Poisson properties of cluster algebras

Paris

Day 2, April 17, 2012

Cluster algebra and compatible Poisson structure

Reference:

Cluster algebra and Poisson Geometry, M.Gekhtman, M.S., A.Vainshtein, AMS, 2010

Motivations for notion of cluster algebra

Totally Positive Matrices

An $n \times n$ matrix A is totally positive if all its minors are positive.
Note that the number of all minors grows exponentially with size. However, one can select (not uniquely) a family F of just n^{2} minors of A such that A is totally positive iff every minor in the family is positive. (Fekete; B.-F.-Z.)
$n=3$

For $n=3$ (totally 20 minors),

$$
\begin{aligned}
& F_{1}=\left\{\Delta_{3}^{3}, \underline{\Delta_{23}^{23}}, \Delta_{23}^{13}, \Delta_{13}^{23} ; \Delta_{1}^{3}, \Delta_{3}^{1}, \Delta_{12}^{23}, \Delta_{23}^{12}, \Delta_{123}^{123}\right\} \\
& F_{2}=\left\{\Delta_{3}^{3}, \Delta_{23}^{13}, \Delta_{13}^{23}, \Delta_{13}^{13} ; \Delta_{1}^{3}, \Delta_{3}^{1}, \Delta_{12}^{23}, \Delta_{23}^{12}, \Delta_{123}^{123}\right\}
\end{aligned}
$$

Families F_{1} and F_{2}

- differ in only one element
- are connected by

$$
\Delta_{13}^{13} \Delta_{23}^{23}=\Delta_{13}^{23} \Delta_{23}^{13}+\Delta_{3}^{3} \Delta_{123}^{123}
$$

Properties

Every other "test family" of 9 minors

- contains $\Delta_{1}^{3}, \Delta_{3}^{1}, \Delta_{12}^{23}, \Delta_{23}^{12}, \Delta_{123}^{123}$
- can be obtained from F_{1} (or F_{2}) via a sequence of similar transformations
- defines coordinate system on $G L(3)$ bi-rationally related to natural coordinates $A=\left(a_{i j}\right)_{i, j=1}^{3}$.
- The intersection of opposite big Bruhat cells

$$
B_{+} w_{0} B_{+} \cap B_{-} w_{0} B_{-} \subset G L(3)
$$

coincides with

$$
\left\{A \in G L(3) \mid \Delta_{1}^{3} \Delta_{3}^{1} \Delta_{12}^{23} \Delta_{23}^{12} \Delta_{123}^{123} \neq 0\right\}
$$

The number of connected components of this intersection can be computed using families F_{i}.

Homogeneous coordinate ring $\mathbb{C}\left[\mathrm{Gr}_{2, n+3}\right]$

$\operatorname{Gr}_{2, n+3}=\left\{V \subset \mathbb{C}^{n+3}: \operatorname{dim}(V)=2\right\}$. The ring $\mathcal{A}=\mathbb{C}\left[\mathrm{Gr}_{2, n+3}\right]$ is generated by the Plücker coordinates $x_{i j}$, for $1 \leq i<j \leq n+3$.
Relations: $x_{i k} x_{j l}=x_{i j} x_{k l}+x_{i l} x_{j k}$, for $i<j<k<l$.

sides: scalars
diagonals:
cluster variables
relations: "flips"
clusters:
triangulations
Each cluster has exactly n elements, so \mathcal{A} is a cluster algebra of rank n. The monomials involving "non-crossing" variables form a linear basis in \mathcal{A} (studied in [Kung-Rota]).

Double Bruhat cell in SL(3)

Example

$\mathcal{A}=\mathbb{C}\left[G^{u, v}\right]$, where $G^{u, v}=B u B \cap B_{-} v B_{-}=$

$$
=\left\{\left[\begin{array}{lll}
x & \alpha & 0 \\
\gamma & y & \beta \\
0 & \delta & z
\end{array}\right] \in S L_{3}(\mathbb{C}): \begin{array}{ll}
\alpha \neq 0 & \beta \neq 0 \\
\gamma \neq 0 & \delta \neq 0
\end{array}\right\}
$$

is a double Bruhat cell $\left(u, v \in \mathcal{S}_{3}, \ell(u)=\ell(v)=2\right)$.
Ground ring: $\mathbb{A}=\mathbb{C}\left[\alpha^{ \pm 1}, \beta^{ \pm 1}, \gamma^{ \pm 1}, \delta^{ \pm 1}\right]$.
Five cluster variables. Exchange relations:

$$
\begin{gathered}
x y=\left\|\begin{array}{cc}
x & \alpha \\
\gamma & y
\end{array}\right\|+\alpha \gamma \\
y z=\left\|\begin{array}{cc}
y & \beta \\
\delta & z
\end{array}\right\|+\beta \delta \\
x\left\|\begin{array}{cc}
y & \beta \\
\delta & z
\end{array}\right\|=\alpha \gamma z+1
\end{gathered} \quad z\left\|\begin{array}{cc}
x & \alpha \\
\gamma & y
\end{array}\right\|=\beta \delta x+1
$$

General construction [Zelevinsky, IMRN, 2000]

Definition

Exchange graph of a cluster algebra:
vertices \simeq clusters
edges \simeq exchanges.
$\mathbb{T}_{m} \quad m$-regular tree with $\{1,2, \ldots m\}$-labeled edges,
adjacent edges receive different labels

1
\mathbb{T}_{1}

Cluster algebras of geometric type

$$
\begin{array}{rlrl}
\mathbf{y} & =\left(y_{1}, \ldots, y_{n-m}\right) & & - \text { frozen variables, } \\
\mathbf{x}(t) & =\left(x_{1}(t), \ldots, x_{m}(t)\right) & & - \text { cluster variables, } \\
\mathbf{z}(t) & =\left(z_{1}(t), \ldots, z_{n}(t)\right)=(\mathbf{x}(t), \mathbf{y})- & \text { extended cluster } \\
& & \text { variables. }
\end{array}
$$

Definition

Cluster algebra \mathcal{A} is given by pair $(B(t), \mathbf{z}(t))$ for each cluster (vertex of exchange graph) t

- $B(t)$ is an $m \times n$ integral matrix $(m \leq n)$ whose left $m \times m$ block is left-skew-symmetrizable, (we will assume it skew-symmetric for simplicity)
- $\mathbf{z}(t)$ is a vector of extended cluster variables.
- variables $z_{m+1}=y_{1}, \ldots, z_{n}=y_{n-m}$ are not affected by T_{i}.
- both $B(t)$ and $\mathbf{z}(t)$ are subject to cluster transformations defined as follows.

Cluster transformations

Cluster change

For an edge of \mathbb{T}_{m}

$T_{i}: \mathbf{z}(t) \mapsto \mathbf{z}\left(t^{\prime}\right)$ is defined as

$$
\begin{gathered}
\mathbf{x}_{i}\left(t^{\prime}\right)=\frac{1}{\mathbf{x}_{i}(t)}\left(\prod_{b_{i k}(t)>0} z_{k}(t)^{b_{i k}(t)}+\prod_{b_{i k}(t)<0} z_{k}(t)^{-b_{i k}(t)}\right) \\
z_{j}\left(t^{\prime}\right)=z_{j}(t) \quad j \neq i,
\end{gathered}
$$

Matrix mutation $B\left(t^{\prime}\right)=T_{i}(B(t))$,

$$
b_{k l}\left(t^{\prime}\right)=\left\{\begin{array}{l}
-b_{k l}(t), \quad \text { if }(k-i)(I-i)=0 \\
b_{k l}(t)+\frac{\left|b_{k i}(t)\right| b_{i l}(t)+b_{k i}(t)\left|b_{i l}(t)\right|}{2}, \text { otherwise. }
\end{array}\right.
$$

Definition

Given some initial cluster t_{0} put $z_{i}=z_{i}\left(t_{0}\right), B=B\left(t_{0}\right)$. The cluster algebra \mathcal{A} (or, $\mathcal{A}(B)$) is the subalgebra of the field of rational functions in cluster variables z_{1}, \ldots, z_{n} generated by the union of all cluster variables $z_{i}(t)$.

Examples of $T_{i}(B)$

A matrix $B(t)$ can be represented by a (weighted, oriented) graph.

Theorem (FZ) In a cluster algebra, any cluster variable is expressed in terms of initial cluster as a Laurent polynomial.

Poisson structure on cluster algebra

Poisson structure on a cluster algebra \mathcal{A} is a skew-symmetric bracket $\}: \mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A}$ such that Leibnitz rule:

$$
\{f, g\}=\sum_{i} \frac{\partial f}{\partial x_{i}}\left\{x_{i}, g\right\}
$$

and Jacobi identity:

$$
\{f\{g, h\}\}+\{g\{h, f\}\}+\{h\{f, g\}\}=0
$$

hold.
Remark Poisson bracket is completely determined by its values on generators $\left\{x_{i}, x_{j}\right\}$.

Compatible Poisson brackets

$\mathcal{F}=$ quotient field of \mathcal{A}.

Definition

Poisson bracket is log-canonical w.r.t. set of elements $f_{i} \in \mathcal{F}$ if $\left\{f_{i}, f_{j}\right\}=c_{i j} f_{i} f_{j}$ (equivalently, $\left\{\log x_{i}, \log x_{j}\right\}=c_{i j}$) for some constants $c_{i j} \in \mathbb{Z}$.

Remark $c_{i j}=-c_{j i}$.
Remark Given a functionally independent system of generators $f_{1}, \ldots, f_{n} \in \mathcal{F}$ there is a 1-to-1 correspondence between log-canonical Poisson structures and skew-symmetric $n \times n$ matrices.

Definition

Poisson bracket on cluster algebra is compatible with the cluster algebra structure if for every cluster it is log-canonical w.r.t. all elements of this cluster.

Sklyanin Poisson brackets

Mat $_{n}$ - all $n \times n$ matrices. For any matrix X we write its decomposition into a sum of lower triangular and strictly upper triangular matrices as

$$
X=X_{-}+X_{0}+X_{+}
$$

The R-matrix $R: M a t_{n} \rightarrow M a t_{n}$ defined by $R(X)=X_{+}-X_{-}$ Poisson bracket on Mat_{n} :

$$
\left.\left.\left\{f_{1}, f_{2}\right\}(X)=\frac{1}{2}\left(\left\langle R\left(\nabla f_{1}(X) X\right), \nabla f_{2}(X) X\right\rangle-\left\langle R\left(X \nabla f_{1}(X)\right), X \nabla f_{2}(X)\right)\right]\right\rangle\right)
$$

where gradient ∇ is defined w.r.t. trace form.
For matrix elements $x_{i j}$,

$$
\left\{x_{i j}, x_{\alpha \beta}\right\}=\frac{1}{2}(\operatorname{sign}(\alpha-i)+\operatorname{sign}(\beta-j)) x_{i \beta} x_{\alpha j}
$$

Observations:

- Sklyanin Poisson bracket is compatible with the "total positive" cluster algebra structure on $M a t_{n}$.
- The maximal double Bruhat cell coincides with the union of "generic" symplectic leaves.

