b are nonnegative
integers, then there exists a maximal 0-dimensional subvariety in CP! = X4
with the Newton polygon A.

If A is a polygon in the first quadrant of R?, then again there exists
a maximal curve in XA with the Newton polygon A. Such a curve can
be constructed by the combinatorial patchworking: it suffices to take as
initial data a primitive convex triangulation of A equipped with the following
distribution of signs: an integer point (i,j) of A gets the sign “-” if ¢ and
j are both even, and gets the sign “+”, otherwise (cf., for example, [Ite95],
[IV96], [Haa98]).

However, in dimension 3 there are polytopes A such that no hypersurface
in XA with the Newton polytope A is maximal.

Let k be a positive integer number, and A, be the tetrahedron in R? with
vertices (0,0,0),(1,0,0),(0,1,0), and (1,1,k). Note that the only integer
points of Ay are its vertices.

Proposition 4.3 For any odd k > 3 and any even k > 8, there is no mazi-
mal surface in Xa, with the Newton polytope Ay.
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(0,0,0) (1,0,0)

Figure 4.8: Tetrahedron As.
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Proof . - The proof relies on the estimation of the Betti numbers of the
complex and real parts of a real algebraic surface Z; in X, with Newton
polytope Ag. The Betti numbers b,(Zy; C) are given by lemma 6. We have
b (Zy; C) = l*(2Ak)_2l*(Ak)_Zr‘efQ(Ak)(l*(F)_l)_l' Since I*(2Ag) = k—1
and [*(Ag) =0, we get b,(Zx; C) = k + 2. Thus, b.(Zk;Z2) > k + 2.

To estimate b,(RZy;Zs) we consider two cases. If k is odd, Ay is an
elementary tetrahedron, and RZj is homeomorphic to the projective plane.
Thus, in this case, b,(RZ;Zs) = 3. If k is even, either Ay has 8 nonempty
symmetric copies, or it has 6 nonempty symmetric copies. Furthermore, the
boundary of any symmetric copy of Ay is identified with the boundary of
another symmetric copy of Ag. Hence, we get either three or four connected
components of RZ; homeomorphic to a sphere, and b, (RZ; Zs) < 8.

Thus, for £ greater or equal to 7, there is no maximal surface in X, with
the Newton polytope Ay. O

It is easy to generalize the above examples in dimension 3 to higher di-
mensions.

Proposition 4.4 For any integer d > 3 there exist d-dimensional polytopes
A such that no hypersurface in XA with the Newton polytope A is mazimal.

Proof . - Fix an integer d > 3 and consider a family {oy}ren of d-
dimensional simplices in R? such that their vertices are their only integer
points and Vol(o;) = k. For example, one can take for o the simplex in R¢
with vertices

(0,0,...,0,0), (1,0,...,0,0), (0,1,...,0,0), ..., (0,0,...,1,0),
and (1,1,...,1,k).

Let Zj be any hypersurface in X,,. By Proposition 2.15 b,(Zy; C) tends
to infinity when £ does, and so does b,(Zy;Zs). Meanwhile, b,(RZy; Zs) is
bounded (for example, by the number of simplices in o}). So there exists a
number £ such that for any integer k > k¢ and any hypersurface Z; in X,,
one has b, (RZy; Zs) < b.(Zy; Zs). O
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Chapter 5

Asymptotically Maximal
Families of Hypersurfaces

The question “does a given family of real algebraic varieties contain maximal
elements?” is one of the problems in topology of real algebraic varieties. For
the family of the hypersurfaces of a given degree in RP? a positive answer is
obtained in [IV02] using the T-construction. Since this question is, in general,
a difficult problem, it is natural to tackle the following weaker question.
Let A be a polytope d-dimensional polytope in (R*)¢, X the toric variety
associated with A, and {)\- A} ey the family of the multiples of A. Suppose
that there exists a collection of polynomials { Py} \en satisfying the following
conditions :

1. the polytope A - A is the Newton polytope of Py,

2. let Z be the hypersurface in X defined by P,; the total Betti numbers
b.(RZy; Zs) and b.(Zy; Z5) are equivalent when A tends to infinity.

In this case we say that the family {7, } en is asymptotically mazimal.
Given a d-dimensional polytope A in (RT)%, does there exist an asymptot-
ically maximal family of hypersurfaces in XA? In this chapter we give a
positive answer to this question. From now on by polytope we mean a poly-
tope in (R*)%.

Theorem 5.1

For any polytope A there exists an asymptotically maximal family of hyper-
surfaces {Z)}xen in Xa such that for any A the Newton polytope of Z) is
A-A.
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5.1 Auxiliary statements

The proof of the existence of asymptotically maximal families is based on
two important results.

In [IV02] I. Itenberg and O. Viro, using the T-construction, proved that
there exist M-hypersurfaces of any degree in the projective space of any
dimension.

Theorem 5.2 (I. Itenberg and O. Viro)

Let d and m be natural numbers, and T be a primitive d-dimensional sim-
plex. Put T = m - T Then, there exists a primitive convex triangulation
7re of T and a sign distribution D(7ra) at the vertices of Tra such that the
T-hypersurface Zy' obtained via the combinatorial patchworking from Tra
and D(7p4) is maximal.

In fact, we use only an asymptotical version of 5.2. The proof of this
asymptotical version is much simpler than the proof of 5.2. It can be ex-
tracted from [IV02] and was communicated to us by the authors. The asymp-
totical version of 5.2 is reproduced in Section 5.2 below.

The second important result we use is due to F. Knudsen and D. Mumford
[KKMSD67].

Theorem 5.3 (F. Knudsen and D. Mumford)
Let A be a polytope. There exists a positive integer | such that | - A admits
a convex primitive triangulation.

In the sequel, when there is no ambiguity on the triangulation of a poly-
tope A and the sign distribution chosen, we denote by Ha the piecewise-linear
hypersurface in A obtained by 7-construction, H{ the piecewise-linear hy-

persurface in A,, I?; its image in 3, and Za the corresponding hypersurface
in XA.

5.2 Itenberg-Viro asymptotical construction

Theorem 5.4
For any positive integers m and d such that m > d + 1, there exists a
hypersurface X of degree m in RP? such that

bi(RX) > (m—-2)(m—3)...(m—d—1).
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5.2.1 Proof of Theorem 5.4

We describe a triangulation 7 of the standard simplex 7' = 7} and a distri-
bution of signs at the integer points of 7" which provide via the combinatorial
patchworking theorem a hypersurface with the properties formulated in The-
orem 5.4.

To construct the triangulation 7, we use induction on d. If d = 1, the
triangulation of [0,m] is formed by m intervals [0,1], ..., [m — 1,m] for
any m. Assume that for all natural £ < d the triangulations of the stan-
dard k-dimensional simplices of all sizes are constructed and consider the
d-dimensional one of size m.

Denote by 1,...,zq the coordinates in R?. Let T;ifl =TnNnA{zg =
m — j} and T be the image of Tf‘l under the orthogonal projection to
the coordinate hyperplane {z4 = 0}. Numerate the vertices of each simplex
Ty Ty, T, = T4 as follows: assign 1 to the vertex at the origin and
¢ + 1 to the vertex with nonzero coordinate at the i-th place. Assign to
the vertices of T !, ..., 7%} the numbers of their projections. A triangu-
lation of each simplex TO, .oy Ty is constructed. Take the corresponding
triangulations in the simplices Tf‘l.

Let [ be a nonnegative integer not greater than d — 1. If m — j is even,
denote by T]-(l) the [-face of T;j_l which is the convex hull of the vertices with

numbers 1,...,l+ 1. If m — j is odd denote by Tj(l) the [-face of le*1 which
is the convex hull of the vertices with numbers d —1[,...,d.
Now for any integer 0 < j < m — 1 and any mteger 0l <d-1,

take the join T](+)1 * T(d D The triangulations of T(jzl and T(d =D deﬁne
(d—1-1)

a triangulation of T it *x TG . This gives rise to the desired trlangulatlon
7 of T. One can see that ’7' is convex.

The distribution of signs at the vertices of 7 is given by the following rule.
The vertex gets the sign “+” if the sum of its coordinates is even, and it gets
the sign “—” otherwise.

Lemma 12 For the hypersurface X of degree m in RP¢ provided according
to the combinatorial patchworking theorem by the triangulation T and the
distribution of signs defined above, one has

(m=2)(m—=3)...0m—d—-1), ifm>d+1,

0, otherwise.

b (RX) > {
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To prove Lemma 12 we define a collection of cycles ¢;, i € I of H (in
fact, any ¢; is also a cycle of the hypersurface H C T, and moreover, of the
hypersurface H N (R*)?). The cycles ¢; are called narrow.

The collection of narrow cycles ¢; is constructed together with a collection
of dual cyclesb;. Any dual cycle b; is a (d—1—p)-cycle in T\ H (where p is the
dimension of ¢;) composed by simplices of 7, and representing a homological
class such that its linking number with any p-dimensional narrow cycle ¢y is
51'19-

Let us fix some notations. For any simplex Tj(l) (where 1 < j7 < m and
0 <1< d-1), denote by (Tj(l))* the union of the symmetric copies of Tj(l)
under the reflections with respect to coordinate hyperplanes {z; = 0}, where
1=1,...,,if m—jiseven,and ¢t =d—1{,...,d — 1, if m — j is odd, and
compositions of these reflections.

Any simplex Tj(l) is naturally identified with the standard simplex le in
R' with vertices (0,...,0), (5,0,...,0), ...,(0,...,0,5) via the linear map

0 l :
L;:T;” — T} sending

1. the vertex with number ¢ of Tj(l) to the vertex of le with the same

number, if m — 7 is even,

2. the vertex with number 7 of Tj(l)

t—d+1+1,if m — jis odd.

to the vertex of T]l with the number

It is easy to see that Eé- is simplicial with respect to the chosen triangulations
of Tj(l) and T;. The natural extension of £} to (Tj(l))* identifies (Tj(l))* with
(T]l)* and respects the chosen triangulations.

By a symmetry we mean a composition of reflections with respect to
coordinate hyperplanes. Let s(; be the reflection of R? with respect to the
hyperplane {z; = 0}, i = 1,...,d. Denote by s the symmetry of (T}“)*
which is identical if m — j is even, and coincides with the restriction of
S(d—1—1) © - - - O §(4—1) ON (T]Hl)* if m — j is odd.

The narrow cycles and their dual cycles are defined below using induction
on d. For d = 1 the narrow cycles are the pairs of points

(1/2,3/2),...,((2m —5)/2, (2m — 3)/2).
The dual cycles are pairs of vertices

(I,m—-1),(2,m),(3,m+1),...,(m—2,m),
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if m is even, and pairs of vertices
(1,m),(2,m—1),(3,m),...,(m—2,m),

if m is odd.

Assume that for all natural m and all natural £ < d the narrow cycles c;
in the hypersurface H C T* and the dual cycles b; in Tk \ H are constructed.
The narrow cycles of the hypersurface in T;,iz are divided into 3 families.

Horizontal Cycles. The initial data for constructing a cycle of the
first family consist of an integer j satisfying inequality 1 < 7 < m — 1 and
a narrow cycle of the hypersurface in 79! constructed at the previous step.
In the copy (Tf’l)* of T41, take the copy c of this cycle and b of its dual
cycle.

There exists exactly one symmetric copy of 17 j+1 incident to b. It is TJO+1
itself, if m — j is odd, and either T}, or s(— 1)(TJ+1) if m — j is even. If
the sign of the symmetric copy s(T},,) of T},, incident to b is opposite to
the sign of ¢, we include c in the collection of narrow cycles of H. Otherwise
take s(4)(c) as a narrow cycle of H. The dual cycle of ¢ (resp., sq)(c)) is the
suspension of b (resp., s(q)(b)) with the vertex s(T7,,) (resp., s@)(s(T};1)))
and with the vertex s(T}_,) (resp., s@)(s(T}1)))-

Co-Horizontal Cycles. The initial data for constructing a cycle of
the second family are the same as in the case of the horizontal cycles: the
data consist of an integer j satisfying inequality 1 < 7 < m —1 and a narrow
cycle of the hypersurface in 7971,

In the copy (Tf’l)* of T4, take the copy c of this cycle and b of its

dual cycle. If the sign of the symmetric copy s(TJOH) of TJQle incident to b

coincides with the sign of ¢, take b as dual cycle of a narrow cycle of H.
Otherwise take s()(b). The corresponding narrow cycle is a suspension of c

(resp., s@)(c)).

Join Cycles. The initial data consist of integers j and [ satisfying
inequalities 1 < j < m —1,1 <[ < d— 2, the copy ¢; C (T}H)* of a
narrow cycle of the hypersurface in (T}H)*, the copy ¢o C (Tf‘l_l)* of a
narrow cycle of the hypersurface in (Tf_l_l)* and the copies by C (T},)).
and by C (T]f’l’l’l),k of the dual cycles of these narrow cycles.

One of the joins by * by and st (by) * s?’l’l(bg), belongs to 7,; denote it
by J. If the signs of ¢; and ¢, coincide, take J as the dual cycle of a cycle of
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H. Otherwise take 5(a)(J). The corresponding narrow cycle is either c; * ¢y,
or sh,1(c1) x 5§77 (c2), or s(g)(e1 % c2), or s(ay(shyi(er) ¥ 5577 ().

Proof of Lemma 12. Both ¢; and b; with ¢ € I are Zy-cycles homologous
to zero in T', which is homeomorphic to the projective space of dimension d.
The sum of dimensions of ¢; and b; is d — 1. Thus we can consider the linking
number of ¢; with 7 € I and b, k € I taking values in Z,. Each ¢; bounds
an obvious ball in 7". This ball meets b; in a single point transversally and
is disjoint with by for k # ¢ and 4,k € I. Hence the linking number of ¢; and
bk is 52]{: o "

Therefore the collections of homology classes realized in 7'\ H and H by
b;,i € I and ¢;,1 € I, respectively, generate subspaces of H, (T \ H; Z5) and
H, (ﬁ[ ; Zs) and are dual bases of the subspaces with respect to the restriction
of the Alexander duality. Hence ¢; with ¢ € I realize linearly independent
Zy-homology classes of H.

It remains to show that the number of narrow cycles is at least

(m—=2)(m—3)...(m—d—1),

if m > d+ 1. The statement can be proved by induction on d. The base
d = 1is evident. To prove the induction step notice, first, that the statement
is evidently true for m = d + 1. Now, we use the induction on m and obtain
the required statement from the inequality

m-=3)(m—-4)...(m—-d—-2)+2(m—-3)(m—4)...(m—d—1)

ISH

+> [(m=2)(m=3)....m—k—-1][(m—-=3)(m—4)...(m—d+k —1)]
>(m—-2)(m—-3)...(m—d—1).

This finishes the proofs of Lemma 12 and Theorem 5.4. O

Remark 6 The family of hypersurfaces in RP¢ constructed in Theorem 5.4
1s asymptotically mazimal.

Proof . - Indeed, the total Betti number of a nonsingular hypersurface

1
of degree m in CP? is equal to (mfl)ﬂ;:(*l)ﬂ +d + (—1)%*'. This num-
ber is equivalent to (m—2)(m—3)...(m—d—1) when m tends to infinity. O
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5.3 Proof of theorem 5.1

For a positive integer A\ put Ay = A - A. Let [ be a positive integer such
that A; admits a primitive convex triangulation 7 (see 5.3). Denote by v
a function certifying the convexity of 7. Let 7, be the triangulation of Aj,
obtained from 7 by multiplication of its simplices by A.

We can assume that A > d + 1. Let § be a d-dimensional simplex of
7. The convex hull of the interior integer points of A - § is a d-dimensional
simplex (A — (d+1))-0. Put 6y = A-d and 6} = (A — (d+ 1)) - . For any
d-dimensional simplex §, of 7, apply the construction of Lemma 12 to the
convex hull §} of the interior integer points of §5. Complete the triangulation
of 6, to a convex triangulation of §, whose only extra vertices are the vertices
of d in the following way. Let vy_(a+1) be a convex piecewise-linear function
certifying the convexity of the triangulation of §}. Define a convex function
I/j{ on &y choosing the values of vy_(411) at the integer points of ) and the
value v at the vertices of ), where v is large enough (see Remark 1). Note
that 14 restricted to 0} coincides with v)_(411). If the decomposition defined
by 14 is not a triangulation, we slightly perturb Va—(a+1) (without changing
the triangulation of ¢) to break the polytopes of the subdivision which are
not simplices. Denote by 7 the obtained triangulation of §,.

The only vertices of ’7'/‘\5 in d, \ 0} are the vertices of §,. One can choose
the same value v of the functions 1§ at the vertices of all the d-dimensional
simplices § of 7). Hence, the functions 4 can be glued together to form a
piecewise-linear function v, on A,; which is, by construction, convex on each
d-dimensional simplex of 7. Let ¢/ be a function certifying the convexity of
7x- Then, for sufficiently small € > 0 the function v = v/ + ev, certifies the
convexity of the triangulation obtained by gluing the triangulations of the
d-dimensional simplices of 75. Thus, one gets a convex triangulation 7¢{ of
Ay;. Choose a sign distribution D(7}) at the vertices of 74 in such a way that
on each simplex ¢ the distribution coincides with the one Lemma 12. Let
Zp,, be the hypersurface obtained via the combinatorial patchworking from
i and D(7}).

Proposition 5.5 The family of hypersurfaces Za,, of Xa constructed above

18 asymptotically mazrimal.

Proof . - The total Betti number of Z,,, is equivalent to Vol(A);) when
A tends to infinity (see Proposition 2.15). For each d-dimensional simplex
¢ of 7 consider the narrow cycles of H3, N (d}). which are constructed in
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the proof of Lemma 12. Since the narrow cycles are constructed with the
dual cycles, the union of the obtained collections of narrow cycles consists
of linearly independent cycles. Thus, b.(RZa,,; Z2) > Vol(A;)ny, where ny
is the number of narrow cycles in each d}. Since n) ~ Vol(d}), we have
nx ~ Vol(0,). So, b,(RZx,,; Z>) is equivalent to Vol(A;) Vol(d,). The latter
number is equal to Vol(A),). O
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Chapter 6

Newton polytopes without
maximal complete intersection

In this chapter we show that for any integer d greater than 2 there exist
polytopes A? C (R )4 of dimension d such that the hypersurfaces defining a
maximal complete intersection in X, cannot all have the Newton polytope
Ag.

Let Ay be the tetrahedron in R® with vertices (0,0,0),(1,0,0),(0,1,0)
and (1,1, k). Note that the only integer points of Ay are its vertices.

Proposition 6.1 Let k > 5 be an integer, and Z1 and Z, be real algebraic
surfaces in Xa, with Newton polytope Ay. Assume that Zy and Zy define a
complete intersection Yy in Xa,. Then Yy is not mazimal.

The proof relies on the estimation of the Betti numbers of the complex
and real parts of the complete intersection Y} of two surfaces whose Newton
polytopes coincide with Ay.

Lemma 13 Let Y} be the complete intersection of two surfaces in Xa, whose
Newton polytopes coincide with Ay. Then b,(Yy; C) = 2k.

Proof . - By corollary 2.18, we have

b.(Yi;©) =2Vol(Ag) — Y Vol(I') +4.

So, we get b, (Yy; C) = 2k. O
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Proof of Proposition 6.1. According to Lemma 13, we have b,(Y}; C) =
9k. Thus, b, (Ys; Zo) > 2k.
Let fi and f; be the polynomials defining the two surfaces. Then,

i@y, z) =az +by+ 2 +d (1=1,2)

for some (ay, by, ¢, d;) in R*. The change of variables Ay : x — z, Ay 1y — v,
Ay : z = 2z is a diffeomorphism of the first octant (R%)?, where R* = {z €
R:x > 0}. Let @; be another octant, and ¢; be the diffeomorphism from Q;
to (R)? defined by ¢s(z,y,2) = (|z|, |y],|2[). Then v; = ¢ 0 Ay o ¢; is a
diffeomorphism from @); to itself. The diffeomorphism ; maps the zeros of
f1 to the zeroes of ¢;,(f;) and ¥;,(fi)(x,y, 2) = ez + by + ¢z + d;. Thus, in
each octant, Y} is diffeomorphic to the intersection of two plans. Hence, the
number of connected components of Y is at most 8. So, Y is not maximal
for k > 5. O

The example above is to compare with the following result in dimension 2.

Proposition 6.2 Let A be a two-dimensional polygon. For any positive in-
tegers A\ and Ay there exist algebraic curves Cy et Cy in XA such that

e the Newton polygons of Cy et Cy are A\ - A and Ay - A, respectively,

o the curves C; et Cy define a 0-dimensional maximal complete intersec-
tion in Xa.

Proof . - We use here the Cayley trick. Take any primitive convex trian-
gulation 7 of A. By homothety, 7 induces a triangulation 7; on A; - A. Put
A; = A\; - A. Consider the following subdivision dy of the Cayley polytope
C(A1,Ay). In the faces of C'(Ay, Ay) corresponding to A; and A, take the
triangulations 7; and 7y, respectively. Each 3-dimensional polytope of the
subdivision dq is the convex hull of a triangle of 7, and a triangle of 75 which
are the multiples of the same triangle of 7. Since 7 is convex, d; is also con-
vex. Let 1y be a convex function certifying the convexity of dy, and let v; be
the convex function defined by v1(0,1,z,y) = Ci1y + Cox with C; > Cy > 0
and v1(1,0,z,y) = 0. Put v3 = vy + 1. If C; is sufficiently small, the
function v3 induces the following refinement d; of J,. Each 3-dimensional
polytope of §y is subdivided into two cones whose bases are triangles in A,
and A,, respectively, and a join .J of two edges: one in A; and the other one
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in A,. Take any convex primitive triangulations 7! and 7} refining 7; and 7,
respectively. They define a convex primitive refinement d, of ;. Choose a
sign distribution at the vertices of d, and apply the procedure of the com-
binatorial patchworking. Let J be a join of the decomposition §; described
above. It is triangulated into primitive tetrahedra t; and has lattice volume
A1Ae. Each t; has a symmetric copy containing a point of the T-complete
intersection constructed. Thus, the number of intersection points obtained
is A1 A2 Vol(A) and the complete intersection constructed is maximal. 0

Proposition 6.1 can be generalized in the following way.

Proposition 6.3 For any positive integers d and n < d there exists a d-
dimensional polytope Ay such that n hypersurfaces defining a maximal com-
plete intersection in Xa, cannot all have the Newton polytope Ag4.

Proof . - Consider the simplex o} in R? with the vertices

(0,0,...,0,0), (1,0,...,0,0), (0,1,...,0,0), ..., (0,0,...,1,0),
1,1

Let Y, be a complete intersection of hypersurfaces in X,, such that all
these hypersurfaces have Newton polytope 0. Proposition 2.16 implies that
b.(Y; Z2) tends to infinity when £ tends to infinity.

Let fi,..., f. be the polynomials defining the hypersurfaces. Then,

d—1
fl(xa Y, Z) =ajo+ Z a1;T; + a'l,dxdk (l =1,--- ,TL)
i=1
for some (a;,- - ,a;,,) in R*™. The change of variables Ay : x; — x; for i #

n, Ay : x, — z,% is a diffeomorphism of the first orthant (R* )¢, where R} =
{x € R:z > 0}. Let Q; be another orthant, and ¢, be the diffeomorphism
from @Q; to (R%)? defined by ¢;(z1,---,zq) = (Jz1],---,|za]). Then ¢; =
(;Sj_l o Ay o ¢; is a diffeomorphism from @); to itself. The diffeomorphism
Y; maps the zeros of f; to the zeroes of ¥, (f;) and ¢, (fi)(z1,...,24) =
al,o—i-Zf:l ai;x;. Thus, in each orthant, Y} is diffeomorphic to the intersection
of n hyperplanes. Hence, b, (RY;;Z5) is bounded.

So, there exists a number ky such that for any k£ > ky and any complete
intersection Yj in X;, one has b,(RY}; Zo) < b, (Yy; Zs). O
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Chapter 7

Asymptotically maximal
families of complete
intersections

In this chapter we generalize the results of Chapter 5 to complete intersec-
tions.

7.1 Statement

Let A be a d-dimensional polytope in R?, and k£ be an integer such that
1 < k < d. Knudsen-Mumford theorem 5.3 asserts that there exists a pos-
itive integer [ such that [ - A admits a convex primitive triangulation. Let
A1, -+, A, be k positive integers. Denote by A, the polytope A/ - A. Let
{(Atmy 5 Mem) tmen be a sequence of k-tuples of positive integers such that
Aiym tends to infinity for any ¢ = 1,...,k. Let {(Zx,,., ", Zx.,.)}m be 2
sequence of k-tuples of algebraic hypersurfaces in XA such that Z,,, has
Newton polytope Ay, .. Assume that for any natural number m the variety
Yo=2Z1;mN---NZy, is a complete intersection.

Definition 7.1.1 Under the above hypotheses, the family {Y;, }men is called
asymptotically mazximal, if b,(RY,,; Zs) is equivalent to b.(Y,,; Zy) when
m tends to infinity.
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Theorem 7.1

Let A be a d-dimensional polytope, and k be an integer number satisfying
1 <k<d Let {(Am; -, Aem)}men be a sequence of k-tuples of natural
numbers such that A, tends to infinity for any «+ =1, ..., k. Then, there ex-
ists a sequence of k-tuples {(Zy, "+ , Zx,,,) }men of algebraic hypersurfaces
in XA such that

1. Zy,,, has Newton polytope A,

2. for any natural m, the variety Y, = Zi, N --- N Zy, Is a complete
intersection,

3. the family {Y, }men is asymptotically maximal.
The proof is based on the following result of Itenberg and Viro.

Theorem 7.2 (I. Itenberg and O. Viro)

Let A be a primitive d-dimensional simplex. For any k-tuple Ai,---, )\, of
natural numbers, there exist piecewise-linear convex functions fiy, . . ., pix on
A AL Mg - A, respectively, and sign distributions at the vertices of the
corresponding triangulations of \; - A, ... Az - A such that the real complete
intersection in Xpo = CP? obtained via Sturmfels’ theorem 2.9 from these
data is maximal.

In fact, as in Chapter 5, we use only an asymptotical version of 7.2. The
proof of this asymptotical version is much simpler than the proof of 7.2. It
can be extracted from [IV02] and was communicated to us by the authors.
The asymptotical version of 7.2 is reproduced in Section 7.2 below.

7.2 Itenberg-Viro asymptotical statement

Theorem 7.3
For any positive integers k, mi,...,my and d such that k < d and m; >
d+1 (j =1,...,k), there exists a complete intersection X of multi-degree

(my,...,mg) in RP? such that

b(RX) > > (H(mj—Q)(mj—?))---(mj—ij—1))

t1+...+ipg=d \j=1

(the summation is over all possible decompositions i; + ...+ iy = d of d in
a sum of k positive integer numbers).
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Proof of Theorem 7.3.
The notations used here are those of Section 5.2.1. Take the standard

simplices T)% , ..., T4 and triangulate the Cayley polytope C(T ,..., T3 )
(see subsection 2.3.2) in the following way. Let i1, ..., ix be nonnegative

integers such that 7y + ...+ 4 = d, and put 40 = 0. For any j = 1,...,k
consider the face of T,‘flj with the vertices having the numbers

A+t L

Denote by J;,. s, the join of the corresponding faces of C(T}% ,...,T% ). The
simplices J;, ;. (for all the possible choices of nonnegative integers such that
i1+ ...+ i = d) form a triangulation 7' of C(T% ,..., T2 ).

Take for each simplex Tr‘flj the triangulation and the distribution of signs
described in subsection 5.2.1. For the simplices Tffn, . ,T;flk take the cor-
responding triangulations and distributions of signs. The triangulations of
T4 ,...,T¢ induce a refinement 7 of 7'. Notice that 7 is a primitive trian-

mi?°

: d d
gulation of C(Ty7,,..., Ty, ).

Lemma 14 For the complete intersection X of multi-degree mq, ..., my in
RP¢ provided according to Proposition 2.10 by the triangulation T and the
distribution of signs defined above, one has

h(RX) > ) (H(mj —2)(mj —3)...(m; —i; — 1))

i1+otig=d \j=1

(the summation is over all the possible decompositions iy + ...+ iy =d of d
in a sum of k positive integer numbers).

Proof. = We define a collection of narrow cycles ¢;, ¢ € I of H. The
families of narrow cycles of H are indexed by the decompositions ¢1+. . .+%; =
d of d in a sum of k£ positive integer numbers.

Fix a decomposition Z : 71 +...4+ i, = d of d, where iy, ..., 7, are positive
integers. The initial data for constructing a narrow cycle of the correspond-
ing family consist of narrow cycles ¢y C HjI, j =1,...,k, constructed in

subsection 5.2.1 for the hypersurface H JI in fff,{J produced via the combina-
torial patchworking by the triangulation and distribution of signs described
in subsection 5.2.1.

The i;-dimensional face A% of Tr(ij with the vertices having the numbers

T SRS FEPREES IUNE SRSy gy |
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are naturally identified with 75}, via the linear map £% : A% — T, sending
the vertex with number 7; +...41%; 1 +7 of A% to the vertex with number r
of Tf,{j. The map L% is simplicial with respect to the chosen triangulations
of A% and Tf,{j. Denote by A the union of the symmetric copies of A%
under the reflections with respect to coordinate hyperplanes {z; = 0} in R?,
where i =4 +...+%_1+2,...,71 +...+%; + 1, and compositions of these
reflections. The natural extension of £ to A7 identifies AY with (173,).

and respects the chosen triangulations. We also denote this extensmn by
L. Denote by A% ' the union of faces of Td, corresponding to Ay, and by
L the corresponding map from A? to (Tn%]) Put &) = (£9) Hcg))-

Let by C T, \HI be the dual cycle of c;y. Put byy = (£4)7' (b))
Consider the symmetric copies of b(l) ,b( k) under the reflections with re-
spect to coordinate hyperplanes {z; = 0} in R¥*4 where i = k+1,...,k+d,
and compositions of these reflections. Among these symmetric copies there
exist copies b b(,c of b(l), e b(k), respectively, such that

~

e the join 13’(1) * ...k b’(k) is the union of simplices of 7,

e all the vertices of 13’(1) * ...k l;’(k) have the same sign.
Let é’(l), e ,é’(k) be the corresponding symmetric copies of ¢y, ..., k), Te-
spectively. Then, take the intersection BN (¢(;) *...* ¢()) as a narrow cycle
of H.
The number of narrow cycles in the family indexed by Z is at least
k
H(m-— mj—3)...(mj—i]-—1).

=1

Thus, the total number of constructed narrow cycles in H is at least

> (H(mj—2><mj—3>...(mj—7;,-_1))

t1+...+ig=n \j=1

(the summation is over all the possible decompositions i1 +. ..+4x = d of d in
a sum of k positive integer numbers). The linear independence of the narrow
cycles of a hypersurface an, C Tl forany 1 <l <dandany 1 < j <k

implies the linear independence of the narrow cycles constructed in H. O
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Remark 7 Denoteby Y, . the complete intersection constructed in Lem-

ma 14. Then, the family {Y,5, . Ymi, . .m, 18 asymptotically mazimal.

Proof . - Note that Eil—f-...-i—ik:d (H?Zl(mj —2)(m; —3)...(mj —i; — 1))
is equivalent to the mixed volume of 7%, , ..., T4 . Thus, by Proposition 2.16.
be(RY,n, ,...my ) 1 equivalent to b, (Y, ..m, ), when all m;’s tend to infinity.

7.3 Proof of Theorem 7.1

Let be a primitive convex triangulation of /- A, and (A, -+, A¢) be a k-tuple
of positive integers. Denote by A, the polytopes A\;l - A. We can assume
that ); is greater than d + 1 for any 2.

Let 0 be a d-dimensional simplex of 7. Denote by 61, ..., 0y the cor-
responding simplices in Ay, ..., Ay,, respectively. Subdivide the Cayley
polytope C(Ay,,...,Ay,) into convex hulls of 61, ..., d, where § runs over

all d-dimensional simplices of 7. For a d-dimensional simplex § of 7, put
(5Z:)\Z(5and 6;: ()\Z—(d+1))5, where 1 = 1,,]{:

For any d-dimensional simplex 6 of 7, take the triangulation of C'(d}, .. ., ;)
and the distribution of signs at the vertices of this triangulation described
in the proof of Theorem 7.2. Extend the triangulations of the Cayley poly-
topes C(d7, ..., 0},) to a primitive convex triangulation 7 of C'(Ay,,...,Ay,)
in the same way as it was done in Chapter 5, Section 5.3. Extend also the
distributions of signs at the integer points of polytopes C(d], ..., d}) to some
distribution of signs D at the vertices of 7.

Let Y}, .., be the complete intersection in XA obtained via Theorem
2.10 from 7 and D.

Proposition 7.4 The family of complete intersections Yy, . », constructed
above is asymptotically maximal.

Proof . - By the construction, we have b,(RY), ) > Vol(A;) - ny, .,
where ny, ., is the number of narrow cycles in each C(d], ..., d};). Note that
Nay,..\, 1S equivalent to b,(RY)? ) when all numbers Ay, ..., Ay tend to in-
finity. So, by Proposition 2.16 and Remark 7, we obtain that b,(RY), . 1)
is equivalent to b,(Y},,..»,) When the numbers Ay, ..., Az tend to infinity. O
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Chapter 8

Maximal complete intersections
in toric varieties corresponding
to pyramids

In this section we describe a construction of maximal complete intersec-
tions of two hypersurfaces in XA, where A is a pyramid whose basis is a
2-dimensional Nakajima polytope.

Let o and m be non-negative integers such that (o, m) # (0,0), and n be
a natural number. Denote by §7"™ the polygon having vertices (0,0), (m +
na,0), (0,n), (m,n) in R%. Notice that, up to the change of coordinate A :
(1, 22) — (x1,22), every 2-dimensional Nakajima polytope is equal to one
of the polygons 62™. If m # 0, the toric variety associated with ™ is a
rational ruled surface £,. For ¢ = 1,2 let A®™"% be the convex hull of
the points (0,0,0), (m; + an;,0,0), (0,n;,0), (m;,n;,0) and (0,0,l;). The
pyramid A" is a cone of apex (0,0,1;) over %™ x {0}. Assume that
m; = Al; for some nonnegative integer A and n; = pl; for some positive
integer L.

Theorem 8.1

Let o, my, m; be nonnegative integers, and nq,no,l1,ly be positive integers.
Assume that there exist a non-negative integer \ and a positive integer u
such that m; = M;, n; = pl;, and (o, \) # (0,0). Then, there exists a
maximal complete intersection in X AvmunL = X A2l of two surfaces

with Newton polytopes A¥™ ™1 and A$™™%  respectively.
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The construction used in the proof of Theorem 8.1 is inspired by Itenberg-
Viro’s construction of maximal complete intersections in the projective spaces

(see [IV02]).

8.1 Triangulation

Put A; = AP™ ™k Let A%, Al A?) A% and A} be the vertices of the pyra-
mid A; (see Figure 8.1). We use here the Cayley trick (see Subsection 2.3.2)
and describe a convex triangulation of C'(Ay, Ay). We construct the trian-
gulation step by step to subdivide further and further the Cayley polytope
C(A1,Ay). On each step the subdivision described is a refinement of the pre-
vious one. We describe the construction in the case when §7™ and §3>™2
are nondegenerate Nakajima polygons. If 6;*™ and 672" are triangles, the
description is the same except that the segments [AZ, A?] are reduced to a
point, and the triangles (A% A3, A}) are reduced to a segment (see Figure
8.1). All figures are drawn in the case o = 0.

Al

K3

Figure 8.1: The pyramids A;

To simplify the figures, we represent the pyramids as triangles and their
convex hull as a 3-dimensional polytope. More precisely, we use a pro-
jection along ((0,0,0,0,0),(0,0,1,0,0)) and draw the segments parallel to
((0,0,0,0,0),(0,0,1,0,0)) as a point, the plan pieces containing a line paral-
lel to ((0,0,0,0,0),(0,0,1,0,0)) as segments, and so on. Figure 8.2 represents
C(Aq, Ay) with the above convention.

At the first step we set the value of v; at A} to 1 and the values at other
vertices of C(Aq, Ay) to 0. We define v to be the function whose graph is the
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(45, 4] (43, A3]

.
p
A
X2
;
.
.

(43, A}]

Ay

At

49, 4]

Figure 8.2: The Cayley polytope C'(Aq, Ay).

lower part of the convex hull of all the points (A7, 14 (A47)) (see Remark 1).
The obtained subdivision ¢; of C'(A;, Ay) has two 4-dimensional polytopes.
Denote by P, the 4-dimensional polytope which is the cone over Ay, and
denote by P the other 4-dimensional polytope of ¢; (see Figure 8.3).

The second step consists in slicing the two pyramids orthogonally to the
direction of (A%, A}) (see Figure 8.4). For that purpose we slightly perturb v,
by a piecewise-linear convex function p; whose value at an integer point p of
C(Aq, Ay) with the fifth coordinate x5 is equal to e®s. The lower part of the
convex hull of the points (p, p;(5)) is the graph of ;. We put v = v1+€1- g
for a positive sufficiently small €;. The function v, defines a convex refinement
52 of 51.

Note that P; is now subdivided by the convex hulls of each slice of A,
with the convex hull @, of A?, A}, A? and A3.

A part P* of the decomposition of P, is the convex hull of three parallel
quadrangles Ty, T, T¥~* for k = l,,...,2. The only exception is the last
part P! which is the convex hull of two quadrangles and the point A3. We
represent P* on the figures as a prism.

We subdivide the decomposition d5 choosing slopes along the z4-axis
of the integer horizontal sections of the pyramids. Namely, choose posi-
tive numbers A, C, and E satisfying the inequalities A > E > C. Let
it be the piecewise-linear function defined by the following values at inte-
ger points of C'(Ay, Ay): if an integer point p € C(A1, Ay) has coordinates
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[Aga A%] ’/

Py

[A?: Aﬂ

Figure 8.3: First decomposition of C(Aq, A).

Figure 8.4: Slicing A;
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|43, A7) A, Af]

A9, A3]
[A}, Al
Figure 8.5: Decomposition of P,
[A}, Al Q1 A%, Al

22k 53,2k
Y [By™ By ]
%k

2k—1
2

[B;’ kfl’ Bg,Qkfl]

Figure 8.6: P*
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A%, Aj Q1 A3, Af]

(B, B3

02Kd 1 B _
[By™ By (B2t pi2k-1)

Figure 8.7: Subdivision of P*

(xla To,T3,T4, '/Ll5)7 then

,LI,Q(p) = A Ty lf (.’L’l,ﬂfg) = (0, 1) and Iy = 0[2],
pz(p) = C-z4if (z1,29) = (0,1) and z5 = 1[2],
p2(p) = E-xz4if (x1,22) = (1,0) and z5 = 0[2],
p2(p) = 0if (z1,22) = (1,0) and z5 = 1[2]

We put v3 = vy + €, - 1o, for sufficiently small positive e5. Figure 8.8 shows
the effect of the small perturbation € - uy on the pyramids A;.

We then subdivide the horizontal sections of the pyramids in a similar
way. Of course, this induces a subdivision of the pyramids themselves and
also of d3. More precisely, first, we slightly perturb v3 by a piecewise-linear
convex function ps whose value at an integer point p of C'(Ay, Ay) with the
third coordinate x5 is equal to e®. The lower part of the convex hull of the
points (p, u3(x3)) is the graph of puz. We put vy = v3+ €3 - us for a sufficiently
small positive €3, and denote by d, the corresponding refinement of Js.

Choose positive numbers a, b, ¢, d, e, and f satisfying the inequalities
c>e>a>d>f>b Let uy be the piecewise-linear function defined by
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2,2k+1 3,2k+1
B; Bi
4
0,2k+1 I 1,2k+1
Bi, + S BZ +
7
4 i
B?Jk 3 B 2k
4 B i Ry’ e
¢
v,
1,2
z Rl
B?’Qk \ B;
~ ~
~
~
PR e k1
B B
0,2k—1 T2k—1
B; B} k

Figure 8.8: Subdivision of slices of pyramids A; into prisms

the following values at integer points of C'(Aq, Ay):

(

pus(p) = a-xz3if (x1,29) = (0,1), 4 = 0[2] and z5 = 0[2],
pa(p) b-xg if (x1,22) = (0,1), x4 = 1[2] and x5 = 0[2],
pa(p) ¢z if (x1,22) = (0,1), 4 = ny — 1[2] and z5 = 1]2],
$ pa(p) d-x3if (z1,22) = (0,1), x4 = ny[2] and x5 = 1[2],
a(p) e-x3 if (z1,29) = (1,0), z4 = 0[2] and z5 = 0[2],
a(p) f -z if (z1,29) = (1,0), x4, = 1[2] and x5 = 0[2],
[ wa(p) = 0if (x1,22) = (1,0) and z5 = 1[2]

Put v5 = vy + €4 - ug, for a sufficiently small positive €4, and denote by d5
the corresponding refinement of d,.

2k 3.k
B, B,
0,k,2 ] 1k2
D, D,
0,k,1 Lkl
D, D,
0,k 1
B, BZ‘Ic

Figure 8.9: Subdivision of a quadrangle
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1 T3 | T4 | X3X4 | Ty | T3 | T4 | T34
10000 [+ [+ |+ | + [+] + | + +
10010 |+ |+ | —| — [+ | + | - —
10001 |+ |+ |+ | + |- — | - —
10011 |+ |+ | —| — |=| = | + | +
10100 |+ | — |+ | — |[+]| — | + —
10110 |+ | — | = | + |+| — | - +
10001 [+ | — [+ — [-| + | - +
10111 | — |+ |+ | — |[+]| - | - +
01000 [+ [+ [+ + [+] + | + +
01010 |+ |+ | —| — |[+| + | - -
01100 |+ | — |+ | — |+ | — | + —
01110 |+ | — | = | + |+]| - | - +

Table 8.1: Sign distribution D.

The order chosen on a,b,c,d, e, f determines the triangulation of P; in-
duced by v5 (see Figure 8.9). Finally, we refine the triangulation into a convex
primitive one in the unique possible way.

We choose any convex triangulation of P, refining the subdivision de-
scribed and patching with the chosen triangulation of P; to obtain a convex
triangulation of C'(Aq, Ay). Take the following distribution D of signs at the
integer points of C'(Aq, Ay):

any integer point p with coordinates (x1,x2,x3, 24, x5) gets “” if the re-
duction of p modulo 2 is (1,0,1,1,1) and it gets “+”, otherwise.

Let Y be the complete intersection obtained applying Theorem 2.9 (more
precisely, Proposition 2.10). Here and after the orthants will be named after
the symmetry under which they are the image of the first one. For example,
the orthant ;3 is the image of (R*)? x (R")? under the symmetry s(5) with
respect to the hyperplane z3 = 0, and so on. Table 8.1 gives in each orthant
the sign of the integer points in Pj according to their parities (see Definition
2.2.2).

8.2 Counting Cycles

The nonempty 4-simplices in this construction are those that
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e cither have two vertices in A* and three vertices in A;, or have three
vertices in A* and two vertices in A3,

e in each Af the vertices of the simplex do not all carry the same sign.

Thus, any nonempty 4-simplex is the convex hull of a triangle and a segment
which do not belong to a symmetric copy of the same Ai, and both the
triangle and the segment have vertices of different signs. We are now going to
describe 1-cycles of the complete intersection constructed listing the unions of
nonempty 4-simplices containing these 1-cycles. A nonempty 4-simplex will
be represented by its intersections with A* and A%. We describe the signs
of the triangle and the segment corresponding to a nonempty 4-simplex up
to a complete change of signs in A‘{ and up to a complete change of signs in
A;. In the sequel of the text, we will often refer to a nonempty 4-simplex
meaning the edge of the T-complete intersection contained in it.

Remark 8 In the description we always assume that ny and ny are odd. The
other cases are similar, and there is a one-to-one correspondence between the
cycles we describe and those that appear in any other case.

To simplify the notations in the description of 1-cycles, we identify integer
points of C'(Ay, Ay) with their images under compositions of symmetries s;
and precise explicitly in what orthant appear the cycles under description.
We will often label on the figures the segments parallel to the x3-axis by their
slopes, and will refer to a segment of slope h as h-segment.

8.2.1 Type I cycles

The cycles of type I are composed by 4-simplices having an edge on A* and
a triangle on A* The edge on A can be either on a symmetric copy of
[A?) Al], or on a symmetric copy of [A%, A3]. In the first case we say that the
corresponding cycle is of type Ia, and in the second case we say that it is of
type Ib.

Cycles of type Ia

A typical edge of a cycle of type la is represented on Figure 8.10.
This edge corresponds to a 4-simplex which is a symmetric copy of the
convex hull of points E?’l and E?’H'l in Ay, and points Dg’2k+1’23, B;’Qk, and
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0,2k
At A3 B, a + gL

D;,2k+1,2j+1

1 0,2k+1,25
A(lJ Al DZY +1,25

Figure 8.10: Typical edge of a cycle of type Ia

DFTL2H 4y A, Here, [EY, EY**Y] is a primitive segment in [A?, Al]. Let
tor; be the triangle (DY**1%7 By? D124 1) e describe how this edge
is completed into a cycle. If [Dg’mC+1 2 D1’2k+1’2” ] is in the interior of Ay, then
the edge [DO 2RHL2 ' Dy L2 1] ex1sts It is called the symmetric edge
to [DYFT12H Dl 2041, 211 with respect to [D?F1%7 D)?H121] - Consider
the prism

0,2k+1,27 1,2k+1,25 0,2k+1,25+1 1,2k+1,25+1
(D27 + 7]’D2a + a]’DQa +1,25+ ’Dzy +1,25+ ,A(l) Al)

It contains the triangle (D5?**'* BL2F DIL2+12771y which is called the

symmetric triangle to ty ; with respect to [DY*FH127 DI 27 - This tri-
angle together with the edge [EY!, EY'*!] form a nonempty 4-simplex (since
we have a sign distribution depending only on the parity of coordinates).
Notice that the common boundary of this 4-simplex and

0,1 0,l+1 0,2k+1,2j 1,2k 1,2k+1,25+1
(El 1E1 >D2 ’B2 >D2 )

is nonempty. Thus, the corresponding edges of the T-complete intersection
patch together.

Replacing 32 , When it is possible, we get two other triangles
which together with [E{", 0l+1] form nonempty 4-simplices. We say that
these triangles are symmetmc to the previous ones with respect to the
section (Bg’Qk,B%’Qk, Bg’%, B;”Qk). When there is no ambiguity we call this
section the cd-section and denote it by (c,d). The four edges described
above patch together to form a 1-cycle.

2k 1,2k+2
by By#*
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We say that the 1-cycle described is the orbit of the edge € described on
Figure 8.10 under the action of the symmetries with respect to the c-segment
and to the cd-section.

Remark 9 The above cycles are in the orthant xrsx3xy4.

We can also have the sign distribution shown on Figure 8.11. We complete
the edge described on Figure 8.11 by taking its orbit under the action of
the symmetries with respect to the d-segment and to the cd-section (these
symmetries are called d-symmetry and cd-symmetry, respectively).

0,2k
A2 A3 By a + B

D21,2k+1,2]+1

-
-
-
-
-
-

-
-
4 -
< -
-
-
-

1,2k+1,25
DZ;IH-;]

1 _*(;216?#’1 2j
A[ll Al DZ’ ¥2]

Figure 8.11: Typical edge of a cycle of type Ia

Remark 10 The above cycles are in the orthant 3.

Cycles of type Ib

The cycles of type Ib are very similar to the cycles of type Ia. We could use
exactly the same description replacing the segment [A?, A}] by the segment
[A2) A3], and the prism whose segments parallel to the z-axis have slopes a,
¢, and d by the prism whose segments parallel to the x-axis have slopes a, b,
and d.

Recall that n; is assumed to be odd, so [A?, A3] has slope f. Consider
the edge €, corresponding to the 4-simplex s shown on Figure 8.12. The
4-simplex s is the convex hull of a primitive segment of [42%, A%] and the
triangle (D(Q),Qk,Qj’B;),Qk—}—l’ D;,2k+1,2j+1)'

We complete the edge €, described on Figure 8.12 to a cycle by taking
its orbit under the action of the symmetries with respect to the a-segment
and to the ab-section.
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1,2k,2j+1
D‘Z« il

+

1 _02k2'
A(I) Al DZY 12]

Figure 8.12: Typical edge of a cycle of type Ib

Remark 11 The above cycles are in the orthant xsx,.

Consider the edge €, described on Figure 8.13. It is completed by taking
its orbit under the action of the symmetries with respect to the b-segment
and to the ab-section.

yt f+ - A By d B;*

1,2k,2j+1
D27 il

-
-
-
-
-
-

-
-
g -
< -
s -
-
-

J =
A0 Al Dg,zk,zj

Figure 8.13: Typical edge of a cycle of type Ib

Remark 12 The above cycles are in the orthant x5xy.

Proposition 8.2 Let e; be a primitive edge of [AY, Al], and ey a segment of
slope either ¢ or d in the interior of Ay. Let e} be a primitive edge of [A2, A3,
and e}, a segment of slope either a or b in the interior of A,. Denote by E- the
set of pairs (e1,ez) and (€}, €h). Then, there is a one-to-one correspondence
between the elements of E1 and the cycles of type I. Thus, the number Ny of
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cycles of type I is equal to %ml (ng—2)(lo — 1)+ an, (,uil% — %2), if ly is even,

and %ml(n? —2)(l—1)+ anl(ui(b -1l +1) - l2;1), if lo is odd.

Proof . - The first part of the statement follows from the description of
the cycles. The number of edges e, (resp., €}) is the number of integer points
with odd (resp., even) fifth coordinate z5 in a triangular face of A, whose
base has length ns. O

8.2.2 Type II cycles

The cycles of type II are composed by 4-simplices having an edge on A;
and a triangle on (A9, A}, A?) A3)*. As cycles of type I they split into two
subtypes.

Cycles of type Ila

First, describe cycles that we call cycles of type IIa. With the chosen
distribution of signs these cycles are in the orthant zsx3x4 and z3. Consider
the edge € corresponding to the 4-simplex shown on Figure 8.14. The point
p of the ef-section that carries the sign “-” is the vertex of four triangles in
this section as shown on Figure 8.15. The point p is isolated in this section.
The edges corresponding to the four triangles together with [By**, B3]
form the cycle containing €.

Cycles of type IIb

The cycles of type IIb are those containing an edge € corresponding to
the 4-simplex shown on Figure 8.16. With the chosen distribution of signs,
they appear in the orthants x3z, and x5r3. The description of cycles of type
ITb is similar to the above one. Let & be the edge shown on Figure 8.16.
Let p be the point in the ef-section that carries the sign “-”. The edge €
is completed into a cycle by considering the three other triangles in (e, f)
containing p.

Proposition 8.3 Let e; be a primitive segment of [AY, A3], and p an integer
point in the interior of the horizontal section (A, A1, A2, A%). There is a one-
to-one correspondence between the pairs (e, p) and the cycles of type II. The
number Ny of cycles of type II is equal to ly(my — 1)(ny — 1) + a2ny(ny — 1).
O
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A

Aj
2 f
+ = eB§,2k+1 d n B3,2k+1
fBS’% & \. - 321’2]C
A

Figure 8.14: Typical edge of a cycle of type Ila

A}
+f
€12,2k+1 d B32k+1
4 +| B, + Dy
#By* a \ - By
+
Al

Figure 8.15: complete cycle Ila
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A A

_.I_
€
n = fB§,2k+1 + d B3t
1,2k
. BS’% a B,
Al Af

Figure 8.16: Typical edge of a cycle of type IIb

8.2.3 Type III cycles

The third type of cycles looks like the second one, except the fact that the
roles of (e, f) and (a, d) are exchanged.

Cycles of type 11la

With the chosen distribution of signs, the cycles of type Illa below are in
the orthants x4 and x3z4. Let € be the edge corresponding to the 4-simplex
shown on Figure 8.17. Let p be the point in the part of Ay represented on
Figure 8.17 that carries the sign “-”. The edge € is completed to a cycle (as
in the case of cycles of type II) by considering the three other triangles of
the part of A, represented here that contain p.

Cycles of type I11b

Let € be the edge corresponding to the 4-simplex drawn on Figure 8.18.
It can be completed to a cycle exactly as the cycles of type I1la. These cycles
appear in the orthants x3 and z3x4.

Proposition 8.4 Let ¢; be a primitive edge of [AY, A?], and p an integer
point in the interior of (A, AL, A3) (resp., (A3, A3, A3)) with odd third coor-
dinate (resp., even third coordinate). There is a one-to -one correspondence
between the pairs (e, p) and the cycles of type III. The number N3 of cycles
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d _ 3,2k+1
+ By

a B;,Qk

Figure 8.17: Typical edge of a cycle of type IlIa

d 2k
+ BgZ +1
J/ ; \ BL2k
2
+ a -

Figure 8.18: Typical edge of a cycle of type IIIb
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of type III is equal to (mg — Z)bT_lnl + iaunllg(lg —2) if ly is even, and
(mg — 2)IQT’1TL1 + iaunl(lg —1)% if Iy 4s odd. O

8.2.4 Mixed cycles

The cycles we describe here are called mized, because each of them is com-
posed by edges of two different types.

Type I-IT cycles

Cycles of type I-1I split into two subtypes.

Cycles of type I-11a

We start with an edge &; of type Ila corresponding to a 4-simplex that
has 2 vertices on [A?, A]] (see Figure 8.19). The edge ¢; has a common
endpoint with the edge €, of type Ia drawn on Figure 8.20. Notice that here
the d-segment is on the boundary of A,.

A7 A}
3,2k+1
Bk d S
0,2k & \ BL%*
-+ 9 _+_ 2
+ 2/ e
A Ap

Figure 8.19: Type I-Ila : €&

Consider two cases: either the point Dg’2k+1’2j has the sign “+”, or it
has the sign “”7. If Dg’2k+1’2] has the sign “4”, then the edge &, has a
common endpoint with the edge €3 represented on Figure 8.22. The edge €3
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0,2k
2 3 By + pl2k
A A 2 a B,

1 0,2k+1,25
A? Al DQ’ L

Figure 8.20: Type I-1la : &,

is obtained from &, by the symmetry with respect to the cd-section. Notice
that on Figure 8.22, we represented the symmetric prism to the prism of
Figure 8.20 by changing the segment of slope a.

In the case when Dg’2k+1’2j carries the sign “-”, the edge €, has a common
endpoint with the edge &’ which is obtained from &, by the symmetry with
respect to the c-segment. The segment &,’ patches with its symmetric image
with respect to the d-segment and so on until we reach the boundary of A,.
Denote by &,” the latter edge. It is contained in a 4-simplex having a facet
on the boundary of A,. Then using the c-symmetry we pass to another
symmetric copy s(A;) of Ay and get the edge &, . Let p be the point
in which the 4-simplex o corresponding to &," intersects a d-segment (see
Figure 8.21). Then sign(p) = sign(By™*) and we apply the cd-symmetry to
&," to get the edge &;" which patches with it.

We describe the rest of the edges forming the cycle in the case when
DY* 127 carries the sign “+” (the case when DY*™% has the sign “” is
similar). The edge &3 patches with the edge €, of type Ila shown on Figure
8.23. Switch now from the triangle on Figure 8.23 to the other triangle
containing the point with sign “-”. Then, we see that &, patches with the
edge €5 represented on Figure 8.24. Notice that &5 has a common endpoint
with a type Ia edge €z shown on Figure 8.25. Using the cd-symmetry we get
the edge &; (see Figure 8.26). The edge &; patches with a type Ila edge &g
of Figure 8.27 which has a common endpoint with &;. This completes the
cycle.

Remark 13 The only condition for the existence of the above cycles is the
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A

Figure 8.21: Type I-IIa : Crossing A,.

1 0,2k+1,25
Al D2: +1,25

Figure 8.22: Type I-Ila : &;
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A

Bg,2k+2

2,2k+1
By

£+ f Bg,Qk

- €

A

Figure 8.23: Type I-Ila : &,

A
Bg,2k+2 a T 3512’”2
B§,2k+1 d _ B3,2k+1
BB . B
= e
+ Al

Figure 8.24: Type I-1la : &;
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A

3,2k+1
By

D ~ b ;,2k+1,2]’

Al D(2],2k-+1,2j

Figure 8.25: Type I-Ila : &

1 0,2k+1,25
Al D2« +1.25

Figure 8.26: Type I-Ila : &;
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existence of an orthant in which the point py of Proposition 8.5 is isolated in
its horizontal section, and the points B;’% and Bg”?kﬂ are of opposite signs.
This is achieved either in orthant x3, or in orthant rsr3xy.

Af A
B2kt d _ B§,2k+1
2 j
1,2k
Y B . +52
+ L e
A T A

Figure 8.27: Type I-1la : &g

Cycles of type I-ITb

The same kind of description can be used in the case of cycles of type I-
IIb. Namely, start with the type IIb edge €; described on Figure 8.28. In the
orthant x3x4 the edge €; has a common endpoint with the edge €, shown
on Figure 8.29. In the orthant z;r, the edge €; has a common endpoint
with the edge €,/ having the same description as €, (except that one has to
change the sign of Bg’% shown on Figure 8.29). The cycle can be completed
in the same way as it was done for the I-ITa cycles.

Remark 14 The only condition for the existence of the above cycles is the
existence of the orthant in which the point py of Proposition 8.5 is isolated in
its horizontal section, and the points Bg’% and B§’2k+1 are of opposite signs.
This is achieved either in orthant x3x4, or in orthant xsxs.

Proposition 8.5 Let p, be an interior integer point of [AY, A{] (resp., [A2, A3]),
and py an interior integer point of [AS, A5 with odd (resp., even ) third coordi-
nate. The pairs (p1,p2) are in a one-to-one correspondence with the cycles of
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2,2k+1
By

0,2k
B,

Al

d B§,2k+1

a BL2k

Figure 8.28: Type I-IIb : &

1,2k,2j+1
D;

+

Al

L
Al Bg,zk

Figure 8.29: Type I-IIb : &,
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type I-II. The number Ny of these cycles is equal to (m1—1)(l,—1)+na| 2.0

Type II-III cycles

There are four different sorts of cycles of type II-III. They differ by the
symmetries that are used to describe them. For the first sort that we describe
here, we use the d-symmetry and the f-symmetry. The sorts of cycles are
labelled by the symmetries occurring in their description. For example, the
first sort is called type II-III df. The three other sorts are type II-1II ae, type
I1I-I1I de, and type II-III af. The cycles of types II-III df, II-III ae, II-III de,
and II-III af appear in the orthants x4, x3, 574, and x5x3, respectively.

Cycles of type II-11I df

A Af
+

e

> fngk+1 d B§,2k+l
+
a Bl,?k
BY2k o
2 +
AY Af

Figure 8.30: Type II-III df : &

We start with the edge €; of type Illa shown on Figure 8.30. It has a
common endpoint with the edge €, of type IIb described on Figure 8.31. All
the points on the f-segment have the same sign.

The edge &, has a common endpoint with &,’ which corresponds to the
neighboring triangle in the e f-section (see Figure 8.32). Continuing to climb
down this f-segment we get to an edge corresponding to a 4-simplex having
a facet on the boundary of A,. We then pass to another symmetric copy
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+
e
- > - fB§,2k+1 i d B§,2k+1
. BY2H i a Bl
AY Aj
Figure 8.31: Type II-III df : €,
A A}
_l_
e
< -
- o - fB§,2k+1 d B§,2k+1
. Bgzk i a pL2k
Al Ap

Figure 8.32: Type II-III df : Travelling along the f-segment.
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+
e
+ — fBg,QkJrl d Bg,2k+1
0,2k a 1,2k
e B + B,
AY Ap

Figure 8.33: Type II-III df : Changing of symmetric copy

of A, (see Figure 8.33), where we apply the f-symmetry and climb up the
f-segment to A, in a similar way. Finally, we get an edge which patches
with the edge €3 on Figure 8.34. To pass from €3 to the edge €, shown on
Figure 8.35 we use the d-symmetry. Then, we do the same trick backwards
to complete the cycle.

The cycles of type II-11I ae can be described in the same way replacing
the d-symmetry by the a-symmetry and the f-symmetry by the e-symmetry.
We start with the edge €; of type IlIb described on Figure 8.36. The edge
¢, patches with the edge €, of type IIb (see Figure 8.37). Then we continue
as for the type II-III df.

We now describe cycles of type II-III de. Start from edge &; of Figure
8.38. It patches with edge &, shown on Figure 8.39. Then, following the
cycle, we have edges €3 (see Figure 8.40), &, (see Figure 8.41), €5 (see
Figure 8.42) and &g (see Figure 8.43). Then, we use the e-symmetry to &g
to get the next edge and continue to follow the cycle to complete it.

The type II-III a f cycles can be described in the same way exchanging d
and a and also e and f. An edge €, to start is described on Figure 8.44.

Proposition 8.6 Let p; be an interior integer point of [A%, A?], and py an
interior integer point of [AS, A3]. The pairs (pi,p2) are in one-to-one cor-
respondence with the cycles of type II-1Il. The number N5 of these cycles is
equal to (ny — 1)(ly — 1). O
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+
e
~ fB§,2k+1 - f Bg’QkH
N . Bg,Qk i a B21’2k
AY Af
Figure 8.34: Type II-III df : &3
A A
+ e
+
~ fB§,2k+1 f B§’2k+1
N ¢ B - a By
AY Af

Figure 8.35: Type II-III df : €&,
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A}

€

d 3,2k+1

fB§,2k+1 + B3t

; \ 1.2k
Bg,% n - By
a

Aj

Figure 8.36: Type II-IIT ae : &,

A
e
- fB§,2k+l d n BS,ZICH
Bgﬂk ﬁ _ 321,%
A

Figure 8.37: Type II-III ae : &,
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+
/
€ B§,2k+1 d + - BS’MH
1,2k
Bg,Qk ~ a B,
Af

Figure 8.38: Type II-III de : &

A}
Lo
€B§,2k+1 d + - B§,2k+1
Bg,Qk ~ a B21’2k
A

Figure 8.39: Type II-III de : &,
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At
+
/
e B§,2k+1 d - 33,2k+1
a 1,2k
ROk B,
2 + +
Af

Figure 8.40: Type II-III de : &;

A
+
f
€ B§,2k+1 d - Bg’2k+1
RBO2k &
2 ++ + + + gl
Al

Figure 8.41: Type II-III de : &,
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Al

Figure 8.42: Type II-11I de : €5

3,2k+1
ST g2 d - B

—a\ 1,2k
ngk +Bg

A

Figure 8.43: Type II-I1I de : &;

93



Loy
i € ok d N g
ROk B;’Qk
2 + — a
1
AY Ay

Figure 8.44: Type II-Ill af : &

8.2.5 Linear cycles

The cycles we describe here are composed by edges of three main types. We
call these cycles linear. There are two sorts of linear cycles. The construction
of the linear cycles of the first sort uses the cd-symmetry, and the construction
of the linear cycles of the second sort uses the ab-symmetry. We describe here
only the linear cycles of the first sort. With the chosen distribution of signs,
these cycles appear in the orthant z5x4. The linear cycles of the second sort
can be described in a completely similar way. They appear in the orthant
I5T3.

Start from €; on Figure 8.45 and follow the cycle as described on Figures
8.46, 8.47, and 8.48. Notice that all the points of the e-segment on Figure
8.48 have the same sign. We climb up the e-segment and then switch to
another symmetric copy of A,. Apply the cd-symmetry to the edge €. and
complete the cycle using the same trick backwards.

To describe the second sort kind of linear cycles, one can start with an
edge described on Figure 8.50 and imitate the description above.

Proposition 8.7 There is a one-to-one correspondence between the interior
integer points of [AY, A3] and the linear cycles. The number Ny of linear
cycles is equal to Iy — 1. O
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Aj

A

Aj

A}
B§,2k+1 d + Bg’QkH
+ RBO2k a 321’2]g
f 2 +
AL €
Figure 8.45: linear cycle : &;
g
A}
B§,2k+1 d B§’2k+1
+ 0,2k BL2*
fh2 + + :
AL ¢

Figure 8.46: linear cycle : €,
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Al

A

A

2.2k+1
Byt

0,2k

[P

a
+++ + + +

d B§72k+1

1,2k
2

Figure 8.47: linear cycle : &3

A
2,2k+1
Byt
0,2k
+ fBQ

A

3,2k+1
d - B

SN

_+_

1,2k
B,

Figure 8.48: linear cycle : €&,
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e .
Dg,2k+1,2j A(l) A%
Figure 8.49: linear cycle : €;
2 3
Al f Al
+ €
B§,2k+l d - BS’QkH
B2k 321,21:
2 + - a
1
A A

Figure 8.50: linear cycle of the second kind : &;
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8.2.6 Proof of Theorem 8.1
Lemma 15 Under the hypotheses of Theorem 8.1, one has

b (Y) = A+ ap®) (Bly + 1311) — (2Ap + ap® +2X + 2p + ap)lily + 4.

Proof . - The statement immediately follows from Theorem 2.18. O

Lemma 16 Under the hypotheses of Theorem 8.1, the total number of cycles
described is equal to (Ap+3ap?) (Blo+153L)—(Ap+sap> + A+ p+2ap)llo+1.

Proof . - We evaluate the sum Z?:l N; substituting Al; for m; and ul; for
n;, and get the result. O

There exists one cycle more that we did not describe. It contains, for ex-

ample, the edges of type I intersecting the base of A,. Thus, Y is maximal.
O
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