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Cluster algebra and compatible Poisson structure

Reference:

Cluster algebra and Poisson Geometry, M.Gekhtman, M.S., A.Vainshtein,
AMS, 2010

Motivations for notion of cluster algebra

Totally Positive Matrices

An n × n matrix A is totally positive if all its minors are positive.

Note that the number of all minors grows exponentially with size.
However, one can select (not uniquely) a family F of just n2 minors of A
such that A is totally positive iff every minor in the family is positive.
(Fekete; B.-F.-Z.)
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n = 3

For n = 3 (totally 20 minors),
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Families F1 and F2

differ in only one element

are connected by

∆13
13∆23

23 = ∆23
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Properties

Every other ”test family” of 9 minors

contains ∆3
1,∆

1
3,∆

23
12,∆

12
23,∆

123
123

can be obtained from F1 (or F2) via a sequence of similar
transformations

defines coordinate system on GL(3) bi-rationally related to natural
coordinates A = (aij)

3
i ,j=1.

The intersection of opposite big Bruhat cells

B+w0B+ ∩ B−w0B− ⊂ GL(3)

coincides with

{A ∈ GL(3)|∆3
1∆1

3∆23
12∆12

23∆123
123 6= 0}

The number of connected components of this intersection can be
computed using families Fi .
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Homogeneous coordinate ring C[Gr2,n+3]

Gr2,n+3 ={V⊂Cn+3 :dim(V )=2}. The ring A = C[Gr2,n+3] is generated
by the Plücker coordinates xij , for 1 ≤ i < j ≤ n + 3.
Relations: xikxjl =xijxkl +xilxjk , for i< j<k< l .

sides: scalars

diagonals:
cluster variables

relations: “flips”

clusters:
triangulations

r r

r r
r

1 5

2 4

3

x15

x12 x45

x23 x34

x24
x35x13

x25 x14

Each cluster has exactly n elements, so A is a cluster algebra of rank n.
The monomials involving “non-crossing” variables form a linear basis in A
(studied in [Kung-Rota]).
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Double Bruhat cell in SL(3)

Example

A = C[Gu,v ], where Gu,v = BuB ∩ B−vB− =

=


 x α 0
γ y β
0 δ z

 ∈ SL3(C) :
α 6= 0 β 6= 0
γ 6= 0 δ 6= 0


is a double Bruhat cell (u,v ∈S3, `(u)=`(v)=2).
Ground ring: A = C[α±1, β±1, γ±1, δ±1].
Five cluster variables. Exchange relations:

xy =
∣∣∣∣∣∣ x α
γ y

∣∣∣∣∣∣+ αγ yz =
∣∣∣∣∣∣ y β
δ z

∣∣∣∣∣∣+ βδ

x
∣∣∣∣∣∣ y β
δ z

∣∣∣∣∣∣ = αγz + 1 z
∣∣∣∣∣∣ x α
γ y

∣∣∣∣∣∣ = βδx + 1

∣∣∣∣∣∣ x α
γ y

∣∣∣∣∣∣ · ∣∣∣∣∣∣ y β
δ z

∣∣∣∣∣∣ = αβγδ + y .
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General construction [Zelevinsky, IMRN, 2000]

Definition

Exchange graph of a cluster algebra:
vertices ' clusters
edges ' exchanges.

Tm m-regular tree with {1, 2, . . .m}-labeled edges,

adjacent edges receive different labels

T1
u u1

T2
s s s s s s s1 1 12 2 2
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Cluster algebras of geometric type

y = (y1, . . . , yn−m) − frozen variables,

x(t) = (x1(t), . . . , xm(t)) − cluster variables,

z(t) = (z1(t), . . . , zn(t)) = (x(t), y)− extended cluster

variables.

Definition

Cluster algebra A is given by pair (B(t), z(t)) for each cluster (vertex of
exchange graph) t

B(t) is an m × n integral matrix (m ≤ n) whose left m ×m block is
left-skew-symmetrizable, (we will assume it skew-symmetric for simplicity)

z(t) is a vector of extended cluster variables.

variables zm+1 = y1, . . . , zn = yn−m are not affected by Ti .

both B(t) and z(t) are subject to cluster transformations defined as follows.
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Cluster transformations

Cluster change

For an edge of Tm i ∈ [1, . . . ,m]s sit t′

Ti : z(t) 7→ z(t ′) is defined as

xi (t
′) =

1

xi (t)

 ∏
bik (t)>0

zk(t)bik (t) +
∏

bik (t)<0

zk(t)−bik (t)


zj(t
′) = zj(t) j 6= i ,

Matrix mutation B(t ′) = Ti (B(t)) ,

bkl(t
′) =


− bkl(t), if (k − i)(l − i) = 0

bkl(t) +
|bki (t)|bil(t) + bki (t)|bil(t)|

2
, otherwise.
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Definition

Given some initial cluster t0 put zi = zi (t0), B = B(t0). The cluster
algebra A (or, A(B)) is the subalgebra of the field of rational functions in
cluster variables z1, . . . , zn generated by the union of all cluster variables
zi (t).
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Examples of Ti(B)

A matrix B(t) can be represented by a (weighted, oriented) graph.
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The Laurent phenomenon

Theorem (FZ) In a cluster algebra, any cluster variable is expressed in
terms of initial cluster as a Laurent polynomial.
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Poisson structure on cluster algebra

Poisson structure on a cluster algebra A is a skew-symmetric bracket
{} : A⊗A → A such that Leibnitz rule:

{f , g} =
∑
i

∂f

∂xi
{xi , g}

and Jacobi identity:

{f {g , h}}+ {g{h, f }}+ {h{f , g}} = 0

hold.
Remark Poisson bracket is completely determined by its values on
generators {xi , xj}.
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Compatible Poisson brackets

F = quotient field of A.

Definition

Poisson bracket is log-canonical w.r.t. set of elements fi ∈ F if
{fi , fj} = cij fi fj (equivalently, {log xi , log xj} = cij) for some constants
cij ∈ Z.

Remark cij = −cji .
Remark Given a functionally independent system of generators
f1, . . . , fn ∈ F there is a 1-to-1 correspondence between log-canonical
Poisson structures and skew-symmetric n × n matrices.

Definition

Poisson bracket on cluster algebra is compatible with the cluster algebra
structure if for every cluster it is log-canonical w.r.t. all elements of this
cluster.
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Sklyanin Poisson brackets

Matn – all n × n matrices. For any matrix X we write its decomposition into a
sum of lower triangular and strictly upper triangular matrices as

X = X− + X0 + X+

The R-matrix R : Matn → Matn defined by R(X ) = X+ − X−
Poisson bracket on Matn :

{f1, f2}(X ) =
1

2
(〈R(∇f1(X )X ),∇f2(X )X 〉 − 〈R(X∇f1(X )),X∇f2(X ))]〉) ,

where gradient ∇ is defined w.r.t. trace form.
For matrix elements xij ,

{xij , xαβ} =
1

2
(sign(α− i) + sign(β − j))xiβxαj
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Observations:

Sklyanin Poisson bracket is compatible with the ”total positive”
cluster algebra structure on Matn.

The maximal double Bruhat cell coincides with the union of ”generic”
symplectic leaves.
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