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Tropical Varieties
. -

K field of Puiseux series. f(2) = Xpea cuz® avec A € Z7,

|A| < 400, co €EK*, 2= 1(21,...,2n)
g(t) = ereRbrptr & K

Zy:={z € (K")"/f(2) =0}
Where b, € C, R C Q bounded

by below, contained in an arithmetic se-

quence. Valuation : V: (K" — R®
val(g(t)) := min{r/b, # 0}, .
o(g) = —vallg) z (v(z1), ..., v(zn))

Definition 1 A tropical hypersurface is the closure of the image under V' of

a hypersurface in (IK*)™:

Tf L= V(Zf) C R"
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Examples

-

Tropical line




Examples
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Tropical line Bidegree (1,1) curve




Kapranov’'s Theorem

-

f(Z) = 2e ACuZ”

Putrvr: A — R

w — —v(cy)

Lv): (R — R

r — max(xr-w—v(w))

The Legendre transform L(v) of v is a piecewise-linear convex function.

Theorem 2 (Kapranov) Tf IS the nonlinearity domain of E(V).

V(Zy) = corner locus(z +— max(z - w + v(cw))).

o |

Paris, July 3rd 2006 — p. 5



Examplein dim. one

-

flx) =ta + 1o +t2.2°

-

Tropical roots: corner locus of z — max{0.z + 1,z + 0, 2z — 2}
A ’

|
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Kapranov's Theorem in dim. 2




Example

-

Tropical conic




Example
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Tropical conic Another conic




Example

Tropical cubic



Duality
B -

f(z) =Xuea cuz¥, A = ConvHull(A) Newton polytope of f.

!/ \

[' := ConvHull (w,v(c,)),w € A

v: A — R
r +—— min{z/(w,z) €}

The linearity domains of v are the
n-cells of a convex polyhedral subdivi-
sion 7 of A.
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T is said nonsingular if 7 is primitive (n-simplices have volume %).

.

Duality

—

Ty Induces a subdivision = of
R™. Subdivisions 7 and = are
dual:

There Is a one-to-one inclusion
reversing correspondance L be-
tween cells of = and cells of 7
such that for any £ € =,

1. dim L(§) = codim¢,
2. L(§) L E&.

|
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Duality
-

ftrop : (R)n — R v: A — R

r +—— max(zr w—v(w)) w —  —v(cw)




Complex tropical hypersurfaces

-

fK Field of Puiseux series. ¢g(t) = X,crb,t" € K.
valuation : val(g(t)) = min{r/b,. # 0}, v(g) == —val(g), f(2) = Xwea c,2%.

Zp = {z € (K*)"/f(2) = 0}, arg(g(t)) := arg(beai(o(sy)

W:=VxArg: (K" — R"x (SH)" ~ (C*)"
z — ((v(z1),...,v(zn)), (arg(21),...,arg(z,)))

W(Z) - (ev(zl)—|—z’arg(,z:1)7 o ’ev(zn)—}—iarg(zn)).
Definition 3 A complex tropical hypersurface is the closure of the image

under WV of a hypersurface in (K*)™:

L CTf = W(Zf) c C" J
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Example

-

Complex tropical line




Real tropical hypersurfaces

ff(z) = YoeaCuz¥ with ¢, = Yo, t" and «, € R. —‘

Definiton 4 RTp := CTy N (R™ x {0, 7}").



Real tropical hypersurfaces

ff(z) = YoeaCuz¥ with ¢, = Yo, t" and «, € R. —‘

Definiton 4 RTp := CTy N (R™ x {0, 7}").

.........................................................



Real tropical hypersurfaces

o N

® Assume RT'is nonsingular i.e. 7 is primitive.



Real tropical hypersurfaces

o N

® Assume RT'is nonsingular i.e. 7 is primitive.

® signc, = 8igN Qyai(ce,)-




Real tropical hypersurfaces

o N

® Assume RT'is nonsingular i.e. 7 is primitive.
® signc, = 8igN Qyai(ce,)-

® For RT N (R™ x {p})),p € {0,7}", signw := e"~P“~ signc,,.




T-construction

-

#® Let A be a polytope with
Integer vertices.
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T-construction

-

#® Let A be a polytope with
Integer vertices.

# 7 aconvex triangulation
of A.
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T-construction

-

#® Let A be a polytope with
Integer vertices.

# 7 aconvex triangulation
of A.

# D a sign distribution at
the vertices of 7.
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T-construction

-

# Take symmetric
copies of A and 7 to

obtain A* and 7*.

|

Paris, July 3rd 2006 — p. 17



T-construction

-

# Take symmetric
copies of A and 7 to
_ obtain A* and 7*.

# Extend the sign

N distribution to 7*.

|

Paris, July 3rd 2006 — p. 17



T-construction

-

# Take symmetric
copies of A and 7 to
obtain A* and 7*.

# Extend the sign
N distribution to 7*.

., ® Separate + and — In

/ each simplex by
/| hyperplane pieces.
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# Take symmetric

T-construction

-

copies of A and 7 to
obtain A* and 7*.

Extend the sign
distribution to 7*.

Separate + and — In
each simplex by
hyperplane pieces.

|dentify facets of A*
according to the
parity of their primitive
Integer normal

vectors — A, H. J
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Viro's Theorem
- -

Theorem 5 (Viro) There exists a real algebraic hypersurface Z in XA

with Newton polytope A and a homeomorphism i : RXA — A such
that h(RZ) = H.

o _ |
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"Tropical” Patchworking

.

______

-

he above construction is equivalent to:

——————

. - #® Draw the symmetric copies of the
v —""4:’_ tropical hypersurface (and of its
o Crea NG : dual triangulation) in each
i | i i I | orthant.

______

——————
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"Tropical” Patchworking

. N

he above construction is equivalent to:

-|:\ ,,,,,, = —
‘ & Draw the symmetric copies of the
R e e _ tropical hypersurface (and of its
PR ! dual triangulation) in each
_ - \ + \ | I + orthant.
| | N | |
| | ® Take the sign distribution as
TN W above.
O B -
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.

"Tropical” Patchworking

-

he above construction is equivalent to:

1

|
,,,,,,,,,

Draw the symmetric copies of the
tropical hypersurface (and of its
dual triangulation) in each
orthant.

Take the sign distribution as
above.

Separate + and — by cells of the
tropical hypersurface.
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"Tropical” Patchworking

-

he above construction is equivalent to:

|
iiiiiii

|
fffffff

Draw the symmetric copies of the
tropical hypersurface (and of its
dual triangulation) in each
orthant.

Take the sign distribution as
above.

Separate + and — by cells of the
tropical hypersurface.
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"Tropical” Patchworking
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"Tropical” Patchworking

-

he above construction is equivalent to:

77777777777777

|
iiiiiii

|
fffffff

Draw the symmetric copies of the
tropical hypersurface (and of its
dual triangulation) in each
orthant.

Take the sign distribution as
above.

Separate + and — by cells of the
tropical hypersurface.
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"Tropical” Patchworking

-

he above construction is equivalent to:

Draw the symmetric copies of the
tropical hypersurface (and of its
dual triangulation) in each
orthant.

Take the sign distribution as
above.

Separate + and — by cells of the
tropical hypersurface.
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"Tropical” Patchworking

,,,,,,
X ]

-

he above construction is equivalent to:

Draw the symmetric copies of the
tropical hypersurface (and of its
dual triangulation) in each
orthant.

Take the sign distribution as
above.

Separate + and — by cells of the
tropical hypersurface.
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Real tropical curve and its dual
subdivision.

Pachworking

Viro method:
patchworking of a cubic.

combinatorial
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Theorem

-

Assume X Is nonsinguliar and 7 is primitive (simplices T
have volume ).

Let Z be the hypersurface from Viro’s Theorem. (It is an
algebraic hypersurface with Newton polytope A.)

signature of Z if dim¢ Z = 0]2],
Z) = —1)PRPU( 7)) =
o(2) Z (Z1)RP(2) {O otherwise.
p+q=0[2]

Theorem6 Y (H) = o(Z).
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Pr oof

-

fThe triangulation 7 of A induces a cellular decomposition
of H: each k-simplex of 7* contains at most one (k£ — 1)-cell.

Remark 7 The number 1, of (k — 1)—ce|ls In the symmetric copies of a
k-simplex s depends neither on the sign distribution nor on s.

Proposition 8 (Itenberg)

np = 2" — 2",

o |
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Pr oof

If s € A, one has to consider identifications:
if s Is contained in j facets then s contributes for

M _ 2n—k
27

(k—1) — cells.

o |
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Pr oof

If s € 0A, one has to consider identifications:
if s is contained in 5 facets then s contributes for

M _ 2n—k‘
27

(k—1) — cells.

Theorem 10 (Ehrhart’s polynomial) The number of integer points in a
multiple XA of the polytope A is given by a polynomial in A of degree
n = dim A.

Ehra(A) =) af X’
1=0

o |
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Pr oof

-

fThe number of simplices of dimension & of a primitive
triangulation 7 depends only on A.

Proposition 11 (Dais) The number of £-dimensional simplices in the
interior of A is:

n+1
nbst = Z k1Sl k + 1)(=1)" a2 |
[=k+1

where S9(%,5) = 1/(j)! Z o(—1)7~ mCmm is the second Stirling
number.

o |
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Pr oof
E

hen
1+1

S‘ S‘ ZXlerlal 1

1=1 FeF;(A

. i— 7 23 72— 1
With g = (= 1) 0 YT Gl ST (—1)RCE A




-

Danilov and Khovanskii Formulae

We have : o

(2) = X ptrq=opz (F1)°RP(Z).

-

Theorem 12 (Danilov and Khovanskii)

hPP(Z)

n—1 n—1

T T (2)

hp,n—l—p(z)

hP1(Z)

n

(DPFL Y (F1)CYT(A)

1=p+1
ntl - i nil -~ i
(D72 > (-G T fi(A) = > > (D)W (F)
i=ntl i=ntl FEF;(A) i

D™ D> > (FD)Tppa(F)

1=p+1 FE.’FZ‘ (A)

0 otherwise.

With )1 (F) = Ziﬂ pH(_l)a P +1—a)ta, .

.

a=1 a=0 o

|
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Pr oof

1+1

o(Z) = Z Sj S:O'l,iﬂaf_la

1=1 FE.FZ(A) [=2

n—1 p+1
with 001 = Y (=1 (=D ) (=1)CL (p+1- 9"
p=0 q=0



Pr oof

1+1

E S S oy H—lal 19

zl_Fef(A)l 2
n—1 p+1

with 001 = Y (=1 (=D ) (=1)CL (p+1- 9"
p=0 q=0
1+1
X(}{) — j;‘ j;‘ 2{:)Oz+1aljh
1=1 FeF;(A
1—1 i [2 j+1
. 1—Il+1 (2 o 2J) _1\kk [
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