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Hamiltonian formalism and Integrable systems

Classical mechanics

Newton’s mechanics

The classical Newton’s second law for a particle with coordinates
q(t) = (q1(t), . . . , qn(t)) in a potential force field F has a form

q̈ = F, F = −∇U,

where U = U(q) is a potential energy.

Phase space

We rewrite these equations as{
q̇ = p

ṗ = −∇U,

p = (p1, . . . , pn) is the momentum.
The space R2n = {(p, q)} is the phase space of the system.
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Hamiltonian formalism and Integrable systems

Poisson structure

Definition

A Poisson structure on a manifold M is a bilinear bracket
{·, ·} : C∞(M)× C∞(M)→ C∞(M) satisfying

1 skew-symmetry {F ,G} = −{G ,F}
2 Leibnitz rule {F ,G} =

∑
i
∂F
∂qi
{qi ,G}

3 Jacobi identity {{F ,G}H}+ {{G ,H}F}+ {{H,F}G} = 0

Example

The standard Poisson structure on R2n = {(p, q)}.

{F ,G} =
∑
i

∂F

∂qi

∂G

∂pi
− ∂F

∂pi

∂G

∂qi

(Paris) Poisson properties of cluster algebras April, 2012 4 / 1



Hamiltonian formalism and Integrable systems

Poisson structure

Definition

A Poisson structure on a manifold M is a bilinear bracket
{·, ·} : C∞(M)× C∞(M)→ C∞(M) satisfying

1 skew-symmetry {F ,G} = −{G ,F}

2 Leibnitz rule {F ,G} =
∑

i
∂F
∂qi
{qi ,G}

3 Jacobi identity {{F ,G}H}+ {{G ,H}F}+ {{H,F}G} = 0

Example

The standard Poisson structure on R2n = {(p, q)}.

{F ,G} =
∑
i

∂F

∂qi

∂G

∂pi
− ∂F

∂pi

∂G

∂qi

(Paris) Poisson properties of cluster algebras April, 2012 4 / 1



Hamiltonian formalism and Integrable systems

Poisson structure

Definition

A Poisson structure on a manifold M is a bilinear bracket
{·, ·} : C∞(M)× C∞(M)→ C∞(M) satisfying

1 skew-symmetry {F ,G} = −{G ,F}
2 Leibnitz rule {F ,G} =

∑
i
∂F
∂qi
{qi ,G}

3 Jacobi identity {{F ,G}H}+ {{G ,H}F}+ {{H,F}G} = 0

Example

The standard Poisson structure on R2n = {(p, q)}.

{F ,G} =
∑
i

∂F

∂qi

∂G

∂pi
− ∂F

∂pi

∂G

∂qi

(Paris) Poisson properties of cluster algebras April, 2012 4 / 1



Hamiltonian formalism and Integrable systems

Poisson structure

Definition

A Poisson structure on a manifold M is a bilinear bracket
{·, ·} : C∞(M)× C∞(M)→ C∞(M) satisfying

1 skew-symmetry {F ,G} = −{G ,F}
2 Leibnitz rule {F ,G} =

∑
i
∂F
∂qi
{qi ,G}

3 Jacobi identity {{F ,G}H}+ {{G ,H}F}+ {{H,F}G} = 0

Example

The standard Poisson structure on R2n = {(p, q)}.

{F ,G} =
∑
i

∂F

∂qi

∂G

∂pi
− ∂F

∂pi

∂G

∂qi

(Paris) Poisson properties of cluster algebras April, 2012 4 / 1



Hamiltonian formalism and Integrable systems

Poisson structure

Definition

A Poisson structure on a manifold M is a bilinear bracket
{·, ·} : C∞(M)× C∞(M)→ C∞(M) satisfying

1 skew-symmetry {F ,G} = −{G ,F}
2 Leibnitz rule {F ,G} =

∑
i
∂F
∂qi
{qi ,G}

3 Jacobi identity {{F ,G}H}+ {{G ,H}F}+ {{H,F}G} = 0

Example

The standard Poisson structure on R2n = {(p, q)}.

{F ,G} =
∑
i

∂F

∂qi

∂G

∂pi
− ∂F

∂pi

∂G

∂qi

(Paris) Poisson properties of cluster algebras April, 2012 4 / 1



Hamiltonian formalism and Integrable systems

Poisson structure produces vector fields from functions

Poisson structure corresponds to the bi-vector field ν =
∑

i νij
∂
∂qi
∧ ∂
∂pi
,

such that {F ,G}(x) = 〈dF (x) ∧ dG (x), ν(x)〉, where 〈·, ·〉 is the natural
pairing between Λ2T ∗x (X ) and Λ2Tx(X ).

A Poisson bracket transforms a covector field into a vector field

It induces a linear map Ψx : T ∗x M → TxM.
For any two covectors ξ, η ∈ T ∗x M let ξ = dF (x), η = dG (x). Then Ψx is
determined uniquely by η(Ψxξ) = {F ,G}(x).

A Poisson bracket transforms

any function H  a vector field sgrad H = Ψx(dH(x)).
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Hamiltonian formalism and Integrable systems

Hamiltonian equations

Definition

Given a hamiltonian function (or hamiltonian) H(x) the Hamiltonian flow
along vector field sgrad H is given by Hamiltonian equations ẋi = {xi ,H}
For x = (p, q) we have H = H(p, q), ṗ = {p,H}, q̇ = {q,H}.

For any function f (x) we have
d
dt f =

∑
i
∂f
∂xi

ẋi =
∑

i
∂f
∂xi
{xi ,H} = {f ,H} by the Leibnitz rule.
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Hamiltonian formalism and Integrable systems

Example

Example

Consider x = (p, q) ∈ R2n, equipped with the standard Poisson structure

{F ,G} =
∑

i
∂F
∂qi

∂G
∂pi
− ∂F

∂pi
∂G
∂qi

, and the hamiltonian H(p, q) = p2

2 + U(q)
(the total energy). Then the flow equations take the form{

q̇ = p

ṗ = −∇U

We recognize Newton’s equations of motion.
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ṗ = −∇U

We recognize Newton’s equations of motion.

(Paris) Poisson properties of cluster algebras April, 2012 7 / 1



Hamiltonian formalism and Integrable systems

Example

Example

Consider x = (p, q) ∈ R2n, equipped with the standard Poisson structure

{F ,G} =
∑

i
∂F
∂qi

∂G
∂pi
− ∂F

∂pi
∂G
∂qi

, and the hamiltonian H(p, q) = p2

2 + U(q)
(the total energy). Then the flow equations take the form{

q̇ = p
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Hamiltonian formalism and Integrable systems

Integrals of motion

Let I (x) be a function such that {I ,H} = 0. Then I is preserved under the
Hamiltonian flow with hamiltonian H. Indeed, İ = {I ,H} = 0 and
I (t) = I (p(t), q(t)) = Const.

Definition

Such I is called a first integral of motion.

A collection I1, . . . , Ik of the first
integrals such that {Ij , Il} = 0 for all j , l form integrals in involution.
Integrals are called independent if their gradient are linearly independent
at a generic point of M.
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Hamiltonian formalism and Integrable systems

Liouville’s theorem

A 2n dimensional Poisson manifold M2n is symplectic if bivector field ν
giving the Poisson structure is nondegenerate at every point of M.

Theorem

Let a symplectic M2n have n functions F1, . . . ,Fn in involution (i.e.,
{Fi ,Fj} ≡ 0∀i , j). Consider Mf := {x |Fi (x) = fi , i = 1 . . . n}. Assume
that all Fi are independent on Mf (i.e. dFi (x) are linearly independent for
all x ∈ Mf ). Then,

1 Mf is a smooth manifold invariant w.r.t. hamiltonian flow sgrad F1.

2 If Mf is compact and connected then Mf ≈ {(ϕ1, . . . , ϕn)mod2π}.
3 The flow in the phase space with hamiltonian H = F1 determines on

Mf a quasi-periodic motion in angle coordinates ϕ1, . . . , ϕn. Namely,
ϕ̇i = ωi , where ω = (ω1, . . . , ωn) depends on f .

4 Hamiltonian equations with hamiltonian H = F1 are solved in
quadratures (i.e. there are analytic formulas for the motion).
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Hamiltonian formalism and Integrable systems

Action-angle variables

Remark

For each new integral in involution the hamiltonian reduction decreases
the number of degrees of freedom of the system by 2.

Definition

For the system with 2n degrees of freedom (dimension) there are at most
n independent integrals in involution H1, . . . ,Hn.

They are action variables.
If H = H1 is a hamiltonian then there are n additional coordinates
ϕ1, . . . , ϕn such that 0 = {ϕi , ϕj} = {Hi ,Hj}, {ϕi ,Hj} = 0 for i 6= j ,
{ϕi ,Hi} = δij .
The solution of Cauchy problem with initial condition (Hj(0), ϕj(0)) is

Hj(t) = Hj(0)

ϕj(t) = ϕj(0) + Hj(0)t.

ϕi are angle variables.
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The solution of Cauchy problem with initial condition (Hj(0), ϕj(0)) is

Hj(t) = Hj(0)

ϕj(t) = ϕj(0) + Hj(0)t.

ϕi are angle variables.
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Hamiltonian formalism and Integrable systems

Example:

Open Toda lattice

We consider the evolution of n labeled interacting particles on a line
where only ith and i + 1st particles interact.

Hamiltonian is H = 1
2

∑n
j=1 p2

j +
∑n−1

j=1 exp(2(qj − qj+1)), where qj is
the coordinate of jth particle, pj = q̇j is its momentum.

The Poisson structure in coordinates (pi , qi ) is standard.
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Hamiltonian formalism and Integrable systems

Equations of motion

The corresponding differential equations of motion take the form

q̇1 = p1

. . .

q̇n = pn

ṗ1 = −2e2(q1−q2)

ṗ2 = −2e2(q2−q3) + 2e2(q1−q2)

. . .

ṗn = 2e2(qn−1−qn)
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Hamiltonian formalism and Integrable systems

Lax form of open Toda lattice

Question (matrix Lax equation)

Find matrix X such that Ẋ = [X ,X+] is equivalent to Toda equation.

Lax pair

Such matrix X = X (pi , qi ) can be found in a tridiagonal form.

X =


p1 eq1−q2 0 . . .

eq1−q2 . . .
. . . eqn−1−qn

. . . eqn−1−qn pn


and X+ is a skew-symmetrization of X

X+ =


0 eq1−q2 0 . . .

−eq1−q2 . . .
. . . eqn−1−qn

. . . −eqn−1−qn 0



(Paris) Poisson properties of cluster algebras April, 2012 13 / 1



Hamiltonian formalism and Integrable systems

Lax form of open Toda lattice

Question (matrix Lax equation)
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Hamiltonian formalism and Integrable systems

Exercise

Check that Lax equation is equivalent to Toda lattice.

Remark

If Poisson structure is degenerate then any solution of Hamiltonian system
lives on a symplectic leaf of the Poisson manifold.
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Hamiltonian formalism and Integrable systems

Symplectic leafs

Definition

Symplectic leaf of a Poisson manifold M is an equivalence class of points
in M such that one can reach from one point to another in the same class
along piecewise trajectories of hamiltonian flows.

Example

Lie-Poisson (linear) bracket on b∗: {f , g}(x) = 〈x , [df (x), dg(x)]〉.
b∗ ≈ symmetric n × n matrices.

Symplectic leaves = orbits of coadjoint action of b. Tridiagonal
matrices form an orbit, i.e. a symplectic leaf.

The Lie-Poisson Poisson bracket on the space of tridiagonal matrices
coincides with the Toda lattice Poisson bracket under the appropriate
change of coordinates. Hamiltonian H(x) = 1

2Tr(X 2) induces the
hamiltonian flow which coincides with the open Toda lattice flow.
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Hamiltonian formalism and Integrable systems

Exercise

Check that hamiltonian flow on tridiagonal matrices equipped with
Lie-Poisson bracket with hamiltonian H(X ) = 1

2Tr(X 2) is given by
equations of open Toda lattice.
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Hamiltonian formalism and Integrable systems

Remark

Cauchy problem Ẋ = [X ,X+], X (0) = X0 has a solution of the form
X (t) = u(t)X0u(t)−1, where u(t) is an orthogonal matrix satisfying
u̇ = −Mu, u(0) = I ,M = −u̇u−1 = u−1u̇.

Corollary

The characteristic polynomial of X is preserved under Toda flow.

Corollary

Functions Hk(X ) = 1
k Tr(X k), k = [1, n] are integrals of motion.
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Hamiltonian formalism and Integrable systems

Let det(λI − X ) =
∏n

k=1(λ− λk) =
∑n

k=1(−1)kJk(L)λn−k .

Corollary

Functions Jk(X ), k = [1, n] are integrals of motion.

Corollary

Functions λk(X ), k = [1, n] are integrals of motion.
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Hamiltonian formalism and Integrable systems

Moser Map

X 7→ m(λ; X ) = ((λ1− X )−1e1, e1) =
q(λ)

p(λ)
=
∞∑
j=0

hj(X )

λj+1

linearizes the Toda flow.

Inverse Moser Map

Given m(λ), define Hankel determinants

∆
(l)
i = det (hα+β+l−i−1)iα,β=1
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Hamiltonian formalism and Integrable systems

Factorization of Jacobi matrix

A tridiagonal n × n matrix X can be factorized into

X =


1 0 . . . 0

c−
n−1 1

. . .
...

0
. . .

. . . 0
0 0 c−

1 1

 ·


dn 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 d1

 ·


1 c+
n−1 . . . 0

0
. . .

. . .
...

...
. . .

. . . c+
1

0 . . . 0 1



Theorem

di =
∆

(i)
i ∆

(i−2)
i−1

∆
(i−1)
i ∆

(i−1)
i−1

,

ci := c+
i c−i =

∆
(i−2)
i−1 ∆

(i)
i+1(

∆
(i)
i

)2
(

∆
(i−1)
i−1

∆
(i−2)
i−1

)2
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Hamiltonian formalism and Integrable systems
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Hamiltonian formalism and Integrable systems

Quadratic Poisson structures

Phase space for Toda lattice is formed by tridiagonal matrices modulo
conjugation by diagonal matrices. It coincides with double Bruhat cell
C := BuB ∩ B−vB− where u = s1 · . . . · sn−1, v = sn−1 · . . . · s1 are
Coxeter elements, si is a simple transposition i ↔ i + 1.

Remark

There are several Poisson brackets that generate Toda flow as a
hamiltonian flow.

Question:

Can one consider Toda lattice as a Hamiltonian system with respect to the
bracket that reflects group structure?
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Hamiltonian formalism and Integrable systems

Poisson-Lie bracket

G = a Lie group.

Definition

The Poisson structure {, } on G is called Poisson-Lie if the multiplication
map m : G × G → G is Poisson.

Example

Sl2. Borel subgroup B ⊂ Sl2 is the set

{(
t x
0 t−1

)}
Poisson structure on B: {t, x} = tx .

Induced Poisson structure on B × B =

{(
t1 x1
0 t−11

)
,

(
t2 x2
0 t−12

)}
:

{t1, x1} = t1x1, {t2, x2} = t2x2. All other brackets are 0.(
t1 x1
0 t−11

)
·
(

t2 x2
0 t−12

)
=

(
t1t2 t1x2 + x1t−12

0 t−11 t−12

)
=

(
u v
0 u−1

)
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Hamiltonian formalism and Integrable systems

For coordinates u, v

{m?(u),m∗(v)}G×G = {t1t2, t1x2 + x1t−12 }G×G = t21 t2x2 + t1x1.
On the other hand,

m? ({u, v}G ) = m?(uv) = t21 t2x2 + t1x1,

which proves Poisson-Lie property.
Similarly, we define Poisson-Lie bracket for B−.
Then, if we have embedded Poisson subgroups B and B− they define a
Poisson-Lie structure on SL2 they generate.
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Hamiltonian formalism and Integrable systems

Indeed,

To define Poisson-Lie bracket on the whole SL2 we use Gauss
decomposition SL2 = B−B+.

Indeed,

(
t1 0

y1 t−11

)(
t2 x2
0 t−12

)
=

(
t1t2 t1x2
y1t2 y1x2 + t−11 t−12

)
Hence,

{z11, z12} = {t1t2, t1x2} = t21 t2x2 = z11z12,

{z11, z21} = {t1t2, y1t2} = t22 t1y1 = z11z21,

{z11, z22} = {t1t2, y1x2 + t−11 t−12 } = 2t1y1t2x2 = 2z12z21,

{z12, z21} = {t1x2, y1t2} = 0,

{z12, z22} = {t1x2, y1x2 + t−11 t−12 } = t1y1t2x2
2 + x2/t2 = z12z22,

{z21, z22} = {y1t2, y1x2 + t−11 t−12 } = y2
1 t2x2 + y1/t1 = z21z22.
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Hamiltonian formalism and Integrable systems

Poisson-Lie bracket for SLn

Standard embeddings SL2 ⊂ SLn define Poisson submanifold with respect
to standard Poisson-Lie bracket.

Any fixed reduced decomposition of the
maximal element of the Weyl group determines a Poisson map
(n−1

2 )∏
1

SL2 → SLn.Then, for X = (xij) ∈ SLn we have

{xij , xki} = xijxik for j < k , {xji , xki} = xjixki for j < k
{xij , xkl} = xilxkj for i < k, j < l , {xij , xkl} = 0 for i < k , j > l

Remark

Tridiagonal matrices form a symplectic leaf of a standard Poisson-Lie
structure on SLn.

Remark

Toda equations are Hamiltonian equations with respect to the standard
quadratic Poisson-Lie bracket and Hamiltonian tr(X ).
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Hamiltonian formalism and Integrable systems

R-matrix

One can construct a Poisson-Lie bracket using R −matrix .

Definition

A map R : g → g is called a classical R −matrix if it satisfies modified
Yang-Baxter equation

[R(ξ),R(η)]− R ([R(ξ), η] + [ξ,R(η)]) = −[ξ, η]

R-matrix Poisson bracket

R-matrix Poisson-Lie bracket on SLn :

{f1, f2}(X ) =
1

2
(〈R(∇f1(X )X ),∇f2(X )X 〉 − 〈R(X∇f1(X )),X∇f2(X ))]〉) ,

where gradient ∇f ∈ sln defined w.r.t. trace form.
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Hamiltonian formalism and Integrable systems

Example

For any matrix X we write its decomposition into a sum of lower triangular
and strictly upper triangular matrices as

X = X− + X0 + X+

The standard R-matrix R : Matn → Matn defined by

R(X ) = X+ − X−

The standard R-matrix Poisson-Lie bracket:

{xij , xαβ}(X ) =
1

2
(sign(α− i) + sign(β − j))xiβxαj
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Homogeneous Poisson space

X is a homogeneous space of an algebraic group G , i.e.,

m : G × X → X .

G is equipped with Poisson-Lie structure.

Definition

Poisson bracket on X is compatible if m is a Poisson map.
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Grassmannian Gk(n)

Example

Grassmannian Gk(n) of k-dimensional subspaces of n-dimensional space.
SLn acts freely on Gk(n).

Maximal Schubert cell G 0
k (n) ⊂ Gk(n) contains elements of the form(

1 Y
)

where Y = (yij), i ∈ [1, k]; j ∈ [1, n − k].
Poisson bracket bracket compatible with the standard Poisson-Lie bracket
on SLn:

{yij , yα,β} =
1

2
((sign(α− i)− sign(β − j)) yiβyα,j
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