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Pentagram map

And the evening and the morning were the fifth day
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R. Schwartz, V. Ovsienko, S. Tabachnikov, S. Morier-Genoud, M. Glick, F.
Soloviev, G. Mari-Beffa, M. Gekhtman, M. Shapiro, A. Vainshtein, R.
Kenyon, A. Goncharov, V. Fock, A. Marshakov
(almost) everything ArXived
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Pentagram Map T:

o)

Acts on projective equivalence classes of closed and twisted n-gons with
monodromy M. The latter constitute a 2n-dimensional space, the former
is 2n — 8-dimensional.

A good reference: http://en.wikipedia.org/wiki/Pentagram_map
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http://en.wikipedia.org/wiki/Pentagram_map

Corner coordinates: left and right cross-ratios Xy, Y1,..., Xp, Ya.

i+2
V.
i+1
The map is as follows:
1-Xi—1Yio1 1— X2 Yigo
X=Xi—-——— Y'=Y,4 —_°
P X Y T T I oX Y
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S
Hidden scaling symmetry
(X1, Y1y o0 Xy V) = (EX0, t71Y, o, X, t71Y5)

commutes with the map.
“Easy” invariants:

On=]]X. E=]]Y
i=1 i=1
Monodromy invariants:
02/3E1/3(T M) [nz/ilo
(det M)1/3 g

are polynomials in (Xj, Y;), decomposed into homogeneous components;
likewise, for E; with M~! replacing M.
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Theorem (OST 2010). The Pentagram Map is completely integrable on
the space of twisted n-gons:

1). The monodromy invariants are independent integrals (there are
2[n/2] + 2 of them).

2). There is an invariant Poisson structure of corank 2 if n is odd, and
corank 4 if n is even, such that these integrals Poisson commute.
Poisson bracket: {Xi, Xit1} = —Xi Xit1, {Yi, Yiz1} = Vi Yisa,

and the rest = 0.

Complete integrability on the space of closed polygons has been proven as
well:

F. Soloviev. Integrability of the Pentagram Map, arXiv:1106.3950;

V. Ovsienko, R. Schwartz, S. Tabachnikov. Liouville-Arnold integrability of the
pentagram map on closed polygons, arXiv:1107.3633.
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Cluster algebras connection:

M. Glick. The pentagram map and Y -patterns, Adv. Math., 227 (2011),

1019-1045.
He considered the dynamics in the 2n — 1-dimensional quotient space by

the scaling symmetry (X, Y) = (tX,t71Y):

1
pi = —Xiy1Yis1, qi:_YiXi+17

and proved that it was a Y-type cluster algebra dynamics.

(Paris) Poisson properties of cluster algebras: Pent:



Cluster dynamics

Given a quiver (an oriented graph with no loops or 2-cycles) whose
vertices are labeled by variables 7; (rational functions in some free
variables), the mutation on vertex i is as follows:

O
jo— i k

1 TiTi
== =" H=nl+mn)

n 1+

the rest of the variables are intact.
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The quiver also mutates, in three steps:

(i) for every path j — i — k, add an edge j — k;

(i) reverse the orientation of the edges incident to the vertex i;
(iii) delete the resulting 2-cycles.

l
j o/o‘\»o k

The mutation on a given vertex is an involution.
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Example of mutations:
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Glick's quiver (n = 8):




Joint work in progress with Michael Gekhtman, Sergey Tabachnikov, and
Alek Vainshtein, ERA 19 (2012), 1-17.

Generalizing Glick's quiver (the case of k = 3), consider the homogeneous
bipartite graph Qy , where r = [k/2] — 1, and r’ = r for k even and

r' = r+1 for k odd (each vertex is 4-valent):

Pi

O o o o
9di-r-1 Y4i-r qirr qivr+1

Dynamics: mutations on all p-vertices, followed by swapping p and g; this
is the map T:
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(1 + pi—r—l)(]- + pi+r+1)pi—rpi+r

1
= pf=g; , keven,
g Pi Pi 9 (]- + Pi—r)(]- + pi+r)
o = 1 o= qi(l + pi—r—2)(1 + pi+r+1)pi—r—lpi+r’ K odd.
Pi-1 (1 + pi—r—1)(1 + pitr)

The quiver is preserved. The function [] pig; is invariant; we restrict to
the subspace [[ pigi = 1.

Invariant Poisson bracket: the variables Poisson commute, unless they are
connected by an arrow: {p;, g;j} = £p;q; (depending on the direction).
(This bracket comes from the general theory: GSV, Cluster algebras and
Poisson geometry, AMS, 2010).
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The quivers, for small values of k, look like this (for k = 1, the arrows
cancel out):

pi Pi pi pi
k=3 k=2 k=1 k=0

The map T is reversible: Dy o Ty o Dy = 7;1=
where

pi

k=-1

— 1 1
Dy :pi—=> —, qir> —, keven,

i Pi

— 1 1
Dy:pi— —, gi— —, kodd.
qi+1 Pi
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Goal: to reconstruct the x, y-dynamics and to interpret it geometrically.
Weighted directed networks on the cylinder and the torus (A.

Postnikov math.CO /0609764, for networks in a disc; GSV book).
Example:

3 2
X
| —— 3
y
2 1

Two kind of vertices, white and black.
Convention: an edge weight is 1, if not specified.
The cut is used to introduce a spectral parameter ).
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Boundary measurements

the network

corresponds to the matrix

0 x x+vy
A0 0
01 1

Concatenation of networks — product of matrices.
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Gauge group: at a vertex, multiply the weights of the incoming edges and
divide the weights of the outgoing ones by the same function. Leaves the
boundary measurements intact.

Face weights: the product of edge weights over the boundary (orientation
taken into account). The boundary measurement map to matrix functions
factorizes through the space of face weights. (They will be identified with
the p, g-coordinates).

Poisson bracket (6-parameter): {x;,x;j} = cjixixj, i #j € {1,2,3}
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Postnikov moves (do not change the boundary measurements):

Type 1

Type 2
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Consider a network whose dual graph is the quiver Qy ..
It is drawn on the torus. Example, k =3,n=05:

3 ® *
X1 P X4
1_>I_

Yi

C

~
w

- - - |-
N
Z

=
w

Y2

Convention: white vertices of the graph are on the left of oriented edges of

the dual graph.

(Paris) Poisson properties of cluster algebras: Pent:



The network is made of the blocks:

Qi+r’

®
>

qi—r—1 Pi 9ivr+1

€

qi-r

Face weights:
Yi Xi1+4r
Pi= —, qi = .
Xi Yi+r

This is a projection 7 : (x,y) — (p, q) with 1-dimensional fiber.
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(x, y)-dynamics: mutation (Postinov type 3 move on each p-face),

Yy
x+y
® o . o!
X 1 X
x+y x+y
y - x+y

followed by the Postnikov type 1 and 2 moves on the white-white and
black-black edge (this interchanges p- and g-faces), including moving
across the vertical cut, and finally, re-calibration to restore 1s on the
appropriate edges. These moves preserve the conjugacy class of the
boundary measurement matrix.
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Schematically:

3 — 2

1 . 3

> .
‘mutation

3 — 2

b ] 1

) . }
‘ commutation

3 A

I — 3

2 L 1

(Paris) Poisson properties of cluster algebras: Pent:



This results in the map Ty:

Xiyr + Vi Xi tVYi
X = Xi—r-1 rer T Vidr s Y= Yier i yIHHa k even,
Xi—r—1 + Yi—r—1 Xi—r + Yi—r
Xitr + Yigr Xitr+1 T Yitr+1
X = Xi—r—2 Y= Yier ,  kodd.
Xi—r—2 + Yi—r—2 Xi—r—1+ Yi—r—1

The map Ty is conjugated to the map T: mo Ty = T, om.
Relation with the pentagram map: the change of variables

xi—= Y, yir =YiXip1Yig,

identifies T3 with the pentagram map.
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Complete integrability of the maps Ty
The ingredients are suggested by the combinatorics of the network.
Invariant Poisson bracket (in the “stable range” n > 2k — 1):

X Xiviy = =xixip, L < < k=25 {yi,yi} = —Yivier, L < I < k= 1;
i, Xiv1} = —yixizr, 1 <1 <k —=1; {yi,xi—1} = yixi—1,0 < | < k — 2;
the indices are cyclic.

The functions [[ x; and [] y; are Casimir. If n is even and k is odd, one
has four Casimir functions:

I~ IIx 11y II»

i even i odd i even i odd
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Lax matrices, monodromy, integrals: for k > 3,

0 0 0 X X+ Vi
A0 0 0 0

O I 0 0

=l o o 1 o o |

o
o
o
—
—

and for k = 2,

L AXi Xi+yi
T A 1 )

The boundary measurement matrix is M(A) = Ly --- L,. The characteristic
polynomial

det(M ZInyz)\J

is Tk-invariant: the integrals I,-J- are in involution.
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Zero curvature (Lax) representation:
L¥=Pil;, 1Pt
i ititr—17711

where L; are the Lax matrices and

X; Yit+1
0 gooofL 0 0
Xit1 Yit+2
0 0 Mo %200
Xi+k—4 Yi+k—3
p; = 0 0 0 et =L
_ '1 0 0 0 Xivk=3 1
o’,irk,Q 1 Oj+k—3
Citk—2 T Aoitk-1 0 0 0 0
0 o 0 0 0 0

with o; = x; + ;.
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Geometric interpretations

Twisted corrugated polygons in RP“~! and k — 1-diagonal maps
Let k > 3. Let Py , be the space of projective equivalence classes of
generic twisted n-gons in RP*~1; one has: dim Py, = n(k —1).
Let 772 n C Pi,n consist of the polygons with the following property: for
every I the vertices Vj, Viy1, Vijk—1 and Vi, span a projective plane.
These are corrugated polygons. Projective duality preserves corrugated
polygons.
The consecutive k — 1-diagonals of a corrugated polygon intersect. The
resulting polygon is again corrugated. One gets a pentagram-like
k — 1-diagonal map on P,?’n. For k = 3, this is the pentagram map.
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Coordinates: lift the vertices V; of a corrugated polygon to vectors V; in
R¥ so that the linear recurrence holds

Vi+k = yi—1Vi + X Vi+1 + Vi+k717

where x; and y; are n-periodic sequences. These are coordinates in 732".
In these coordinates, the map is identified with Tj. 7
The same functions x;, y; can be defined on polygons in the projective
plane. One obtains integrals of the “deeper” diagonal maps on twisted
polygons in RP?.
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Case k =2
Consider the space S, of pairs of twisted n-gons (S~,S) in RP! with the
same monodromy. Consider the projectively invariant projection ¢ to the
(x, y)-space (cross-ratios):

X = (5i+1 - 5;;2)(57 B 5;11)
(S = Si1)(S1 — Si)

- (Sit1 = Sit1)(Sio = Siv2)(S;7 — Sih1)
(Sip1 = Sit2)(S7 = Sit1)(Siy — Sipo)

Then x;, y; are coordinates in S,/PGL(2,R).
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Define a transformation F»(S~,S) = (S,S™), where ST is given by the
following local leapfrog rule: given points S;_1,5;",5;, Siy1, the point SiJr
is obtained by the reflection of 5. in S; in the projective metric on the
segment [Si_1, Si+1]:

The projection ¢ conjugates F, and T».
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In formulas:

1 1 1 1
Sf—-S S-S S-S S-S

or, equivalently,

(5:+ = Si+1)(Si = S )(Si — Si—1)
(S = S)(Sit1— SIS — Siz1)

1

=1,

(Toda-type equations).
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In CP?, a circle pattern interpretation (generalized Schramm's pattern):
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(Paris)

Thank you!
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