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Real tropical curve and its dual
subdivision.
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Viro method: combinatorial
patchworking of a cubic.
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Tropical Varieties

K field of Puiseux series.

g(t) = Σr∈Rbrt
r ∈ K.

Where br ∈ C, R ⊂ Q bounded

by below, contained in an arithmetic se-

quence. Valuation :

val(g(t)) := min{r/br 6= 0},
v(g) := − val(g).

f(z) = Σω∈A cωzω avec A ∈ Zn,

|A| < +∞ , cω ∈ K∗, z = (z1, . . . , zn)

Zf := {z ∈ (K∗)n/f(z) = 0}

V : (K∗)n −→ Rn

z 7−→ (v(z1), . . . , v(zn))

Definition 1 A tropical hypersurface is the closure of the image under V of

a hypersurface in (K∗)n:

Tf := V (Zf ) ⊂ R
n
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Examples

Tropical line

Paris, July 3rd 2006 – p. 4



Examples

Tropical line Bidegree (1,1) curve
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Kapranov’s Theorem

f(z) = Σω∈Acωzω

Put ν : A −→ R

ω 7−→ −v(cω)

L(ν) : (R)n −→ R

x 7−→ max(x · ω − ν(ω))

The Legendre transform L(ν) of ν is a piecewise-linear convex function.

Theorem 2 (Kapranov) Tf is the nonlinearity domain of L(ν).

V (Zf ) = corner locus(x 7→ max(x · ω + v(cω))).
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Example in dim. one

f(x) = t.x0 + 1.x + t−2.x2

Tropical roots: corner locus of x 7→ max{0.x +1, x +0, 2x− 2}
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Kapranov’s Theorem in dim. 2

e

 f+x

d+y

b+x+y

a+2x

c+2y
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Example

Tropical conic
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Example

Tropical conic Another conic
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Example

Tropical cubic
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Duality

f(z) = Σω∈A cωzω, ∆ = ConvHull(A) Newton polytope of f .

Γ := ConvHull (ω, v(cω)), ω ∈ A

ν : ∆ −→ R

x 7−→ min{x/(ω, x) ∈ Γ}

The linearity domains of ν are the
n-cells of a convex polyhedral subdivi-
sion τ of ∆.
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Duality

Tf induces a subdivision Ξ of
Rn. Subdivisions τ and Ξ are
dual:
There is a one-to-one inclusion
reversing correspondance L be-
tween cells of Ξ and cells of τ

such that for any ξ ∈ Ξ,

1. dimL(ξ) = codim ξ,

2. L(ξ) ⊥ ξ.

Tf is said nonsingular if τ is primitive (n-simplices have volume 1
n! ).
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Duality

ftrop : (R)n −→ R

x 7−→ max(x · ω − ν(ω))

e

 f+x

d+y

b+x+y

a+2x

c+2y

ν : A −→ R

ω 7−→ −v(cω)
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Complex tropical hypersurfaces

K Field of Puiseux series. g(t) = Σr∈Rbrt
r ∈ K.

valuation : val(g(t)) = min{r/br 6= 0}, v(g) := − val(g), f(z) = Σω∈A cωzω.

Zf := {z ∈ (K∗)n/f(z) = 0}, arg(g(t)) := arg(bval(g(t))).

W := V × Arg : (K∗)n −→ R
n × (S1)n ' (C∗)n

z 7−→ ((v(z1), . . . , v(zn)), (arg(z1), . . . , arg(zn)))

W(z) := (ev(z1)+iarg(z1), . . . , ev(zn)+iarg(zn)).
Definition 3 A complex tropical hypersurface is the closure of the image

under W of a hypersurface in (K∗)n:

CTf := W(Zf ) ⊂ C
n
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Example

Complex tropical line
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Real tropical hypersurfaces
f(z) = Σω∈Acωzω with cω = Σαrt

r and αr ∈ R.

Definition 4 RTf := CTf ∩ (Rn × {0, π}n).
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Real tropical hypersurfaces

Assume RT is nonsingular i.e. τ is primitive.
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Real tropical hypersurfaces

Assume RT is nonsingular i.e. τ is primitive.

sign cω := signαval(cω).
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Real tropical hypersurfaces

Assume RT is nonsingular i.e. τ is primitive.

sign cω := signαval(cω).

For RT ∩ (Rn × {p})), p ∈ {0, π}n, signω := ei<p,ω>. sign cω.
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T-construction

Let ∆ be a polytope with
integer vertices.
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T-construction

Let ∆ be a polytope with
integer vertices.

τ a convex triangulation
of ∆.
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T-construction
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Let ∆ be a polytope with
integer vertices.

τ a convex triangulation
of ∆.

D a sign distribution at
the vertices of τ .
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T-construction

Take symmetric
copies of ∆ and τ to
obtain ∆∗ and τ∗.
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Take symmetric
copies of ∆ and τ to
obtain ∆∗ and τ∗.

Extend the sign
distribution to τ∗.
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Take symmetric
copies of ∆ and τ to
obtain ∆∗ and τ∗.

Extend the sign
distribution to τ∗.

Separate + and − in
each simplex by
hyperplane pieces.
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Take symmetric
copies of ∆ and τ to
obtain ∆∗ and τ∗.

Extend the sign
distribution to τ∗.

Separate + and − in
each simplex by
hyperplane pieces.

Identify facets of ∆∗

according to the
parity of their primitive
integer normal
vectors → ∆, H.
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Viro’s Theorem

Theorem 5 (Viro) There exists a real algebraic hypersurface Z in X∆

with Newton polytope ∆ and a homeomorphism h : RX∆ → ∆ such
that h(RZ) = H .
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"Tropical" Patchworking

The above construction is equivalent to:

Draw the symmetric copies of the
tropical hypersurface (and of its
dual triangulation) in each
orthant.
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tropical hypersurface (and of its
dual triangulation) in each
orthant.

Take the sign distribution as
above.
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Pachworking

Real tropical curve and its dual
subdivision.

_

_

_

___

_

_

_

_

+

+

++

+

+

+
+

+

+

_

_

_

+

_

Viro method: combinatorial
patchworking of a cubic.
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Theorem

Assume X∆ is nonsinguliar and τ is primitive (simplices
have volume 1

n!).

Let Z be the hypersurface from Viro’s Theorem. (It is an
algebraic hypersurface with Newton polytope ∆.)

σ(Z) :=
∑

p+q=0 [2]

(−1)php,q(Z) =

{

signature of Z if dimC Z = 0[2] ,

0 otherwise.

Theorem 6 χ(H) = σ(Z).
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Proof

The triangulation τ of ∆ induces a cellular decomposition
of H: each k-simplex of τ ∗ contains at most one (k − 1)-cell.

Remark 7 The number nk of (k − 1)-cells in the symmetric copies of a
k-simplex s depends neither on the sign distribution nor on s.

Proposition 8 (Itenberg)

nk = 2n − 2n−k.
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Proof

If s ∈ ∂∆, one has to consider identifications:
if s is contained in j facets then s contributes for

2n − 2n−k

2j
(k − 1) − cells.
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Proof

If s ∈ ∂∆, one has to consider identifications:
if s is contained in j facets then s contributes for

2n − 2n−k

2j
(k − 1) − cells.

Theorem 10 (Ehrhart’s polynomial) The number of integer points in a
multiple λ∆ of the polytope ∆ is given by a polynomial in λ of degree
n = dim ∆.

Ehr∆(λ) =
n

∑

i=0

a∆
i λi
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Proof

The number of simplices of dimension k of a primitive
triangulation τ depends only on ∆.

Proposition 11 (Dais) The number of k-dimensional simplices in the
interior of ∆ is:

nbs∆k =
n+1
∑

l=k+1

k!S2(l, k + 1)(−1)n−l+1.a∆
l−1,

where S2(i, j) = 1/(j)!
∑j

m=0(−1)j−mCm
j mi is the second Stirling

number.
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Proof

Then

χ(H) =
n

∑

i=1

∑

F∈Fi(∆)

i+1
∑

l=2

χl,i+1a
F
l−1

with χl,i+1 := (−1)i−l+1
∑i−1

j=0
(2i−2j)
i−j+1

∑i−j+1
k=0 (−1)kCk

i−j+1k
l
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Danilov and Khovanskii Formulae

We have : σ(Z) =
∑

p+q=0 [2] (−1)
p
hp,q(Z).

Theorem 12 (Danilov and Khovanskii)

hp,p(Z) = (−1)p+1
n

X

i=p+1

(−1)iCp+1
i

fi(∆)

h
n−1

2
,

n−1

2 (Z) = (−1)
n+1

2

n
X

i= n+1

2

(−1)iC
n+1

2

i fi(∆) −

n
X

i= n+1

2

X

F∈Fi(∆)

(−1)iΨ n+1

2

(F )

hp,n−1−p(Z) = (−1)n

n
X

i=p+1

X

F∈Fi(∆)

(−1)iΨp+1(F )

hp,q(Z) = 0 otherwise.

With Ψp+1(F ) =
∑i+1

α=1

∑p+1
a=0(−1)aCa

i+1(p + 1 − a)α−1aF
α−1.
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Proof

σ(Z) =
n

∑

i=1

∑

F∈Fi(∆)

i+1
∑

l=2

σl,i+1a
F
l−1,

with σl,i+1 :=
n−1
∑

p=0

(−1)i(−1)p+1
p+1
∑

q=0

(−1)qCq
i+1(p + 1 − q)l−1.
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∑

i=1

∑

F∈Fi(∆)
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∑

l=2
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F
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with χl,i+1 = (−1)i−l+1
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∑
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∑
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