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Abstract. We present several formulas for the intersection multiplicity num-

bers considered in [3]. These numbers are associated to any dimensional cell

of the common intersection of the tropical hypersurfaces. The first formula
involves a sum of generalized mixed volumes, and turns out to be equal to

the absolute value of the Euler characteristic of some complex toric complete
intersection. Another formula uses an alternating sum of volumes of Cayley

polytopes.

Introduction

Tropical geometry is a recent field of mathematics which has attracted re-
searchers from various other fields like algebraic geometry, real algebraic geometry,
combinatorial geometry, to cite only few of them. We refer to [13], [8], [17] and [6]
for general papers on the subject. Intersection theory is one of the most fundamen-
tal theory in classical algebraic geometry and it is natural to try to build such a
theory in tropical geometry. Several works have been done in this direction, see for
instance, [13], [17], [10], [18], [1], [14], [15], [16], [11].

In the present paper, we consider a finite number of tropical hypersurfaces in
Rn and give new formulas for the intersection multiplicity numbers defined in [3].
A tropical polynomial in n variables is a polynomial in the usual sense but with the
addition and multiplication of the tropical semiring. The corner locus of the result-
ing convex piecewise-linear function on Rn is the tropical hypersurface defined by
the tropical polynomial. This is a piecewise-linear polyhedral complex of dimension
n − 1 whose pieces together with the closures of the connected components of the
complementary part form a subdivision of the ambient space Rn, whose elements
are called cells. This subdivision is in one-to-one correspondence with a convex
polyhedral subdivision of the Newton polytope of the tropical hypersurface. This
correspondence also called duality sends a cell to a polytope of complementary di-
mension and lying on a orthogonal space in the dual space. It can been seen as a
counterpart of the classical duality between the faces of an integral polytope and
the cones in its normal fan (see sections 3 and 4). The tropical cycle associated with
a tropical hypersurface in Rn is the weighted (n − 1)-dimensional piecewise-linear
polyhedral complex given by the tropical hypersurface together with weights on its
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top-dimensional cells which are the integer lenghts of the dual edges. The com-
mon intersection of a finite number of tropical hypersurfaces Z1, . . . , Zk ⊂ Rn is a
piecewise-linear polyhedral complex whose cells ξ are common intersections of cells
ξ1, . . . , ξk of the tropical hypersurfaces. The associated tropical intersection cycle is
the weighted (n− k)-dimensional piecewise-linear polyhedral complex given by the
union of the (n−k)-dimensional cells ξ equipped with weights defined as follows (see
Definition 5.2). If the cell is a transversal intersection of top-dimensional cells of
the hypersurfaces, then the weight is the product of the weights of these cells scaled
by some lattice index. In the general case, the weight is defined as the sum of the
weights of all transversal intersection cells emerging from the given cell after small
generic translations of the tropical hypersurfaces. This comes from a more general
definition of tropical intersection cycle given in [13]. In our case, it is well-known
that the weight of a (n − k)-dimensional cell ξ of the tropical intersection cycle
associated with k tropical hypersurfaces in Rn is equal to the k-dimensional mixed
volume MVk(σ1, . . . , σk) of the polytopes σ1, . . . , σk which are dual to ξ1, . . . , ξk,
respectively.

In [3] the previous definition of w(ξ) was extended for cells ξ of any codimension
d ≥ k by dropping out the conditions on the dimensions of the intersecting cells and
equipping any cell of a single tropical hypersurface by the normalized volume of its
dual polytope (see Definition 5.8). In the present paper, we give another equivalent
definition of w(ξ) as a sum of classical weights of cells of tropical intersection cycles.
Namely, w(ξ) is defined as the sum over all collections t of positive integers t1, . . . , tk
suming up to d of the classical weight of ξ seen as a (n− d)-cell of the intersection
cycle of the d tropical hypersurfaces obtained by taking ti copies of Zi for i =
1, . . . , k (see Definition 5.5). In particular, when k = 1 there is only one partition
and w(ξ) is the classical weight of ξ seen as a cell of the cycle given by the d-fold
intersection of the tropical hypersurface. This gives w(ξ) = MVd(σ, . . . , σ), where
σ is the dual d-polytope, and thus w(ξ) is the normalized volume of σ.

We present three formulas for w(ξ). The following one was obtained in [3], it
is a direct consequence of Definition 5.5 :

(0.1) w(ξ) =
∑

t=(t1,...,tk)

MVd(σ1, . . . , σk; t),

where the sum is over all collections (t1, . . . , tk) as above and MVd(σ1, . . . , σk; t) is
the mixed volume, with respect to the lattice of rank d formed of all integer vectors
of Rn parallel to σ, of the d polytopes obtained by taking ti copies of σi (see The-
orem 5.7). It is well-known that the normalized volume of a polytope P coincides
up to a sign with the Euler characteristic of any non degenerate toric complex hy-
persurface with Newton polytope P . This provides a geometric interpretation for
the weights of the cells of a single tropical hypersurface, which has the following
generalization :

(0.2) w(ξ) = (−1)d−kχ({f1 = · · · = fk = 0}),

where χ({f1 = · · · = fk = 0}) is the Euler characteristic of a non degenerate toric
complex complete intersection with Newton polytopes σ1, . . . , σk (see Theorem 5.9).
We also prove the following formula involving suitable normalized volumes of Cayley
polytopes (see Theorem 6.2) :
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(0.3) w(ξ) =
∑

∅6=I⊂{1,...,k}

(−1)k−|I|vold+|I|−1 (C(σi, i ∈ I)) .

Here C(σi, i ∈ I) is the Cayley polytope of of the polytopes σi ⊂ Rn for i ∈ I : this
is the convex hull of all the points (wi, ei) ∈ Rn × Rk with wi ∈ σi and where ei is
the i-th vector in the standard basis of Rk.

A complex polynomial is non degenerate if it defines a nonsingular hypersur-
face in the complex torus, and if all the truncations of the polynomial to the faces
of its Newton polytope have the same property. A collection of complex polyno-
mials is non degenerate if the corresponding Cayley polynomial is non degenerate
in the previous sense. We show in Proposition 2.2 that this is equivalent to the
fact that any admissible sub-collection of polynomials defines a complete intersec-
tion in the corresponding torus (see Section 2 for precise definitions). A tropical
hypersurface in Rn is nonsingular if the dual subdivision of its Newton polytope
is a so-called unimodular (or primitive) triangulation. This allows us to define the
notion of a nondegenerate collection of tropical polynomials as in the complex case.
In analogy with Proposition 2.2, we show in Proposition 7.4 that a collection of
tropical polynomials is nondegenerate if and only if any admissible sub-collection
of tropical polynomials defines tropical hypersurfaces intersecting with multiplicity
numbers equal to either 1 or 0. This justifies to call nondegenerate tropical com-
plete intersection a tropical variety defined by a nondegenerate collection of tropical
polynomials.

A main part of the present paper comes from the paper [3] which appeared
on Arxiv in 2007 and in which the principal motivation was to extend a previous
result of the first author from the hypersurface case to the case of complete inter-
section (see [2]). Precisely, the main objective in [3] was to prove that the Euler
characteristic of a real nondegenerate tropical complete intersection is equal to the
mixed signature of a corresponding complex non degenerate complete intersection.
In order to get Proposition 7.4, we needed to extend the intersection multiplicity
numbers given in [13] in order to associate intersection multiplicity numbers to any
dimensional cell of a common intersection of tropical hypersurfaces. We think that
the intersection multiplicity numbers we defined in [3] are of independent interest
and this has motivated us to write a separate paper. Comparatively to [3], we have
added Definition 5.5, which give a new interpretation of our weight as a sum of
classical intersection numbers, and proved the new Formulas (0.2) and (0.3). We
have furthermore described with details the duality between tropical hypersurfaces
and convex subdivisions of Newton polytopes (see sections 3 and 4).

This paper is organized as follows. In the first sections, we give basic notions
of toric geometry and recall known results of tropical geometry. In Section 5, we
give the definitions of intersection multiplicity numbers and prove formulas (0.1)
and (0.2). Section 6 is devoted to Formula (0.3) while the last section is concerned
with nondegenerate tropical complete intersections.

We thank the referee for useful comments which helped us improve the expo-
sition of this paper.
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1. Toric hypersurfaces

We fix some notations and recall some standard properties of toric geome-
try. We refer to [5] for more details. Let N ' Zn be a lattice of rank n and
M = HomZ(N,Z) be its dual lattice. The associated complex torus is TN :=
Spec(C[M ]) = HomZ(M,C∗) = N ⊗Z C∗ ' (C∗)n. Let f ∈ C[M ] be a Laurent
polynomial in the group algebra associated with M

f(x) =
∑

cmx
m,

where each m belongs to M and only a finite number of cm are non zero. We will
usually have M = Zn, so that C[M ] = C[x±1

1 , . . . , x±1
n ]. The support of f is the

subset of M consisting of all m such that the coefficient cm is non zero. The convex
hull of this support in the real affine space generated by M is called the Newton
polytope of f . This is a lattice polytope, or a polytope with integer vertices, which
means that all the vertices of ∆ belong to M . In this paper all polytopes will be
lattice polytopes and the ambient lattice M will be clear from the context. We
denote by M(∆) the saturated sublattice of M which consists of all integer vectors
parallel to ∆ and by N(∆) the dual lattice. The dimension of ∆ is the rank of
M(∆), or equivalently the dimension of the real vector space M(∆)R generated
by ∆. The polynomial f (or rather x−mf ∈ C[M(∆)] for any choice of m in the
support of f) defines an hypersurface Zf in the torus TN(∆). Let X∆ denote the
projective toric variety associated with ∆. The variety X∆ contains TN(∆) as a

dense Zarisky open subset and we denote by Z̄f the Zarisky closure of Zf in X∆.
Let Γ be any face of ∆. If fΓ is the truncation of f to Γ, that is, the polynomial
obtained from f by keeping only those monomials whose exponents belong to Γ,
then Z̄f ∩ TN(Γ) = ZfΓ and Z̄f ∩ XΓ = Z̄fΓ . We have the classical notion of
nondegenerate Laurent polynomial.

Definition 1.1. A polynomial f with Newton polytope ∆ is called nondegen-
erate if for any face Γ of ∆ of positive dimension (including ∆ itself), the toric
hypersurface ZfΓ is a nonsingular hypersurface.

Note that if Γ is a vertex of ∆, then ZfΓ is empty. In the previous definition,

one may equivalently consider fΓ as a polynomial in C[M ] and thus look at the
corresponding hypersurface of the whole torus TN . Indeed, this hypersurface of
TN is the product of ZfΓ ⊂ TN(Γ) with the subtorus of TN corresponding to a
complement of M(Γ) in M . If ∆ is the Newton polytope of f , then the projective
hypersurface Z̄f ⊂ X∆ is nonsingular if and only if f is nondegenerate and X∆ has
eventually a finite number of singularities which are zero-dimensional TN(∆)-orbits
corresponding to vertices of ∆.

2. Intersection of toric hypersurfaces

Consider polynomials f1, . . . , fk ∈ C[M ] and denote by ∆i the Newton polytope
of fi. Let ∆ be the Minkowsky sum of these polytopes

∆ = ∆1 + · · ·+ ∆k.

Each polynomial fi seen as a polynomial in C[M(∆)] defines a toric hypersur-
face Zfi,∆ in TN(∆) and it makes sense to consider the toric intersection

(2.1) Zf1,∆ ∩ · · · ∩ Zfk,∆ ⊂ TN(∆).
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Denote by Z̄fi,∆ the Zarisky closure in X∆ of Zfi,∆. For each i = 1, . . . , k there

is a toric surjective map ρi : X∆ → X∆i
such that Zfi,∆ = ρ−1

i (Zfi) and Z̄fi,∆ =

ρ−1
i (Z̄fi). This leads to

(2.2) Z̄f1,∆ ∩ · · · ∩ Z̄fk,∆ ⊂ X∆.

Each face Γ of ∆ can be uniquely written as a Minkowsky sum

(2.3) Γ = Γ1 + · · ·+ Γk

where Γi is a face of ∆i. Substituting the truncation gi := fΓi
i to fi and Γi to ∆i

gives the toric intersection

(2.4) Zg1,Γ ∩ · · · ∩ Zgk,Γ ⊂ TN(Γ).

which leads to

(2.5) Z̄g1,Γ ∩ · · · ∩ Z̄gk,Γ ⊂ XΓ.

Similarly to the hypersurface case the intersection of (2.2) with TN(Γ) (resp., XΓ)
coincides with (2.4) (resp., with (2.5)). Moreover, the intersection (2.2) is the union
over all faces Γ of ∆ of the toric intersections (2.4).

The Cayley polynomial associated with f1, . . . , fk is the polynomial F ∈ C[M⊕
Zk] defined by

(2.6) F (x, y) =

k∑
i=1

yifi(x).

Its Newton polytope is the Cayley polytope associated with ∆1, . . . ,∆k and will be
denoted by

(2.7) C(∆1, . . . ,∆k) ⊂MR × Rk.

Since F is a homogeneous (of degree 1) with respect to the variable y, the polytope
C(∆1, . . . ,∆k) lies on a hyperplane and has thus dimension at most n+k−1. In fact,
the dimension of C(∆1, . . . ,∆k) is dim(∆) + k− 1. The faces of C(∆1, . . . ,∆k) are
themselves Cayley polytopes. Namely, the faces of C(∆1, . . . ,∆k) are the Newton
polytopes of all polynomials ∑

i∈I
yif

Γi
i (x)

such that ∅ 6= I ⊂ {1, . . . , k} and Γ =
∑
i∈I Γi is a face of

∑
i∈I ∆i with Γi a face

of ∆i for each i. We will call admissible such a collection (Γi)i∈I . Note that by face
we do not mean proper face. In particular (∆i)i∈I is admissible for any non empty
subset I of {1, . . . , k}. If (Γi)i∈I is admissible, we also call admissible the collection

of polynomials (fΓi
i )i∈I and the corresponding toric intersection

(2.8)
⋂
i∈I

Z
f

Γi
i ,Γ
⊂ TN(Γ).

Definition 2.1. The collection (f1, . . . , fk) is nondegenerate if the associated

Cayley polynomial F (x, y) =
∑k
i=1 yifi(x) is nondegenerate.

The following result is based on the classical Cayley trick (see, for example, [7]).

Proposition 2.2. The collection (f1, . . . , fk) is nondegenerate if and only if
any admissible toric intersection (2.8) is a complete intersection.
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Proof. As mentionned earlier, we can consider the polynomials fΓi
i occurring

in (2.8) as polynomials in C[M ] and thus look at the corresponding intersection in
the whole torus TN . An easy computation shows that if hypersurfaces defined by
polynomials gi ∈ C[M ], i ∈ I, do not intersect transversally at a point X ∈ TN ,
then there exists λ = (λj)j∈J ∈ (C∗)|J| with J ⊂ I so that

∑
j∈J yjgj(x) defines

an hypersurface with a singular point at (X,λ) ∈ TN × (C∗)|J|. Similarly, if a
truncation

∑
i∈I yigi(x) of F to a face of C(∆1, . . . ,∆k) defines an hypersurface

with a singular point (X,λ) in the corresponding torus, then the hypersurfaces
defined by gi for i ∈ I will not intersect transversally at X ∈ TN . �

3. Tropical hypersurfaces

We now review some basic facts of tropical geometry and fix our notations.
Useful references are for instance [13], [8], [17], [6]. The tropical semiring is R ∪
{−∞} endowed with the following tropical operations. The tropical addition of
two numbers is the maximum of them; its neutral element is −∞. The tropical
multiplication is the ordinary addition with the convention that x+(−∞) = −∞+
x = −∞. Removing the neutral element −∞ from the tropical semiring, we get
the tropical one-dimensional torus R. A tropical polynomial is a polynomial

f(z) =
∑
w∈A

awz
w ∈ R[z],

where z = (z1, . . . , zn), A is a finite set in Zn, and the addition and multiplication
are the tropical ones. Strictly speaking, the coefficients are in the tropical semiring,
but as usual, we omit the monomials whose coefficients are the neutral element for
the addition. The support of f is A and the Newton polytope of f is the convex-hull
of A. We will often denote the newton polytope of a (tropical) polynomial f by ∆.
To a tropical polynomial f(z) =

∑
w∈A awz

w corresponds a convex piecewise-linear
(in fact piecewise-affine) function L : Rn → R, z 7→ maxw∈A(〈z, w〉 + aw). The
tropical hypersurface defined by f is the corner locus of L : this is the set of points of
Rn where L is not linear, or equivalently, where the maximum maxw∈A(〈z, w〉+aw)

is attained at least twice. We will denote by Ztrop
f the tropical hypersurface defined

by f .
Consider the convex-hull

∆̂ = Conv{(w,−aw) | w ∈ A} ⊂ Rn × R.

A lower face of ∆̂ is a face having an outward normal vector with negative last
coordinate (equivalently, the corresponding cone in the normal fan is not contained
in the half space Rn × R≥0 of vectors with non negative last coordinate). The

lower part of ∆̂ is the union of all lower faces of ∆ and is denoted by ∆̂<0. It
is the graph of a convex piecewise-affine function ν : ∆ → R. We have L(z) =
maxw∈∆(〈z, w〉−ν(w)) for all z ∈ R, which means that L is the Legendre transform
of ν. Indeed, L(z) = M(z,−1), where M is the map

M : Rn × R<0 → R
(z, t) 7→ maxw∈A(〈(z, t), (w,−aw)〉,

and R<0 stands for the set of negative real numbers. But the maximum of the linear
map 〈(z, t), ·〉 on the set of all (w,−aw) with w ∈ A is attained on the convex hull

∆̂ of this set, and actually on the lower part of ∆̂ if t < 0. We have thus M(z, t) =
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maxw∈∆〈(z, t), (w, ν(w)〉, and therefore L(z) = M(z,−1) = maxw∈∆(〈z, w〉−ν(w))
as claimed.

Note that the Legendre transform A → R, w 7→ maxz∈Rn(〈w, z〉 − L(z)), of L
is equal to ν since ν is convex. Hence ν and L are dual to each other. Projecting
the faces of ∆̂<0 onto ∆ via the projection Rn × R → Rn, we get a polyhedral
subdivision S of ∆. Polyhedral subdivision of polytopes of this type (obtained by
projecting lower faces of polytopes) are called convex (or coherent). The polytopes
of maximal dimension in S are the maximal domains of linearity of ν. This gives
a one-to-one corresponce between polytopes of S and faces of ∆̂<0. Similarly, we
may project the linear faces of the graph of the convex piecewise-affine map L via
the projection Rn ×R→ Rn in order to obtain a subdivision Ξ of Rn. We will call
cells the elements of Ξ. By definition Ztrop

f is the union of all (n− 1) dimensional
cells of Ξ, while the n-dimensional cells of Ξ are the maximal domains of linearity
of L.

The subdivisions S and Ξ are in one-to-one correspondence via a correspon-
dence σ ∈ S 7→ ξ ∈ Ξ which reverses the inclusions and with the following properties

(1) dim ξ + dimσ = n,
(2) the cell ξ and the polytope σ span orthonogonal real affine spaces,
(3) the cell ξ is unbounded if and only if σ lies on a proper face of ∆.

This is a straightforward consequence of the classical one-to-one correspondence
between the faces of a polytope and the cones in its normal fan, when applied to
the lower part of ∆̂.

Recall that if P is a rational polytope in Rd, then its normal fan N (P ) is the
complete fan in the dual space whose cones are the cones CF over all faces F of
∆ defined as follows. For each face F of ∆, the cone CF is the set of all vectors v
such that the restriction of the linear form 〈v, ·〉 on P attains its maximum at some
point of F . This map F 7→ CF defines a one-to-one correspondence between the
faces of P and the cones in N (P ). The inverse map sends a cone C to the face F
of P which is the maximal subset of P where 〈v, ·〉 attains its maximum on P for
some (and in fact any) v ∈ C not contained in a sub-cone of C. This correspondence
reverses the inclusion relation, sends a k-dimensional face to a (d− k)-dimensional
cone. Moreover, a cone and its corresponding face span orthogonal affine spaces. If
P has maximal dimension d, then the one-dimensional cones in N (P ) are generated
by the outward normal vectors to the facets of P , and the cone corresponding to a
face F is the cone generated by the the outward normal vectors to the facets of P
of which F is the common face.

The correspondence between faces of ∆̂ and the cones in its normal fan N (∆̂),

restricts to a one-to-one correspondence between the faces of ∆̂<0 and the cones

in the (non complete) fan N<0(∆̂) formed of all cones of N (∆̂) not contained in
Rn × R≥0. This correspondence reverses the inclusions and sends a k-dimensional

face of ∆̂ to a (n + 1 − k)-dimensional cone of N<0(∆̂) lying on a orthogonal
affine space. We note that the map M considered above is linear on each cone
of N<0(∆̂). Moreover, its maximal domains of linearity are the cones of maximal

dimension of this fan. A maximal dimensional cone of N<0(∆̂) corresponds to a

vertex (w, ν(w)) of ∆̂<0, and the restriction of M to this cone is the linear map
(z, t) 7→ 〈(z, t), (w, ν(w))〉. It follows that the subdivision Ξ, whose n-cells are the
maximal domains of linearity of L, can be obtained by taking the images under the
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projection p : Rn × {−1} → Rn of the intersections of the cones of N<0(∆̂) with
Rn × {−1}. On the other hand, polytopes of S are obtained by taking the images

of the faces of ∆̂<0 by the projection π : Rn ×R→ Rn. Thus, we get a one-to-one
correspondence between S and Ξ in the following commutative diagram

(3.1)

faces of ∆̂<0 −→ cones of N<0(∆̂)yπ yp
S −→ Ξ

Here, the first horizontal map is the restriction to ∆̂<0 of the usual duality between
the faces of a polytope and the cones in its normal fan, the left vertical map is the
bijection (respecting the dimensions and inclusions) induced by π : Rn × R → Rn
between the faces of ∆̂<0 and the polytopes in S, the right vertical map is the

bijection between N<0(∆̂) and Ξ which consists in taking the intersection of a cone
with Rn × {−1} and then project it onto Rn using p : Rn × {−1} → Rn (this
last bijection respects the inclusions but lowers the dimension by 1). It may be
useful to note that the polytope σ ∈ S corresponding to ξ ∈ Ξ is the convex-hull of
{w ∈ A | 〈x,w〉 − ν(w) = L(x)}, where x is any point in the relative interior of ξ.

4. Intersection of tropical hypersurfaces

Consider now tropical polynomials f1, . . . , fk in R[z]. For i = 1, . . . , k write

fi(z) =
∑
wi∈Ai

awiz
wi ,

so that Ai ⊂ Zn is the support of fi. Denote by ∆i the Newton polytope of fi.
Consider the tropical polynomial

f(z) =

k∏
i=1

fi(z).

We retain the notations used in the previous section for the tropical polynomial f ,
and use the same notations with a subscript i for each polynomial fi. The support
of f is the sum A = A1 + · · ·+Ak and its Newton polytope is the Minkowsky sum
∆ = ∆1 + · · ·+ ∆k. The coefficient aw in the expansion f(z) =

∑
w∈A awz

w is

aw = Max

(
k∑
i=1

awi

)
,

where the maximum is taken over all (w1, . . . , wk) ∈ A1 × · · · × Ak such that
w = w1 + · · ·+ wk. We have thus

−aw = Min

(
k∑
i=1

(−awi
)

)
,

which immediately shows that the lower part ∆̂<0 of ∆̂ = Conv{(w,−aw) | w ∈ A}
verifies

∆̂<0 = ∆̂1,<0 + · · ·+ ∆̂k,<0,

where ∆̂i,<0 is the lower part of ∆̂i = Conv{(wi,−awi
) | wi ∈ Ai}. The normal fan

N (P ) of a Minkowsky sum P = P1 + · · · + Pk is the set of cones C = ∩ki=1Ci with
Ci ∈ N (Pi) for i = 1, . . . , k. Note that cones C1, . . . , Ck are not determined by their
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common intersection C, unless they are minimal in that C 6= ∩ki=1C′i for any proper
collection C′i, i = 1, . . . , k, of sub-cones of Ci. It follows then from the diagram (3.1)
that the cells of the subdivision Ξ of Rn induced by the tropical polynomial f are
the non-empty common intersections

(4.1) ξ =

k⋂
i=1

ξi

of cells ξi ∈ Ξi, i = 1, . . . , k. Moreover, the representation (4.1) of a cell of Ξ is
unique if we impose that ξ lies in the relative interior of each ξi. We shall always
refer to this unique form when writing (4.1). Note that n-cells of Ξ are intersections
of n-cells of the subdivisions Ξi. Therefore,

Ztrop
f =

k⋃
i=1

Ztrop
fi

as expected. Consider a cell ξ =
⋂k
i=1 ξi of Ξ. Each ξi corresponds to a polytope

σi in the convex polyhedral subdivision Si of ∆i induced by fi. On the other hand,
the cell ξ corresponds to a polytope σ in the subdivision S of ∆ = ∆1 + · · · + ∆k

induced by f .

Proposition 4.1. Let ξ be a cell of Ξ with presentation ξ =
⋂k
i=1 ξi with

ξi ∈ Ξi for all i = 1, . . . , k. If σ is the polytope of S corresponding to ξ and σi is
the polytope of Si corresponding to ξi for i = 1, . . . , k, then

(4.2) σ = σ1 + · · ·+ σk.

Proof. We use the diagram (3.1). The cell ξ =
⋂k
i=1 ξi corresponds (via the

right vertical map) to a cone C = ∩ki=1Ci of N (∆), where Ci is the cone of N (∆i)
corresponding to ξi. Let v be any vector with negative last coordinate and properly
contained in C (recall that here properly contained means not contained in a sub-
cone). Then v is properly contained in each cone Ci since ξ lies in the relative

interior of each ξi. The face of ∆̂ which corresponds to C is the maximal face
where the linear map 〈v, ·〉 attains its maximum. This face is a face of ∆̂<0 since
v has negative last coordinate and it is the Minkowsky sum of the maximal faces
of ∆̂1, . . . , ∆̂k where the same linear map attains its maximum. These faces are
the faces of ∆̂1,<0, . . . , ∆̂k,<0 which correspond to the cones C1, . . . , Ck and which
project to σ1, . . . , σk. �

Note that there can be different ways to write a polytope of S as a Minkowsky
sum of polytopes of S1, . . . ,Sk. When writing (4.2), we shall always refer to the
Minkowsky sum induced by the tropical polynomials f1, . . . , fk (obtained by pro-

jecting a lower face of ∆̂<0 = ∆̂1,<0 + · · ·+∆̂k,<0). Convex polyhedral subdivisions
like S are called convex mixed subdivisions. Pictures illustrating intersections of
tropical hypersurfaces can easily be found in the litterature, see for instance [6]
(Figure 9) or [17].

Convex mixed subdivisions of a polytope ∆1 + · · · + ∆k ⊂ Rn are in one-to-
one correspondence with convex polyhedral subdivisions of the Cayley polytope
C(∆1, . . . ,∆k) ⊂ Rn+k. This is the so-called the combinatorial Cayley trick that
we recall now. Let (a, b) be coordinates on Rn+k = Rn×Rk. Consider the subspace
B of Rn+k defined by b1 = b2 = · · · = bk = 1/k and identify it with Rn via the
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projection (a, b) 7→ a. This identifies B ∩ C(∆1, . . . ,∆k) with ∆ = ∆1 + · · · + ∆k

dilated by 1/k. Note that the space defined by bi = 1 and bj = 0 for j 6= i intersects
C(∆1, . . . ,∆k) along a face which can be identified with ∆i via the projection.
Consider a polyhedral subdivision of C(∆1, . . . ,∆k). If F is a polytope of maximal
dimension dim ∆ + k − 1 in this subdivision, then it intersects the space defined
by bi = 1 and bj = 0 for j 6= i along a nonempty face Fi, which projects to a
(nonempty) subpolytope Γi of ∆i. Then F ∩B is identified via the projection with
the polytope Γ = Γ1 + · · · + Γk ⊂ ∆ dilated by 1/k. This gives a correspondence
between polyhedral subdivisions of C(∆1, . . . ,∆k) and convex mixed subdivisions
of ∆ = ∆1 + · · ·+ ∆k. The following result can be found, for example, in [20].

Proposition 4.2. The correspondence described above is a bijection between
the set of convex polyhedral subdivisions of C(∆1, . . . ,∆k) and the set of convex
mixed subdivisions of ∆ = ∆1 + · · ·+ ∆k. Precisely, let µ : C(∆1, . . . ,∆k)→ R be
any convex piecewise-linear function and let νi denote its restriction to ∆i identified
with a face of C(∆1, . . . ,∆k) via the projection (a, b) 7→ a. Then the correspondence
described above sends the coherent polyhedral subdivision of C(∆1, . . . ,∆k) defined
by µ to the convex mixed subdivision of ∆ defined by (ν1, . . . , νk).

5. Intersection multiplicity numbers between tropical hypersurfaces

Recall that all polytopes under consideration have vertices in the underlying
lattice M ' Zn. A k-dimensional simplex σ with vertices m0,m1, . . . ,mk is called
primitive if the vectors m1 −m0, . . . ,mk −m0 form a basis of the lattice M(σ), or
equivalently, if these vectors can be completed to form a basis of M . Obviously,
the faces of a primitive simplex are themselves primitives simplices.

Consider a k-dimensional vector subspace of MR with rational slopes. It in-
tersects M in a saturated subgroup γ of rank k and coincides with the real vector
space γR generated by γ. Any basis of γ produces an isomorphism between γ and
Zk, and then by extension an isomorphism between γR and Rk. Let Volγ be the
volume form on γR obtained as the pull-back via such an isomorphism of the usual
Euclidian k-volume on Rk. For simplicity, we will write Volk instead of Volγ since
the lattice γ will be clear from the context. Note that Volk does not depend on the
isomorphism γ ' Zk since two basis of γ are obtained from each other by integer
invertible linear map which has determinant ±1. Any basis (γ1, . . . , γk) of γ gen-
erate a k-dimensional parallelotope P ⊂ γR (isomorphic to the cube [0, 1]k ⊂ Rk)
called fundamental parallelotope of γ and which verifies Volk(P ) = 1. Two prim-
itive k-simplices on γR have the same volume under Volk (they are interchanged
by an invertible integer linear map), and this volume is 1

k! since a fundamental
parallelotope of γ can be subdivided into k! primitive k-simplices. We will often
use the normalized volume

volk( · ) := k! ·Volk( · )

on γR. This normalized volume takes all nonnegative integer values on polytopes
(with vertices in γ), and we have volk(σ) = 1 for a polytope σ if and only if σ is a
k-dimensional primitive simplex. We will use the following elementary fact.

Remark 5.1. Let γ be a subgroup of a free abelian group Λ of finite rank.
Assume that Λ and γ have the same rank k, so that the index [Λ : γ] of γ in Λ is
well-defined. Then, for any basis (γ1, . . . , γk) of γ and any basis e = (e1, . . . , ek) of
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Λ we have

[Λ : γ] = Volk(G) = volk(g) = |det(Gij)|,
where G (resp., g) is the k-dimensional parallelotope (resp., k-dimensional simplex)
generated by γ1, . . . , γk and (Gij) is the k×k-matrix whose j-th column is the vector
of coordinates of γj with respect to (e1, . . . , ek).

Let P1, . . . , P` be polytopes with vertices in a saturated lattice γ of rank `. The
map (λ1, . . . , λ`) 7→ Vol`(λ1P1 + · · · + λ`P`) is a homogeneous polynomial map of
degree `. The coefficient of the monomial λ1 · · ·λ` is called the mixed volume of
P1, . . . , P` and is denoted by

MV`(P1, . . . , P`).

A famous theorem due to Bernstein states that this mixed volume is the num-
ber of solutions in the torus associated with the lattice γ of a generic polyno-
mial system f1 = . . . = f` = 0 where each fi has Pi as Newton polytope. Note
that MV`(P1, . . . , P`) = 0 if P = P1 + · · · + P` does not have full dimension `
or if at least one Pi has dimension zero. If P1 = · · · = P` = P , then we have
MV`(P1, . . . , P`) = vol`(P ).

The tropical cycle associated to any tropical hypersurface in Rn is the tropical
hypersurface equipped with weights on its top-dimensional cells (cells of dimension
n − 1) which are the integer lenghts of the dual edges. The (stable) intersection
cycle associated to k tropical hypersurfaces in Rn is the (n− k)-dimensional poly-
hedral complex given by the union of the (n− k)-dimensional cells of the common
intersection of these tropical hypersurfaces and equipped with weights on these
cells as defined below. Write any cell ξ of the common intersection of k tropical
hypersurfaces Zi = Ztrop

fi
, i = 1, . . . , k, in Rn as

ξ =

k⋂
i=1

ξi

where ξi ∈ Ξi for i = 1, . . . , k (and ξ lies in the relative interior of each ξi). Let
σi ∈ Si be the polytope corresponding to ξi. Set di := codim ξi = dimσi and
d := codim ξ = dimσ. Note that di ≥ 1 for i = 1, . . . , k since ξ is a cell of the
common intersection of the k tropical hypersurfaces.

Definition 5.2. ([13]) The weight w(ξ) of the (n−k)-cell ξ of the intersection
cycle Z1 · · ·Zk is defined in the following way.

• (Tranversal case.) If d1 + · · ·+ dk = d, then

w(ξ) =
(∏k

i=1 w(ξi)
)
· [M(σ) : M(σ1) + · · ·+M(σk)]

• (General case.) Translate the tropical hypersurfaces by small generic vec-
tors so that all intersections emerging from ξ are transversal intersections
of top dimensional cells. Define w(ξ) as the sum of the weights at the
transversal intersections emerging from ξ and which are cells of codimen-
sion d.

Note that in Definition 5.2 one has d = k. Moreover, one has d1 = d2 = · · · =
dk = 1 in the transversal case so that each w(ξi) is well-defined as the integer lenght
of the edge σi. Recall also that for a polytope P ⊂ MR, we denote by M(P ) the
subgroup of M consisting of all integer vectors which are parallel to P . We may
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express the lattice index in Definition 5.2 as an index lattice in the dual lattice with
the help of the following result (see [3] for a proof).

Lemma 5.3. Let γ1 and γ2 be saturated subgroups of a free group N such that
γ1 + γ2 and N have same rank. Then the index of γ1 + γ2 in N satisfies to

[N : γ1 + γ2] = [(γ1 ∩ γ2)⊥ : γ⊥1 + γ⊥2 ],

where γ⊥ denotes the subgroup of the dual lattice M = HomZ(N,Z) consisting of
all elements of M which vanish on a subgroup γ of N .

A Minkowsky sum Q1 + · · ·+Q` of polytopes such that dim(Q1 + · · ·+Q`) =
dimQ1 + · · · + dimQ` is called a direct Minkowsky sum and is denoted by Q1 ⊕
· · · ⊕Q`. A convex mixed subdivision S of a polytope P = P1 + · · · + P` is called
pure if for any polytope Q ∈ S with representation Q = Q1 + · · · + Q` we have
Q = Q1 ⊕ · · · ⊕ Q`. In the transversal case of Definition 5.2, the polytope σ is
a direct sum of edges. Such polytopes are often called zonotopes. It follows from
Remark 5.1 that if σ is a zonotope, then w(ξ) = Volk(σ). In the general case of
Definition 5.2, one has to take any pure convex mixed subdivision of σ = σ1+· · ·+σk
and sum up the weights of the cells dual to the zonotopes in this mixed subdivision.
It is well-known (see, for example, [4], Ch. 7, Theorem 6.7) that the volumes of
the zonotopes in a given pure mixed subdivision of polytopes sum up to the mixed
volume of these polytopes, and this leads to the following well-known result.

Lemma 5.4. The weight of the (n− k)-cell ξ of the intersection cycle Z1 · · ·Zk
verifies w(ξ) = MVk(σ1, . . . , σk).

1

Note that Definition 5.2 can be used for cells ξ of codimension d < k : in
that case there is no transversal intersections of top dimensional cells of tropical
hypersurfaces and it is natural to set w(ξ) = 0 (equivalently, we may put the
weight 0 to any n-dimensional cell of the subdivision of Rn induced by one tropical
hypersurface, and uses Definition 5.2 allowing the di to be zero). One can generalize

Definition 5.2 for cells ξ =
⋂k
i=1 ξi of any codimension d ≥ k in the following way. A

partition of lenght k of d is a collection t = (t1, . . . , tk) of positive integers suming
up to d (in other words, t1, . . . , tk > 0 and t1 + · · · + tk = d). For any such
partition t, we may see ξ as a cell of the common intersection of the d tropical
hypersurfaces obtained by taking ti copies of Zi for i = 1, . . . , k, and consider
the corresponding classical weight of ξ. Suming up these weights over all possible
partitions of lenght k of d gives a weight on ξ (which does not depend on any choice
of partition). Roughly speaking, one considers the classical weights of ξ seen as a
(n − d)-cell of the intersection cycle of d tropical hypersurfaces among Z1, . . . , Zk
allowing repetitions (and imposing that each Zi appears at least once), and sum
up all these weights.

Definition 5.5. The weight of the (n− d)-cell ξ is the sum over all partitions
of lenght k of d

(5.1) w(ξ) =
∑
t

w(ξ, t),

1Benoit, j’ai enlevé l’énoncé du théorème de Bernstein (corollaire dans version précd́dente),
ca me parait inutile, maintenant, es tu d’accord ?
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where w(ξ, t) is the classical weight (given by Definition 5.2) of ξ seen as a (n−d)-cell
of the intersection cycle of the d tropical hypersurfaces Z1, . . . , Z1︸ ︷︷ ︸

t1

, . . . , Zk, . . . , Zk︸ ︷︷ ︸
tk

.

Example 5.6.

• If k = 1 (ξ is a cell of a single tropical hypersurface), there is only one
partition of lenght 1 of d = codim ξ, and w(ξ) is the classical weight of ξ
seen as a cell of the d-fold intersection of the tropical hypersurface. Thus,
by Lemma 5.4, one has w(ξ) = MVd(σ, . . . , σ) = vold(σ), where σ is the
polytope dual to ξ.

• If k = d−1, there are k partitions of lenght d−1 of d, namely (2, 1, . . . , 1),
(1, 2, 1, . . . , 1), . . . , (1, . . . , 1, 2), and thus w(ξ) is the sum of the k classical
weights of ξ seen as a cell of the common intersection of the tropical
hypersurfaces where one and only one appears twice.

For any partition t = (t1, . . . , tk) of d and any polytopes P1, . . . , Pk with vertices
in a lattice of rank d we may consider the mixed volume

MVd(P1, . . . , Pk ; t) := MVd(P1, . . . , P1︸ ︷︷ ︸
t1

, . . . . . . , Pk, . . . , Pk︸ ︷︷ ︸
tk

)

(on the right, each Pi is repeated ti times). Note that
1

t1! · · · tk!
·MVd(P1, . . . , Pk ; t)

is the coefficient of λt11 · · ·λ
tk
k in the homogeneous degree d polynomial map sending

(λ1, . . . , λk) to Vold(λ1P1+· · ·+λkPk) (see [4], page 327). Lemma 5.4 gives directly

(5.2) w(ξ, t) = MVd(σ1, . . . , σk; t).

If ξ is a transversal intersection cell, then it is easy to see that w(ξ, t) vanishes
unless t is the partition d = (d1, . . . , dk) given by the codimensions of ξ1, . . . , ξk and
that

(5.3) MVd(σ1, . . . , σk; d) =

(
k∏
i=1

voldi(σi)

)
· [M(σ) : M(σ1) + · · ·+M(σk)].

A proof of (5.3) using Bernstein’s theorem is given in [3] (see the proof of Theorem
4.5, page 13). One may also first consider the self intersection numbers volti(σi) of
the tropical hypersurfaces dual to σ1, . . . , σk (in particular, if t 6= d, then at least one
ti is bigger than di, and thus volti(σi) = 0), and then multiply the product of these
intersection numbers by the index lattice as in Definition 5.2. This corresponds, via
the duality between tropical hypersurfaces and convex subdivisions, to considering
any convex pure mixed subdivision of σ1 ⊕ · · · ⊕ σk and sum up the volumes of its
zonotopes. Each such zonotope is a direct sum of zonotopes contained in σ1, . . . , σk,
thus its volume is the product of the volumes of these smaller zonotopes by the index
lattice [M(σ) : M(σ1) + · · · + M(σk)]. Formulas (5.2) and (5.3) lead immediately
to the following result.

Theorem 5.7. ([3])

• If the tropical hypersurfaces intersect transversally along ξ, which means
that d = d1 + · · ·+ dk, then letting d := (d1, . . . , dk) we have
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(5.4) w(ξ) = MVd(σ1, . . . , σk; d)

• In the general case, we have d ≤ d1 + · · ·+ dk and

(5.5) w(ξ) =
∑

t=(t1,...,tk)

MVd(σ1, . . . , σk; t)

where the sum is over all partitions of lenght k of d.

It turns out that our weights may be defined exactly as in Definition 5.2 by
dropping out the conditions on the dimensions of the cells. Assume that any cell (of
any dimension) of a single tropical hypersurface is equipped with the normalized
volume of its dual polytope as in Example 5.6.

Definition 5.8. The weight of the (n − d)-cell ξ is defined in the following
way.

• (Tranversal case.) If d1 + · · ·+ dk = d, then

w(ξ) =
(∏k

i=1 w(ξi)
)
· [M(σ) : M(σ1) + · · ·+M(σk)]

=
(∏k

i=1 voldi(σi)
)
· [M(σ) : M(σ1) + · · ·+M(σk)]

• (General case.) Translate the tropical hypersurfaces by small generic vec-
tors so that all intersections emerging from ξ are transversal intersections.
Define w(ξ) as the sum of the weights at the transversal intersections
emerging from ξ and which are cells of codimension d.

This is the original definition used in [3]. A detailed proof of Theorem 5.7
starting from Definition 5.8 is given in [3]. This proof can be used to show the
equivalence of both definitions 5.8 and 5.5 2. Let us explain briefly how one can
show this equivalence. Assume that w(ξ) =

∑
t w(ξ, t) as in Definition 5.5. The

transversal case d = d1 + · · · + dk follows immediately from (5.3). Consider now
the general case. It is not difficult to see that for any partition t of d we have

w(ξ, t) =
∑
γ

w(γ, t),

where the sum is over all transversal intersection cells γ = ∩ki=1γi which emerge
from ξ and have codimension d. By the transversal case, we have w(γ, t) = 0
unless t is the partition given by the codimensions of γ1, . . . , γk and in that case
w(γ, t) = w(γ). Thus,

w(ξ) =
∑
t

w(ξ, t) =
∑
t

∑
γ

w(γ, t) =
∑
γ

w(γ),

which is what we wanted to show.

It is well-known that the normalized volume voln(P ) of any n-dimensional poly-
tope P ⊂ Rn is equal to (−1)n−1 times the Euler characteristic of any hypersurface
of the complex n-dimensional torus defined by a non degenerate polynomial with

2J’ai enlevé un commentaire: ”(indeed, Definition 5.5 is very close to Theorem 5.7)” car je
ne le trouve inutile : qu’en penses tu ?
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Newton polytope P . This provides a geometric interpretation of our weights in
the hypersurface case, which has the following generalization for intersections of
tropical hypersurfaces, thanks to a theorem of A. Khovanskii [12].

Theorem 5.9. We have

w(ξ) = (−1)d−kχ({f1 = · · · = fk = 0}),

where χ({f1 = · · · = fk = 0}) is the Euler characteristic of any complete inter-
section of the complex d-dimensional torus defined by nondegenerate collection of
polynomials (f1, . . . , fk) with Newton polytopes σ1, . . . , σk, respectively.

Proof. This is a direct application of Theorem 1 (Section 3) in [12]. �

Note that in the classical case k = d, this reduces to the well-known formula
w(ξ) = MVk(σ1, . . . , σk) (see Lemma 5.4) with the help of Bernstein’s theorem.

6. Tropical intersection numbers via volumes of Cayley polytopes

It turns out that our intersection multiplicity numbers can also be expressed in
term of volumes of Cayley polytopes. This can be shown using the combinatorial
Cayley trick relating convex subdivisions of Cayley polytopes to mixed subdivisions
(see Proposition 4.2) and the following basic observation.

Lemma 6.1. Suppose that S = S1⊕· · ·⊕Sm is a direct sum of simplices in MR,
where M is a lattice of rank `. Set `i = dimSi for i = 1, . . . ,m and ` = (`1, . . . , `m).
For any partition t = (t1, . . . , tm) of `, we have MV`(S1, . . . , Sm; t) = 0 if t 6= ` and

MV`(S1, . . . , Sm; `) = vol`+m−1 (C(S1, . . . , Sm))

otherwise.

Proof. According to (5.3), it suffices to show that if t = ` then

(6.1) vol`+m−1 (C(S1, . . . , Sm)) =

(
m∏
i=1

vol`i(Si)

)
·[M(S) : M(S1)+· · ·+M(Sm)].

Assume that t = `. The Cayley polytope of a direct sum of simplices is a sim-
plex. Thus vol`+m−1 (C(S1, . . . , Sm)) equals the absolute value of a (` + m −
1)-determinant D whose columns are the coordinates with respect to a basis of
M(C(S1, . . . , Sm)) = M(S) × Zm of vectors spanning C(S1, . . . , Sm). The corre-
sponding determinant taken with respect to a basis of (M(S1) + · · ·+M(Sm))×Zm
is a determinant D̃ which factors into a product of m determinants D1, . . . , Dm.
Each factor Di has size di and is a determinant whose columns are the coordinates
with respect to a basis of M(Si) of vectors spanning the simplex Si. The absolute
value of Di is just vol`i(Si). Formula (6.1) follows now from Remark 5.1. �

Let ξ =
⋂k
i=1 ξi be a cell of the common intersection of k tropical hypersurfaces.

With the notations of Section 5, we get the following formula for the weight of ξ
using Cayley polytopes of dual polytopes.

Theorem 6.2.

(6.2) w(ξ) =
∑

∅6=I⊂{1,...,k}

(−1)k−|I|vold+|I|−1 (C(σi, i ∈ I)) .
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Proof. Take any tight pure convex mixed subdivision S of σ. Each S ∈ S is a
direct sum of simplices S1 ⊕ · · · ⊕ Sk. According to Definition 5.8, the weight w(ξ)
is the sum of the weights of the cells γ corresponding to d-dimensional S ∈ S with
dimSi ≥ 1 for i = 1, . . . , k (if Si is a vertex, then γ is not a cell of the common
intersection of the perturbed tropical hypersurfaces). According to Theorem 5.7
and Lemma 6.1, we have w(γ) = vold+k−1 (C(S1, . . . , Sk)). We thus get

w(ξ) = vold+k−1 (C(σ1, . . . , σk))−
∑

S∈S : ∃i dimSi=0

vold+k−1 (C(S1, . . . , Sk)) ,

which leads to

w(ξ) =
∑

∅6=I⊂{1,...,k}

(−1)k−|I|
∑

S∈S : ∀i/∈I dimSi=0

vold+k−1 (C(S1, . . . , Sk) .

Now if dimSi = 0 for all i /∈ I, then an easy computation shows that

vold+k−1 (C(S1, . . . , Sk) = vold+|I|−1 (C(Si , i ∈ I)) ,

where C(Si , i ∈ I) stands for the Cayley polytope of Si for i ∈ I. It remains to
remark that

∑
S∈S(σ) : ∀i/∈I dimSi=0

vold+|I|−1 (C(Si , i ∈ I)) = vold+|I|−1 (C(σi , i ∈ I)) .

�

7. Non degenenerate tropical complete intersections

In this section we define non degenenerate tropical complete intersections fol-
lowing the classical definitions in the complex setting, see Sections 1 and 2. We show
that our tropical intersection multiplicity numbers behave like classical intersection
multiplicity numbers with respect to non degenerate complete intersections. First
we start from the well-established definition of a nonsingular tropical hypersurface.

Definition 7.1. A tropical hypersurface is nonsingular if its dual polyhedral
subdivision is a primitive (convex) triangulation, that is, a triangulation whose all
simplices are primitive.

This definition can be motivated by the fact that around a vertex corresponding
to a primitive n-simplex, a tropical hypersurface coincides with a tropical hyper-
surface with Newton polytope this simplex. But such a simplex is given by a basis
of the ambient lattice M , and identifying M with Zn via this basis identifies the
simplex with the standard unit simplex in Zn. Hence, up to a basis change of the
ambient lattice, a non singular tropical hypersurface coincides around each ver-
tex with a tropical linear hyperplane. Nonsingular tropical hypersurfaces with a
given Newton polytope do not always exist. The simplest example is given by the
non primitive tetrahedron with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0) and (1, 1, 2) in R3

which meets the lattice Z3 at its vertices and has thus no primitive triangulation
(see [?]). Recall that a tropical hypersurface lies in NR ' Rn, which is the tropical
torus associated with some lattice N . Hence, at this point, a tropical hypersurface
is in fact a toric tropical hypersurface. A primitive (convex) triangulation of a
polytope induces a primitive (convex) triangulation of each of its faces. Recall that
the truncation fΓ of a tropical polynomial f to a face Γ of its Newton polytope also
defines a tropical hypersurface in the corresponding tropical torus N(Γ)R. Hence,
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in contrast to the complex case, if f defines a nonsingular tropical hypersurface in
the corresponding tropical torus, then so do automatically all its truncations. Com-
paring with the classical definition 1.1 of a nondegenerate polynomial, this leads to
the following definition.

Definition 7.2. A tropical polynomial is nondegenerate if all its truncations
define nonsingular tropical hypersurfaces in the corresponding tropical tori, or
equivalently, if its dual polyhedral subdivision is a primitive triangulation.

Consider now a collection (f1, . . . , fk) of tropical polynomials in R[x1, . . . , xn],
or more generally in R[M ] with M ' Zn. Let ∆i be the Newton polytope of fi.
Define the associated tropical Cayley polynomial F ∈ R[M ⊕ Zk] by

(7.1) F (x, y) =

k∑
i=1

yifi(x).

where the operation are the tropical ones. Its Newton polytope is the associated
Cayley polytope C(∆1, . . . ,∆k). We have the following analogue of the classical
definition 2.1.

Definition 7.3. The collection (f1, . . . , fk) of tropical polynomials is nonde-
generate if the associated Cayley polynomial F is nondegenerate which means that
the dual polyhedral subdivision of C(∆1, . . . ,∆k) is a primitive triangulation.

Recall that a collection (Γi)i∈I of faces of ∆1, . . . ,∆k (where Γi is a face of ∆i)
is called admissible if I ⊂ {1, . . . , k} and ΓI =

∑
i∈I Γi is face of ∆I =

∑
i∈I ∆i.

The faces of C(∆1, . . . ,∆k) are exactly the Cayley polytopes of the admissible col-
lections (Γi)i∈I . Since a primitive triangulation of a polytope induces primitive
triangulations of its faces, it follows that if (f1, . . . , fk) is nondegenerate, then for
any admissible collection (Γi)i∈I of faces of ∆1, . . . ,∆k, the collection of tropical

polynomials (fΓi
i )i∈I is also nondegenerate. For simplicity denote by Zi the hy-

persurface defined by fi. If Γi is a face of ∆i, we will denote by Zi,Γi the tropical
hypersurface in N(Γi)R, or in NR, defined by the truncation of fi to Γi. The next
result is the tropical analogue of Proposition 2.2.

Proposition 7.4. The collection (f1, . . . , fk) of tropical polynomials is nonde-
generate if and only if for any admissible collection (Γi)i∈I of faces of ∆1, . . . ,∆k

the hypersurfaces Zi,Γi
have only transversal intersections each with intersection

multiplicity number 1.

Proof. If (f1, . . . , fk) is nondegenerate, then the corresponding convex polyhe-
dral subdivision of the Cayley polytope C(∆1, . . . ,∆k) is a primitive triangulation,
and thus the corresponding convex mixed subdivision S of ∆ = ∆1 + · · · + ∆k is
tight. In particular, the hypersurfaces Z1, . . . , Zk have only transversal intersections
at cells ξ dual to the direct sums of simplices

σ = σ1 ⊕ · · · ⊕ σk ∈ S
such that di := dimσi ≥ 1 for i = 1, . . . , k. According to Lemma 6.1, the inter-
section multiplicity number w(ξ) of Z1, . . . , Zk along such a cell ξ verifies w(ξ) =
vold+k−1 (C(σ1, . . . , σk)), where d = dimσ = d1 + · · · + dk. But C(σ1, . . . , σk) is
a primitive simplex, thus w(ξ) = 1. The same arguments work for any admissible

(Γi)i∈I since if (f1, . . . , fk) is nondegenerate then (fΓi
i )i∈I is nondegenerate too.

This show one implication of Proposition 7.4, let us show the reverse one.
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Clearly, if for any admissible collection (Γi)i∈I of faces of ∆1, . . . ,∆k the hy-
persurfaces Zi,Γi have only transversal intersections, then the mixed subdivision
S of ∆ = ∆1 + · · · + ∆k is pure. Consider a full dimensional polytope in the
polyhedral subdivision of C(∆1, . . . ,∆k). It may be written as a Cayley poly-
tope C(σ1, . . . , σk) for some σ = σ1 ⊕ · · · ⊕ σk ∈ S with dimσ = dim ∆. Set as
above di = dimσi and d = dimσ = dim ∆. Set I = {i ∈ {1, . . . , k} , di 6= 0}.
Then σ is dual to a cell ξ of the common intersection of the hypersurfaces Zi for
i ∈ I. Moreover, the intersection multiplicity number between these hypersur-
faces along ξ is voldI+k−1(C(σi, i ∈ I)), where C(σi, i ∈ I) is the Cayley polytope
associated with σi for i ∈ I and dI is the dimension of

∑
i∈I σi. This Cayley

polytope lies on the face C(∆i, i ∈ I) of C(∆1, . . . ,∆k). One can check that
vold+k−1 (C(σ1, . . . , σk)) = voldI+k−1 (C(σi, i ∈ I)). Thus both members are equal
to 1 and it follows that C(σ1, . . . , σk) is a primitive simplex. �
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118 route de Narbonne, F-31062 Toulouse Cedex 9,

E-mail address: benoit.bertrand@benoit.bertrand@math.univ-toulouse.fr
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