Licence de mathématiques fondamentales - TOPOLOGIE

T.D. de soutien du 17/12/07 et du 07/01/08 : (fin de la connexité et) e.v.n.

Corrigé de l'exercice 97 des annales

Notons \sim la relation d'équivalence dont les classes sont les composantes connexes $(x \sim y \Leftrightarrow il)$ existe une partie connexe de X contenant à la fois x et y). Soient $x \in X$, i tel que $x \in O_i$, et O l'ouvert (complémentaire) $\cup_{j \neq i} O_j$. Si $y \in O_i$ alors (par connexité de O_i) $x \sim y$. Si au contraire $y \in O$ alors $x \not\sim y$ puisque pour tout $Y \in X$ contenant à la fois x et y, y est non connexe car il est l'union disjointe de ses deux ouverts non vides $O_i \cap Y$ et $O \cap Y$. En résumé, pour $x \in O_i$, $x \sim y \Leftrightarrow y \in O_i$, donc la composante connexe de x est O_i .

Exercice 1. Soit $E = \mathcal{C}([0,1])$ avec la norme $||f|| = \int_0^1 |f(t)| dt$. Montrer que la forme linéaire $f \in E \mapsto f(0) \in \mathbb{R}$ n'est pas continue. Que peut-on en déduire pour le sous-espace des fonctions de E nulles en 0?

Exercice 2. Soient E, F deux e.v.n. et $L : E \to F$ une application linéaire vérifiant : $(L(x_n))_n$ est bornée dans F pour toute suite $(x_n)_n$ de E tendant vers $0 \in E$. Montrer que L est continue.

Exercice 3. Donner des exemples d'applications linéaires bijectives continues dont la réciproque n'est pas continue.

Exercice 4. Soient $(E, \| \|)$, $(F, \| \|')$ deux e.v.n., S(E) la sphère unité de E et $T \in L(E, F)$.

- a) On pose N(x) = ||T(x)||', vérifier que N est une semi-norme sur E. A quelle condition (sur T) est-ce une norme ?
- b) Soit N une semi-norme sur E (par exemple celle de a), ou alors une quelconque norme sur E) et C > 0. Prouver les équivalences $\forall x \in E, N(x) \leq C ||x|| \Leftrightarrow \forall x \in E \setminus \{0\}, N(x) \leq C ||x|| \Leftrightarrow \forall x \in S(E), N(x) \leq C$, et montrer s'il existe de tels C, le plus petit est $\sup_{x \in E \setminus \{0\}} N(x)/||x|| = \sup_{x \in S(E)} N(x)$.

Exercice 5. Soient E_1, E_2 et F deux e.v.n. et $B: E_1 \times E_2 \to F$ une application bilinéaire. Montrer que B est continue si et seulement s'il existe M > 0 tel que $\forall x = (x_1, x_2) \in E_1 \times E_2, ||B(x)|| \leq M||x_1|| ||x_2||$.

Exercice 6. Calculer la norme des opérateurs suivants :

Le shift sur l^{∞} défini par $S(x)_{n+1} = x_n$, $S(x)_0 = 0$.

$$X = \mathcal{C}([0,1])$$
 et $Tf(x) = f(x)g(x)$ où $g \in X$.

Calculer la norme des formes linéaires suivantes :

 $X = \mathcal{C}([0,1])$ et $u(f) = \int_0^1 f(x)g(x) \ dx$ où $g \in X$ est une fonction qui s'annule qu'en x = 1/2.

$$X = l^2$$
 et $u(x) = \sum a_n x_n$ où (a_n) est dans X .

$$X = l^1$$
 et $u(x) = \sum a_n x_n$ où (a_n) est dans l^{∞} .

X l'espace des suites convergentes muni de la norme sup et $u: X \to \mathbb{R}$ l'application $u(x) = \lim_{j \to \infty} x_j$.

Exercice 7. Soient (E, || ||), (F, || ||') deux e.v.n. et G un s.e.v. de E.

- a) Vérifier que l'application $\mathcal{L}(E,F) \to \mathcal{L}(G,F), T \mapsto T_{|G}$ est linéaire continue et déterminer sa norme.
- b) Montrer que si G est dense dans E alors cette application est une isométrie.

Exercice 8. On se place sur R^2 . Trouver les "meilleures" constantes α, β telles que $\alpha \| \|_1 \le \| \|_{\infty} \le \beta \| \|_1$.

Exercice 9. Soient E, F deux e.v.n. et $A_n, A \in \mathcal{L}(E, F)$. Montrer l'équivalence entre :

$$A_n \to A \text{ dans } \mathcal{L}(E, F).$$

 $A_n \to A$ uniformément sur toute partie bornée de E.

Exercice 10. Soit
$$E = C([0,1]), \, \mu(x) = \int_0^1 x(t) \, dt, \, \mu_n(x) = \frac{1}{n} \sum_{k=1}^n x(\frac{k}{n}).$$

- a) Calculer $||\mu||$ et $||\mu_n||$.
- b) Montrer que $\mu_n(x)$ converge vers $\mu(x)$ pour tout x dans E, mais que $||\mu \mu_n|| = 2$.

Exercice 11. Montrer qu'un e.v.n. est complet si et seulement si sa sphère unité est complète.

Exercice 12. Soient E un espace normé et F un espace de Banach. (Re-)démontrer que $\mathcal{L}(E,F)$ est aussi un espace de Banach.

- a) (Première méthode) Soit (T_n) une suite de Cauchy dans $\mathcal{L}(E, F)$. Vérifier que pour tout $x \in E$, $(T_n(x))$ est une suite de Cauchy dans F. En déduire qu'elle converge. Noter T(x) sa limite. Vérifier que T est linéaire, puis montrer que $|||T_n T||| \to 0$.
- b) (Seconde méthode) Soit B la boule unité de E. Vérifier que l'application $\mathcal{L}(E,F) \to \mathcal{B}(B,F)$ est linéaire et préserve la norme, et que son image est fermée. Conclure.

Exercice 13. Soit E un Banach, A,B deux sous-espaces de E tels que $A \cap B = \{0\}$, A étant fermé et B de dimension finie.

- a) Pour $b \in B$, on définit $[b] = d(b, A) = \inf_{a \in A} ||a + b||$. Vérifier que [.] est une norme sur B.
- b) En déduire qu'il existe C > 0 telle que $||a + b|| \ge C||b||$ pour tous $a \in A$ et $b \in B$.
- c) Montrer que $A \oplus B$ est encore un sous-espace fermé de E.