U.P.S. - Licence de mathématiques fondamentales - TOPOLOGIE Corrigé du partiel du 31 octobre 2007

Question de cours.

- a) Supposons F complète. Soit $x \in \overline{F}$. Alors x est limite d'une suite (x_n) à valeurs dans F. Cette suite est convergente donc de Cauchy, donc a une limite dans F. Par unicité de la limite on a donc $x \in F$. D'où $\overline{F} \subset F$, cqfd.
- b) Supposons E complet et F fermée. Soit (x_n) une suite de Cauchy dans F. Alors (x_n) a une limite x dans E. Or $x \in \overline{F} = F$. Donc (x_n) converge dans F, cqfd.

Exercice 1.

- a) i) \Rightarrow ii) : si $S = \overset{\overline{\circ}}{S}$ alors S est l'adhérence de l'ouvert $\overset{\circ}{S}$. Réciproquement, supposons ii). D'une part S est fermé, or il contient $\overset{\circ}{S}$, donc $S \supset \overset{\overline{\circ}}{S}$; d'autre part l'ouvert Ω est inclus dans S donc dans $\overset{\circ}{S}$, donc $S = \overline{\Omega} \subset \overset{\overline{\circ}}{S}$; d'où i).
- b) Par continuité de f, $\Omega_f = f^{-1}(\mathbf{R}^*)$ est ouvert.
- c) Tout ouvert Ω de (E,d) est de la forme Ω_f avec f continue : $f(x) = d(x,\Omega^c)$.

Exercice 2.

- a) Fixons $z \in Y$. Pour tout $y \in Y$, $f_y(x) \ge f(z) kd(z,x)$ car $f(z) f(y) \le kd(z,y) \le kd(z,x) + kd(x,y)$.
- b) Si $x \in Y$ on a d'une part (en appliquant ce qui précède à z = x) $g(x) \ge f(x)$, d'autre part (en remarquant que $f_x(x) = f(x)$), $g(x) \le f(x)$.
- c) Soient $x, x' \in X$. De l'inégalité triangulaire on déduit $\forall y \in Y, f_y(x) \leq f_y(x') + kd(x, x')$, d'où $\forall y \in Y, g(x) \leq f_y(x') + kd(x, x')$, d'où $g(x) \leq g(x') + kd(x, x')$, et idem en intervertissant x, x', d'où $|g(x) g(x')| \leq kd(x, x')$.
- d) D'après b) et c), g est un prolongement continu de f à X. Soit h un prolongement continu de f à X. Alors $(h-g)^{-1}(\{0\})$ est fermé et contient Y, donc contient \overline{Y} , donc si Y est dense alors h=g.

Exercice 3. Notons det et tr les deux applications (polynômiales donc continues) qui à une matrice associent respectivement son déterminant et sa trace, et Δ l'application $tr^2 - 4det$. Les valeurs propres d'une matrice $M \in M_2(\mathbb{R})$ étant

les racines de $X^2 - tr(M)X + det(M)$, leur somme est tr(M) et leur produit est det(M). Elles sont donc réelles > 0 ssi $\Delta(M) \ge 0$, tr(M) > 0 et det(M) > 0, et distinctes ssi $\Delta(M) \ne 0$. Donc $\mathcal{A} \subset \mathcal{B} \subset GL_2(\mathbb{R})$.

a) $GL_2(\mathbf{R}) = det^{-1}(\mathbf{R}^*)$ est ouvert. Montrons qu'il est dense. Soit $A \in M_2(\mathbf{R})$. Son spectre est fini donc il existe des λ arbitrairement petits n'appartenant pas au spectre, donc il existe des $M_{\lambda} \in GL_2(\mathbf{R})$ arbitrairement proches de $A: M_{\lambda} = A - \lambda I$.

Remarque : plus généralement, $GL_n(\mathbf{R})$ est un ouvert dense de $M_n(\mathbf{R})$ (par les mêmes arguments).

b) \mathcal{A} s'écrit $\Delta^{-1}(]0, +\infty[) \cap tr^{-1}(]0, +\infty[) \cap det^{-1}(]0, +\infty[)$ donc est ouvert dans $M_2(\mathbb{R})$.

 $\begin{pmatrix} 1/n & 0 \\ 0 & 2/n \end{pmatrix} \in \mathcal{A} \subset \mathcal{B}$ converge vers $0 \notin \mathcal{B}$, donc ni \mathcal{A} ni \mathcal{B} ne sont fermés dans $M_2(\mathbf{R})$.

 \mathcal{B} n'est pas ouvert car $\begin{pmatrix} 1 & 1/n \\ -1/n & 1 \end{pmatrix} \notin \mathcal{B}$ tend vers $I \in \mathcal{B}$. Remarque : le fait que \mathcal{A} n'est pas fermé peut aussi se déduire, par con-

Remarque : le fait que \mathcal{A} n'est pas fermé peut aussi se déduire, par connexité de $M_2(\mathbf{R})$, du fait qu'il est ouvert. De même, \mathcal{B} est évidemment un ouvert de $\mathcal{C} := \Delta^{-1}([0, +\infty[)$ et on montre facilement que \mathcal{C} est connexe, donc \mathcal{B} n'est pas fermé dans \mathcal{C} , donc dans $M_2(\mathbf{R})$ non plus.

c) \mathcal{A} est inclus dans $GL_2(\mathbb{R})$ et ouvert dans $M_2(\mathbb{R})$, donc est ouvert dans $GL_2(\mathbb{R})$.

 \mathcal{B} est inclus dans l'ouvert $GL_2(\mathbb{R})$ et non ouvert dans $M_2(\mathbb{R})$, donc non ouvert dans $GL_2(\mathbb{R})$.

 \mathcal{A} n'est pas fermé car $\begin{pmatrix} 1 & 0 \\ 0 & 1+1/n \end{pmatrix} \in \mathcal{A}$ tend vers $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in GL_2(\mathbb{R}) \setminus \mathcal{A}$.

Par contre $\mathcal B$ est fermé dans $GL_2(\mathbf R)$ car il peut se réécrire

 $GL_2(\mathbf{R}) \cap \Delta^{-1}([0, +\infty[) \cap tr^{-1}([0, +\infty[) \cap det^{-1}([0, +\infty[).$

Remarque : $GL_2(R)$ n'est pas connexe mais $GL_2^+(R)$ l'est, et contient \mathcal{B} (donc \mathcal{A}). Le fait que \mathcal{A} n'est pas fermé dans $GL_2(R)$ peut donc aussi se déduire du fait qu'il est ouvert ; de même le fait que \mathcal{B} n'est pas ouvert dans $GL_2(R)$ (donc dans $M_2(R)$ non plus) peut aussi se déduire du fait qu'il est fermé dans $GL_2(R)$.