Poisson properties of cluster algebras

Paris

April, 2012

Hamiltonian formalism and Integrable systems

Main References

V.Arnold, Mathematical Methods of Classical Mechanics, New York: Springer-Verlag, 1989 Perelomov, A. M., Integrable Systems of Classical Mechanics and Lie Algebras. Basel etc., Birkhuser Verlag 1989. Chari V. Pressley A. - A guide to quantum groups. Cambridge University 1994

Hamiltonian formalism and Integrable systems

Main References

V.Arnold, Mathematical Methods of Classical Mechanics, New York: Springer-Verlag, 1989 Perelomov, A. M., Integrable Systems of Classical Mechanics and Lie Algebras. Basel etc., Birkhuser Verlag 1989. Chari V. Pressley A. - A guide to quantum groups. Cambridge University 1994

Classical mechanics

Newton's mechanics

The classical Newton's second law for a particle with coordinates $q(t) = (q_1(t), \dots, q_n(t))$ in a potential force field **F** has a form

Classical mechanics

Newton's mechanics

The classical Newton's second law for a particle with coordinates $q(t) = (q_1(t), \dots, q_n(t))$ in a potential force field **F** has a form

$$\ddot{q} = \mathbf{F}, \ \mathbf{F} = -\nabla U,$$

where U = U(q) is a potential energy.

Classical mechanics

Newton's mechanics

The classical Newton's second law for a particle with coordinates $q(t) = (q_1(t), \dots, q_n(t))$ in a potential force field **F** has a form

$$\ddot{q} = \mathbf{F}, \ \mathbf{F} = -\nabla U,$$

where U = U(q) is a potential energy.

Phase space

We rewrite these equations as

$$\begin{cases} \dot{q} &= p \\ \dot{p} &= -\nabla U \end{cases}$$

 $p = (p_1, \dots, p_n)$ is the momentum. The space $\mathbb{R}^{2n} = \{(p, q)\}$ is the phase space of the system.

Definition

A Poisson structure on a manifold M is a bilinear bracket $\{\cdot, \cdot\} : C^{\infty}(M) \times C^{\infty}(M) \to C^{\infty}(M)$ satisfying

Definition

A Poisson structure on a manifold M is a bilinear bracket $\{\cdot, \cdot\} : C^{\infty}(M) \times C^{\infty}(M) \to C^{\infty}(M)$ satisfying

• skew-symmetry $\{F, G\} = -\{G, F\}$

Definition

A Poisson structure on a manifold M is a bilinear bracket $\{\cdot, \cdot\} : C^{\infty}(M) \times C^{\infty}(M) \to C^{\infty}(M)$ satisfying skew-symmetry $\{F, G\} = -\{G, F\}$

2 Leibnitz rule $\{F, G\} = \sum_{i} \frac{\partial F}{\partial q_i} \{q_i, G\}$

Definition

A Poisson structure on a manifold M is a bilinear bracket $\{\cdot, \cdot\} : C^{\infty}(M) \times C^{\infty}(M) \rightarrow C^{\infty}(M)$ satisfying a skew-symmetry $\{F, G\} = -\{G, F\}$ b Leibnitz rule $\{F, G\} = \sum_{i} \frac{\partial F}{\partial q_{i}} \{q_{i}, G\}$ b Jacobi identity $\{\{F, G\}H\} + \{\{G, H\}F\} + \{\{H, F\}G\} = 0$

Definition

A Poisson structure on a manifold M is a bilinear bracket $\{\cdot, \cdot\} : C^{\infty}(M) \times C^{\infty}(M) \rightarrow C^{\infty}(M)$ satisfying a skew-symmetry $\{F, G\} = -\{G, F\}$ b Leibnitz rule $\{F, G\} = \sum_{i} \frac{\partial F}{\partial q_i} \{q_i, G\}$ b Jacobi identity $\{\{F, G\}H\} + \{\{G, H\}F\} + \{\{H, F\}G\} = 0$

Example

The standard Poisson structure on $\mathbb{R}^{2n} = \{(p,q)\}.$

$$\{F,G\} = \sum_{i} \frac{\partial F}{\partial q_{i}} \frac{\partial G}{\partial p_{i}} - \frac{\partial F}{\partial p_{i}} \frac{\partial G}{\partial q_{i}}$$

Poisson structure produces vector fields from functions

Poisson structure corresponds to the bi-vector field $\nu = \sum_i \nu_{ij} \frac{\partial}{\partial q_i} \wedge \frac{\partial}{\partial p_i}$, such that $\{F, G\}(x) = \langle dF(x) \wedge dG(x), \nu(x) \rangle$, where $\langle \cdot, \cdot \rangle$ is the natural pairing between $\Lambda^2 T_x^*(X)$ and $\Lambda^2 T_x(X)$.

Poisson structure produces vector fields from functions

Poisson structure corresponds to the bi-vector field $\nu = \sum_i \nu_{ij} \frac{\partial}{\partial q_i} \wedge \frac{\partial}{\partial p_i}$, such that $\{F, G\}(x) = \langle dF(x) \wedge dG(x), \nu(x) \rangle$, where $\langle \cdot, \cdot \rangle$ is the natural pairing between $\Lambda^2 T_x^*(X)$ and $\Lambda^2 T_x(X)$.

A Poisson bracket transforms a covector field into a vector field

It induces a linear map $\Psi_x : T_x^* M \to T_x M$. For any two covectors $\xi, \eta \in T_x^* M$ let $\xi = dF(x), \eta = dG(x)$. Then Ψ_x is determined uniquely by $\eta(\Psi_x \xi) = \{F, G\}(x)$.

Poisson structure produces vector fields from functions

Poisson structure corresponds to the bi-vector field $\nu = \sum_i \nu_{ij} \frac{\partial}{\partial q_i} \wedge \frac{\partial}{\partial p_i}$, such that $\{F, G\}(x) = \langle dF(x) \wedge dG(x), \nu(x) \rangle$, where $\langle \cdot, \cdot \rangle$ is the natural pairing between $\Lambda^2 T_x^*(X)$ and $\Lambda^2 T_x(X)$.

A Poisson bracket transforms a covector field into a vector field

It induces a linear map $\Psi_x : T_x^* M \to T_x M$. For any two covectors $\xi, \eta \in T_x^* M$ let $\xi = dF(x), \eta = dG(x)$. Then Ψ_x is determined uniquely by $\eta(\Psi_x \xi) = \{F, G\}(x)$.

A Poisson bracket transforms

any function $H \rightsquigarrow$ a vector field sgrad $H = \Psi_x(dH(x))$.

Hamiltonian equations

Hamiltonian equations

Definition

Given a hamiltonian function (or hamiltonian) H(x) the Hamiltonian flow along vector field sgrad H is given by Hamiltonian equations $\dot{x}_i = \{x_i, H\}$ For x = (p, q) we have $H = H(p, q), \dot{p} = \{p, H\}, \dot{q} = \{q, H\}.$

Hamiltonian equations

Definition

Given a hamiltonian function (or hamiltonian) H(x) the Hamiltonian flow along vector field sgrad H is given by Hamiltonian equations $\dot{x}_i = \{x_i, H\}$ For x = (p, q) we have $H = H(p, q), \dot{p} = \{p, H\}, \dot{q} = \{q, H\}.$

For any function f(x) we have $\frac{d}{dt}f = \sum_{i} \frac{\partial f}{\partial x_{i}} \dot{x}_{i} = \sum_{i} \frac{\partial f}{\partial x_{i}} \{x_{i}, H\} = \{f, H\}$ by the Leibnitz rule.

Example

Example

Consider $x = (p, q) \in \mathbb{R}^{2n}$, equipped with the standard Poisson structure $\{F, G\} = \sum_{i} \frac{\partial F}{\partial q_i} \frac{\partial G}{\partial p_i} - \frac{\partial F}{\partial p_i} \frac{\partial G}{\partial q_i}$, and the hamiltonian $H(p, q) = \frac{p^2}{2} + U(q)$ (the total energy). Then the flow equations take the form

$$\begin{cases} \dot{q} = p \\ \dot{p} = -\nabla U \end{cases}$$

Example

Example

Consider $x = (p, q) \in \mathbb{R}^{2n}$, equipped with the standard Poisson structure $\{F, G\} = \sum_{i} \frac{\partial F}{\partial q_i} \frac{\partial G}{\partial p_i} - \frac{\partial F}{\partial p_i} \frac{\partial G}{\partial q_i}$, and the hamiltonian $H(p, q) = \frac{p^2}{2} + U(q)$ (the total energy). Then the flow equations take the form

$$\begin{cases} \dot{q} = p \\ \dot{p} = -\nabla U \end{cases}$$

Example

Example

Consider $x = (p, q) \in \mathbb{R}^{2n}$, equipped with the standard Poisson structure $\{F, G\} = \sum_{i} \frac{\partial F}{\partial q_i} \frac{\partial G}{\partial p_i} - \frac{\partial F}{\partial p_i} \frac{\partial G}{\partial q_i}$, and the hamiltonian $H(p, q) = \frac{p^2}{2} + U(q)$ (the total energy). Then the flow equations take the form

$$\begin{cases} \dot{q} = p \\ \dot{p} = -\nabla U \end{cases}$$

We recognize Newton's equations of motion.

Integrals of motion

Let I(x) be a function such that $\{I, H\} = 0$. Then I is preserved under the Hamiltonian flow with hamiltonian H. Indeed, $\dot{I} = \{I, H\} = 0$ and I(t) = I(p(t), q(t)) = Const.

Integrals of motion

Let I(x) be a function such that $\{I, H\} = 0$. Then I is preserved under the Hamiltonian flow with hamiltonian H. Indeed, $\dot{I} = \{I, H\} = 0$ and I(t) = I(p(t), q(t)) = Const.

Definition

Such *I* is called a *first integral of motion*. A collection I_1, \ldots, I_k of the first integrals such that $\{I_j, I_l\} = 0$ for all *j*, *l* form *integrals in involution*.

Integrals of motion

Let I(x) be a function such that $\{I, H\} = 0$. Then I is preserved under the Hamiltonian flow with hamiltonian H. Indeed, $\dot{I} = \{I, H\} = 0$ and I(t) = I(p(t), q(t)) = Const.

Definition

Such *I* is called a *first integral of motion*. A collection I_1, \ldots, I_k of the first integrals such that $\{I_j, I_l\} = 0$ for all *j*, *l* form *integrals in involution*. Integrals are called *independent* if their gradient are linearly independent at a generic point of *M*.

A 2*n* dimensional Poisson manifold M^{2n} is symplectic if bivector field ν giving the Poisson structure is nondegenerate at every point of M.

A 2*n* dimensional Poisson manifold M^{2n} is symplectic if bivector field ν giving the Poisson structure is nondegenerate at every point of M.

Theorem

A 2*n* dimensional Poisson manifold M^{2n} is symplectic if bivector field ν giving the Poisson structure is nondegenerate at every point of M.

Theorem

Let a symplectic M^{2n} have n functions F_1, \ldots, F_n in involution (i.e., $\{F_i, F_j\} \equiv 0 \forall i, j$). Consider $M_f := \{x | F_i(x) = f_i, i = 1 \ldots n\}$. Assume that all F_i are independent on M_f (i.e. $dF_i(x)$ are linearly independent for all $x \in M_f$). Then,

() M_f is a smooth manifold invariant w.r.t. hamiltonian flow sgrad F_1 .

A 2*n* dimensional Poisson manifold M^{2n} is symplectic if bivector field ν giving the Poisson structure is nondegenerate at every point of M.

Theorem

- **()** M_f is a smooth manifold invariant w.r.t. hamiltonian flow sgrad F_1 .
- **2** If M_f is compact and connected then $M_f \approx \{(\varphi_1, \ldots, \varphi_n) \mod 2\pi\}$.

A 2*n* dimensional Poisson manifold M^{2n} is symplectic if bivector field ν giving the Poisson structure is nondegenerate at every point of M.

Theorem

- **()** M_f is a smooth manifold invariant w.r.t. hamiltonian flow sgrad F_1 .
- **2** If M_f is compact and connected then $M_f \approx \{(\varphi_1, \ldots, \varphi_n) \mod 2\pi\}$.
- The flow in the phase space with hamiltonian H = F₁ determines on M_f a quasi-periodic motion in angle coordinates φ₁,..., φ_n. Namely, φ_i = ω_i, where ω = (ω₁,..., ω_n) depends on f.

A 2*n* dimensional Poisson manifold M^{2n} is symplectic if bivector field ν giving the Poisson structure is nondegenerate at every point of M.

Theorem

- **()** M_f is a smooth manifold invariant w.r.t. hamiltonian flow sgrad F_1 .
- **2** If M_f is compact and connected then $M_f \approx \{(\varphi_1, \ldots, \varphi_n) \mod 2\pi\}$.
- The flow in the phase space with hamiltonian H = F₁ determines on M_f a quasi-periodic motion in angle coordinates φ₁,..., φ_n. Namely, φ_i = ω_i, where ω = (ω₁,..., ω_n) depends on f.
- Hamiltonian equations with hamiltonian H = F₁ are solved in quadratures (i.e. there are analytic formulas for the motion).

A 2*n* dimensional Poisson manifold M^{2n} is symplectic if bivector field ν giving the Poisson structure is nondegenerate at every point of M.

Theorem

- **()** M_f is a smooth manifold invariant w.r.t. hamiltonian flow sgrad F_1 .
- **2** If M_f is compact and connected then $M_f \approx \{(\varphi_1, \ldots, \varphi_n) \mod 2\pi\}$.
- The flow in the phase space with hamiltonian H = F₁ determines on M_f a quasi-periodic motion in angle coordinates φ₁,..., φ_n. Namely, φ_i = ω_i, where ω = (ω₁,..., ω_n) depends on f.
- Hamiltonian equations with hamiltonian H = F₁ are solved in quadratures (i.e. there are analytic formulas for the motion).

Remark

For each new integral in involution the hamiltonian reduction decreases the number of degrees of freedom of the system by 2.

Remark

For each new integral in involution the hamiltonian reduction decreases the number of degrees of freedom of the system by 2.

Definition

For the system with 2n degrees of freedom (dimension) there are at most n independent integrals in involution H_1, \ldots, H_n . They are *action variables*.

Remark

For each new integral in involution the hamiltonian reduction decreases the number of degrees of freedom of the system by 2.

Definition

For the system with 2n degrees of freedom (dimension) there are at most n independent integrals in involution H_1, \ldots, H_n . They are *action variables*. If $H = H_1$ is a hamiltonian then there are n additional coordinates $\varphi_1, \ldots, \varphi_n$ such that $0 = \{\varphi_i, \varphi_j\} = \{H_i, H_j\}, \{\varphi_i, H_j\} = 0$ for $i \neq j$, $\{\varphi_i, H_i\} = \delta_{ij}$.

Remark

For each new integral in involution the hamiltonian reduction decreases the number of degrees of freedom of the system by 2.

Definition

For the system with 2n degrees of freedom (dimension) there are at most n independent integrals in involution H_1, \ldots, H_n . They are *action variables*. If $H = H_1$ is a hamiltonian then there are n additional coordinates $\varphi_1, \ldots, \varphi_n$ such that $0 = \{\varphi_i, \varphi_j\} = \{H_i, H_j\}, \{\varphi_i, H_j\} = 0$ for $i \neq j$, $\{\varphi_i, H_i\} = \delta_{ij}$. The solution of Cauchy problem with initial condition $(H_i(0), \varphi_i(0))$ is

$$\begin{array}{rcl} H_j(t) &=& H_j(0) \\ \varphi_j(t) &=& \varphi_j(0) + H_j(0)t. \end{array}$$

Remark

For each new integral in involution the hamiltonian reduction decreases the number of degrees of freedom of the system by 2.

Definition

For the system with 2n degrees of freedom (dimension) there are at most n independent integrals in involution H_1, \ldots, H_n . They are action variables. If $H = H_1$ is a hamiltonian then there are n additional coordinates $\varphi_1, \ldots, \varphi_n$ such that $0 = \{\varphi_i, \varphi_j\} = \{H_i, H_j\}, \{\varphi_i, H_j\} = 0$ for $i \neq j$, $\{\varphi_i, H_i\} = \delta_{ij}$. The solution of Cauchy problem with initial condition $(H_i(0), \varphi_i(0))$ is

$$\begin{array}{rcl} H_j(t) &=& H_j(0) \\ \varphi_j(t) &=& \varphi_j(0) + H_j(0)t. \end{array}$$

 φ_i are angle variables.

Open Toda lattice

• We consider the evolution of *n* labeled interacting particles on a line where only *i*th and *i* + 1st particles interact.

Open Toda lattice

- We consider the evolution of *n* labeled interacting particles on a line where only *i*th and *i* + 1st particles interact.
- Hamiltonian is $H = \frac{1}{2} \sum_{j=1}^{n} p_j^2 + \sum_{j=1}^{n-1} exp(2(q_j q_{j+1})))$, where q_j is the coordinate of *j*th particle, $p_j = q_j$ is its momentum.

Open Toda lattice

- We consider the evolution of *n* labeled interacting particles on a line where only *i*th and *i* + 1st particles interact.
- Hamiltonian is $H = \frac{1}{2} \sum_{j=1}^{n} p_j^2 + \sum_{j=1}^{n-1} exp(2(q_j q_{j+1})))$, where q_j is the coordinate of *j*th particle, $p_j = \dot{q}_j$ is its momentum.
- The Poisson structure in coordinates (p_i, q_i) is standard.

Equations of motion

The corresponding differential equations of motion take the form

$$\begin{cases} \dot{q}_1 = p_1 \\ \cdots \\ \dot{q}_n = p_n \\ \dot{p}_1 = -2e^{2(q_1 - q_2)} \\ \dot{p}_2 = -2e^{2(q_2 - q_3)} + 2e^{2(q_1 - q_2)} \\ \cdots \\ \dot{p}_n = 2e^{2(q_{n-1} - q_n)} \end{cases}$$

Lax form of open Toda lattice

Lax form of open Toda lattice

Question (matrix Lax equation)

Find matrix X such that $X = [X, X_+]$ is equivalent to Toda equation.

Lax form of open Toda lattice

Question (matrix Lax equation)

Find matrix X such that $X = [X, X_+]$ is equivalent to Toda equation.

Lax pair

Such matrix $X = X(p_i, q_i)$ can be found in a tridiagonal form.

Lax form of open Toda lattice

Question (matrix Lax equation)

Find matrix X such that $\dot{X} = [X, X_+]$ is equivalent to Toda equation.

Lax pair

Such matrix $X = X(p_i, q_i)$ can be found in a tridiagonal form.

$$X = \begin{pmatrix} p_1 & e^{q_1 - q_2} & 0 & \dots \\ e^{q_1 - q_2} & & \dots \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & e^{q_{n-1} - q_n} & p_n \end{pmatrix}$$

Lax form of open Toda lattice

Question (matrix Lax equation)

Find matrix X such that $X = [X, X_+]$ is equivalent to Toda equation.

Lax pair

Such matrix $X = X(p_i, q_i)$ can be found in a tridiagonal form.

$$X = \begin{pmatrix} p_1 & e^{q_1 - q_2} & 0 & \dots \\ e^{q_1 - q_2} & & \dots \\ & & & & \\ & & & & \\ & & & & \\ & & & & e^{q_{n-1} - q_n} \\ & & & & & & p_n \end{pmatrix}$$

and X_+ is a skew-symmetrization of X

Exercise

Check that Lax equation is equivalent to Toda lattice.

Exercise

Check that Lax equation is equivalent to Toda lattice.

Remark

If Poisson structure is degenerate then any solution of Hamiltonian system lives on a symplectic leaf of the Poisson manifold.

Definition

Symplectic leaf of a Poisson manifold M is an equivalence class of points in M such that one can reach from one point to another in the same class along piecewise trajectories of hamiltonian flows.

Definition

Symplectic leaf of a Poisson manifold M is an equivalence class of points in M such that one can reach from one point to another in the same class along piecewise trajectories of hamiltonian flows.

Example

Definition

Symplectic leaf of a Poisson manifold M is an equivalence class of points in M such that one can reach from one point to another in the same class along piecewise trajectories of hamiltonian flows.

Example

Lie-Poisson (linear) bracket on b^{*}: {f,g}(x) = ⟨x, [df(x), dg(x)]⟩.
 b^{*} ≈ symmetric n × n matrices.

Definition

Symplectic leaf of a Poisson manifold M is an equivalence class of points in M such that one can reach from one point to another in the same class along piecewise trajectories of hamiltonian flows.

Example

- Lie-Poisson (linear) bracket on b^{*}: {f,g}(x) = ⟨x, [df(x), dg(x)]⟩.
 b^{*} ≈ symmetric n × n matrices.
- Symplectic leaves = orbits of coadjoint action of *b*. Tridiagonal matrices form an orbit, i.e. a symplectic leaf.

Definition

Symplectic leaf of a Poisson manifold M is an equivalence class of points in M such that one can reach from one point to another in the same class along piecewise trajectories of hamiltonian flows.

Example

- Lie-Poisson (linear) bracket on b^{*}: {f,g}(x) = ⟨x, [df(x), dg(x)]⟩.
 b^{*} ≈ symmetric n × n matrices.
- Symplectic leaves = orbits of coadjoint action of *b*. Tridiagonal matrices form an orbit, i.e. a symplectic leaf.
- The Lie-Poisson Poisson bracket on the space of tridiagonal matrices coincides with the Toda lattice Poisson bracket under the appropriate change of coordinates. Hamiltonian $H(x) = \frac{1}{2}Tr(X^2)$ induces the hamiltonian flow which coincides with the open Toda lattice flow.

< 4 ₽ ► < 3 ► ►

Exercise

Check that hamiltonian flow on tridiagonal matrices equipped with Lie-Poisson bracket with hamiltonian $H(X) = \frac{1}{2}Tr(X^2)$ is given by equations of open Toda lattice.

Cauchy problem $\dot{X} = [X, X_+]$, $X(0) = X_0$ has a solution of the form $X(t) = u(t)X_0u(t)^{-1}$, where u(t) is an orthogonal matrix satisfying $\dot{u} = -Mu$, u(0) = I, $M = -\dot{u}u^{-1} = u^{-1}\dot{u}$.

Cauchy problem $\dot{X} = [X, X_+]$, $X(0) = X_0$ has a solution of the form $X(t) = u(t)X_0u(t)^{-1}$, where u(t) is an orthogonal matrix satisfying $\dot{u} = -Mu$, u(0) = I, $M = -\dot{u}u^{-1} = u^{-1}\dot{u}$.

Corollary

The characteristic polynomial of X is preserved under Toda flow.

Cauchy problem $\dot{X} = [X, X_+]$, $X(0) = X_0$ has a solution of the form $X(t) = u(t)X_0u(t)^{-1}$, where u(t) is an orthogonal matrix satisfying $\dot{u} = -Mu$, u(0) = I, $M = -\dot{u}u^{-1} = u^{-1}\dot{u}$.

Corollary

The characteristic polynomial of X is preserved under Toda flow.

Corollary

Functions $H_k(X) = \frac{1}{k} Tr(X^k)$, k = [1, n] are integrals of motion.

イロト 不得 トイヨト イヨト 二日

Cauchy problem $\dot{X} = [X, X_+]$, $X(0) = X_0$ has a solution of the form $X(t) = u(t)X_0u(t)^{-1}$, where u(t) is an orthogonal matrix satisfying $\dot{u} = -Mu$, u(0) = I, $M = -\dot{u}u^{-1} = u^{-1}\dot{u}$.

Corollary

The characteristic polynomial of X is preserved under Toda flow.

Corollary

Functions $H_k(X) = \frac{1}{k} Tr(X^k)$, k = [1, n] are integrals of motion.

イロト 不得 トイヨト イヨト 二日

Let
$$det(\lambda I - X) = \prod_{k=1}^{n} (\lambda - \lambda_k) = \sum_{k=1}^{n} (-1)^k J_k(L) \lambda^{n-k}$$

Let
$$det(\lambda I - X) = \prod_{k=1}^{n} (\lambda - \lambda_k) = \sum_{k=1}^{n} (-1)^k J_k(L) \lambda^{n-k}$$
.

Corollary

Functions $J_k(X)$, k = [1, n] are integrals of motion.

Image: Image:

Let
$$det(\lambda I - X) = \prod_{k=1}^{n} (\lambda - \lambda_k) = \sum_{k=1}^{n} (-1)^k J_k(L) \lambda^{n-k}$$
.

Corollary

Functions $J_k(X)$, k = [1, n] are integrals of motion.

Corollary

Functions $\lambda_k(X)$, k = [1, n] are integrals of motion.

(日)

Let
$$det(\lambda I - X) = \prod_{k=1}^{n} (\lambda - \lambda_k) = \sum_{k=1}^{n} (-1)^k J_k(L) \lambda^{n-k}$$
.

Corollary

Functions $J_k(X)$, k = [1, n] are integrals of motion.

Corollary

Functions $\lambda_k(X)$, k = [1, n] are integrals of motion.

(日)

<ロ> (日) (日) (日) (日) (日)

$$X \mapsto m(\lambda; X) = ((\lambda \mathbf{1} - X)^{-1} e_1, e_1) = \frac{q(\lambda)}{p(\lambda)} = \sum_{j=0}^{\infty} \frac{h_j(X)}{\lambda^{j+1}}$$

linearizes the Toda flow.

(日)

$$X \mapsto m(\lambda; X) = ((\lambda \mathbf{1} - X)^{-1} e_1, e_1) = \frac{q(\lambda)}{p(\lambda)} = \sum_{i=0}^{\infty} \frac{h_i(X)}{\lambda^{i+1}}$$

linearizes the Toda flow.

Inverse Moser Map

$$X \mapsto m(\lambda; X) = ((\lambda \mathbf{1} - X)^{-1} e_1, e_1) = \frac{q(\lambda)}{p(\lambda)} = \sum_{i=0}^{\infty} \frac{h_i(X)}{\lambda^{i+1}}$$

linearizes the Toda flow.

Inverse Moser Map

• Given $m(\lambda)$, define Hankel determinants

$$\Delta_i^{(I)} = \det \left(h_{\alpha+\beta+I-i-1} \right)_{\alpha,\beta=1}^i$$

Factorization of Jacobi matrix

A tridiagonal $n \times n$ matrix X can be factorized into

X =

Factorization of Jacobi matrix

A tridiagonal $n \times n$ matrix X can be factorized into

$$X = \begin{pmatrix} 1 & 0 & \dots & 0 \\ c_{n-1}^{-} & 1 & \ddots & \vdots \\ 0 & \ddots & \ddots & 0 \\ 0 & 0 & c_{1}^{-} & 1 \end{pmatrix}$$

Factorization of Jacobi matrix

A tridiagonal $n \times n$ matrix X can be factorized into

$$X = \begin{pmatrix} 1 & 0 & \dots & 0 \\ c_{n-1}^{-} & 1 & \ddots & \vdots \\ 0 & \ddots & \ddots & 0 \\ 0 & 0 & c_{1}^{-} & 1 \end{pmatrix} \cdot \begin{pmatrix} d_{n} & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & d_{1} \end{pmatrix}$$

Factorization of Jacobi matrix

A tridiagonal $n \times n$ matrix X can be factorized into

$$X = \begin{pmatrix} 1 & 0 & \dots & 0 \\ c_{n-1}^{-} & 1 & \ddots & \vdots \\ 0 & \ddots & \ddots & 0 \\ 0 & 0 & c_{1}^{-} & 1 \end{pmatrix} \cdot \begin{pmatrix} d_{n} & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & d_{1} \end{pmatrix} \cdot \begin{pmatrix} 1 & c_{n-1}^{+} & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & c_{1}^{+} \\ 0 & \dots & 0 & 1 \end{pmatrix}$$
Factorization of Jacobi matrix

A tridiagonal $n \times n$ matrix X can be factorized into

$$X = \begin{pmatrix} 1 & 0 & \dots & 0 \\ c_{n-1}^{-} & 1 & \ddots & \vdots \\ 0 & \ddots & \ddots & 0 \\ 0 & 0 & c_{1}^{-} & 1 \end{pmatrix} \cdot \begin{pmatrix} d_{n} & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & d_{1} \end{pmatrix} \cdot \begin{pmatrix} 1 & c_{n-1}^{+} & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & c_{1}^{+} \\ 0 & \dots & 0 & 1 \end{pmatrix}$$

Theorem

$$d_i = rac{\Delta_i^{(i)} \Delta_{i-1}^{(i-2)}}{\Delta_i^{(i-1)} \Delta_{i-1}^{(i-1)}}, \ c_i := c_i^+ c_i^- = rac{\Delta_{i-1}^{(i-2)} \Delta_{i+1}^{(i)}}{\left(\Delta_i^{(i)}
ight)^2} \left(rac{\Delta_{i-1}^{(i-1)}}{\Delta_{i-1}^{(i-2)}}
ight)^2$$

Factorization of Jacobi matrix

A tridiagonal $n \times n$ matrix X can be factorized into

$$X = \begin{pmatrix} 1 & 0 & \dots & 0 \\ c_{n-1}^{-} & 1 & \ddots & \vdots \\ 0 & \ddots & \ddots & 0 \\ 0 & 0 & c_{1}^{-} & 1 \end{pmatrix} \cdot \begin{pmatrix} d_{n} & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & d_{1} \end{pmatrix} \cdot \begin{pmatrix} 1 & c_{n-1}^{+} & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & c_{1}^{+} \\ 0 & \dots & 0 & 1 \end{pmatrix}$$

Theorem

$$d_{i} = \frac{\Delta_{i}^{(i)} \Delta_{i-1}^{(i-2)}}{\Delta_{i}^{(i-1)} \Delta_{i-1}^{(i-1)}},$$
$$c_{i} := c_{i}^{+} c_{i}^{-} = \frac{\Delta_{i-1}^{(i-2)} \Delta_{i+1}^{(i)}}{\left(\Delta_{i}^{(i)}\right)^{2}} \left(\frac{\Delta_{i-1}^{(i-1)}}{\Delta_{i-1}^{(i-2)}}\right)^{2}$$

Quadratic Poisson structures

Phase space for Toda lattice is formed by tridiagonal matrices modulo conjugation by diagonal matrices. It coincides with double Bruhat cell $C := BuB \cap B_-vB_-$ where $u = s_1 \cdot \ldots \cdot s_{n-1}$, $v = s_{n-1} \cdot \ldots \cdot s_1$ are Coxeter elements, s_i is a simple transposition $i \leftrightarrow i + 1$.

Quadratic Poisson structures

Phase space for Toda lattice is formed by tridiagonal matrices modulo conjugation by diagonal matrices. It coincides with double Bruhat cell $C := BuB \cap B_-vB_-$ where $u = s_1 \cdot \ldots \cdot s_{n-1}$, $v = s_{n-1} \cdot \ldots \cdot s_1$ are Coxeter elements, s_i is a simple transposition $i \leftrightarrow i + 1$.

Remark

There are several Poisson brackets that generate Toda flow as a hamiltonian flow.

Quadratic Poisson structures

Phase space for Toda lattice is formed by tridiagonal matrices modulo conjugation by diagonal matrices. It coincides with double Bruhat cell $C := BuB \cap B_-vB_-$ where $u = s_1 \cdot \ldots \cdot s_{n-1}$, $v = s_{n-1} \cdot \ldots \cdot s_1$ are Coxeter elements, s_i is a simple transposition $i \leftrightarrow i + 1$.

Remark

There are several Poisson brackets that generate Toda flow as a hamiltonian flow.

Question:

Can one consider Toda lattice as a Hamiltonian system with respect to the bracket that reflects group structure?

G = a Lie group.

G = a Lie group.

Definition

The Poisson structure $\{,\}$ on G is called *Poisson-Lie* if the multiplication map $m: G \times G \rightarrow G$ is Poisson.

G = a Lie group.

Definition

The Poisson structure $\{,\}$ on G is called *Poisson-Lie* if the multiplication map $m: G \times G \rightarrow G$ is Poisson.

Example

*Sl*₂. Borel subgroup $B \subset Sl_2$ is the set $\left\{ \begin{pmatrix} t & x \\ 0 & t^{-1} \end{pmatrix} \right\}$ Poisson structure on B: $\{t, x\} = tx$.

G = a Lie group.

Definition

The Poisson structure $\{,\}$ on G is called *Poisson-Lie* if the multiplication map $m: G \times G \rightarrow G$ is Poisson.

Example

Sl₂. Borel subgroup $B \subset Sl_2$ is the set $\left\{ \begin{pmatrix} t & x \\ 0 & t^{-1} \end{pmatrix} \right\}$ Poisson structure on B: $\{t, x\} = tx$. Induced Poisson structure on $B \times B = \left\{ \begin{pmatrix} t_1 & x_1 \\ 0 & t_1^{-1} \end{pmatrix}, \begin{pmatrix} t_2 & x_2 \\ 0 & t_2^{-1} \end{pmatrix} \right\}$: $\{t_1, x_1\} = t_1x_1, \{t_2, x_2\} = t_2x_2$. All other brackets are 0.

G = a Lie group.

Definition

The Poisson structure $\{,\}$ on G is called *Poisson-Lie* if the multiplication map $m: G \times G \rightarrow G$ is Poisson.

Example

Sl₂. Borel subgroup $B \subset Sl_2$ is the set $\left\{ \begin{pmatrix} t & x \\ 0 & t^{-1} \end{pmatrix} \right\}$ Poisson structure on B: $\{t, x\} = tx$. Induced Poisson structure on $B \times B = \left\{ \begin{pmatrix} t_1 & x_1 \\ 0 & t_1^{-1} \end{pmatrix}, \begin{pmatrix} t_2 & x_2 \\ 0 & t_2^{-1} \end{pmatrix} \right\}$: $\{t_1, x_1\} = t_1 x_1, \{t_2, x_2\} = t_2 x_2$. All other brackets are 0.

$$\begin{pmatrix} t_1 & x_1 \\ 0 & t_1^{-1} \end{pmatrix} \cdot \begin{pmatrix} t_2 & x_2 \\ 0 & t_2^{-1} \end{pmatrix} = \begin{pmatrix} t_1 t_2 & t_1 x_2 + x_1 t_2^{-1} \\ 0 & t_1^{-1} t_2^{-1} \end{pmatrix} = \begin{pmatrix} u & v \\ 0 & u^{-1} \end{pmatrix}$$

G = a Lie group.

Definition

The Poisson structure $\{,\}$ on G is called *Poisson-Lie* if the multiplication map $m: G \times G \rightarrow G$ is Poisson.

Example

Sl₂. Borel subgroup $B \subset Sl_2$ is the set $\left\{ \begin{pmatrix} t & x \\ 0 & t^{-1} \end{pmatrix} \right\}$ Poisson structure on B: $\{t, x\} = tx$. Induced Poisson structure on $B \times B = \left\{ \begin{pmatrix} t_1 & x_1 \\ 0 & t_1^{-1} \end{pmatrix}, \begin{pmatrix} t_2 & x_2 \\ 0 & t_2^{-1} \end{pmatrix} \right\}$: $\{t_1, x_1\} = t_1 x_1, \{t_2, x_2\} = t_2 x_2$. All other brackets are 0.

$$\begin{pmatrix} t_1 & x_1 \\ 0 & t_1^{-1} \end{pmatrix} \cdot \begin{pmatrix} t_2 & x_2 \\ 0 & t_2^{-1} \end{pmatrix} = \begin{pmatrix} t_1 t_2 & t_1 x_2 + x_1 t_2^{-1} \\ 0 & t_1^{-1} t_2^{-1} \end{pmatrix} = \begin{pmatrix} u & v \\ 0 & u^{-1} \end{pmatrix}$$

For coordinates u, v

э

(日)

For coordinates u, v $\{m^{\star}(u), m^{*}(v)\}_{G \times G} = \{t_{1}t_{2}, t_{1}x_{2} + x_{1}t_{2}^{-1}\}_{G \times G} = t_{1}^{2}t_{2}x_{2} + t_{1}x_{1}.$

For coordinates u, v $\{m^{\star}(u), m^{*}(v)\}_{G \times G} = \{t_{1}t_{2}, t_{1}x_{2} + x_{1}t_{2}^{-1}\}_{G \times G} = t_{1}^{2}t_{2}x_{2} + t_{1}x_{1}.$ On the other hand,

$$m^{\star}(\{u,v\}_{G}) = m^{\star}(uv) = t_{1}^{2}t_{2}x_{2} + t_{1}x_{1},$$

For coordinates u, v $\{m^{\star}(u), m^{*}(v)\}_{G \times G} = \{t_{1}t_{2}, t_{1}x_{2} + x_{1}t_{2}^{-1}\}_{G \times G} = t_{1}^{2}t_{2}x_{2} + t_{1}x_{1}.$ On the other hand,

$$m^{\star}(\{u,v\}_{G}) = m^{\star}(uv) = t_{1}^{2}t_{2}x_{2} + t_{1}x_{1},$$

which proves Poisson-Lie property.

For coordinates u, v $\{m^{\star}(u), m^{*}(v)\}_{G \times G} = \{t_{1}t_{2}, t_{1}x_{2} + x_{1}t_{2}^{-1}\}_{G \times G} = t_{1}^{2}t_{2}x_{2} + t_{1}x_{1}.$ On the other hand,

$$m^{\star}(\{u,v\}_{G}) = m^{\star}(uv) = t_{1}^{2}t_{2}x_{2} + t_{1}x_{1},$$

which proves Poisson-Lie property. Similarly, we define Poisson-Lie bracket for B_{-} . For coordinates u, v $\{m^*(u), m^*(v)\}_{G \times G} = \{t_1t_2, t_1x_2 + x_1t_2^{-1}\}_{G \times G} = t_1^2t_2x_2 + t_1x_1.$ On the other hand,

$$m^{\star}(\{u,v\}_{G}) = m^{\star}(uv) = t_{1}^{2}t_{2}x_{2} + t_{1}x_{1},$$

which proves Poisson-Lie property.

Similarly, we define Poisson-Lie bracket for B_{-} .

Then, if we have embedded Poisson subgroups B and B_- they define a Poisson-Lie structure on SL_2 they generate.

To define Poisson-Lie bracket on the whole SL_2 we use Gauss decomposition $SL_2 = B_-B_+$.

To define Poisson-Lie bracket on the whole SL_2 we use Gauss decomposition $SL_2 = B_-B_+$.

Indeed,
$$\begin{pmatrix} t_1 & 0\\ y_1 & t_1^{-1} \end{pmatrix} \begin{pmatrix} t_2 & x_2\\ 0 & t_2^{-1} \end{pmatrix} = \begin{pmatrix} t_1t_2 & t_1x_2\\ y_1t_2 & y_1x_2 + t_1^{-1}t_2^{-1} \end{pmatrix}$$

To define Poisson-Lie bracket on the whole SL_2 we use Gauss decomposition $SL_2 = B_-B_+$.

Indeed,
$$\begin{pmatrix} t_1 & 0\\ y_1 & t_1^{-1} \end{pmatrix} \begin{pmatrix} t_2 & x_2\\ 0 & t_2^{-1} \end{pmatrix} = \begin{pmatrix} t_1 t_2 & t_1 x_2\\ y_1 t_2 & y_1 x_2 + t_1^{-1} t_2^{-1} \end{pmatrix}$$

Hence,

$$\{z_{11}, z_{12}\} = \{t_1 t_2, t_1 x_2\} = t_1^2 t_2 x_2 \qquad \qquad = z_{11} z_{12},$$

To define Poisson-Lie bracket on the whole SL_2 we use Gauss decomposition $SL_2 = B_-B_+$.

Indeed,
$$\begin{pmatrix} t_1 & 0\\ y_1 & t_1^{-1} \end{pmatrix} \begin{pmatrix} t_2 & x_2\\ 0 & t_2^{-1} \end{pmatrix} = \begin{pmatrix} t_1 t_2 & t_1 x_2\\ y_1 t_2 & y_1 x_2 + t_1^{-1} t_2^{-1} \end{pmatrix}$$

Hence

Hence,

$$\{z_{11}, z_{12}\} = \{t_1 t_2, t_1 x_2\} = t_1^2 t_2 x_2 = z_{11} z_{12},$$

$$\{z_{11}, z_{21}\} = \{t_1 t_2, y_1 t_2\} = t_2^2 t_1 y_1 = z_{11} z_{21},$$

To define Poisson-Lie bracket on the whole SL_2 we use Gauss decomposition $SL_2 = B_-B_+$.

Indeed,
$$\begin{pmatrix} t_1 & 0\\ y_1 & t_1^{-1} \end{pmatrix} \begin{pmatrix} t_2 & x_2\\ 0 & t_2^{-1} \end{pmatrix} = \begin{pmatrix} t_1 t_2 & t_1 x_2\\ y_1 t_2 & y_1 x_2 + t_1^{-1} t_2^{-1} \end{pmatrix}$$

Hence

i lence,

$$\{z_{11}, z_{12}\} = \{t_1 t_2, t_1 x_2\} = t_1^2 t_2 x_2 \qquad \qquad = z_{11} z_{12},$$

$$\{z_{11}, z_{21}\} = \{t_1 t_2, y_1 t_2\} = t_2^2 t_1 y_1 \qquad \qquad = z_{11} z_{21},$$

$$\{z_{11}, z_{22}\} = \{t_1t_2, y_1x_2 + t_1^{-1}t_2^{-1}\} = 2t_1y_1t_2x_2 \qquad = 2z_{12}z_{21},$$

- 4 🗗 ▶

To define Poisson-Lie bracket on the whole SL_2 we use Gauss decomposition $SL_2 = B_-B_+$.

Indeed,
$$\begin{pmatrix} t_1 & 0\\ y_1 & t_1^{-1} \end{pmatrix} \begin{pmatrix} t_2 & x_2\\ 0 & t_2^{-1} \end{pmatrix} = \begin{pmatrix} t_1 t_2 & t_1 x_2\\ y_1 t_2 & y_1 x_2 + t_1^{-1} t_2^{-1} \end{pmatrix}$$

Hence

CIICE,

$$\{z_{11}, z_{12}\} = \{t_1 t_2, t_1 x_2\} = t_1^2 t_2 x_2 \qquad \qquad = z_{11} z_{12},$$

$$\{z_{11}, z_{21}\} = \{t_1 t_2, y_1 t_2\} = t_2^2 t_1 y_1 \qquad \qquad = z_{11} z_{21},$$

$$\{z_{11}, z_{22}\} = \{t_1 t_2, y_1 x_2 + t_1^{-1} t_2^{-1}\} = 2t_1 y_1 t_2 x_2 \qquad = 2z_{12} z_{21}, \\ \{z_{12}, z_{21}\} = \{t_1 x_2, y_1 t_2\} \qquad = 0,$$

- ∢ 🗇 🕨

< ∃ > <

To define Poisson-Lie bracket on the whole SL_2 we use Gauss decomposition $SL_2 = B_-B_+$.

Indeed,
$$\begin{pmatrix} t_1 & 0\\ y_1 & t_1^{-1} \end{pmatrix} \begin{pmatrix} t_2 & x_2\\ 0 & t_2^{-1} \end{pmatrix} = \begin{pmatrix} t_1 t_2 & t_1 x_2\\ y_1 t_2 & y_1 x_2 + t_1^{-1} t_2^{-1} \end{pmatrix}$$

Hence

CIICE,

$$\{z_{11}, z_{12}\} = \{t_1 t_2, t_1 x_2\} = t_1^2 t_2 x_2 \qquad \qquad = z_{11} z_{12},$$

$$\{z_{11}, z_{21}\} = \{t_1 t_2, y_1 t_2\} = t_2^2 t_1 y_1 \qquad \qquad = z_{11} z_{21},$$

$$\{z_{11}, z_{22}\} = \{t_1 t_2, y_1 x_2 + t_1^{-1} t_2^{-1}\} = 2t_1 y_1 t_2 x_2 \qquad = 2z_{12} z_{21},$$

$$\{z_{12}, z_{21}\} = \{t_1 x_2, y_1 t_2\} = 0,$$

$$\{z_{12}, z_{22}\} = \{t_1x_2, y_1x_2 + t_1^{-1}t_2^{-1}\} = t_1y_1t_2x_2^2 + x_2/t_2 = z_{12}z_{22},$$

To define Poisson-Lie bracket on the whole SL_2 we use Gauss decomposition $SL_2 = B_-B_+$.

Indeed,
$$\begin{pmatrix} t_1 & 0\\ y_1 & t_1^{-1} \end{pmatrix} \begin{pmatrix} t_2 & x_2\\ 0 & t_2^{-1} \end{pmatrix} = \begin{pmatrix} t_1 t_2 & t_1 x_2\\ y_1 t_2 & y_1 x_2 + t_1^{-1} t_2^{-1} \end{pmatrix}$$

Hence

CIICE,

$$\{z_{11}, z_{12}\} = \{t_1 t_2, t_1 x_2\} = t_1^2 t_2 x_2 \qquad \qquad = z_{11} z_{12},$$

$$\{z_{11}, z_{21}\} = \{t_1 t_2, y_1 t_2\} = t_2^2 t_1 y_1 \qquad \qquad = z_{11} z_{21},$$

$$\{z_{11}, z_{22}\} = \{t_1 t_2, y_1 x_2 + t_1^{-1} t_2^{-1}\} = 2t_1 y_1 t_2 x_2 \qquad = 2z_{12} z_{21},$$

$$\{z_{12}, z_{21}\} = \{t_1 x_2, y_1 t_2\} = 0,$$

$$\{z_{12}, z_{22}\} = \{t_1x_2, y_1x_2 + t_1^{-1}t_2^{-1}\} = t_1y_1t_2x_2^2 + x_2/t_2 = z_{12}z_{22}, \{z_{21}, z_{22}\} = \{y_1t_2, y_1x_2 + t_1^{-1}t_2^{-1}\} = y_1^2t_2x_2 + y_1/t_1 = z_{21}z_{22}.$$

Poisson-Lie bracket for SL_n

Standard embeddings $SL_2 \subset SL_n$ define Poisson submanifold with respect to standard Poisson-Lie bracket.

Poisson-Lie bracket for SL_n

Standard embeddings $SL_2 \subset SL_n$ define Poisson submanifold with respect to standard Poisson-Lie bracket. Any fixed reduced decomposition of the maximal element of the Weyl group determines a Poisson map $\binom{n-1}{2}$ $\prod SL_2 \rightarrow SL_n$.

Poisson-Lie bracket for SL_n

Standard embeddings $SL_2 \subset SL_n$ define Poisson submanifold with respect to standard Poisson-Lie bracket. Any fixed reduced decomposition of the maximal element of the Weyl group determines a Poisson map $\binom{n-1}{2}$ $\prod_{i=1}^{n-1} SL_2 \rightarrow SL_n$. Then, for $X = (x_{ij}) \in SL_n$ we have $\{x_{ii}, x_{ki}\} = x_{ii}x_{ik}$ for i < k. $\{x_{ii}, x_{ki}\} = x_{ii}x_{ik}$ for i < k.

$$\{x_{ij}, x_{kl}\} = x_{il} x_{kj} \text{ for } i < k, j < l, \qquad \{x_{ij}, x_{kl}\} = 0 \text{ for } i < k, j > l$$

Poisson-Lie bracket for SL_n

Standard embeddings $SL_2 \subset SL_n$ define Poisson submanifold with respect to standard Poisson-Lie bracket. Any fixed reduced decomposition of the maximal element of the Weyl group determines a Poisson map $\binom{n-1}{2}$ $\prod_{i=1}^{n-1} SL_2 \rightarrow SL_n$. Then, for $X = (x_{ij}) \in SL_n$ we have $\{x_{ij}, x_{ki}\} = x_{ij}x_{ik}$ for j < k, $\{x_{ji}, x_{ki}\} = x_{ji}x_{ki}$ for j < k $\{x_{ij}, x_{kl}\} = x_{il}x_{ki}$ for j < k, $\{x_{ii}, x_{kl}\} = x_{ji}x_{ki}$ for j < k

Remark

Tridiagonal matrices form a symplectic leaf of a standard Poisson-Lie structure on SL_n .

Poisson-Lie bracket for SL_n

Standard embeddings $SL_2 \subset SL_n$ define Poisson submanifold with respect to standard Poisson-Lie bracket. Any fixed reduced decomposition of the maximal element of the Weyl group determines a Poisson map $\binom{n-1}{2}$ $\prod SL_2 \rightarrow SL_n$. Then, for $X = (x_{ij}) \in SL_n$ we have

$$\{ x_{ij}, x_{ki} \} = x_{ij}x_{ik} \text{ for } j < k, \qquad \{ x_{ji}, x_{ki} \} = x_{ji}x_{ki} \text{ for } j < k \\ \{ x_{ij}, x_{kl} \} = x_{il}x_{kj} \text{ for } i < k, j < l, \qquad \{ x_{ij}, x_{kl} \} = 0 \text{ for } i < k, j > l$$

Remark

Tridiagonal matrices form a symplectic leaf of a standard Poisson-Lie structure on SL_n .

Remark

Toda equations are Hamiltonian equations with respect to the standard quadratic Poisson-Lie bracket and Hamiltonian tr(X).

April, 2012 25 / 1

R-matrix

One can construct a Poisson-Lie bracket using R - matrix.

Definition

A map $R : g \rightarrow g$ is called a *classical* R – *matrix* if it satisfies modified Yang-Baxter equation

$$[R(\xi), R(\eta)] - R([R(\xi), \eta] + [\xi, R(\eta)]) = -[\xi, \eta]$$

R-matrix

One can construct a Poisson-Lie bracket using R - matrix.

Definition

A map $R : g \rightarrow g$ is called a *classical* R – *matrix* if it satisfies modified Yang-Baxter equation

$$[R(\xi), R(\eta)] - R([R(\xi), \eta] + [\xi, R(\eta)]) = -[\xi, \eta]$$

R-matrix Poisson bracket

R-matrix Poisson-Lie bracket on SL_n :

$$\{f_1,f_2\}(X)=\frac{1}{2}\left(\langle R(\nabla f_1(X)X),\nabla f_2(X)X\rangle-\langle R(X\nabla f_1(X)),X\nabla f_2(X))]\rangle\right),$$

where gradient $\nabla f \in sl_n$ defined w.r.t. trace form.

Example

For any matrix X we write its decomposition into a sum of lower triangular and strictly upper triangular matrices as

$$X = X_- + X_0 + X_+$$

The standard *R*-matrix $R: Mat_n \rightarrow Mat_n$ defined by

$$R(X) = X_+ - X_-$$

The standard *R*-matrix Poisson-Lie bracket:

$$\{x_{ij}, x_{\alpha\beta}\}(X) = \frac{1}{2}(sign(\alpha - i) + sign(\beta - j))x_{i\beta}x_{\alpha j}$$

Homogeneous Poisson space

X is a homogeneous space of an algebraic group G, i.e.,

 $m: G \times X \rightarrow X.$

G is equipped with Poisson-Lie structure.

Definition

Poisson bracket on X is compatible if m is a Poisson map.

Homogeneous Poisson space

X is a homogeneous space of an algebraic group G, i.e.,

 $m: G \times X \rightarrow X.$

G is equipped with Poisson-Lie structure.

Definition

Poisson bracket on X is compatible if m is a Poisson map.

Grassmannian $G_k(n)$

Example

Grassmannian $G_k(n)$ of k-dimensional subspaces of n-dimensional space. SL_n acts freely on $G_k(n)$.

Hamiltonian formalism and Integrable systems

Grassmannian $G_k(n)$

Example

Grassmannian $G_k(n)$ of k-dimensional subspaces of n-dimensional space. SL_n acts freely on $G_k(n)$. Maximal Schubert cell $G_k^0(n) \subset G_k(n)$ contains elements of the form $\begin{pmatrix} 1 & Y \end{pmatrix}$ where $Y = (y_{ij}), i \in [1, k]; j \in [1, n - k]$.

Grassmannian $G_k(n)$

Example

Grassmannian $G_k(n)$ of k-dimensional subspaces of n-dimensional space. SL_n acts freely on $G_k(n)$. Maximal Schubert cell $G_k^0(n) \subset G_k(n)$ contains elements of the form $\begin{pmatrix} 1 & Y \end{pmatrix}$ where $Y = (y_{ij}), i \in [1, k]; j \in [1, n - k]$. Poisson bracket bracket compatible with the standard Poisson-Lie bracket on SL_n :

$$\{y_{ij}, y_{lpha, eta}\} = rac{1}{2} \left((sign(lpha - i) - sign(eta - j)) y_{ieta} y_{lpha, j}
ight)$$

