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Introduction

Outline

Our Goal

Introduce cluster algebra structure in the ring of regular functions on
the space

Rn =

{
Q(λ)

P(λ)
: deg P = n, deg Q < n, P,Q are coprime, P(0) 6= 0

}

Interpret Darboux-Bäcklund transformations of Coxeter-Toda lattices
in terms of cluster transformations.
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Introduction

Definition of a Cluster Algebra (Fomin-Zelevinsky)

Ingredients

A seed (of geometric type) - a pair Σ = (x, B̃), where
x = (x1, . . . , xn) are commuting variables and B̃ is an n × (n + m)
integer matrix whose n × n principal part B is skew-symmetric.

x is called a cluster , its elements x1, . . . , xn are called cluster variables.
Denote xn+i = gi for i ∈ [1,m]. We say that x̃ = (x1, . . . , xn+m) is an
extended cluster , and xn+1, . . . , xn+m are stable variables.
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Introduction

Cluster transformations

The adjacent cluster in direction k ∈ [1, n] :

xk = (x \ {xk}) ∪ {x ′k},
where the new cluster variable x ′k is given by the exchange relation

xk x ′k =
∏

1≤i≤n+m
bki>0

xbki
i +

∏

1≤i≤n+m
bki<0

x−bki
i ;

B̃ ′ is obtained from B̃ by a matrix mutation in direction k :

b′ij =




−bij , if i = k or j = k;

bij +
|bik |bkj + bik |bkj |

2
, otherwise.

Σ′ = (x′, B̃ ′) is called adjacent to Σ in direction k . Two seeds are
mutation equivalent if they can be connected by a sequence of
pairwise adjacent seeds.
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Introduction

The cluster algebra (of geometric type) A = A(B̃) associated with Σ is
generated by all cluster variables in all seeds mutation equivalent to Σ .

Laurent phenomenon

All cluster variables are Laurent polynomials in initial cluster variables

Positivity Conjecture

All these Laurent polynomials have positive integer coefficients
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Introduction

Examples of Cluster Transformations

Short Plücker relation in Gk (n)

xijJxklJ = xikJxjlJ + xilJxkjJ

for 1 ≤ i < k < j < l ≤ m, |J| = k − 2.

Whitehead moves and Ptolemy relations in Decorated Teichmüller
space:

M

P Q

N

b

d

a

b

c
q

d

p ca

M N

P Q

f (p)f (q) = f (a)f (c) + f (b)f (d)
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Introduction

Compatible Poisson Brackets

A Poisson bracket {·, ·} on F is compatible with the cluster algebra A if,
for any extended cluster x̃ = (x1, . . . , xn+m)

{xi , xj} = ωij xi xj ,

where ωij ∈ Z are constants for all i , j ∈ [1, n + m].

Theorem (Gekhtman-Sh.-Vainshtein)

Assume that B̃ is of full rank. Then there is a Poisson bracket compatible
with A(B̃).

Key Observation

Given a Poisson manifold and a coordinate system (xi ) with Poisson
relations as above (log-canonical), one can try to construct a cluster
algebra.
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Introduction

Strategy for Rn

Initial cluster ... inspired by a generalization of the inverse moment
problem.

Compatible Poisson bracket ... inspired by the Hamiltonian structure
for Toda flows.
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Coxeter-Toda flows in GLn

Standard Poisson-Lie Structure

Sklyanin bracket on GLn

{f1, f2}R(x) =

1

2
Tr (R(∇f1(x) x) ∇f2(x) x)− 1

2
Tr (R(x ∇f1(x)) x ∇f2(x)) ,

where R solves MCYBE. The simplest classical R-matrix :

R0(ξ) = (π+ − π−) (ξ) = ξ+ − ξ− = (sign(j − i)ξij )
n
i ,j=1 .

Toda Flows

d

dt
X =

[
X , −1

2

(
π+(X k )− π−(X k )

)]
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Coxeter-Toda flows in GLn

Coxeter Double Bruhat Cells

For u, v ∈ Sn, the double Bruhat cell is defined as

G u,v = B+uB+ ∩ B−vB−.

Coxeter double Bruhat cell ⇐⇒ u and v are products of n − 1 distinct
elementary reflections

G u,v ⊂ GLn are Poisson submanifolds w.r.t. the Sklyanin bracket

G u,v are invariant under conjugation by any diagonal matrix h ∈ H

For Coxeter u, v , Toda flows restrict to a completely integrable
system on G u,v/H.

Examples

1 u = v−1 = s1 · · · sn−1 7→ Jacobi matrices/Toda lattice

2 u = v = s1 · · · sn−1 7→ relativistic Toda lattice

3 u = v = (s1s3 · · · )(s2s4 · · · ) 7→ CMV matrices/Ablowitz-Ladik lattice
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Coxeter-Toda flows in GLn

Parametrization of G u,v/H (by example)

n = 5, v = s4s3s1s2, u = s3s2s1s4

+

1

d 2

1c
−

1c
+

c
+

3c
+

2c

d

1

3

2

4

5

d 3

3

1

2

4

5

d 5

d 4

4c
−

3c
−

2c
−

4

A generic element X ∈ G u,v :

X =




d1 x11c+
1 x12c+

2 0 0
c−1 x11 d2 + c−1 x12 x22c+

2 0 0
c−2 x21 c−2 x22 d3 + c−2 x23 d3c+

3 0
c−3 x31 c−3 x32 c−3 x33 d4 + c−3 x34 d4c+

4

0 0 0 c−4 d4 d5 + c−4 x45



.
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Inverse Problem

Moser Map

X 7→ m(λ; X ) = ((λ1− X )−1e1, e1) =
q(λ)

p(λ)
=
∞∑

j=0

hj (X )

λj+1
∈ Rn

linearizes any Coxeter-Toda flow.

Inverse Moser Map

Given m(λ), define Hankel determinants

∆
(l)
i = det (hα+β+l−i−1)i

α,β=1

Given (u, v), define an n-tuple

(κ1, . . . ,κn) : κ1 = 0, κi+1 − κi ∈ {0,±1}
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Inverse Problem

Theorem

For X ∈ G u,v

di =
∆

(κi +1)
i ∆

(κi−1)
i−1

∆
(κi )
i ∆

(κi−1+1)
i−1

,

ci := c+
i c−i =

∆
(κi−1)
i−1 ∆

(κi+1)
i+1(

∆
(κi +1)
i

)2

(
∆

(κi+1+1)
i+1

∆
(κi+1)
i+1

)εi+1 (
∆

(κi−1+1)
i−1

∆
(κi−1)
i−1

)2−εi

where εi = κi − κi+1 + 1.

F

unctions
x0i = x0i (u, v) = ∆

(κi )
i , x1i = x1i (u, v) = ∆

(κi +1)
i (i = 1, . . . , n − 1) are

regular functions on Rn, that will serve as an initial cluster. Functions

x0n = ∆
(n−1)
n , x1n = ∆

(n−2)
n

∆
(n−1)
n

= 1
det X will serve as stable variables.
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Planar Networks

Weighted network N in a disk

G = (V ,E ) - directed planar graph drawn inside a disk with the
vertex set V and the edge set E .

Exactly n of its vertices are located on the boundary circle of the disk.
They are labelled counterclockwise b1, . . . , bn and called boundary
vertices.

Each boundary vertex is labelled as a source or a sink.
I = {i1, . . . , ik} ⊂ [1, n] is a set of sources. J = [1, n] \ I - set of sinks.

All the internal vertices of G have degree 3 and are of two types:
either they have exactly one incoming edge, or exactly one outcoming
edge. The vertices of the first type are called white, those of the
second type, black.

To each e ∈ E we assign a weight we .
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Planar Networks

Example

w
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w w w
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Planar Networks

Boundary Measurements

Paths and cycles

A path P in N is an alternating sequence (v1, e1, v2, . . . , er , vr+1) of
vertices and edges such that ei = (vi , vi+1) for any i ∈ [1, r ].
A path is called a cycle if vr+1 = v1

Concordance number ≈ rotation number

For a closed oriented polygonal plane curve C , let e ′ and e ′′ be two
consequent oriented segments of C , v – their common vertex. Let l be an
arbitrary oriented line. Define cl (e ′, e ′′) ∈ Z/2Z in the following way:
cl (e ′, e ′′) = 1 if the directing vector of l belongs to the interior of the cone
spanned by e ′ and e ′′ , cl (e ′, e ′′) = 0 otherwise.
Define cl (C ) as the sum of cl (e ′, e ′′) over all pairs of consequent segments
in C . cl (C ) does not depend on l , provided l is not collinear to any of the
segments in C . The common value of cl (C ) for different choices of l is
denoted by c(C ) and called the concordance number of C .

(Michigan State University) Poisson geometry of directed networks and integrable systemsDay 5 , Morning, April 19 16 / 41



Planar Networks

Example

3
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l

e
e

Figure: cl (e1, e2) = cl (e5, e2) = 0; cl (e2, e3) = 1, cl (e2, e6) = 0;
cl (e6, e7) = 1, cl (e7, e8) = 0
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Planar Networks

Boundary Measurements (cont’d)

Weight of a path

A path P between a source bi and a sink bj  a closed polygonal curve
CP = P∪ counterclockwise path btw. bj and bi along the boundary.
The weight of P :

wP = (−1)c(CP )−1
∏

e∈P

we .

Boundary Measurement

M(i , j) =
∑

weights of all paths starting at bi and ending at bj

Proposition (Postnikov)

Each boundary measurement is a rational function in the weights we

admitting a subtraction-free rational expression.

Boundary Measurement Matrix: MN = (M(ip, jq))
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Planar Networks

Example

w

2

b1

b3

b4

w w

b

l

1 2 3 4

9 10 11

5 6 7 8

w w w w

w w w

w

MN =




w3w4w5w6w10

1 + w3w7w10w11

w3w5w6w8w11

1 + w3w7w10w11

w1w3w4(w2 + w6w9w10)

1 + w3w7w10w11

w1w3w8w11(w2 + w6w9w10)

1 + w3w7w10w11


 .
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Poisson Structures

Network concatenation and the standard Poisson-Lie
structure

The construction above is due to Postnikov – extension of results by
Karlin-McGregor, Lindström, Gessel-Viennot, Brenti,

Berenshtein-Fomin-Zelevinsky,... motivated by the study of total
positivity.

Recall:

If sources and sinks of N do not interlace:

place N in a square rather than in a disk, with all sources located on
the left side and sinks on the right side of the square

re-label sources/sinks from bottom to top

MN  AN = MNW0

where W0 = (δi ,m+1−j )
m
i ,j=1 is the matrix of the longest permutation

concatenation of networks ⇐⇒ matrix multiplication
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Poisson Structures

Building Blocks:

Diagonal matrix D = diag(d1, . . . , dn) and elementary bidiagonal matrices
E−i (`) := 1 + `ei ,i−1 and E +

j (u) := 1 + uej−1,j correspond to:

c)b)

d nn

d 22

n

2

d 11 1

n

j

1 1

j

n

ul

n

i

1 1

i

n

i−1 i−1 j−1 j−1

a)
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Poisson Structures

Concatenation of several networks these types with appropriately chosen
order and weights can be used to describe any element of GLn:

n

1

d 2

d n

−1nd

n −1 n −1

−1nl 1

l22

l21

−1n −1nl

l11

−1

d

2l −1n 2

−1nl 1−2n

−1n −1n

3

1

2

u

1u 1−2nu

u

21

22

11u

u

u

d 3

1

n

3

2

n

Figure: Generic planar network ⇐⇒ Generic matrix
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Poisson Structures

Standard Poisson-Lie Structure

Poisson-Lie Groups

(G, {·, ·}) is called a Poisson-Lie group if the multiplication map

m : G × G 3 (x , y) 7→ xy ∈ G

is Poisson.
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Poisson Structures

Building Blocks Again

Restriction of {·, ·}R0
to subgroups

B
(i)
+ =

{
1i−1 ⊕

(
d c
0 d−1

)
⊕ 1n−i−1

}
,B(i)− =

{
1i−1 ⊕

(
d 0
c d−1

)
⊕ 1n−i−1

}

is

{d , c}R0 =
1

2
dc .

Can be described in terms of adjacent edges in corresponding networks !
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Poisson Structures

General networks in a disc ?

Concatenation

Glue a segment of the boundary of one disc to a segment of the boundary
of another disc so that each source/sink in the first segment is glued to a
source/sink of the second.

Half-edge weights

Internal vertex v  R3
v = {x1

v , x
2
v , x

3
v } :

2

v

1
x

v

1

v

x

v v

x
v

2

x
v

3

x
v

3

x

Equip each R3
v with a Poisson bracket  R = ⊕vR3

v inherits
{·, ·}R = ⊕v{·, ·}v .
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Poisson Structures

Universal Poisson Brackets

{·, ·}R is universal if

1 Each of {·, ·}v depends only on the color of the vertex v .

2 The natural map R → REdges : edge weight = product of half-edge
weights induces a Poisson structure on REdges

This is an analog of the Poisson–Lie property

Proposition

Universal Poisson brackets {·, ·}R a 6-parametric family defined by
relations

{x i
v , x

j
v}v = αij x

i
v x j

v , i , j ∈ [1, 3], i 6= j ,

at each white vertex v and

{x i
v , x

j
v}v = βij x

i
v x j

v , i , j ∈ [1, 3], i 6= j ,

at each black vertex v .
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Poisson Structures

Poisson Properties of the Boundary Measurement Map

Theorem

1 For any network N in a square with n sources and n sinks and for any
choice of αij , βij the map AN : REdges → Matn is Poisson w. r. t. the
Sklyanin bracket associated with the R-matrix

Rα,β =
α− β

2
(π+ − π−) +

α + β

2
Sπ0,

where S(ejj ) =
∑k

i=1 sign(j − i)eii , j = 1, . . . , k .
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Cluster Algebra structure on boundary measurements

Cluster algebra structure on boundary measurements

Transformations preserving boundary measurements

Gauge group acts on the space of edge weights :

Elementary transformations :

Edge weights modulo gauge group are Face Coordinates

Face weight yf of a face f is a Laurent monomial :

yf =
∏

e∈∂f

wγe
e ,

where γe = 1 if the direction of e is compatible with the orientation of the
boundary ∂f and γe = −1 otherwise.
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Cluster Algebra structure on boundary measurements

Elementary transformations

y
1 w2

w4

w1 w2
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3w

1
1

1
1

1

1 1

1
1x

x
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x y

y

1

x’

x

y’

Figure: Elementary transformations

Elementary transformation of type 3 is ”Y -system type” cluster
transformation for face coordinates:

Universal Poisson structure is compatible with cluster algebra
structure :
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Cluster Algebra structure on boundary measurements

Networks on non-simply-connected higher genus surfaces?

Simplest case: networks on a cylinder

1 Images of the boundary measurement map are rational matrix-valued
functions

2 Universal Poisson brackets on edge weights lead to trigonometric
R-matrix brackets in the case when sources and sinks are located at
opposite ends of a cylinder

3 In the case of only one source and one sink, both located at the same
component of the boundary, the corresponding Poisson bracket is
relevant in the study of Toda lattices and allows to construct a cluster
algebra structure in the space of rational functions.
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Compatible Poisson structure on Rn

Graphical interpretation of m(λ) (by example)

in
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Compatible Poisson structure on Rn

The weight of a path P between a source a sink:

wP = ±λind(P∩|) ∏

edge∈P

weight(edge)

Boundary Measurement :=
∑

PwP = winwoutm(λ,X )
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Compatible Poisson structure on Rn

Poisson structure on face coordinates

{yf , yf ′} = ωff ′yf yf ′ .

where ωff ′ are determined by the dual graph

−β

2

b1

α−β
α

b

α−β

α−β
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Compatible Poisson structure on Rn

Theorem

Induced Poisson bracket on Rn is

{M(λ),M(µ)} = − (λ M(λ)− µ M(µ))
M(λ)−M(µ)

λ− µ .

It coincides with the one induced by the quadratic Poisson structure for
Toda flows.

Corollary

Hankel determinants that form the initial cluster are log-canonical.

W

e have all the ingredients to build a cluster algebra for Rn.
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Cluster algebra A

Cluster transformations are modeled on Jacobi’s determinantal identity

∆
(l)
i+1∆

(l)
i−1 = ∆

(l−1)
i ∆

(l+1)
i −

(
∆

(l)
i

)2
,

Rules of transformations are defined by graphs of the form:

Cluster algebra A

Cluster transformations are modeled on Jacobi’s determinantal identity

∆
(l)
i+1∆

(l)
i−1 = ∆

(l−1)
i ∆

(l+1)
i −

(
∆

(l)
i

)2
,

Rules of transformations are defined by graphs of the form:

• • • •··· •

• • •
······

•··· •

• • • •··· •

• • •
······

•··· •

M. Shapiro ( joint with M. Gekhtman and A. Vainshtein) (Michigan State University)Poisson geometry of directed networks and integrable latticesGlasgow, July 2011 20 / 26

(Michigan State University) Poisson geometry of directed networks and integrable systemsDay 5 , Morning, April 19 35 / 41



Cluster algebra A

Theorem

(i) The cluster algebra A we constructed does not depend on (u, v).
(ii) The localization of A with respect to the stable variables x2n−1, x2n

coincides with the ring of regular functions on Rn.

Corollary

Bäcklund-Darboux transformations between Coxeter-Toda lattices ⇐⇒
cluster transformations in A ⇐⇒ network transformations:
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Cluster algebra A
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Cluster algebra A
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Cluster algebra A

Applications

A simpler proof of the positivity conjecture for An Q-system - a
rational recurrence appearing in the study of the XXX-model. ( First
proved by DiFrancesco and Kedem )

Explicit formulas for Bäcklund-Darboux transformations. E. g.

Theorem

If off-diagonal entries ai , and diagonal entries bi of the Jacobi matrix L
evolve according to the equations of the Toda lattice, then functions

di =
(L2−i )[i ](L2−i )[i−1]

(L1−i )[i ](L3−i )[i−1]
, ci = ai

(L−i )[i+1](L3−i )[i−1]

(L1−i )[i ](L2−i )[i ]

solve the relativistic Toda lattice.
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