Poisson properties of cluster algebras

Paris

April, 2012

Hamiltonian formalism and Integrable systems

Main References

V.Arnold, Mathematical Methods of Classical Mechanics, New York: Springer-Verlag, 1989
Perelomov, A. M., Integrable Systems of Classical Mechanics and Lie Algebras. Basel etc., Birkhuser Verlag 1989.
Chari V. Pressley A. - A guide to quantum groups. Cambridge University 1994

Hamiltonian formalism and Integrable systems

Main References

V.Arnold, Mathematical Methods of Classical Mechanics, New York: Springer-Verlag, 1989
Perelomov, A. M., Integrable Systems of Classical Mechanics and Lie Algebras. Basel etc., Birkhuser Verlag 1989.
Chari V. Pressley A. - A guide to quantum groups. Cambridge University 1994

Classical mechanics

Newton's mechanics

The classical Newton's second law for a particle with coordinates $q(t)=\left(q_{1}(t), \ldots, q_{n}(t)\right)$ in a potential force field \mathbf{F} has a form

Classical mechanics

Newton's mechanics

The classical Newton's second law for a particle with coordinates $q(t)=\left(q_{1}(t), \ldots, q_{n}(t)\right)$ in a potential force field \mathbf{F} has a form

$$
\ddot{q}=\mathbf{F}, \mathbf{F}=-\nabla U,
$$

where $U=U(q)$ is a potential energy.

Classical mechanics

Newton's mechanics

The classical Newton's second law for a particle with coordinates $q(t)=\left(q_{1}(t), \ldots, q_{n}(t)\right)$ in a potential force field \mathbf{F} has a form

$$
\ddot{q}=\mathbf{F}, \mathbf{F}=-\nabla U,
$$

where $U=U(q)$ is a potential energy.

Phase space

We rewrite these equations as

$$
\begin{cases}\dot{q} & =p \\ \dot{p} & =-\nabla U\end{cases}
$$

$p=\left(p_{1}, \ldots, p_{n}\right)$ is the momentum.
The space $\mathbb{R}^{2 n}=\{(p, q)\}$ is the phase space of the system.

Poisson structure

Definition

A Poisson structure on a manifold M is a bilinear bracket $\{\cdot, \cdot\}: C^{\infty}(M) \times C^{\infty}(M) \rightarrow C^{\infty}(M)$ satisfying

Poisson structure

Definition

A Poisson structure on a manifold M is a bilinear bracket $\{\cdot, \cdot\}: C^{\infty}(M) \times C^{\infty}(M) \rightarrow C^{\infty}(M)$ satisfying
(1) skew-symmetry $\{F, G\}=-\{G, F\}$

Poisson structure

Definition

A Poisson structure on a manifold M is a bilinear bracket $\{\cdot, \cdot\}: C^{\infty}(M) \times C^{\infty}(M) \rightarrow C^{\infty}(M)$ satisfying
(1) skew-symmetry $\{F, G\}=-\{G, F\}$
(2) Leibnitz rule $\{F, G\}=\sum_{i} \frac{\partial F}{\partial q_{i}}\left\{q_{i}, G\right\}$

Poisson structure

Definition

A Poisson structure on a manifold M is a bilinear bracket $\{\cdot, \cdot\}: C^{\infty}(M) \times C^{\infty}(M) \rightarrow C^{\infty}(M)$ satisfying
(1) skew-symmetry $\{F, G\}=-\{G, F\}$
(2) Leibnitz rule $\{F, G\}=\sum_{i} \frac{\partial F}{\partial q_{i}}\left\{q_{i}, G\right\}$
(3) Jacobi identity $\{\{F, G\} H\}+\{\{G, H\} F\}+\{\{H, F\} G\}=0$

Poisson structure

Definition

A Poisson structure on a manifold M is a bilinear bracket $\{\cdot, \cdot\}: C^{\infty}(M) \times C^{\infty}(M) \rightarrow C^{\infty}(M)$ satisfying
(1) skew-symmetry $\{F, G\}=-\{G, F\}$
(2) Leibnitz rule $\{F, G\}=\sum_{i} \frac{\partial F}{\partial q_{i}}\left\{q_{i}, G\right\}$
(3) Jacobi identity $\{\{F, G\} H\}+\{\{G, H\} F\}+\{\{H, F\} G\}=0$

Example

The standard Poisson structure on $\mathbb{R}^{2 n}=\{(p, q)\}$.

$$
\{F, G\}=\sum_{i} \frac{\partial F}{\partial q_{i}} \frac{\partial G}{\partial p_{i}}-\frac{\partial F}{\partial p_{i}} \frac{\partial G}{\partial q_{i}}
$$

Poisson structure produces vector fields from functions

Poisson structure corresponds to the bi-vector field $\nu=\sum_{i} \nu_{i j} \frac{\partial}{\partial q_{i}} \wedge \frac{\partial}{\partial p_{i}}$, such that $\{F, G\}(x)=\langle d F(x) \wedge d G(x), \nu(x)\rangle$, where $\langle\cdot, \cdot\rangle$ is the natural pairing between $\Lambda^{2} T_{x}^{*}(X)$ and $\Lambda^{2} T_{x}(X)$.

Poisson structure produces vector fields from functions

Poisson structure corresponds to the bi-vector field $\nu=\sum_{i} \nu_{i j} \frac{\partial}{\partial q_{i}} \wedge \frac{\partial}{\partial p_{i}}$, such that $\{F, G\}(x)=\langle d F(x) \wedge d G(x), \nu(x)\rangle$, where $\langle\cdot, \cdot\rangle$ is the natural pairing between $\Lambda^{2} T_{x}^{*}(X)$ and $\Lambda^{2} T_{x}(X)$.

A Poisson bracket transforms a covector field into a vector field
It induces a linear map $\Psi_{x}: T_{x}^{*} M \rightarrow T_{x} M$.
For any two covectors $\xi, \eta \in T_{x}^{*} M$ let $\xi=d F(x), \eta=d G(x)$. Then Ψ_{x} is determined uniquely by $\eta\left(\Psi_{x} \xi\right)=\{F, G\}(x)$.

Poisson structure produces vector fields from functions

Poisson structure corresponds to the bi-vector field $\nu=\sum_{i} \nu_{i j} \frac{\partial}{\partial q_{i}} \wedge \frac{\partial}{\partial p_{i}}$, such that $\{F, G\}(x)=\langle d F(x) \wedge d G(x), \nu(x)\rangle$, where $\langle\cdot, \cdot\rangle$ is the natural pairing between $\Lambda^{2} T_{x}^{*}(X)$ and $\Lambda^{2} T_{x}(X)$.

A Poisson bracket transforms a covector field into a vector field
It induces a linear map $\Psi_{x}: T_{x}^{*} M \rightarrow T_{x} M$.
For any two covectors $\xi, \eta \in T_{x}^{*} M$ let $\xi=d F(x), \eta=d G(x)$. Then Ψ_{x} is determined uniquely by $\eta\left(\Psi_{x} \xi\right)=\{F, G\}(x)$.

A Poisson bracket transforms

any function $H \rightsquigarrow$ a vector field sgrad $H=\Psi_{x}(d H(x))$.

Hamiltonian equations

Hamiltonian equations

Definition

Given a hamiltonian function (or hamiltonian) $H(x)$ the Hamiltonian flow along vector field sgrad H is given by Hamiltonian equations $\dot{x}_{i}=\left\{x_{i}, H\right\}$ For $x=(p, q)$ we have $H=H(p, q), \dot{p}=\{p, H\}, \dot{q}=\{q, H\}$.

Hamiltonian equations

Definition

Given a hamiltonian function (or hamiltonian) $H(x)$ the Hamiltonian flow along vector field sgrad H is given by Hamiltonian equations $\dot{x}_{i}=\left\{x_{i}, H\right\}$ For $x=(p, q)$ we have $H=H(p, q), \dot{p}=\{p, H\}, \dot{q}=\{q, H\}$.

For any function $f(x)$ we have $\frac{d}{d t} f=\sum_{i} \frac{\partial f}{\partial x_{i}} \dot{x}_{i}=\sum_{i} \frac{\partial f}{\partial x_{i}}\left\{x_{i}, H\right\}=\{f, H\}$ by the Leibnitz rule.

Example

Example

Consider $x=(p, q) \in \mathbb{R}^{2 n}$, equipped with the standard Poisson structure $\{F, G\}=\sum_{i} \frac{\partial F}{\partial q_{i}} \frac{\partial G}{\partial p_{i}}-\frac{\partial F}{\partial p_{i}} \frac{\partial G}{\partial q_{i}}$, and the hamiltonian $H(p, q)=\frac{p^{2}}{2}+U(q)$ (the total energy). Then the flow equations take the form

$$
\left\{\begin{array}{l}
\dot{q}=p \\
\dot{p}=-\nabla U
\end{array}\right.
$$

Example

Example

Consider $x=(p, q) \in \mathbb{R}^{2 n}$, equipped with the standard Poisson structure $\{F, G\}=\sum_{i} \frac{\partial F}{\partial q_{i}} \frac{\partial G}{\partial p_{i}}-\frac{\partial F}{\partial p_{i}} \frac{\partial G}{\partial q_{i}}$, and the hamiltonian $H(p, q)=\frac{p^{2}}{2}+U(q)$ (the total energy). Then the flow equations take the form

$$
\left\{\begin{array}{l}
\dot{q}=p \\
\dot{p}=-\nabla U
\end{array}\right.
$$

Example

Example

Consider $x=(p, q) \in \mathbb{R}^{2 n}$, equipped with the standard Poisson structure $\{F, G\}=\sum_{i} \frac{\partial F}{\partial q_{i}} \frac{\partial G}{\partial p_{i}}-\frac{\partial F}{\partial p_{i}} \frac{\partial G}{\partial q_{i}}$, and the hamiltonian $H(p, q)=\frac{p^{2}}{2}+U(q)$ (the total energy). Then the flow equations take the form

$$
\left\{\begin{array}{l}
\dot{q}=p \\
\dot{p}=-\nabla U
\end{array}\right.
$$

We recognize Newton's equations of motion.

Integrals of motion

Let $I(x)$ be a function such that $\{I, H\}=0$. Then I is preserved under the Hamiltonian flow with hamiltonian H. Indeed, $\dot{I}=\{I, H\}=0$ and $I(t)=I(p(t), q(t))=$ Const.

Integrals of motion

Let $I(x)$ be a function such that $\{I, H\}=0$. Then I is preserved under the Hamiltonian flow with hamiltonian H. Indeed, $\dot{I}=\{I, H\}=0$ and $I(t)=I(p(t), q(t))=$ Const .

Definition

Such I is called a first integral of motion.A collection I_{1}, \ldots, I_{k} of the first integrals such that $\left\{l_{j}, l_{l}\right\}=0$ for all j, I form integrals in involution.

Integrals of motion

Let $I(x)$ be a function such that $\{I, H\}=0$. Then I is preserved under the Hamiltonian flow with hamiltonian H. Indeed, $\dot{I}=\{I, H\}=0$ and $I(t)=I(p(t), q(t))=$ Const .

Definition

Such I is called a first integral of motion.A collection I_{1}, \ldots, I_{k} of the first integrals such that $\left\{I_{j}, I_{l}\right\}=0$ for all j, I form integrals in involution. Integrals are called independent if their gradient are linearly independent at a generic point of M.

Liouville's theorem

Liouville's theorem

A $2 n$ dimensional Poisson manifold $M^{2 n}$ is symplectic if bivector field ν giving the Poisson structure is nondegenerate at every point of M.

Liouville's theorem

A $2 n$ dimensional Poisson manifold $M^{2 n}$ is symplectic if bivector field ν giving the Poisson structure is nondegenerate at every point of M.

Theorem

Let a symplectic $M^{2 n}$ have n functions F_{1}, \ldots, F_{n} in involution (i.e., $\left.\left\{F_{i}, F_{j}\right\} \equiv 0 \forall i, j\right)$. Consider $M_{f}:=\left\{x \mid F_{i}(x)=f_{i}, i=1 \ldots n\right\}$. Assume that all F_{i} are independent on M_{f} (i.e. $d F_{i}(x)$ are linearly independent for all $x \in M_{f}$). Then,

Liouville's theorem

A $2 n$ dimensional Poisson manifold $M^{2 n}$ is symplectic if bivector field ν giving the Poisson structure is nondegenerate at every point of M.

Theorem

Let a symplectic $M^{2 n}$ have n functions F_{1}, \ldots, F_{n} in involution (i.e., $\left.\left\{F_{i}, F_{j}\right\} \equiv 0 \forall i, j\right)$. Consider $M_{f}:=\left\{x \mid F_{i}(x)=f_{i}, i=1 \ldots n\right\}$. Assume that all F_{i} are independent on M_{f} (i.e. $d F_{i}(x)$ are linearly independent for all $x \in M_{f}$). Then,
(1) M_{f} is a smooth manifold invariant w.r.t. hamiltonian flow sgrad F_{1}.

Liouville's theorem

A $2 n$ dimensional Poisson manifold $M^{2 n}$ is symplectic if bivector field ν giving the Poisson structure is nondegenerate at every point of M.

Theorem

Let a symplectic $M^{2 n}$ have n functions F_{1}, \ldots, F_{n} in involution (i.e., $\left.\left\{F_{i}, F_{j}\right\} \equiv 0 \forall i, j\right)$. Consider $M_{f}:=\left\{x \mid F_{i}(x)=f_{i}, i=1 \ldots n\right\}$. Assume that all F_{i} are independent on M_{f} (i.e. $d F_{i}(x)$ are linearly independent for all $x \in M_{f}$). Then,
(1) M_{f} is a smooth manifold invariant w.r.t. hamiltonian flow sgrad F_{1}.
(2) If M_{f} is compact and connected then $M_{f} \approx\left\{\left(\varphi_{1}, \ldots, \varphi_{n}\right) \bmod 2 \pi\right\}$.

Liouville's theorem

A $2 n$ dimensional Poisson manifold $M^{2 n}$ is symplectic if bivector field ν giving the Poisson structure is nondegenerate at every point of M.

Theorem

Let a symplectic $M^{2 n}$ have n functions F_{1}, \ldots, F_{n} in involution (i.e., $\left.\left\{F_{i}, F_{j}\right\} \equiv 0 \forall i, j\right)$. Consider $M_{f}:=\left\{x \mid F_{i}(x)=f_{i}, i=1 \ldots n\right\}$. Assume that all F_{i} are independent on M_{f} (i.e. $d F_{i}(x)$ are linearly independent for all $x \in M_{f}$). Then,
(1) M_{f} is a smooth manifold invariant w.r.t. hamiltonian flow sgrad F_{1}.
(2) If M_{f} is compact and connected then $M_{f} \approx\left\{\left(\varphi_{1}, \ldots, \varphi_{n}\right) \bmod 2 \pi\right\}$.
(3) The flow in the phase space with hamiltonian $H=F_{1}$ determines on M_{f} a quasi-periodic motion in angle coordinates $\varphi_{1}, \ldots, \varphi_{n}$. Namely, $\dot{\varphi}_{i}=\omega_{i}$, where $\omega=\left(\omega_{1}, \ldots, \omega_{n}\right)$ depends on f.

Liouville's theorem

A $2 n$ dimensional Poisson manifold $M^{2 n}$ is symplectic if bivector field ν giving the Poisson structure is nondegenerate at every point of M.

Theorem

Let a symplectic $M^{2 n}$ have n functions F_{1}, \ldots, F_{n} in involution (i.e., $\left.\left\{F_{i}, F_{j}\right\} \equiv 0 \forall i, j\right)$. Consider $M_{f}:=\left\{x \mid F_{i}(x)=f_{i}, i=1 \ldots n\right\}$. Assume that all F_{i} are independent on M_{f} (i.e. $d F_{i}(x)$ are linearly independent for all $x \in M_{f}$). Then,
(1) M_{f} is a smooth manifold invariant w.r.t. hamiltonian flow $\operatorname{sgrad} F_{1}$.
(2) If M_{f} is compact and connected then $M_{f} \approx\left\{\left(\varphi_{1}, \ldots, \varphi_{n}\right) \bmod 2 \pi\right\}$.
(3) The flow in the phase space with hamiltonian $H=F_{1}$ determines on M_{f} a quasi-periodic motion in angle coordinates $\varphi_{1}, \ldots, \varphi_{n}$. Namely, $\dot{\varphi}_{i}=\omega_{i}$, where $\omega=\left(\omega_{1}, \ldots, \omega_{n}\right)$ depends on f.
(4) Hamiltonian equations with hamiltonian $H=F_{1}$ are solved in quadratures (i.e. there are analytic formulas for the motion).

Liouville's theorem

A $2 n$ dimensional Poisson manifold $M^{2 n}$ is symplectic if bivector field ν giving the Poisson structure is nondegenerate at every point of M.

Theorem

Let a symplectic $M^{2 n}$ have n functions F_{1}, \ldots, F_{n} in involution (i.e., $\left.\left\{F_{i}, F_{j}\right\} \equiv 0 \forall i, j\right)$. Consider $M_{f}:=\left\{x \mid F_{i}(x)=f_{i}, i=1 \ldots n\right\}$. Assume that all F_{i} are independent on M_{f} (i.e. $d F_{i}(x)$ are linearly independent for all $x \in M_{f}$). Then,
(1) M_{f} is a smooth manifold invariant w.r.t. hamiltonian flow $\operatorname{sgrad} F_{1}$.
(2) If M_{f} is compact and connected then $M_{f} \approx\left\{\left(\varphi_{1}, \ldots, \varphi_{n}\right) \bmod 2 \pi\right\}$.
(3) The flow in the phase space with hamiltonian $H=F_{1}$ determines on M_{f} a quasi-periodic motion in angle coordinates $\varphi_{1}, \ldots, \varphi_{n}$. Namely, $\dot{\varphi}_{i}=\omega_{i}$, where $\omega=\left(\omega_{1}, \ldots, \omega_{n}\right)$ depends on f.
(4) Hamiltonian equations with hamiltonian $H=F_{1}$ are solved in quadratures (i.e. there are analytic formulas for the motion).

Action-angle variables

Remark

For each new integral in involution the hamiltonian reduction decreases the number of degrees of freedom of the system by 2.

Action-angle variables

Remark

For each new integral in involution the hamiltonian reduction decreases the number of degrees of freedom of the system by 2.

Definition

For the system with $2 n$ degrees of freedom (dimension) there are at most n independent integrals in involution H_{1}, \ldots, H_{n}. They are action variables.

Action-angle variables

Remark

For each new integral in involution the hamiltonian reduction decreases the number of degrees of freedom of the system by 2 .

Definition

For the system with $2 n$ degrees of freedom (dimension) there are at most n independent integrals in involution H_{1}, \ldots, H_{n}. They are action variables. If $H=H_{1}$ is a hamiltonian then there are n additional coordinates $\varphi_{1}, \ldots, \varphi_{n}$ such that $0=\left\{\varphi_{i}, \varphi_{j}\right\}=\left\{H_{i}, H_{j}\right\},\left\{\varphi_{i}, H_{j}\right\}=0$ for $i \neq j$, $\left\{\varphi_{i}, H_{i}\right\}=\delta_{i j}$.

Action-angle variables

Remark

For each new integral in involution the hamiltonian reduction decreases the number of degrees of freedom of the system by 2 .

Definition

For the system with $2 n$ degrees of freedom (dimension) there are at most n independent integrals in involution H_{1}, \ldots, H_{n}. They are action variables. If $H=H_{1}$ is a hamiltonian then there are n additional coordinates $\varphi_{1}, \ldots, \varphi_{n}$ such that $0=\left\{\varphi_{i}, \varphi_{j}\right\}=\left\{H_{i}, H_{j}\right\},\left\{\varphi_{i}, H_{j}\right\}=0$ for $i \neq j$, $\left\{\varphi_{i}, H_{i}\right\}=\delta_{i j}$.
The solution of Cauchy problem with initial condition $\left(H_{j}(0), \varphi_{j}(0)\right)$ is

$$
\begin{aligned}
H_{j}(t) & =H_{j}(0) \\
\varphi_{j}(t) & =\varphi_{j}(0)+H_{j}(0) t
\end{aligned}
$$

Action-angle variables

Remark

For each new integral in involution the hamiltonian reduction decreases the number of degrees of freedom of the system by 2 .

Definition

For the system with $2 n$ degrees of freedom (dimension) there are at most n independent integrals in involution H_{1}, \ldots, H_{n}. They are action variables. If $H=H_{1}$ is a hamiltonian then there are n additional coordinates $\varphi_{1}, \ldots, \varphi_{n}$ such that $0=\left\{\varphi_{i}, \varphi_{j}\right\}=\left\{H_{i}, H_{j}\right\},\left\{\varphi_{i}, H_{j}\right\}=0$ for $i \neq j$, $\left\{\varphi_{i}, H_{i}\right\}=\delta_{i j}$.
The solution of Cauchy problem with initial condition $\left(H_{j}(0), \varphi_{j}(0)\right)$ is

$$
\begin{aligned}
H_{j}(t) & =H_{j}(0) \\
\varphi_{j}(t) & =\varphi_{j}(0)+H_{j}(0) t
\end{aligned}
$$

φ_{i} are angle variables.

Example:

Example:

Open Toda lattice

- We consider the evolution of n labeled interacting particles on a line where only i th and $i+1$ st particles interact.

Example:

Open Toda lattice

- We consider the evolution of n labeled interacting particles on a line where only i th and $i+1$ st particles interact.
- Hamiltonian is $H=\frac{1}{2} \sum_{j=1}^{n} p_{j}^{2}+\sum_{j=1}^{n-1} \exp \left(2\left(q_{j}-q_{j+1}\right)\right)$, where q_{j} is the coordinate of j th particle, $p_{j}=\dot{q}_{j}$ is its momentum.

Example:

Open Toda lattice

- We consider the evolution of n labeled interacting particles on a line where only i th and $i+1$ st particles interact.
- Hamiltonian is $H=\frac{1}{2} \sum_{j=1}^{n} p_{j}^{2}+\sum_{j=1}^{n-1} \exp \left(2\left(q_{j}-q_{j+1}\right)\right)$, where q_{j} is the coordinate of j th particle, $p_{j}=\dot{q}_{j}$ is its momentum.
- The Poisson structure in coordinates $\left(p_{i}, q_{i}\right)$ is standard.

Equations of motion

The corresponding differential equations of motion take the form

$$
\begin{cases}\dot{q_{1}} & =p_{1} \\ \cdots & \\ \dot{q_{n}} & =p_{n} \\ \dot{p_{1}} & =-2 e^{2\left(q_{1}-q_{2}\right)} \\ \dot{p_{2}} & =-2 e^{2\left(q_{2}-q_{3}\right)}+2 e^{2\left(q_{1}-q_{2}\right)} \\ \cdots & \\ \dot{p_{n}} & =2 e^{2\left(q_{n-1}-q_{n}\right)}\end{cases}
$$

Lax form of open Toda lattice

Lax form of open Toda lattice

Question (matrix Lax equation)

Find matrix X such that $\dot{X}=\left[X, X_{+}\right]$is equivalent to Toda equation.

Lax form of open Toda lattice

Question (matrix Lax equation)

Find matrix X such that $\dot{X}=\left[X, X_{+}\right]$is equivalent to Toda equation.

Lax pair

Such matrix $X=X\left(p_{i}, q_{i}\right)$ can be found in a tridiagonal form.

Lax form of open Toda lattice

Question (matrix Lax equation)

Find matrix X such that $\dot{X}=\left[X, X_{+}\right]$is equivalent to Toda equation.

Lax pair

Such matrix $X=X\left(p_{i}, q_{i}\right)$ can be found in a tridiagonal form.

$$
X=\left(\begin{array}{ccccc}
p_{1} & e^{q_{1}-q_{2}} & 0 & \ldots & \\
e^{q_{1}-q_{2}} & & \ldots & & \\
& & & \ldots & e^{q_{n-1}-q_{n}} \\
& & \ldots & e^{q_{n-1}-q_{n}} & p_{n}
\end{array}\right)
$$

Lax form of open Toda lattice

Question (matrix Lax equation)

Find matrix X such that $\dot{X}=\left[X, X_{+}\right]$is equivalent to Toda equation.

Lax pair

Such matrix $X=X\left(p_{i}, q_{i}\right)$ can be found in a tridiagonal form.

$$
X=\left(\begin{array}{cccc}
p_{1} & e^{q_{1}-q_{2}} & 0 & \ldots \\
e^{q_{1}-q_{2}} & & \ldots & \\
& & \ldots & e^{q_{n-1}-q_{n}} \\
& & \ldots & e^{q_{n-1}-q_{n}}
\end{array}\right) p_{n} .
$$

and X_{+}is a skew-symmetrization of X

$$
X_{+}=\left(\begin{array}{ccccc}
0 & e^{q_{1}-q_{2}} & 0 & \ldots & \\
-e^{q_{1}-q_{2}} & & \ldots & & \\
& & & \ldots & e^{q_{n-1}-q_{n}} \\
& & \ldots & -e^{q_{n-1}-q_{n}} & 0
\end{array}\right)
$$

Exercise
 Check that Lax equation is equivalent to Toda lattice.

Exercise

Check that Lax equation is equivalent to Toda lattice.

Remark

If Poisson structure is degenerate then any solution of Hamiltonian system lives on a symplectic leaf of the Poisson manifold.

Symplectic leafs

Definition

Symplectic leaf of a Poisson manifold M is an equivalence class of points in M such that one can reach from one point to another in the same class along piecewise trajectories of hamiltonian flows.

Symplectic leafs

Definition

Symplectic leaf of a Poisson manifold M is an equivalence class of points in M such that one can reach from one point to another in the same class along piecewise trajectories of hamiltonian flows.

Example

Symplectic leafs

Definition

Symplectic leaf of a Poisson manifold M is an equivalence class of points in M such that one can reach from one point to another in the same class along piecewise trajectories of hamiltonian flows.

Example

- Lie-Poisson (linear) bracket on $b^{*}:\{f, g\}(x)=\langle x,[d f(x), d g(x)]\rangle$. $b^{*} \approx$ symmetric $n \times n$ matrices.

Symplectic leafs

Definition

Symplectic leaf of a Poisson manifold M is an equivalence class of points in M such that one can reach from one point to another in the same class along piecewise trajectories of hamiltonian flows.

Example

- Lie-Poisson (linear) bracket on $b^{*}:\{f, g\}(x)=\langle x,[d f(x), d g(x)]\rangle$. $b^{*} \approx$ symmetric $n \times n$ matrices.
- Symplectic leaves $=$ orbits of coadjoint action of b. Tridiagonal matrices form an orbit, i.e. a symplectic leaf.

Symplectic leafs

Definition

Symplectic leaf of a Poisson manifold M is an equivalence class of points in M such that one can reach from one point to another in the same class along piecewise trajectories of hamiltonian flows.

Example

- Lie-Poisson (linear) bracket on $b^{*}:\{f, g\}(x)=\langle x,[d f(x), d g(x)]\rangle$. $b^{*} \approx$ symmetric $n \times n$ matrices.
- Symplectic leaves $=$ orbits of coadjoint action of b. Tridiagonal matrices form an orbit, i.e. a symplectic leaf.
- The Lie-Poisson Poisson bracket on the space of tridiagonal matrices coincides with the Toda lattice Poisson bracket under the appropriate change of coordinates. Hamiltonian $H(x)=\frac{1}{2} \operatorname{Tr}\left(X^{2}\right)$ induces the hamiltonian flow which coincides with the open Toda lattice flow.

Exercise

Check that hamiltonian flow on tridiagonal matrices equipped with Lie-Poisson bracket with hamiltonian $H(X)=\frac{1}{2} \operatorname{Tr}\left(X^{2}\right)$ is given by equations of open Toda lattice.

Remark

Cauchy problem $\dot{X}=\left[X, X_{+}\right], X(0)=X_{0}$ has a solution of the form $X(t)=u(t) X_{0} u(t)^{-1}$, where $u(t)$ is an orthogonal matrix satisfying $\dot{u}=-M u, u(0)=I, M=-\dot{u} u^{-1}=u^{-1} \dot{u}$.

Remark

Cauchy problem $\dot{X}=\left[X, X_{+}\right], X(0)=X_{0}$ has a solution of the form $X(t)=u(t) X_{0} u(t)^{-1}$, where $u(t)$ is an orthogonal matrix satisfying $\dot{u}=-M u, u(0)=I, M=-\dot{u} u^{-1}=u^{-1} \dot{u}$.

Corollary

The characteristic polynomial of X is preserved under Toda flow.

Remark

Cauchy problem $\dot{X}=\left[X, X_{+}\right], X(0)=X_{0}$ has a solution of the form $X(t)=u(t) X_{0} u(t)^{-1}$, where $u(t)$ is an orthogonal matrix satisfying $\dot{u}=-M u, u(0)=I, M=-\dot{u} u^{-1}=u^{-1} \dot{u}$.

Corollary

The characteristic polynomial of X is preserved under Toda flow.

Corollary

Functions $H_{k}(X)=\frac{1}{k} \operatorname{Tr}\left(X^{k}\right), k=[1, n]$ are integrals of motion.

Remark

Cauchy problem $\dot{X}=\left[X, X_{+}\right], X(0)=X_{0}$ has a solution of the form $X(t)=u(t) X_{0} u(t)^{-1}$, where $u(t)$ is an orthogonal matrix satisfying $\dot{u}=-M u, u(0)=I, M=-\dot{u} u^{-1}=u^{-1} \dot{u}$.

Corollary

The characteristic polynomial of X is preserved under Toda flow.

Corollary

Functions $H_{k}(X)=\frac{1}{k} \operatorname{Tr}\left(X^{k}\right), k=[1, n]$ are integrals of motion.

Let $\operatorname{det}(\lambda I-X)=\prod_{k=1}^{n}\left(\lambda-\lambda_{k}\right)=\sum_{k=1}^{n}(-1)^{k} J_{k}(L) \lambda^{n-k}$.

Let $\operatorname{det}(\lambda I-X)=\prod_{k=1}^{n}\left(\lambda-\lambda_{k}\right)=\sum_{k=1}^{n}(-1)^{k} J_{k}(L) \lambda^{n-k}$.

Corollary

Functions $J_{k}(X), k=[1, n]$ are integrals of motion.

Let $\operatorname{det}(\lambda I-X)=\prod_{k=1}^{n}\left(\lambda-\lambda_{k}\right)=\sum_{k=1}^{n}(-1)^{k} J_{k}(L) \lambda^{n-k}$.

Corollary

Functions $J_{k}(X), k=[1, n]$ are integrals of motion.

Corollary

Functions $\lambda_{k}(X), k=[1, n]$ are integrals of motion.

Let $\operatorname{det}(\lambda I-X)=\prod_{k=1}^{n}\left(\lambda-\lambda_{k}\right)=\sum_{k=1}^{n}(-1)^{k} J_{k}(L) \lambda^{n-k}$.

Corollary

Functions $J_{k}(X), k=[1, n]$ are integrals of motion.

Corollary

Functions $\lambda_{k}(X), k=[1, n]$ are integrals of motion.

Moser Map

Moser Map

$$
X \mapsto m(\lambda ; X)=\left((\lambda \mathbf{1}-X)^{-1} e_{1}, e_{1}\right)=\frac{q(\lambda)}{p(\lambda)}=\sum_{j=0}^{\infty} \frac{h_{j}(X)}{\lambda^{j+1}}
$$

linearizes the Toda flow.

Moser Map

$$
X \mapsto m(\lambda ; X)=\left((\lambda \mathbf{1}-X)^{-1} e_{1}, e_{1}\right)=\frac{q(\lambda)}{p(\lambda)}=\sum_{j=0}^{\infty} \frac{h_{j}(X)}{\lambda^{j+1}}
$$

linearizes the Toda flow.
Inverse Moser Map

Moser Map

$$
X \mapsto m(\lambda ; X)=\left((\lambda \mathbf{1}-X)^{-1} e_{1}, e_{1}\right)=\frac{q(\lambda)}{p(\lambda)}=\sum_{j=0}^{\infty} \frac{h_{j}(X)}{\lambda^{j+1}}
$$

linearizes the Toda flow.

Inverse Moser Map

- Given $m(\lambda)$, define Hankel determinants

$$
\Delta_{i}^{(l)}=\operatorname{det}\left(h_{\alpha+\beta+l-i-1}\right)_{\alpha, \beta=1}^{i}
$$

Factorization of Jacobi matrix

A tridiagonal $n \times n$ matrix X can be factorized into

$$
X=
$$

Factorization of Jacobi matrix

A tridiagonal $n \times n$ matrix X can be factorized into

$$
X=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
c_{n-1}^{-} & 1 & \ddots & \vdots \\
0 & \ddots & \ddots & 0 \\
0 & 0 & c_{1}^{-} & 1
\end{array}\right)
$$

Factorization of Jacobi matrix

A tridiagonal $n \times n$ matrix X can be factorized into

$$
X=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
c_{n-1}^{-} & 1 & \ddots & \vdots \\
0 & \ddots & \ddots & 0 \\
0 & 0 & c_{1}^{-} & 1
\end{array}\right) \cdot\left(\begin{array}{cccc}
d_{n} & 0 & \ldots & 0 \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & d_{1}
\end{array}\right)
$$

Factorization of Jacobi matrix

A tridiagonal $n \times n$ matrix X can be factorized into

$$
X=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
c_{n-1}^{-} & 1 & \ddots & \vdots \\
0 & \ddots & \ddots & 0 \\
0 & 0 & c_{1}^{-} & 1
\end{array}\right) \cdot\left(\begin{array}{cccc}
d_{n} & 0 & \ldots & 0 \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & d_{1}
\end{array}\right) \cdot\left(\begin{array}{cccc}
1 & c_{n-1}^{+} & \ldots & 0 \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & c_{1}^{+} \\
0 & \ldots & 0 & 1
\end{array}\right)
$$

Factorization of Jacobi matrix

A tridiagonal $n \times n$ matrix X can be factorized into

$$
X=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
c_{n-1}^{-} & 1 & \ddots & \vdots \\
0 & \ddots & \ddots & 0 \\
0 & 0 & c_{1}^{-} & 1
\end{array}\right) \cdot\left(\begin{array}{cccc}
d_{n} & 0 & \ldots & 0 \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & d_{1}
\end{array}\right) \cdot\left(\begin{array}{cccc}
1 & c_{n-1}^{+} & \ldots & 0 \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & c_{1}^{+} \\
0 & \ldots & 0 & 1
\end{array}\right)
$$

Theorem

$$
\begin{gathered}
d_{i}=\frac{\Delta_{i}^{(i)} \Delta_{i-1}^{(i-2)}}{\Delta_{i}^{(i-1)} \Delta_{i-1}^{(i-1)}}, \\
c_{i}:=c_{i}^{+} c_{i}^{-}=\frac{\Delta_{i-1}^{(i-2)} \Delta_{i+1}^{(i)}}{\left(\Delta_{i}^{(i)}\right)^{2}}\left(\frac{\Delta_{i-1}^{(i-1)}}{\Delta_{i-1}^{(i-2)}}\right)^{2}
\end{gathered}
$$

Factorization of Jacobi matrix

A tridiagonal $n \times n$ matrix X can be factorized into

$$
X=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
c_{n-1}^{-} & 1 & \ddots & \vdots \\
0 & \ddots & \ddots & 0 \\
0 & 0 & c_{1}^{-} & 1
\end{array}\right) \cdot\left(\begin{array}{cccc}
d_{n} & 0 & \ldots & 0 \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & d_{1}
\end{array}\right) \cdot\left(\begin{array}{cccc}
1 & c_{n-1}^{+} & \ldots & 0 \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & c_{1}^{+} \\
0 & \ldots & 0 & 1
\end{array}\right)
$$

Theorem

$$
\begin{gathered}
d_{i}=\frac{\Delta_{i}^{(i)} \Delta_{i-1}^{(i-2)}}{\Delta_{i}^{(i-1)} \Delta_{i-1}^{(i-1)}}, \\
c_{i}:=c_{i}^{+} c_{i}^{-}=\frac{\Delta_{i-1}^{(i-2)} \Delta_{i+1}^{(i)}}{\left(\Delta_{i}^{(i)}\right)^{2}}\left(\frac{\Delta_{i-1}^{(i-1)}}{\Delta_{i-1}^{(i-2)}}\right)^{2}
\end{gathered}
$$

Quadratic Poisson structures

Phase space for Toda lattice is formed by tridiagonal matrices modulo conjugation by diagonal matrices. It coincides with double Bruhat cell $C:=B u B \cap B_{-} v B_{-}$where $u=s_{1} \cdot \ldots \cdot s_{n-1}, v=s_{n-1} \cdot \ldots \cdot s_{1}$ are Coxeter elements, s_{i} is a simple transposition $i \leftrightarrow i+1$.

Quadratic Poisson structures

Phase space for Toda lattice is formed by tridiagonal matrices modulo conjugation by diagonal matrices. It coincides with double Bruhat cell $C:=B u B \cap B_{-} v B_{-}$where $u=s_{1} \cdot \ldots \cdot s_{n-1}, v=s_{n-1} \cdot \ldots \cdot s_{1}$ are Coxeter elements, s_{i} is a simple transposition $i \leftrightarrow i+1$.

Remark

There are several Poisson brackets that generate Toda flow as a hamiltonian flow.

Quadratic Poisson structures

Phase space for Toda lattice is formed by tridiagonal matrices modulo conjugation by diagonal matrices. It coincides with double Bruhat cell $C:=B u B \cap B_{-} v B_{-}$where $u=s_{1} \cdot \ldots \cdot s_{n-1}, v=s_{n-1} \cdot \ldots \cdot s_{1}$ are Coxeter elements, s_{i} is a simple transposition $i \leftrightarrow i+1$.

Remark

There are several Poisson brackets that generate Toda flow as a hamiltonian flow.

Question:

Can one consider Toda lattice as a Hamiltonian system with respect to the bracket that reflects group structure?

Poisson-Lie bracket

$G=\mathrm{a}$ Lie group.

Poisson-Lie bracket

$G=$ a Lie group.

Definition

The Poisson structure $\{$,$\} on G$ is called Poisson-Lie if the multiplication map $m: G \times G \rightarrow G$ is Poisson.

Poisson-Lie bracket

$G=$ a Lie group.

Definition

The Poisson structure $\{$,$\} on G$ is called Poisson-Lie if the multiplication map $m: G \times G \rightarrow G$ is Poisson.

Example

$S I_{2}$. Borel subgroup $B \subset S I_{2}$ is the set $\left\{\left(\begin{array}{cc}t & x \\ 0 & t^{-1}\end{array}\right)\right\}$
Poisson structure on $B:\{t, x\}=t x$.

Poisson-Lie bracket

$G=$ a Lie group.

Definition

The Poisson structure $\{$,$\} on G$ is called Poisson-Lie if the multiplication map $m: G \times G \rightarrow G$ is Poisson.

Example

$S I_{2}$. Borel subgroup $B \subset S I_{2}$ is the set $\left\{\left(\begin{array}{cc}t & x \\ 0 & t^{-1}\end{array}\right)\right\}$
Poisson structure on B : $\{t, x\}=t x$.
Induced Poisson structure on $B \times B=\left\{\left(\begin{array}{cc}t_{1} & x_{1} \\ 0 & t_{1}^{-1}\end{array}\right),\left(\begin{array}{cc}t_{2} & x_{2} \\ 0 & t_{2}^{-1}\end{array}\right)\right\}$: $\left\{t_{1}, x_{1}\right\}=t_{1} x_{1},\left\{t_{2}, x_{2}\right\}=t_{2} x_{2}$. All other brackets are 0 .

Poisson-Lie bracket

$G=$ a Lie group.

Definition

The Poisson structure $\{$,$\} on G$ is called Poisson-Lie if the multiplication map $m: G \times G \rightarrow G$ is Poisson.

Example

$S I_{2}$. Borel subgroup $B \subset S I_{2}$ is the set $\left\{\left(\begin{array}{cc}t & x \\ 0 & t^{-1}\end{array}\right)\right\}$
Poisson structure on B : $\{t, x\}=t x$.
Induced Poisson structure on $B \times B=\left\{\left(\begin{array}{cc}t_{1} & x_{1} \\ 0 & t_{1}^{-1}\end{array}\right),\left(\begin{array}{cc}t_{2} & x_{2} \\ 0 & t_{2}^{-1}\end{array}\right)\right\}$: $\left\{t_{1}, x_{1}\right\}=t_{1} x_{1},\left\{t_{2}, x_{2}\right\}=t_{2} x_{2}$. All other brackets are 0 .

$$
\left(\begin{array}{cc}
t_{1} & x_{1} \\
0 & t_{1}^{-1}
\end{array}\right) \cdot\left(\begin{array}{cc}
t_{2} & x_{2} \\
0 & t_{2}^{-1}
\end{array}\right)=\left(\begin{array}{cc}
t_{1} t_{2} & t_{1} x_{2}+x_{1} t_{2}^{-1} \\
0 & t_{1}^{-1} t_{2}^{-1}
\end{array}\right)=\left(\begin{array}{cc}
u & v \\
0 & u^{-1}
\end{array}\right)
$$

Poisson-Lie bracket

$G=$ a Lie group.

Definition

The Poisson structure $\{$,$\} on G$ is called Poisson-Lie if the multiplication map $m: G \times G \rightarrow G$ is Poisson.

Example

$S I_{2}$. Borel subgroup $B \subset S I_{2}$ is the set $\left\{\left(\begin{array}{cc}t & x \\ 0 & t^{-1}\end{array}\right)\right\}$
Poisson structure on B : $\{t, x\}=t x$.
Induced Poisson structure on $B \times B=\left\{\left(\begin{array}{cc}t_{1} & x_{1} \\ 0 & t_{1}^{-1}\end{array}\right),\left(\begin{array}{cc}t_{2} & x_{2} \\ 0 & t_{2}^{-1}\end{array}\right)\right\}$: $\left\{t_{1}, x_{1}\right\}=t_{1} x_{1},\left\{t_{2}, x_{2}\right\}=t_{2} x_{2}$. All other brackets are 0 .

$$
\left(\begin{array}{cc}
t_{1} & x_{1} \\
0 & t_{1}^{-1}
\end{array}\right) \cdot\left(\begin{array}{cc}
t_{2} & x_{2} \\
0 & t_{2}^{-1}
\end{array}\right)=\left(\begin{array}{cc}
t_{1} t_{2} & t_{1} x_{2}+x_{1} t_{2}^{-1} \\
0 & t_{1}^{-1} t_{2}^{-1}
\end{array}\right)=\left(\begin{array}{cc}
u & v \\
0 & u^{-1}
\end{array}\right)
$$

For coordinates u, v

For coordinates u, v
$\left\{m^{\star}(u), m^{*}(v)\right\}_{G \times G}=\left\{t_{1} t_{2}, t_{1} x_{2}+x_{1} t_{2}^{-1}\right\}_{G \times G}=t_{1}^{2} t_{2} x_{2}+t_{1} x_{1}$.

For coordinates u, v
$\left\{m^{\star}(u), m^{*}(v)\right\}_{G \times G}=\left\{t_{1} t_{2}, t_{1} x_{2}+x_{1} t_{2}^{-1}\right\}_{G \times G}=t_{1}^{2} t_{2} x_{2}+t_{1} x_{1}$. On the other hand,

$$
m^{\star}\left(\{u, v\}_{G}\right)=m^{\star}(u v)=t_{1}^{2} t_{2} x_{2}+t_{1} x_{1}
$$

For coordinates u, v
$\left\{m^{\star}(u), m^{*}(v)\right\}_{G \times G}=\left\{t_{1} t_{2}, t_{1} x_{2}+x_{1} t_{2}^{-1}\right\}_{G \times G}=t_{1}^{2} t_{2} x_{2}+t_{1} x_{1}$. On the other hand,

$$
m^{\star}\left(\{u, v\}_{G}\right)=m^{\star}(u v)=t_{1}^{2} t_{2} x_{2}+t_{1} x_{1},
$$

which proves Poisson-Lie property.

For coordinates u, v
$\left\{m^{\star}(u), m^{*}(v)\right\}_{G \times G}=\left\{t_{1} t_{2}, t_{1} x_{2}+x_{1} t_{2}^{-1}\right\}_{G \times G}=t_{1}^{2} t_{2} x_{2}+t_{1} x_{1}$. On the other hand,

$$
m^{\star}\left(\{u, v\}_{G}\right)=m^{\star}(u v)=t_{1}^{2} t_{2} x_{2}+t_{1} x_{1},
$$

which proves Poisson-Lie property. Similarly, we define Poisson-Lie bracket for B_{-}.

For coordinates u, v
$\left\{m^{\star}(u), m^{*}(v)\right\}_{G \times G}=\left\{t_{1} t_{2}, t_{1} x_{2}+x_{1} t_{2}^{-1}\right\}_{G \times G}=t_{1}^{2} t_{2} x_{2}+t_{1} x_{1}$.
On the other hand,

$$
m^{\star}\left(\{u, v\}_{G}\right)=m^{\star}(u v)=t_{1}^{2} t_{2} x_{2}+t_{1} x_{1},
$$

which proves Poisson-Lie property. Similarly, we define Poisson-Lie bracket for B_{-}. Then, if we have embedded Poisson subgroups B and B_{-}they define a Poisson-Lie structure on $S L_{2}$ they generate.

Indeed,

To define Poisson-Lie bracket on the whole $S L_{2}$ we use Gauss decomposition $S L_{2}=B_{-} B_{+}$.

Indeed,

To define Poisson-Lie bracket on the whole $S L_{2}$ we use Gauss decomposition $S L_{2}=B_{-} B_{+}$.
Indeed, $\left(\begin{array}{cc}t_{1} & 0 \\ y_{1} & t_{1}^{-1}\end{array}\right)\left(\begin{array}{cc}t_{2} & x_{2} \\ 0 & t_{2}^{-1}\end{array}\right)=\left(\begin{array}{cc}t_{1} t_{2} & t_{1} x_{2} \\ y_{1} t_{2} & y_{1} x_{2}+t_{1}^{-1} t_{2}^{-1}\end{array}\right)$

Indeed,

To define Poisson-Lie bracket on the whole $S L_{2}$ we use Gauss decomposition $S L_{2}=B_{-} B_{+}$.
Indeed, $\left(\begin{array}{cc}t_{1} & 0 \\ y_{1} & t_{1}^{-1}\end{array}\right)\left(\begin{array}{cc}t_{2} & x_{2} \\ 0 & t_{2}^{-1}\end{array}\right)=\left(\begin{array}{cc}t_{1} t_{2} & t_{1} x_{2} \\ y_{1} t_{2} & y_{1} x_{2}+t_{1}^{-1} t_{2}^{-1}\end{array}\right)$
Hence,

$$
\left\{z_{11}, z_{12}\right\}=\left\{t_{1} t_{2}, t_{1} x_{2}\right\}=t_{1}^{2} t_{2} x_{2} \quad=z_{11} z_{12}
$$

Indeed,

To define Poisson-Lie bracket on the whole $S L_{2}$ we use Gauss decomposition $S L_{2}=B_{-} B_{+}$. Indeed, $\left(\begin{array}{cc}t_{1} & 0 \\ y_{1} & t_{1}^{-1}\end{array}\right)\left(\begin{array}{cc}t_{2} & x_{2} \\ 0 & t_{2}^{-1}\end{array}\right)=\left(\begin{array}{cc}t_{1} t_{2} & t_{1} x_{2} \\ y_{1} t_{2} & y_{1} x_{2}+t_{1}^{-1} t_{2}^{-1}\end{array}\right)$ Hence,

$$
\begin{aligned}
\left\{z_{11}, z_{12}\right\}=\left\{t_{1} t_{2}, t_{1} x_{2}\right\}=t_{1}^{2} t_{2} x_{2} & =z_{11} z_{12} \\
\left\{z_{11}, z_{21}\right\}=\left\{t_{1} t_{2}, y_{1} t_{2}\right\}=t_{2}^{2} t_{1} y_{1} & =z_{11} z_{21}
\end{aligned}
$$

Indeed,

To define Poisson-Lie bracket on the whole $S L_{2}$ we use Gauss decomposition $S L_{2}=B_{-} B_{+}$. Indeed, $\left(\begin{array}{cc}t_{1} & 0 \\ y_{1} & t_{1}^{-1}\end{array}\right)\left(\begin{array}{cc}t_{2} & x_{2} \\ 0 & t_{2}^{-1}\end{array}\right)=\left(\begin{array}{cc}t_{1} t_{2} & t_{1} x_{2} \\ y_{1} t_{2} & y_{1} x_{2}+t_{1}^{-1} t_{2}^{-1}\end{array}\right)$ Hence,

$$
\begin{array}{ll}
\left\{z_{11}, z_{12}\right\}=\left\{t_{1} t_{2}, t_{1} x_{2}\right\}=t_{1}^{2} t_{2} x_{2} & =z_{11} z_{12}, \\
\left\{z_{11}, z_{21}\right\}=\left\{t_{1} t_{2}, y_{1} t_{2}\right\}=t_{2}^{2} t_{1} y_{1} & =z_{11} z_{21}, \\
\left\{z_{11}, z_{22}\right\}=\left\{t_{1} t_{2}, y_{1} x_{2}+t_{1}^{-1} t_{2}^{-1}\right\}=2 t_{1} y_{1} t_{2} x_{2} & =2 z_{12} z_{21},
\end{array}
$$

Indeed,

To define Poisson-Lie bracket on the whole $S L_{2}$ we use Gauss decomposition $S L_{2}=B_{-} B_{+}$.
Indeed, $\left(\begin{array}{cc}t_{1} & 0 \\ y_{1} & t_{1}^{-1}\end{array}\right)\left(\begin{array}{cc}t_{2} & x_{2} \\ 0 & t_{2}^{-1}\end{array}\right)=\left(\begin{array}{cc}t_{1} t_{2} & t_{1} x_{2} \\ y_{1} t_{2} & y_{1} x_{2}+t_{1}^{-1} t_{2}^{-1}\end{array}\right)$
Hence,

$$
\begin{array}{rr}
\left\{z_{11}, z_{12}\right\}=\left\{t_{1} t_{2}, t_{1} x_{2}\right\}=t_{1}^{2} t_{2} x_{2} & =z_{11} z_{12} \\
\left\{z_{11}, z_{21}\right\}=\left\{t_{1} t_{2}, y_{1} t_{2}\right\}=t_{2}^{2} t_{1} y_{1} & =z_{11} z_{21} \\
\left\{z_{11}, z_{22}\right\}=\left\{t_{1} t_{2}, y_{1} x_{2}+t_{1}^{-1} t_{2}^{-1}\right\}=2 t_{1} y_{1} t_{2} x_{2} & =2 z_{12} z_{21}, \\
\left\{z_{12}, z_{21}\right\}=\left\{t_{1} x_{2}, y_{1} t_{2}\right\} & =0,
\end{array}
$$

Indeed,

To define Poisson-Lie bracket on the whole $S L_{2}$ we use Gauss decomposition $S L_{2}=B_{-} B_{+}$.
Indeed, $\left(\begin{array}{cc}t_{1} & 0 \\ y_{1} & t_{1}^{-1}\end{array}\right)\left(\begin{array}{cc}t_{2} & x_{2} \\ 0 & t_{2}^{-1}\end{array}\right)=\left(\begin{array}{cc}t_{1} t_{2} & t_{1} x_{2} \\ y_{1} t_{2} & y_{1} x_{2}+t_{1}^{-1} t_{2}^{-1}\end{array}\right)$
Hence,

$$
\begin{array}{lr}
\left\{z_{11}, z_{12}\right\}=\left\{t_{1} t_{2}, t_{1} x_{2}\right\}=t_{1}^{2} t_{2} x_{2} & =z_{11} z_{12}, \\
\left\{z_{11}, z_{21}\right\}=\left\{t_{1} t_{2}, y_{1} t_{2}\right\}=t_{11}^{2} z_{21}, \\
\left\{z_{11}, z_{22}\right\}=\left\{t_{1} t_{2}, y_{1} x_{2}+t_{1}^{-1} t_{2}^{-1}\right\}=2 t_{1} y_{1} t_{2} x_{2} & =2 z_{12} z_{21}, \\
\left\{z_{12}, z_{21}\right\}=\left\{t_{1} x_{2}, y_{1} t_{2}\right\} & =0, \\
\left\{z_{12}, z_{22}\right\}=\left\{t_{1} x_{2}, y_{1} x_{2}+t_{1}^{-1} t_{2}^{-1}\right\}=t_{1} y_{1} t_{2} x_{2}^{2}+x_{2} / t_{2}=z_{12} z_{22},
\end{array}
$$

Indeed,

To define Poisson-Lie bracket on the whole $S L_{2}$ we use Gauss decomposition $S L_{2}=B_{-} B_{+}$.
Indeed, $\left(\begin{array}{cc}t_{1} & 0 \\ y_{1} & t_{1}^{-1}\end{array}\right)\left(\begin{array}{cc}t_{2} & x_{2} \\ 0 & t_{2}^{-1}\end{array}\right)=\left(\begin{array}{cc}t_{1} t_{2} & t_{1} x_{2} \\ y_{1} t_{2} & y_{1} x_{2}+t_{1}^{-1} t_{2}^{-1}\end{array}\right)$
Hence,

$$
\begin{array}{rlr}
\left\{z_{11}, z_{12}\right\}=\left\{t_{1} t_{2}, t_{1} x_{2}\right\}=t_{1}^{2} t_{2} x_{2} & =z_{11} z_{12}, \\
\left\{z_{11}, z_{21}\right\}=\left\{t_{1} t_{2}, y_{1} t_{2}\right\}=t_{2}^{2} t_{1} y_{1} & =z_{11} z_{21}, \\
\left\{z_{11}, z_{22}\right\}=\left\{t_{1} t_{2}, y_{1} x_{2}+t_{1}^{-1} t_{2}^{-1}\right\}=2 t_{1} y_{1} t_{2} x_{2} & =2 z_{12} z_{21}, \\
\left\{z_{12}, z_{21}\right\}=\left\{t_{1} x_{2}, y_{1} t_{2}\right\} & =0, \\
\left\{z_{12}, z_{22}\right\}=\left\{t_{1} x_{2}, y_{1} x_{2}+t_{1}^{-1} t_{2}^{-1}\right\}=t_{1} y_{1} t_{2} x_{2}^{2}+x_{2} / t_{2}=z_{12} z_{22}, \\
\left\{z_{21}, z_{22}\right\}=\left\{y_{1} t_{2}, y_{1} x_{2}+t_{1}^{-1} t_{2}^{-1}\right\}=y_{1}^{2} t_{2} x_{2}+y_{1} / t_{1} & =z_{21} z_{22} .
\end{array}
$$

Poisson-Lie bracket for $S L_{n}$

Standard embeddings $S L_{2} \subset S L_{n}$ define Poisson submanifold with respect to standard Poisson-Lie bracket.

Poisson-Lie bracket for $S L_{n}$

Standard embeddings $S L_{2} \subset S L_{n}$ define Poisson submanifold with respect to standard Poisson-Lie bracket. Any fixed reduced decomposition of the maximal element of the Weyl group determines a Poisson map $\binom{n-1}{2}$
$\prod_{1} S L_{2} \rightarrow S L_{n}$.

Poisson-Lie bracket for $S L_{n}$

Standard embeddings $S L_{2} \subset S L_{n}$ define Poisson submanifold with respect to standard Poisson-Lie bracket. Any fixed reduced decomposition of the maximal element of the Weyl group determines a Poisson map $\binom{n-1}{2}$
$\prod S L_{2} \rightarrow S L_{n}$. Then, for $X=\left(x_{i j}\right) \in S L_{n}$ we have 1
$\left\{x_{i j}, x_{k i}\right\}=x_{i j} x_{i k}$ for $j<k$,
$\left\{x_{j i}, x_{k i}\right\}=x_{j i} x_{k i}$ for $j<k$
$\left\{x_{i j}, x_{k l}\right\}=x_{i l} x_{k j}$ for $i<k, j<1, \quad\left\{x_{i j}, x_{k l}\right\}=0$ for $i<k, j>l$

Poisson-Lie bracket for $S L_{n}$

Standard embeddings $S L_{2} \subset S L_{n}$ define Poisson submanifold with respect to standard Poisson-Lie bracket. Any fixed reduced decomposition of the maximal element of the Weyl group determines a Poisson map
$\binom{n-1}{2}$
$\prod S L_{2} \rightarrow S L_{n}$. Then, for $X=\left(x_{i j}\right) \in S L_{n}$ we have
1
$\left\{x_{i j}, x_{k i}\right\}=x_{i j} x_{i k}$ for $j<k$,
$\left\{x_{j i}, x_{k i}\right\}=x_{j i} x_{k i}$ for $j<k$
$\left\{x_{i j}, x_{k l}\right\}=x_{i l} x_{k j}$ for $i<k, j<1, \quad\left\{x_{i j}, x_{k l}\right\}=0$ for $i<k, j>l$

Remark

Tridiagonal matrices form a symplectic leaf of a standard Poisson-Lie structure on $S L_{n}$.

Poisson-Lie bracket for $S L_{n}$

Standard embeddings $S L_{2} \subset S L_{n}$ define Poisson submanifold with respect to standard Poisson-Lie bracket. Any fixed reduced decomposition of the maximal element of the Weyl group determines a Poisson map
$\binom{n-1}{2}$
$\prod S L_{2} \rightarrow S L_{n}$. Then, for $X=\left(x_{i j}\right) \in S L_{n}$ we have
1
$\left\{x_{i j}, x_{k i}\right\}=x_{i j} x_{i k}$ for $j<k$,
$\left\{x_{j i}, x_{k i}\right\}=x_{j i} x_{k i}$ for $j<k$
$\left\{x_{i j}, x_{k l}\right\}=x_{i l} x_{k j}$ for $i<k, j<1, \quad\left\{x_{i j}, x_{k l}\right\}=0$ for $i<k, j>1$

Remark

Tridiagonal matrices form a symplectic leaf of a standard Poisson-Lie structure on $S L_{n}$.

Remark

Toda equations are Hamiltonian equations with respect to the standard quadratic Poisson-Lie bracket and Hamiltonian $\operatorname{tr}(X)$.

R-matrix

One can construct a Poisson-Lie bracket using R - matrix.

Definition

A map $R: g \rightarrow g$ is called a classical R - matrix if it satisfies modified Yang-Baxter equation

$$
[R(\xi), R(\eta)]-R([R(\xi), \eta]+[\xi, R(\eta)])=-[\xi, \eta]
$$

R-matrix

One can construct a Poisson-Lie bracket using R - matrix.

Definition

A map $R: g \rightarrow g$ is called a classical R - matrix if it satisfies modified Yang-Baxter equation

$$
[R(\xi), R(\eta)]-R([R(\xi), \eta]+[\xi, R(\eta)])=-[\xi, \eta]
$$

R-matrix Poisson bracket

R-matrix Poisson-Lie bracket on $S L_{n}$:

$$
\left.\left.\left\{f_{1}, f_{2}\right\}(X)=\frac{1}{2}\left(\left\langle R\left(\nabla f_{1}(X) X\right), \nabla f_{2}(X) X\right\rangle-\left\langle R\left(X \nabla f_{1}(X)\right), X \nabla f_{2}(X)\right)\right]\right\rangle\right)
$$

where gradient $\nabla f \in s l_{n}$ defined w.r.t. trace form.

Example

For any matrix X we write its decomposition into a sum of lower triangular and strictly upper triangular matrices as

$$
X=X_{-}+X_{0}+X_{+}
$$

The standard R-matrix $R: M a t_{n} \rightarrow M a t_{n}$ defined by

$$
R(X)=X_{+}-X_{-}
$$

The standard R-matrix Poisson-Lie bracket:

$$
\left\{x_{i j}, x_{\alpha \beta}\right\}(X)=\frac{1}{2}(\operatorname{sign}(\alpha-i)+\operatorname{sign}(\beta-j)) x_{i \beta} x_{\alpha j}
$$

Homogeneous Poisson space

X is a homogeneous space of an algebraic group G, i.e.,

$$
m: G \times X \rightarrow X
$$

G is equipped with Poisson-Lie structure.

Definition

Poisson bracket on X is compatible if m is a Poisson map.

Homogeneous Poisson space

X is a homogeneous space of an algebraic group G, i.e.,

$$
m: G \times X \rightarrow X
$$

G is equipped with Poisson-Lie structure.

Definition

Poisson bracket on X is compatible if m is a Poisson map.

Grassmannian $G_{k}(n)$

Example

Grassmannian $G_{k}(n)$ of k-dimensional subspaces of n-dimensional space. $S L_{n}$ acts freely on $G_{k}(n)$.

Grassmannian $G_{k}(n)$

Example

Grassmannian $G_{k}(n)$ of k-dimensional subspaces of n-dimensional space. $S L_{n}$ acts freely on $G_{k}(n)$.
Maximal Schubert cell $G_{k}^{0}(n) \subset G_{k}(n)$ contains elements of the form $(1 \quad Y)$ where $Y=\left(y_{i j}\right), i \in[1, k] ; j \in[1, n-k]$.

Grassmannian $G_{k}(n)$

Example

Grassmannian $G_{k}(n)$ of k-dimensional subspaces of n-dimensional space. $S L_{n}$ acts freely on $G_{k}(n)$.
Maximal Schubert cell $G_{k}^{0}(n) \subset G_{k}(n)$ contains elements of the form
$(1 \quad Y)$ where $Y=\left(y_{i j}\right), i \in[1, k] ; j \in[1, n-k]$.
Poisson bracket bracket compatible with the standard Poisson-Lie bracket on $S L_{n}$:

$$
\left\{y_{i j}, y_{\alpha, \beta}\right\}=\frac{1}{2}\left((\operatorname{sign}(\alpha-i)-\operatorname{sign}(\beta-j)) y_{i \beta} y_{\alpha, j}\right.
$$

Thank you

for your attention!

