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Compatible Poisson structure and 2-form

τ -coordinates

Nondegenerate coordinate change:

τi (t) =

{∏
j 6=i zj(t)bij (t) for i 6 m,∏
j 6=i zj(t)bij (t)/zi (t) for m + 1 6 i 6 n.

Exchange in direction i :

τi 7→
1

τi
; τj 7→




τj(1 + τi )

bij , if bij > 0,

τj

(
τi

1+τi

)−bij
, otherwise.

Definition

We say that a skew-symmetrizable matrix A is reducible if there exists a
permutation matrix P such that PAPT is a block-diagonal matrix, and
irreducible otherwise. The reducibility ρ(A) is defined as the maximal
number of diagonal blocks in PAPT . The partition into blocks defines an
obvious equivalence relation ∼ on the rows (or columns) of A.
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Compatible Poisson structure and 2-form

Compatible Poisson structures

Theorem

For an B ∈ Zn,n+m as above of rank n the set of Poisson brackets for which
all extended clusters in A(B) are log-canonical has dimension ρ(B) +

(m
2

)
.

Moreover, the coefficient matrices Ωτ of these Poisson brackets in the
basis τ are characterized by the equation Ωτ [m, n] = ΛB for some diagonal
matrix Λ = diagonal(λ1, . . . , λn) where λi = λj whenever i ∼ j .
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Compatible Poisson structure and 2-form

Degenerate exchange matrix

Example

Cluster algebra of rank 3 with trivial coefficients. Exchange matrix

B =




0 1 −1
−1 0 1
1 −1 0


. Compatible Poisson bracket must

satisfy{x1, x2} = λx1x2, {x1, x3} = µx1x3, {x2, x3} = νx2x3

Exercise: Check that these conditions imply λ = µ = ν = 0.
Conclusion: Only trivial Poisson structure is compatible with the cluster algebra.

What to do?

We will use the dual language of 2-forms
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Compatible Poisson structure and 2-form

Compatible 2-forms

Definition

2-form ω is compatible with a collecion of functions {fi} if

ω =
∑

i ,j ωij
dfi
fi
∧ dfj

fj

Definition

2-form ω is compatible with a cluster algebra if it compatible with all
clusters.

Exercise

Check that the form ω = dx1
x1
∧ dx2

x2
− dx1

x1
∧ dx3

x3
+ dx2

x2
∧ dx3

x3
is compatible

with the example above.
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Compatible Poisson structure and 2-form

Compatible 2-forms

Theorem

For an B ∈ Zn,n+m the set of Poisson brackets for which all extended
clusters in A(B) are log-canonical has dimension ρ(B) +

(m
2

)
. Moreover,

the coefficient matrices Ωx of these 2-forms in initial cluster are
characterized by the equation Ωx[m, n] = ΛB, where
Λ = diagonal(λ1, . . . , λn), with λi = λj 6= 0 whenever i ∼ j .
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Compatible Poisson structure and 2-form

Recovering cluster algebra transformations

We recover cluster algebra exchange rules as unique involutive
transformations of log-canonical bases satisfying certain additional
restrictions.
Local data F is a family of rational functions in one variable ψw ,
w = 0,±1,±2, . . . , and an additional function in one variable ϕ.
For any Poisson bracket ω and any log-canonical (with respect to ω) basis
τ = (τ1, . . . , τm), the local data F gives rise to n transformations Fω

i

defined as follows:
(i) Fω

i (τi ) = ϕ(τi );
(ii) let Ω = (ωij) be the coefficient matrix of ω in the basis τ , then
Fω
i (τj) = τjψωij (τi ) for j 6= i .
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Compatible Poisson structure and 2-form

Cluster A− and X− manifolds

Coordinate ring Manifold

A− cluster algebra
with cluster coordinates xi

A− cluster variety
with compatible 2-form

xπ∗ π:τi=
∏n+m

j=1 x
bij
j

y
X − algebra generated by τi X− Poisson cluster variety
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Compatible Poisson structure and 2-form

We say that local data F is canonical if for any Poisson bracket ω, any
log-canonical (with respect to ω) basis τ , and any index i , the set Fω

i (t) is
a log-canonical basis of ω as well.
Local data is called involutive if any Fω

i is an involution, and is called
normalized if limz→0 ψw (z) = ±1 for any integer w > 0.
We say that a polynomial P of degree p is a-reciprocal if P(0) 6= 0 and
there exists a constant c such that ξpP(a/ξ) = cP(ξ) for any ξ 6= 0.
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Compatible Poisson structure and 2-form

Description of normalized involutive canonical local data

Theorem

Any normalized involutive canonical local data has one of the following
forms:
(i) ϕ(ξ) = ξ and ψw (ξ) = ±1 for any integer w (trivial local data);

(ii) ϕ(ξ) = −ξ and ψw (ξ) = ±
(

P(ξ)
P(−ξ)

)w
, where P is a polynomial

without symmetric roots;
(iii) ϕ(ξ) = a

ξ , ψw (ξ) = awξ
cwψw

1 (ξ), and ψ1(ξ) = P(ξ)
Q(ξ) , where P and Q

are coprime a-reciprocal polynomials of degrees p and q, and the constants
aw , cw , p, q satisfy relations a2

−1 = a−c−1 , p − q = c−1, and

aw =

{
± 1 for w > 0

a−1
−wa−w−1 for w < 0,

cw =

{
0 for w > 0

− wc−1 for w < 0.
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Compatible Poisson structure and 2-form

Finiteness

We say that local data F is finite if it has the following finiteness property:
let n = 2, and let ω possess a log-canonical basis τ = (τ1, τ2) such that
the corresponding coefficient matrix has the simplest form

(
0 1
−1 0

)
; then

the group generated by Fω
1 and Fω

2 has a finite order.

Theorem

Any nontrivial finite involutive canonical local data has one of the
following forms:
(i) ϕ(ξ) = a/ξ with a 6= 0, ψw (ξ) = (±1)waw , aw = ±1 and aw = a−w ;
(ii) ϕ(ξ) = b2/ξ with b 6= 0,

ψw (ξ) =





(±1)waw

(
ξ + b

b

)w

for w > 0

(±1)wa−w

(
ξ + b

ξ

)w

for w < 0,

where aw = ±1 and aw = a−w .
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Compatible Poisson structure and 2-form

Constructing cluster algebra for Grassmannian Gk(n)

Goal: construct one cluster containing only Plücker coordinates.

Find k × (n − k) functions fi such that {fi , fj} = cij fi fj .
For 1 ≤ i ≤ k , 1 ≤ j ≤ n− k denote by s = min(i , n− k − j + 1). For
an element (1 Y ) ∈ Gk(n) denote by Yij its dense s × s minor whose
left low corner is (i , j) and which is attached either to the first row or
to the last column.

Exchange matrix is computed as an ”inverse” of coefficient matrix of
Poisson bracket

If the result of cluster mutations of Yij is regular function on Gk(n)
then we claim Yij to be cluster variable, otherwise we claim Yij to be
frozen variable.
Cluster mutations of this initial cluster correspond to matrix minor
identities.
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Compatible Poisson structure and 2-form

Cluster structure of G2(4)

Example

(
1 Y

)
∈ G2(4). Y =

(
a b
c d

)

Y11 = a; Y12 = b; Y21 = det(Y ) = ad − bc; Y22 = c
Poisson bracket: Y21 is a Casimir function (Poisson commutes with all
other functions)
{Y11,Y12} = Y11Y12; {Y11,Y22} = 0; {Y12,Y22} = Y12Y22;

Coefficient matrix Ω =




0 1 0 0
−1 0 1 0
0 −1 0 0
0 0 0 0


 , rankΩ = 2
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Compatible Poisson structure and 2-form

Example G2(4) continued...

Example

Top left part is invertible with inverse matrix

(
0 1
−1 0

)

By the degree homogenuity a candidate for exchange matrix must contain

rows of type:

(
0 1 2`+ 1 −2(`+ 1)
−1 0 −2s − 1 2(s + 1)

)
.

Condition that the result of cluster mutation is regular function means
that expression ad2s+1 ± (ad − bc)2(`+1) is divisible by b which implies for
s = 1. No ` satisfies this condition.
Hence, the cluster algebra contains two clusters:

{a, b, d , det(Y )} ↔ {c , b, d , det(Y )},

with two cluster variables a and c , and three frozen variables b, d , det(Y ).
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Compatible Poisson structure and 2-form

Cluster manifold

For an abstract cluster algebra of geometric type A of rank m we
construct an algebraic variety A (which we call cluster manifold)
Idea: A is a ”good” part of Spec(A).
We will describe A by means of charts and transition functions.
For each cluster t we define an open chart

A(t) = Spec(C[x(t), x(t)−1, y]),

where x(t)−1 means x1(t)−1, . . . , xm(t)−1.
Transitions between charts are defined by exchange relations

xi (t ′)xi (t) =
∏

bik (t)>0

zk(t)bik (t) +
∏

bik (t)<0

zk(t)−bik (t)

zj(t ′) = zj(t) j 6= i ,

Finally, A = ∪tA(t).
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Compatible Poisson structure and 2-form

Nonsingularity of A

A contains only such points p ∈ Spec(A) that there is a cluster t whose
cluster elements form a coordinate system in some neighborhood of p.
Observation The cluster manifold A is nonsingular and possesses a
Poisson bracket that is log-canonical w.r.t. any extended cluster.
Let ω be one of these Poisson brackets.
Casimir of ω is a function that is in involution with all the other functions
on A. All rational casimirs form a subfield FC in the field of rational
functions C(A). The following proposition provides a complete description
of FC .
Lemma FC = F(m1, . . . ,ms), where mj =

∏
y
αji

i for some integral αji ,
and s = corankω.
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Compatible Poisson structure and 2-form

Toric action

We define a local toric action on the extended cluster t as the C∗-action
given by the formula zi (t) 7→ zi (t) · ξwi (t), ξ ∈ C∗ for some integral wi (t)
(called weights of toric action).
Local toric actions are compatible if taken in all clusters they define a
global action on A. This toric action is said to be an extension of the
above local actions.
A0 is the regular locus for all compatible toric actions on A.
A0 is given by inequalities yi 6= 0.
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Compatible Poisson structure and 2-form

Examples

There exists a cluster algebra structure on SLn compatible with
Sklyanin Poisson bracket. A0 is the maximal double Bruhat cell.

There exists a cluster algebra structure on Grassmanian compatible
with push-forward of Sklyanin Poisson bracket. A0 determined by the
inequalities {solid Plücker coordinate 6= 0} .
(Decorated) Teichmüller space has a natural structure of cluster
algebra. Weyl-Petersson symplectic form is the unique symplectic
form ”compatible” with the structure of cluster algebra.
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Compatible Poisson structure and 2-form

Symplectic leaves

A is foliated into a disjoint union of symplectic leaves of ω.
Given generators q1, . . . , qs of the field of rational casimirs FC we have a
map Q : A→ Cs , Q(x) = (q1(x), . . . , qs(x)).
We say that a symplectic leaf L is generic if there exist s vector fields ui

on A such that
a) at every point x ∈ L, the vector ui (x) is transversal to the surface
Q−1(Q(L));
b) the translation along ui for a sufficiently small time t gives a
diffeomorphism between L and a close symplectic leaf Lt .
Lemma A0 is foliated into a disjoint union of generic symplectic leaves of
the Poisson bracket ω.
Remark Generally speaking, A0 does not coincide with the union of all
“generic” symplectic leaves in A.
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Compatible Poisson structure and 2-form

Connected components of A0

Question: find the number #(A0) of connected components of A0.
Let Fn

2 be an n-dimensional vector space over F2 with a fixed basis {ei}.
Let B ′ be a n × n- matrix with Z2 entries defined by the relation
B ′ ≡ B(t) (mod 2) for some cluster t, and let ω = ωt be a
(skew-)symmetric bilinear form on Fn

2, such that ω(ei , ej) = b′ij . Define a
linear operator ti : Fn

2 → Fn
2 by the formula ti (θ) = ξ − ω(θ, ei )ei , and let

Γ = Γt be the group generated by ti , 1 6 i 6 m.
Theorem The number of connected components #(A0) equals to the
number of Γt-orbits in Fn

2.
Application: we computed the number of connected components of A0

for Grassmanians.
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A− and X− manifolds

Cluster A− and X− manifolds

(Paris) Poisson properties of cluster algebras Day 3, April 18, 2012 21 / 69



A− and X− manifolds

Example

Cluster algebra of rank 3.

Seed


(x1, x2, x3); B =




0 1 −1
−1 0 1
1 −1 0






The space (x1, x2, x3) is equipped with the 2-form

Ω =
dx1

x1
∧ dx2

x2
+

dx2

x2
∧ dx3

x3
+

dx3

x3
∧ dx1

x1
.

π : (x1, x2, x3) 7→ (τ1, τ2, τ3)
τ1 = x2/x3 τ2 = x3/x1 τ3 = x1/x2

Relation τ1τ2τ3 = 1.
The space τ1, τ2, τ3 is equipped with the Poisson structure
{τ1, τ2} = τ1τ2; {τ2, τ3} = τ2τ3; {τ3, τ1} = τ3τ1

τ1τ2τ3 is a Casimir function (it commutes with all functions).
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A− and X− manifolds

Ω is a 2-form.
KerΩ = { vector ξ : Ω(ξ, η) = 0∀η} provides a fibration of the vector
space
{ space of fibers of KerΩ} → Imπ is a local diffeomorphism.
More generally, Ω is a 2-form on a cluster manifold A of coefficient-free
cluster algebra A.
KerΩ determines an integrable distribution in TA.
Generic fibers of KerΩ form a smooth manifold X̃ whose dimension is
rank(B).
π : A→ X̃ is a natural projection.
Then, Ω̃ = π∗(Ω) is a symplectic form on X̃ dual to the Poisson structure.
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A− and X− manifolds

Example: Teichmüller space Tg ,s of genus g surface with s
punctures.

Let F be a topological surface of genus g with s punctures.
M is a space of all smooth Riemannian metrics on F .
M−1 is a subset of all metrics of curvature −1 (hyperbolic metrics).

Diff+ orientation preserving diffeomorpism of F (acts on M).
Diff0 ⊂ Diff+ is the set of all diffeomorphisms isotopic to Id .
Teichmüller space Tg ,s = Diff−1/Diff0.

Hyperbolic metric
1−1←→ conform. structure (' compl. structure)

Fλ ∈ Tg ,s is equipped with metric λ|dz |2.
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A− and X− manifolds

Deformation of complex structure = infinitesimal Beltrami operator µdz̄
dz .

Dual space = { quadratic differentials ϕdz2}.
〈µdz̄

dz , ϕdz2〉 =
∫
Fλ
µϕdz ∧ dz̄

Quadratic differentials on Fλ form a cotangent space T ∗Fλ
Tg ,s .

Hermitian structure onT ∗Fλ
Tg ,s defined by

〈ϕdz2, ψdz2〉 =
i

2

∫

Fλ

ϕψ

λ
dz ∧ dz̄

determines Weil-Peterson Kähler co-metric on Tg ,s .
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A− and X− manifolds

The skew-symmetric part of Weil-Peterson metric is the Weil-Peterson
symplectic form WP on Tg ,s

A

decorated Teichmüller space T̃g ,s

(={curves with chosen horocycles
about each puncture})

equipped with Penner coordinates

dim T̃g ,s = 6g − 6 + 3s

π∗
x π

y forgets horocycles

X
Teichmüller space Tg ,s

equipped with ”shear coordinates”
dim Tg ,s = 6g − 6 + s

Product of shear coordinates about each puncture =1
Proposition. Ω̃ = WP
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A− and X− manifolds

General construction

Cluster algebra A with coefficients.
Toric action on A:
t- cluster,
xi (t) - cluster variable in cluster t,
local toric action in cluster t with weights wi (t):

xi (t) 7→ xi (t) · ξwi (t)

Local actions are compatible if they define a global toric action in the
union of all clusters.
Example: Rescaling of horocycles is a global toric on the cluster algebra of
homogeneous coordinate ring of decorated Teichmüller space.
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A− and X− manifolds

We assume rank(B) = n.
A is a cluster manifold
A0 is a union of regular toric orbits
Proposition
A0 = {p ∈ A such that frozen variables xn+j 6= 0 ∀j = 1, . . . ,m}
Example: A1 is the standard (”totally positive”) cluster algebra on Matn.
Toric action: Diagn × Diagn : Matn → Matn, i.e., (D1,D2) : X → D1XD2

Then, A0 is the maximal double Bruhat cell B+w0B+ ∩ B−w0B−.
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A− and X− manifolds

Example 2: A2 is the standard (”totally positive”) cluster algebra =
coordinate ring of maximal Schubert cell in Grassmannian Gk(k + l).

( k l

k{
︷︸︸︷

1
︷︸︸︷

Q
)

Toric action: Diagk × Diagl : Q → Q,
i.e., (D1,D2) : Q → D1QD2

Then, A0 consists of Grassmann elements with nonzero cyclically dense
minors.
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A− and X− manifolds

Symplectic leafs of A

If rank(B) = n then A is a Poisson manifold. It is foliated into symplectic
leaves. Symplectic leaf L is generic if some its neighborhood is
diffeomorphic to L× open ball. A0 is a union of generic symplectic leafs.
Remark. For A1 and A2 the manifold A0 is the union of all generic leafs
(not true in general).
Question: Find the number #(A0) of connected components of A0.
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A− and X− manifolds

Answer:

Let Fk+l
2 be a k + l-dimensional vector space over F2 = Z/2Z.

{ei} is the standard basis.
B̂ is any (k + l)× (k + l) skew-symmetrizable integer matrix such that
B̂[k , k + l ] = B. D̂ is a skew-symmetrizing (k + l)× (k + l) diagonal
matrix.
Let B ′ = DB mod 2, B ′ = (b′ij).

B ′ determines a skew-symmetric bilinear form η on Fk+l
2 : η(ei , ej) = b′ij .

∀i ∈ [1, k] define a symplectic transvection ti : Fk+l
2 → Fk+l

2 as
ti (ξ) = ξ − η(ξ, ei )ei .pause
Γ is the group generated by ti , i ∈ [1, k].
Theorem. #(A0) = the number of Γ− orbits in Fk+l

2 .
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A− and X− manifolds

Corollary (i) The number of connected components of intersections of two
Schubert cells Bw0 · B ∩ w0B0w0 · B is given in the following table

n 2 3 4 5 ≥ 6

# 2 6 20 52 3 · 2n−1

(ii) The number of connected components of subset Grassmannian Gk(n)
with non-vanishing cyclically dense minors is

{
3 · 2n−1, if k > 3, n > 7; or k = 3, n = 6;

(n − 1) · 2n−2, if k = 2, n > 3;
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A− and X− manifolds

Cluster determines seed

Cluster algebra with coefficients. P - semifield (free multiplicative abelian
group of a finite rank m with generators g1, . . . , gm endowed with an
additional operation ⊕ which is commutative, associative, and distributive
w.r.t. multiplication.
Ambient field is the field F of rational functions in n independent variables
with coefficients in the field of fractions on the integer group ring ZP.
A seed is a triple Σ = (x, y,B) where x = (x1, . . . , xn) is a transcendence
basis of F over the fiels of fractions of ZP; y = (y1, . . . , yn) is an n-tuple
of elements of P and B is a skew-symmetrizable integer n × n matrix.
A seed mutation in direction k ∈ [1, n]

Σ
k−−−−→ Σ′

∥∥∥
∥∥∥

(x, y,B) −−−−→ (x′, y′,B ′)

,

where . . .
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A− and X− manifolds

x′ = (x \ {xk} ∪ {x ′k}), satisfying

x ′kxk =
yk

yk ⊕ 1

∏

bki>0

xbki
i +

1

yk ⊕ 1

∏

bki<0

x−bkii ,

y ′j =





y−1
k if j = k ;

yjy
bjk
k (yk ⊕ 1)−bjk if j 6= k and bjk > 0;

yj(yk ⊕ 1)−bjk if j 6= k and bjk ≤ 0;

and

b′ij =

{
−bij if i = k or j = k;

bij +
|bik |bkj+bik |bkj |

2 otherwise.
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A− and X− manifolds

P is a tropical semifield if ⊕ is defined by

m∏

i=1

gαi
i ⊕

m∏

i=1

gβii =
m∏

i=1

g
min(αi ,βi )
i

A is of geometric type if P is a tropical semifield.
(Each yi =

∏m
j=1 g

αij

j ).

Example Frozen variables xk+1, . . . , xk+l play the role of generators
g1, . . . , gl . Transformation rules can be rewritten as

xkx ′k =
∏

16i6k+l
bki>0

xbki
i +

∏

16i6k+l
bki<0

x−bkii
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A− and X− manifolds

Two conjectures

Conjecture 1 The exchange graph of a cluster algebra depends only on
the initial exchange matrix B.
Conjecture 2

1 Every seed is uniquely defined by its cluster; thus, the vertices of the
exchange graph can be identified with the clusters up to a
permutation of cluster variables;

2 Two clusters are adjacent in the exchange graph iff they have exactly
(n − 1) common cluster variables.

Both conjectures are proven for cluster algebras of finite type ([FZ], 2003).

Conjecture 2 is proved for acyclic cluster algebras ([BMRT], 2006)
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A− and X− manifolds

Existance of presymplectic form implies:

Theorem A

Conjecture 2 holds for a cluster algebra A:

1 when A is of a geometric type;

2 when B is nondegenerate.

Theorem B

Let B be nondegenerate. Then the exchange graphs of all cluster algebras
with the same initial exchange matrix B coincide.
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A− and X− manifolds

Pentagram map

And the evening and the morning were the fifth day, April 19

R. Schwartz, V. Ovsienko, S. Tabachnikov, S. Morier-Genoud, M. Glick, F.
Soloviev, G. Mari-Beffa, M. Gekhtman, M. Shapiro, A. Vainshtein, R.

Kenyon, A. Goncharov, V. Fock, A. Marshakov
(almost) everything ArXived
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A− and X− manifolds

Pentagram Map T :

T(P)

P

T(P)

P

Acts on projective equivalence classes of closed and twisted n-gons with
monodromy M. The latter constitute a 2n-dimensional space, the former
is 2n − 8-dimensional.
A good reference: http://en.wikipedia.org/wiki/Pentagram_map

(Paris) Poisson properties of cluster algebras Day 3, April 18, 2012 39 / 69

http://en.wikipedia.org/wiki/Pentagram_map


A− and X− manifolds

Corner coordinates: left and right cross-ratios X1,Y1, . . . ,Xn,Yn.

i

i+2

v
i+1v

i−1

v
i−2

v

v

The map is as follows:

X ∗i = Xi
1− Xi−1 Yi−1

1− Xi+1 Yi+1
, Y ∗i = Yi+1

1− Xi+2 Yi+2

1− Xi Yi
.
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A− and X− manifolds

Hidden scaling symmetry

(X1,Y1, ...,Xn,Yn) 7→ (tX1, t
−1Y1, ..., tXn, t

−1Yn)

commutes with the map.
“Easy” invariants:

On =
n∏

i=1

Xi , En =
n∏

i=1

Yi .

Monodromy invariants:

O
2/3
n E

1/3
n (Tr M)

(det M)1/3
=

[n/2]∑

k=1

Ok

are polynomials in (Xi ,Yi ), decomposed into homogeneous components;
likewise, for Ek with M−1 replacing M.
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Theorem (OST 2010). The Pentagram Map is completely integrable on
the space of twisted n-gons:
1). The monodromy invariants are independent integrals (there are
2[n/2] + 2 of them).
2). There is an invariant Poisson structure of corank 2 if n is odd, and
corank 4 if n is even, such that these integrals Poisson commute.
Poisson bracket: {Xi ,Xi+1} = −Xi Xi+1, {Yi ,Yi+1} = Yi Yi+1,
and the rest = 0.
Complete integrability on the space of closed polygons has been proven as
well:
F. Soloviev. Integrability of the Pentagram Map, arXiv:1106.3950;

V. Ovsienko, R. Schwartz, S. Tabachnikov. Liouville-Arnold integrability of the

pentagram map on closed polygons, arXiv:1107.3633.
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Cluster algebras connection:

M. Glick. The pentagram map and Y -patterns, Adv. Math., 227 (2011),
1019–1045.
He considered the dynamics in the 2n − 1-dimensional quotient space by
the scaling symmetry (X ,Y ) 7→ (tX , t−1Y ):

pi = −Xi+1Yi+1, qi = − 1

YiXi+1
,

and proved that it was a Y -type cluster algebra dynamics.
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Cluster dynamics

Given a quiver (an oriented graph with no loops or 2-cycles) whose
vertices are labeled by variables τi (rational functions in some free
variables), the mutation on vertex i is as follows:

j i k
τ∗i =

1

τi
, τ∗j =

τjτi
1 + τi

, τ∗k = τk(1 + τi );

the rest of the variables are intact.
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The quiver also mutates, in three steps:
(i) for every path j → i → k , add an edge j → k;
(ii) reverse the orientation of the edges incident to the vertex i ;
(iii) delete the resulting 2-cycles.

i
j k

The mutation on a given vertex is an involution.
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Example of mutations:

THE PENTAGRAM MAP AND Y -PATTERNS 9

1 2 3

4 5 6

1 2 3

4 5 6

1 2 3

4 5 6

1 2 3

4 5 6

µ2

µ4

µ6

Figure 7. Some quiver mutations

Figure 7 illustrates some quiver mutations applied to the quiver associated with
the exchange matrix 



0 1 0 −1 0 0
−1 0 −1 0 1 0
0 1 0 0 0 −1
1 0 0 0 −1 0
0 −1 0 1 0 1
0 0 1 0 −1 0




.

Note that in this example the mutated quiver is the same as the initial one except that
all the arrows have been reversed. The is an instance of a more general phenomenon
described by the following lemma.

Lemma 3.2. Suppose that (y, B) is a Y -seed of rank 2n such that bij = 0 whenever
i, j have the same parity (so the associated quiver is bipartite). Assume also that for
all i and j the number of length 2 paths in the quiver from i to j equals the number of
length 2 paths from j to i. Then the µi for i odd pairwise commute as do the µi for i
even. Moreover, µ2n−1 ◦ · · · ◦ µ3 ◦ µ1(y, B) = (y′,−B) and µ2n ◦ · · · ◦ µ4 ◦ µ2(y, B) =
(y′′,−B) where

y′
j =

{
yj

∏
k y

[bkj]+
k (1 + yk)

−bkj , j even

y−1
j , j odd

(3.1)

y′′
j =

{
y−1

j , j even

yj

∏
k y

[bkj]+
k (1 + yk)

−bkj , j odd
(3.2)

The proof of this lemma is a simple calculation using the description of quiver
mutations above. Note that the term bipartite, as used in the statement of the
lemma, simply means that each arc in the quiver connects an odd vertex and an
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Glick’s quiver (n = 8):10 MAX GLICK

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 8. The quiver associated with the exchange matrix B0 for n = 8

even vertex. No condition on the orientation of the arcs is placed. A stronger notion
would require that all arcs begin at an odd vertex and end at an even one. The
discussion of bipartite belts in [5] uses the stronger condition. As such, the results
proven there do not apply to the current context. We will, however, use much of the
same notation.

Let µeven be the compound mutation µeven = µ2n ◦ . . . ◦ µ4 ◦ µ2 and let µodd =
µ2n−1 ◦ . . .◦µ3 ◦µ1. Equations (2.3)–(2.4) and (3.1)–(3.2) suggest that α1 and α2 are
instances of µodd and µeven, respectively. Indeed, let B0 be the matrix with entries

b0
ij =





(−1)j, i− j ≡ ±1 (mod 2n)

(−1)j+1, i− j ≡ ±3 (mod 2n)

0, otherwise

The corresponding quiver in the case n = 8 is shown in Figure 8.

Proposition 3.3. µeven(y, B0) = (α2(y),−B0) and µodd(y,−B0) = (α1(y), B0).

Proof. First of all, B0 is skew-symmetric and b0
i,j = 0 for i, j of equal parity. In the

quiver associated to B0, the number of length 2 paths from i to j is 1 if |i−j| ∈ {2, 4}
and 0 otherwise. Therefore, Lemma 3.2 applies to B0 and µeven is given by (3.2).

Both α2 and µeven invert the yj for j even. Now suppose j is odd. Then α2 has
the effect of multiplying yj by

yj−3yj+3
(1 + yj−1)(1 + yj+1)

(1 + yj−3)(1 + yj+3)
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Joint work in progress with Michael Gekhtman, Sergey Tabachnikov, and
Alek Vainshtein, ERA 19 (2012), 1–17.
Generalizing Glick’s quiver (the case of k = 3), consider the homogeneous
bipartite graph Qk,n where r = [k/2]− 1, and r ′ = r for k even and
r ′ = r + 1 for k odd (each vertex is 4-valent):

pi

qi!r!1 qi!r qi+r’ qi+r’+1

Dynamics: mutations on all p-vertices, followed by swapping p and q; this
is the map T k :
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q∗i =
1

pi
, p∗i = qi

(1 + pi−r−1)(1 + pi+r+1)pi−rpi+r

(1 + pi−r )(1 + pi+r )
, k even,

q∗i =
1

pi−1
, p∗i = qi

(1 + pi−r−2)(1 + pi+r+1)pi−r−1pi+r

(1 + pi−r−1)(1 + pi+r )
, k odd.

The quiver is preserved. The function
∏

piqi is invariant; we restrict to
the subspace

∏
piqi = 1.

Invariant Poisson bracket: the variables Poisson commute, unless they are
connected by an arrow: {pi , qj} = ±piqj (depending on the direction).
(This bracket comes from the general theory: GSV, Cluster algebras and
Poisson geometry, AMS, 2010).
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The quivers, for small values of k , look like this (for k = 1, the arrows
cancel out):

pi pi pi pi pi

k=3 k=2 k=1 k=0 k=!1

The map T k is reversible: Dk ◦ T k ◦ Dk = T
−1
k ,

where

Dk : pi 7→
1

qi
, qi 7→

1

pi
, k even,

Dk : pi 7→
1

qi+1
, qi 7→

1

pi
, k odd.
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Goal: to reconstruct the x , y -dynamics and to interpret it geometrically.
Weighted directed networks on the cylinder and the torus (A.

Postnikov math.CO/0609764, for networks in a disc; GSV book).
Example:

1

2

3

3

1

2

x

y
!

Two kind of vertices, white and black.
Convention: an edge weight is 1, if not specified.
The cut is used to introduce a spectral parameter λ.
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Boundary measurements

:
the network

1

2

3

3

1

2

x

y
!

corresponds to the matrix




0 x x + y
λ 0 0
0 1 1




Concatenation of networks 7→ product of matrices.
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Gauge group: at a vertex, multiply the weights of the incoming edges and
divide the weights of the outgoing ones by the same function. Leaves the
boundary measurements intact.
Face weights: the product of edge weights over the boundary (orientation
taken into account). The boundary measurement map to matrix functions
factorizes through the space of face weights. (They will be identified with
the p, q-coordinates).
Poisson bracket (6-parameter): {xi , xj} = cijxixj , i 6= j ∈ {1, 2, 3}

1 1
2 2

3 3

x
x

x

x
x

x
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Postnikov moves (do not change the boundary measurements):

y
1 w2

w4

w1 w2

w3 w4

w1 w2

w3

w4

w3

w4
w2w111+

w2w111+
1

w2w111+
w1

w2w111+
w2

w1 w2

w3 w43w

w1 w2

w4

y

Type 1

Type 2

Type 3
y x

y’ x’

x

w

3w

1 1

1
1

1

1 1

1 1x

x

y

x y

y

1
x’

x

y’
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Consider a network whose dual graph is the quiver Qk,n.
It is drawn on the torus. Example, k = 3, n = 5:

x 1

y 1
x 2

x x 4

x 5

2

y 3

y 4

y 5y

3
p1

3

1

2

1

2

3

Convention: white vertices of the graph are on the left of oriented edges of
the dual graph.
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The network is made of the blocks:

pi

qi!r

qi+r’

qi!r!1 qi+r’+1

Face weights:

pi =
yi
xi
, qi =

xi+1+r

yi+r
.

This is a projection π : (x , y) 7→ (p, q) with 1-dimensional fiber.
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(x , y)-dynamics: mutation (Postinov type 3 move on each p-face),

x+y
xx

y x+y

x+y
y

x+y
1

followed by the Postnikov type 1 and 2 moves on the white-white and
black-black edge (this interchanges p- and q-faces), including moving
across the vertical cut, and finally, re-calibration to restore 1s on the
appropriate edges. These moves preserve the conjugacy class of the
boundary measurement matrix.
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Schematically:

commutation

1

3

2

2

3

1

3

1

2

2

1

3

3

1

2

2

3

1

mutation

(Paris) Poisson properties of cluster algebras Day 3, April 18, 2012 58 / 69



A− and X− manifolds

This results in the map Tk :

x∗i = xi−r−1
xi+r + yi+r

xi−r−1 + yi−r−1
, y∗i = yi−r

xi+r+1 + yi+r+1

xi−r + yi−r
, k even,

x∗i = xi−r−2
xi+r + yi+r

xi−r−2 + yi−r−2
, y∗i = yi−r−1

xi+r+1 + yi+r+1

xi−r−1 + yi−r−1
, k odd.

The map Tk is conjugated to the map T k : π ◦ Tk = T k ◦ π.
Relation with the pentagram map: the change of variables

xi 7→ Yi , yi 7→ −YiXi+1Yi+1,

identifies T3 with the pentagram map.
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Complete integrability of the maps Tk

The ingredients are suggested by the combinatorics of the network.
Invariant Poisson bracket (in the “stable range” n ≥ 2k − 1):

{xi , xi+l} = −xixi+l , 1 ≤ l ≤ k − 2; {yi , yi+l} = −yiyi+l , 1 ≤ l ≤ k − 1;

{yi , xi+l} = −yixi+l , 1 ≤ l ≤ k − 1; {yi , xi−l} = yixi−l , 0 ≤ l ≤ k − 2;

the indices are cyclic.
The functions

∏
xi and

∏
yi are Casimir. If n is even and k is odd, one

has four Casimir functions:

∏

i even

xi ,
∏

i odd

xi ,
∏

i even

yi ,
∏

i odd

yi .
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Lax matrices, monodromy, integrals: for k ≥ 3,

Li =




0 0 0 . . . xi xi + yi
λ 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 1



,

and for k = 2,

Li =

(
λxi xi + yi
λ 1

)
.

The boundary measurement matrix is M(λ) = L1 · · · Ln. The characteristic
polynomial

det(M(λ)− z) =
∑

Iij(x , y)z iλj .

is Tk -invariant: the integrals Iij are in involution.
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Zero curvature (Lax) representation:

L∗i = PiLi+r−1P−1
i+1

where Li are the Lax matrices and

Pi =




0 xi
λσi

yi+1

λσi+1
0 . . . 0 0

0 0 xi+1

σi+1

yi+2

σi+2
. . . 0 0

. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . .

xi+k−4

σi+k−4

yi+k−3

σi+k−3
0

− 1
σi+k−2

0 0 . . . 0
xi+k−3

σi+k−3
1

1
σi+k−2

− 1
λσi+k−1

0 . . . 0 0 0

0 1
λσi+k−1

0 . . . 0 0 0




,

with σi = xi + yi .
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Geometric interpretations

Twisted corrugated polygons in RPk−1 and k − 1-diagonal maps
Let k ≥ 3. Let Pk,n be the space of projective equivalence classes of
generic twisted n-gons in RPk−1; one has: dim Pk,n = n(k − 1).
Let P0

k,n ⊂ Pk,n consist of the polygons with the following property: for
every i , the vertices Vi ,Vi+1,Vi+k−1 and Vi+k span a projective plane.
These are corrugated polygons. Projective duality preserves corrugated
polygons.
The consecutive k − 1-diagonals of a corrugated polygon intersect. The
resulting polygon is again corrugated. One gets a pentagram-like
k − 1-diagonal map on P0

k,n. For k = 3, this is the pentagram map.
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Coordinates: lift the vertices Vi of a corrugated polygon to vectors Ṽi in
Rk so that the linear recurrence holds

Ṽi+k = yi−1Ṽi + xi Ṽi+1 + Ṽi+k−1,

where xi and yi are n-periodic sequences. These are coordinates in P0
k,n.

In these coordinates, the map is identified with Tk .
The same functions xi , yi can be defined on polygons in the projective
plane. One obtains integrals of the “deeper” diagonal maps on twisted
polygons in RP2.
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Case k = 2
Consider the space Sn of pairs of twisted n-gons (S−, S) in RP1 with the
same monodromy. Consider the projectively invariant projection φ to the
(x , y)-space (cross-ratios):

xi =
(Si+1 − S−i+2)(S−i − S−i+1)

(S−i − Si+1)(S−i+1 − S−i+2)

yi =
(S−i+1 − Si+1)(S−i+2 − Si+2)(S−i − S−i+1)

(S−i+1 − Si+2)(S−i − Si+1)(S−i+1 − S−i+2)
.

Then xi , yi are coordinates in Sn/PGL(2,R).
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Define a transformation F2(S−,S) = (S ,S+), where S+ is given by the
following local leapfrog rule: given points Si−1,S

−
i ,Si ,Si+1, the point S+

i

is obtained by the reflection of S−i in Si in the projective metric on the
segment [Si−1,Si+1]:

Si!1 SiS Si Si+1i
+ !

The projection φ conjugates F2 and T2.
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In formulas:

1

S+
i − Si

+
1

S−i − Si
=

1

Si+1 − Si
+

1

Si−1 − Si
,

or, equivalently,

(S+
i − Si+1)(Si − S−i )(Si − Si−1)

(S+
i − Si )(Si+1 − Si )(S−i − Si−1)

= −1,

(Toda-type equations).
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In CP1, a circle pattern interpretation (generalized Schramm’s pattern):

+

Si
Si+1

Si!1

Si

S!i
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Thank you!
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